苏教版高中数学必修三第2章统计2.4.docx
高中数学必修3 第二章《统计》
A. 抽 签 法 B . 随 机 数 表 法 D.分层抽样法
C.系统抽样法
3.某校高中生共有900人,其中高一年级300人,高二
年级200人,高三年级400人,现采取分层抽样抽取容量
为45的样本,那么高一、高二、高三各年级抽取的人数
分别为( )
D
A.15,5,25 B.15,15,15
C, 系统抽样法, 分层抽样法;
D, 简单随机抽样法, 分层抽样法;
5.某中学有学生2000名,高一、高二、高三的学生人数之比 为5:3:2,现要抽取一个容量为200的样本,则学生甲被抽
到的概率是___1_/_1_0________。若高一学生抽取50人,则样本
的容量为____1_0_0_____.
06 16 26 36 46 56
3.分层抽样
当已知总体由差异明显的几部分组成时,为了使样本 充分地反映总体的情况,常将总体分成几部分,然后按照各 部分所占的比例进行抽样。这种抽样叫做分层抽样。
说明:1、分层抽样适用于总体由差异明显的几个部分组成。
2、在每一层进行抽样时,采用简单随机抽样或系统 抽样; 3、分层抽样也是等概率抽样。 4、每一层的个数不同,则抽取的个数也应不同。
150个销售点, 公司为了调查产品销售情况,需从这600个
销售点中抽取容量为100的样本,记这项调查为①; 在C
地区有20个特大型销售点,现从中抽取7个调查它的销售
收入和销后服务情况,记这项调查为②;则完成①,②这两
ห้องสมุดไป่ตู้
项调查应采取的抽样方法依次为( A, 分层抽样法, 系统抽样法;
B)
B, 分层抽样法, 简单随机抽样法;
用系统抽样方法,从某校高二(19)班60人中抽取6人 参加初中招生服务队。
2018-2019数学新学案同步必修三苏教版讲义:第2章 统计2.4 Word版含答案
§2.4 线性回归方程学习目标 1. 了解相关关系、线性相关的概念.2.会根据散点图判断数据是否具有相关关系.3.会求线性回归方程,并能根据线性回归方程做出合理判断.知识点一 变量之间的两类关系知识点二 散点图1.散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形叫散点图.2.利用散点图可以大致确定两个变量是不是有相关关系,以及相关性强弱. 知识点三 最小平方法及线性回归方程思考 若散点大致分布在一条直线附近,如何确定这条直线比较合理? 答案 应该使散点整体上最接近这条直线. 梳理 线性回归方程:能用直线方程y ^=bx +a 近似表示的相关关系叫做线性相关关系,该方程叫线性回归方程. 最小平方法是一种求回归直线的方法,用这种方法求得的回归直线能使样本数据的点到回归直线的距离的平方和最小.给出一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),用最小平方法求得线性回归方程的系数a ,b 满足⎩⎪⎨⎪⎧b =n ∑n i =1xi y i -(∑n i =1x i )(∑ni =1y i )n ∑n i =1x 2i -(∑ni =1x i )2,a =y -b x .上式还可以表示为⎩⎪⎨⎪⎧b =∑n i =1x i y i-n x y ∑n i =1x 2i-n x2=∑ni =1(x i-x )(y i-y )∑n i =1(x i-x )2,a =y -b x .1.函数关系是一种确定关系,而相关关系是具有随机性的两个变量之间的关系.( √ ) 2.函数关系是一种因果关系,而相关关系不一定是因果关系,也可以是伴随关系.( √ ) 3.回归直线一定过样本点中心(x ,y ).( √ )4.根据线性回归方程公式,任给一组数据,均可以求出线性回归方程,并可以预报.( × )类型一 变量之间相关关系的判断例1 在下列两个变量的关系中,哪些是相关关系? (1)正方形边长与面积之间的关系; (2)作文水平与课外阅读量之间的关系; (3)人的身高与年龄之间的关系; (4)降雪量与交通事故发生率之间的关系.解 两变量之间的关系有:函数关系与带有随机性的相关关系.(1)正方形的边长与面积之间的关系是函数关系.(2)作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.(3)人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具备相关关系.(4)降雪量与交通事故发生率之间具有相关关系.反思与感悟 如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么. 跟踪训练1 有下列关系:①老师的执教水平与学生的学习成绩之间的关系; ②曲线上的点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一种树木,其横截面直径与高度之间的关系;⑤学生与其学号之间的关系.其中有相关关系的是________.(填序号)答案①③④类型二散点图及应用例25名学生的数学和物理成绩(单位:分)如下:判断它们是否具有线性相关关系.解以x轴表示数学成绩,y轴表示物理成绩,得相应的散点图如图所示.由散点图可知,各点分布在一条直线附近,故两者之间具有线性相关关系.反思与感悟(1)判断两个变量x和y间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果图上发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.(2)画散点图时应注意合理选择单位长度,避免图形过大或偏小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.跟踪训练2下面四个散点图中点的分布状态,直观上判断两个变量之间具有线性相关关系的是________.答案③解析散点图①中的点无规则的分布,范围很广,表明两个变量之间的相关程度很小;②中所有的点都在同一条直线上,是函数关系;③中的点分布在一条带状区域上,即点分布在一条直线的附近,是线性相关关系;④中的点也分布在一条带状区域内,但不是线性的,而是在一条曲线附近,所以不是线性相关关系,故填③. 类型三 线性回归方程的求法及应用例3 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系.如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.解 在直角坐标系中画出数据的散点图如图:直观判断散点在一条直线附近,故具有线性相关关系. 从而计算相应的数据之和:∑i =18x i =1 031,∑i =18y i =71.6,∑i =18x 2i =137 835,∑i =18x i y i =9 611.7.将它们代入公式计算得b ≈0.077 4,a ≈-1.024 1, 所以,所求线性回归方程为y ^=0.077 4x -1.024 1.反思与感悟 对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,若呈直线形,再依系数a ,b 的计算公式,算出a ,b .求a ,b 时,先计算平均数x ,y ;接着计算x i 与y i 的积,然后求∑x i y i 及∑x 2i ;最后将结果代入公式求b ;用a =y -b x 求a . 跟踪训练3 下表数据是退水温度x (℃)对黄酮延长性y (%)效应的试验结果,y 是以延长度计算的,且对于给定的变量x ,y ,其方差与x 无关.(1)画出散点图;(2)指出x ,y 是否线性相关;(3)若线性相关,求y 关于x 的线性回归方程; (4)估计退水温度是1 000℃时,黄酮延长性的情况. 解 (1)散点图如图:(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关. (3)列出下表并用科学计算器进行有关计算.于是可得b =∑6i =1x i y i -6x y ∑6i =1x 2i -6x 2=198 400-6×550×571 990 000-6×5502≈0.058 9, a =y -b x =57-0.058 9×550=24.605. 因此所求的线性回归方程为y ^=0.058 9x +24.605. (4)将x =1 000代入线性回归方程得 y ^=0.058 9×1 000+24.605=83.505,即退水温度是1 000℃时,黄酮延长性大约是83.505%.1.如图所示的五组数据(x ,y )中,去掉__________后,剩下的4组数据相关性增强.答案 (4,10)解析 去除(4,10)后,其余四点大致分布在一条直线附近,相关性增强.2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小平方法建立的线性回归方程为y ^=0.85x -85.71,则下列结论中不正确的是________. ①体重y 与身高x 具有函数间的关系; ②回归直线过(x ,y )点;③若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ; ④若该大学某女生身高为170 cm ,则可判定其体重必为58.79 kg. 答案 ①④解析 体重与身高的关系不确定,不是函数关系.当x =170时,y ^=0.85×170-85.71=58.79,体重的估计值为58.79 kg. 3.已知x 与y 之间的一组数据:若y 与x 线性相关,则y 与x 的线性回归方程y ^=bx +a 必过________. 答案 (1.5,4) 解析 ∵x =0+1+2+34=1.5,y =1+3+5+74=4, ∴线性回归方程必过点(1.5,4).4.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的线性回归方程为y ^=0.72x-58.2,张明同学(20岁)身高178 cm ,他的体重应该在________kg 左右. 答案 69.96解析 用线性回归方程对身高为178 cm 的人的体重进行预测,当x =178时, y ^=0.72×178-58.2=69.96(kg).5.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得线性回归方程y ^=bx +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为________万元. 答案 65.5解析 由题意可知x =3.5,y =42,则42=9.4×3.5+a ,a =9.1,y ^=9.4×6+9.1=65.5.1.求样本数据的回归方程,可按下列步骤进行: 第一步 计算平均数x ,y . 第二步 求和∑i =1nx i y i ,∑i =1nx 2i .第三步 计算b =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .第四步 写出回归方程y ^=bx +a .2.回归方程被样本数据唯一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.一、填空题1.下列两个变量中具有相关关系的是________.(填写相应的序号) ①球的半径与体积; ②角的弧度数和它的正弦值; ③单产为常数时,土地面积和总产量; ④日照时间与水稻的亩产量. 答案 ④解析 球的半径r 与体积V 存在着函数关系V =43πr 3 ;角的弧度数α和它的正弦值y 存在着函数关系y =sin α;单产为常数a 公斤/亩,土地面积x (亩)和总产量y (公斤)之间也存在着函数关系y =ax ;日照时间长,则水稻的亩产量高,这只是相关关系,应填④. 2.下列有关线性回归方程的说法,不正确的是________.(填序号)①自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系; ②在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图;③线性回归方程最能代表观测值x 、y 之间的线性关系; ④任何一组观测值都能得到具有代表意义的回归直线. 答案 ④解析 只有数据点整体上分布在一条直线附近时,才能得到具有代表意义的回归直线. 3.工人月工资(元)依劳动生产率(千元)变化的回归方程为y ^=60+90x ,下列判断正确的是________.(填序号)①劳动生产率为1千元时,工资为50元; ②劳动生产率提高1千元时,工资提高150元; ③劳动生产率提高1千元时,工资约提高90元; ④劳动生产率为1千元时,工资为90元. 答案 ③解析 因工人月工资与劳动生产率变化的线性回归方程为y ^=60+90x ,当x 由a 提高到a +1时,y ^2-y ^1=60+90(a +1)-60-90a =90.4.如图所示,表示两个变量不具有相关关系的有________.答案 ①④解析 ①是确定性函数关系;④中的点的分布没有任何规律可言,故x ,y 不具有相关关系. 5.若对某个地区人均工资x 与该地区人均消费y 进行调查统计得y 与x 具有相关关系,且线性回归方程为y ^=0.7x +2.1(单位:千元),若该地区人均消费额为10.5,则估计该地区人均消费额占人均工资收入的百分比约为________. 答案 87.5%解析 设该地区人均工资收入为x ,则y =0.7x +2.1, 当y =10.5时,x =10.5-2.10.7=12.10.512×100%=87.5%. 6.期中考试后,某校高一(9)班对全班65名学生的成绩进行分析,得到数学成绩y 对总成绩x 的回归方程为y ^=6+0.4x .由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差________分. 答案 20解析 令两人的总成绩分别为x 1,x 2. 则对应的数学成绩估计为 y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20.7.给出两组数据x ,y 的对应值如下表,若已知x ,y 是线性相关的,且线性回归方程:y ^=a +bx ,经计算知:b =-1.4,则a 为________.答案 17.4解析 x =15(4+5+6+7+8)=6,y =15(12+10+9+8+6)=9.a =y -b x =9+1.4×6=9+8.4=17.4.8.某地区近10年居民的年收入x 与年支出y 之间的关系大致符合y ^=0.8x +0.1(单位:亿元),预计今年该地区居民收入为15亿元,则今年支出估计是________亿元. 答案 12.1解析 将x =15代入y ^=0.8x +0.1,得y ^=12.1.9.在一定的限度范围内,若施化肥量x (单位:kg /公顷)与水稻产量y (单位:kg/公顷)的线性回归方程为y ^=5x +250,当施化肥量为80kg /公顷时,预计水稻产量为______ kg/公顷. 答案 650解析 把x =80代入线性回归方程y ^=5x +250, 得y ^=650.10.某男数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 答案 185解析 根据题中所提供的信息,可知父亲与儿子的对应数据可列表如下:x =173,y =176,∴b =∑i =13(x i -x )(y i -y )∑i =13(x i -x )2=3×6(-3)2+32=1, a =y -b x =176-173=3,∴线性回归方程为y ^=x +3,从而可预测他孙子的身高为182+3=185(cm).11.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:h)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6 h 篮球的投篮命中率为________. 答案 0.5 0.53解析 y =0.4+0.5+0.6+0.6+0.45=2.55=0.5,x =1+2+3+4+55=3.由公式,得b =0.01,从而a =y -b x =0.5-0.01×3=0.47. 所以线性回归方程为y ^=0.47+0.01x . 所以当x =6时,y ^=0.47+0.01×6=0.53. 二、解答题12.某商店统计了近6个月某商品的进价x 与售价y (单位:元),对应数据如下:求y 对x 的线性回归方程.(结果保留三位小数) 解 ∵x =3+5+2+8+9+126=6.5,y =4+6+3+9+12+146=8,∑i =16x 2i =327,∑i =16x i y i =396,∴b =∑i =16x i y i -6x y∑i =16x 2i -6x2≈1.143,a =y -b x ≈0.571,∴线性回归方程为y ^=1.143x +0.571.13.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)根据(2)的结果估计当房屋面积为150 m 2时的销售价格.(结果保留四位小数) 解 (1)数据对应的散点图如图所示.(2)x =15∑i =15x i =109,y =15∑i =15y i =23.2,∑i =15x 2i =60 975,∑i =15x i y i =12 952.设所求回归方程为y ^=bx +a ,则b =∑i =15x i y i-5x y∑i =15x 2i -5x2≈0.196 2,a =y -b x =23.2-109×0.196 2≈1.814 2, 故所求回归方程为y ^=0.196 2x +1.814 2. 回归直线见(1)图.(3)由(2)可知,当x =150时,销售价格的估计值为 y ^=0.196 2×150+1.814 2=31.244 2(万元). 三、探究与拓展14.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归方程y ^=bx +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是________. ①b >b ′,a >a ′;②b >b ′,a <a ′; ③b <b ′,a >a ′;④b <b ′,a <a ′. 答案 ③解析 由已知得,b ′=2,a ′=-2.由公式b =∑i =1nx i y i -n x y∑i =1nx 2i -n x2求得,b =57,a =y -b x =136-57×72=-13, ∴b <b ′,a >a ′.15.下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小平方法求出y 关于x 的回归方程y ^=bx +a ;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? 解 (1)散点图如图所示.(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5, ∑4i =1x 2i =32+42+52+62=86, ∴b =∑4i =1x i y i -4x y∑4i =1x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a =y -b x =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为y ^=0.7x +0.35. (3)现在生产100吨甲产品用煤 y ^=0.7×100+0.35=70.35, ∴90-70.35=19.65(吨标准煤).∴生产能耗比技改前降低约19.65吨标准煤.。
高中数学第2章统计章末复习课讲义苏教版必修3
高中数学第2章统计章末复习课讲义苏教版必修3抽样方法【例类别粮食类植物油类动物性食品类果蔬类种数40103020抽取的植物油类与果蔬类食品种数之和为________.6 [因为总体的个数为40+10+30+20=100,所以根据分层抽样的定义可知,抽取的植物油类食品种数为10100×20=2,抽取的果蔬类食品种数为20100×20=4,所以抽取的植物油类与果蔬类食品种数之和为2+4=6.]1.抽样方法有:简单随机抽样、分层抽样.2.两种抽样方法比较3.选择抽样方法与总体的个体数有关.在具体的抽样过程中还需明确下列运算关系: (1)两种抽样方法中每个个体被抽到的可能性p =样本容量n总体容量N.(2)对于分层抽样,设第i 层的个体数及从其中抽取的样本个体数分别为N i ,n i (i ∈N *),则分层抽样比p =样本容量n 总体容量N =n iN i.1.从30个个体(编号为00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选取第12行的第6列和第7列的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为________.9264 4607 2021 3920 7766 3817 3256 1640 5858 7766 3170 0500 2593 0545 5370 7814 2889 6628 6757 8231 1589 0062 0047 3815 5131 8186 3709 4521 6665 5325 5383 2702 9055 7196 2172 3207 1114 1384 4359 448817,00,02,07 [在随机数表中,将处于00~29的号码选出,满足要求的前4个号码为17,00,02,07.]2.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.514 [根据题意,9n -1=13, 解得n =28.故在整个抽样过程中每个个体被抽到的概率为1028=514.]用样本的频率分布估计总体分布[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计数据小于30的数据约占多大百分比. 思路点拨:(1)每组频率=每组频数样本容量.(2)频率分布直方图中, 纵轴表示的是频率组距.(3)小于30的数据所占百分比也就是前6组的频率之和,可用两种方法求解,法一:前6组频率相加,法二:用1减去第7组频率.[解] (1)样本的频率分布表如下:分组 频数 频率 [12.5,15.5) 6 0.06 [15.5,18.5) 16 0.16 [18.5,21.5) 18 0.18 [21.5,24.5) 22 0.22 [24.5,27.5) 20 0.20 [27.5,30.5) 10 0.10 [30.5,33.5]8 0.08 合计1001.00(3)法一:小于30的数据占0.06+0.16+0.18+0.22+0.20+0.10=0.92=92%. 法二:因为所有组的频率之和为1,大于30的数据占0.08,故小于30的数据占1-0.08=0.92=92%.1.样本频率分布直方图的制作步骤(1)求全距,确定组距和组数,要根据全距的大小和数据的多少,选择恰当的组距,使表格不至于太长或太短.当全距组距不是整数时,组数的“取舍”一般不是依据四舍五入,而是按组数=⎣⎢⎡⎦⎥⎤全距组距+1确定,即取全距组距的整数部分加1.(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间. (3)计算频数、频率,列出频率分布表.(4)建立平面直角坐标系,把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率,这些矩形构成了频率分布直方图.2.求频率、频数的方法与技巧(1)频率=频数样本容量,已知其中任意两个量就可以求出第三个量.(2)各小组的频数和等于样本容量,频率和等于1.(3)由样本的频率可估计总体的频率,从而估计出总体的频数.3.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为________.54 [[4.7,4.8)之间频率为0.32,[4.6,4.7)之间频率为1-0.62-0.05-0.11=1-0.78=0.22.所以a =(0.22+0.32)×100=54.]4.为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如表1、表2.表1:男生身高频数分布表身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190] 频数25141342表2:女生身高频数分布表身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180] 频数1712631(1)求该校男生的人数并画出频率分布直方图;(2)估计该校学生身高在165 cm ~180 cm 的人数占总人数的百分比.思路点拨:(1)由表1中数据可知样本中男生人数为2+5+14+13+4+2=40,又分层抽样比例10%,故全校男生数400.画频率分布直方图应注意两点:①频率分布直方图是用面积表示频率;②在频率分布直方图中,所有矩形的面积之和等于1.(2)由表1、表2中数据可估计身高在165 cm ~180 cm 的人数占总人数的百分比. [解] (1)样本中男生人数为40,分层抽样比例为10%,可得全校男生人数为400.频率分布直方图如图.(2)由表1、表2知,样本中身高在165 cm ~180 cm 的学生人数为5+14+13+6+3+1=42,样本容量为70,所以样本中学生身高在165 cm ~180 cm 的频率为4270=35,故估计该校学生身高在165 cm ~180 cm 的人数占总人数的60%.用样本的数字特征估计总体的数字特征从中抽取6件测量,数据为甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.思路点拨:利用平均数公式及方差公式计算求解,方差小的质量更稳定.[解] (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同, 又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括众数、中位数和平均数;另一类是反映样本波动大小的,包括方差及标准差.我们常通过样本的数字特征估计总体的数字特征.5.有容量为100的样本,数据分组及各组的数、频率如下:[12.5,14.5),6,0.06;[14.5,16.5),16,0.16;[16.5,18.5),18,0.18;[18.5,20.5),22,0.22;[20.5,22.5),20,0.20;[22.5,24.5),10,0.10;[24.5,26.5),8,0.08.试估计总体的平均数.[解] 法一:总体的平均数约为1100×(13.5×6+15.5×16+17.5×18+19.5×22+21.5×20+23.5×10+25.5×8)=19.42.故总体的平均数约为19.42. 法二:求组中值与对应频率积的和13.5×0.06+15.5×0.16+17.5×0.18+19.5×0.22+21.5×0.20+23.5×0.10+25.5×0.08=19.42.故总体的平均数约为19.42.6.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲 60 80 70 90 70 乙8060708075思路点拨:根据表中数据计算两组数据的平均数及方差,然后定量分析.[解] 甲的平均成绩为x 甲=74,乙的平均成绩为x 乙=73.所以甲的平均成绩好. 甲的方差是s 2甲=15[(-14)2+62+(-4)2+162+(-4)2]=104,乙的方差是s 2乙=15×[72+(-13)2+(-3)2+72+22]=56.因为s 2甲>s 2乙,所以乙的各门功课发展较平衡.变量间的相关关系象局与某医院查阅了1月份至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月 10日 2月 10日 3月 10日 4月 10日 5月 10日 6月 10日 昼夜温差x /℃ 10 11 13 12 8 6 就诊人数y /人222529261612明;(2)该兴趣小组确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.①若选取的是1月与6月的2组数据,请根据2月份至5月份的数据,求出y 关于x 的线性回归方程y ^=bx +A .②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?③若7月10日这天就诊人数为20,试估计这天昼夜温差大概是多少?思路点拨:以昼夜温差x 值为横坐标,以就诊人数y 值为纵坐标,在平面直角坐标系中作出散点图,观察点的分布规律,作出判断.利用“变量x 与y 的相关系数公式及线性回归系数公式求出r ,b ,a 再作定量分析.[解] (1)散点图如图所示,由图可见昼夜温差与就诊人数间具有线性相关关系.。
高中数学第2章统计本章综述素材苏教版必修3
第2章统计
本章概览
三维目标
能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体的实际问题情境,理解随机抽样的必要性和重要性;在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本.
通过对实例的分析,了解分层抽样和系统抽样方法;能通过试验、查阅资料、设计调查问卷等方法收集数据.
通过实例体会分布的意义和作用;在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点;通过实例理解样本数据标准差的意义和作用,学会计算数据标准差;能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.
在解决统计问题的过程中,进一步体会用样本估计总体的思想;会用样本的频率分布估计总体分布;会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异,形成对数据处理过程进行初步评价的意识.
通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
知识网络。
苏教版高中数学必修三第2章统计2.1.2.docx
高中数学学习材料马鸣风萧萧*整理制作2.1.2 系统抽样 课时目标 1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.1.系统抽样的概念系统抽样:将总体________分成几个部分,然后按照一定的规则,从每个部分中抽取________个体作为样本,这样的抽样方法称为系统抽样.2.一般地,假设要从容量为N 的总体中抽取容量为n 的样本,我们可以按下列步骤进行系统抽样:(1)采用随机的方式将总体中的N 个个体________;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号;(3)在第一段中用____________抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出.3.当总体中个体个数较少时,常采用____________抽样;当总体中个体个数较多时,常采用________抽样.一、填空题1.下列抽样问题中最适合用系统抽样法抽样的是________. ①从全班48名学生中随机抽取8人参加一项活动;②一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本; ③从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况; ④从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况.2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是________.3.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了________抽样.4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是________. ①5,10,15,20,25;②3,13,23,33,43;③1,2,3,4,5;④2,4,8,16,32.5.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是________.6.总体容量为524,若采用系统抽样,当抽样的间距为下列______时,不需要剔除个体.(填序号)①3 ②4 ③5 ④67.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.9.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.二、解答题10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.能力提升12.某种体育彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖.13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题: 本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.1.系统抽样的特点(1)适用于总体中个体数较大且个体差异不明显的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.系统抽样与简单随机抽样之间的关系(1)系统抽样比简单抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本和具体的编号相联系;而简单随机抽样所得样本的代表性与个体的编号无关;(3)系统抽样的实质是简单随机抽样.(4)系统抽样比简单随机抽样的应用更广泛.3.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的.也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.2.1.2 系统抽样知识梳理1.平均 一个 2.(1)编号 (3)简单随机3.简单随机 系统作业设计1.③解析 ①中总体容量较小,样本容量也较小,可采用抽签法;②中总体中的个体有明显的差异,也不适宜采用系统抽样;④中总体容量较大,样本容量较小也不适用系统抽样.2.2解析 由1 252=50×25+2知,应随机剔除2个个体.3.系统解析 从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.4.②解析 由题意知分段间隔为10.只有②中相邻编号的差为10.5.系统抽样6.②解析 由于只有524÷4没有余数.7.16解析 用系统抽样的方法是等距离的.42-29=13,故3+13=16.8.3 20解析 因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.9.7840~7999 0054,0214,0374,0534,0694解析 因8000÷50=160,所以最后一段的编号为编号的最后160个编号.从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.10.解 该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤:可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l (如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.11.解 总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数表法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:(1)将总体中的个体编号为1,2,3,…,8 000;(2)把整个总体分成100段,每段长度为k =8 000100=80; (3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;(4)将编号为l ,l +k ,l +2k ,l +3k ,…,l +99k(即25,105,185,…,7 945)的个体抽出,得到样本容量为100的样本.12.100 000 40 913.解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10, 其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为02.。
高中数学 第二章 统计教案 苏教版必修3
第2章统计§2.1抽样方法2.1.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法.2.过程与方法通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题、解决问题的能力.3.情感态度与价值观通过身边事例研究,体会抽样调查在生活中的应用.●重点难点重点:掌握简单随机抽样的特点及常见的两种方法(抽签法、随机数表法).难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性.通过生活实例让学生知道在不适宜普查的情况下,如何进行抽样调查才是比较科学的,结论才是可靠的,通过学生的实际操作,逐步引导学生总结出随机抽样的概念,体会随机抽样在处理现实问题中的必要性和重要性,让学生在概念中找关键词使之加深对概念的理解,并归纳实施步骤从而强化重点.教学时充分让学生自己分析、判断,自主学习、合作交流.采用讨论发现法教学,通过抓阉等游戏尽可能的让学生动手操作,体验并激发学生积极思考,再利用多媒体中随机数生成器等进行随机抽样,让学生感受样本得到的随机性,从而化解难点.(教师用书独具)●教学建议结合本节课的教学内容和学生的认知水平,在教法上,建议教师采用“启发—探究—讨论”式教学模式,以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.运用由浅入深的问题形式,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力,增长才干.由于本节课内容实例多,信息容量大,文字多,采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,从而大大提高学生的学习兴趣.●教学流程创设问题情境,引出问题:要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?⇒引导学生结合初中学习过的抽样知识,观察、比较、分析,得出简单随机抽样的概念.⇒通过引导学生回答所提问题理解简单随机抽样的条件、特征及讨论由简单抽样能够解决的问题.⇒通过例1及其变式训练,使学生理解简单随机抽样的概念与解决问题的方法.⇒通过例2及其变式训练,使学生掌握利用抽签法设计抽样方案问题的解题策略.⇒通过例3及其变式训练阐明随机数表法的原理,使学生明确用随机数表法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体把握这两种抽样设计的优缺点及应用范围.课标解读1.理解简单随机抽样的概念.(重点) 2.学会两种简单随机抽样的方法.(重点) 3.能合理地从总体中抽取样本.(难点)简单随机抽样【问题导思】要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.假设你作为一名食品卫生工作人员,要对某食品店内的一批水果罐头进行卫生达标检验,你准备怎样做?【提示】从中抽取一定数量的罐头作为检验的样本.一般地,从个体数为N的总体中逐个不放回地抽取n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.抽签法和随机数表法都是简单随机抽样.抽签法【问题导思】假设在你们班选派3个人参加学校的某项活动,为了体现选派的公平性,用什么方法确定具体人选?【提示】抽签法.抽签法的步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.随机数表法【问题导思】当总体的个数较多时,怎么抽取质量比较高的样本?【提示】随机数表法随机数表法的步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.简单随机抽样的判断下列抽取样本的方式是否属于简单随机抽样,并说明理由.(1)从全班50名同学中,选出3名三好学生.(2)从无限多个个体中,选出100个个体作样本.(3)从100件产品中选5件检验质量,抽取一件检验后放回,再抽一件,共抽五次.(4)从全班同学中选两名参观世博会,将全班同学的学号写在大小相同的纸片上,放入箱子里搅拌均匀后,一次取出两张,由纸片上的学号确定人选.【思路探究】根据简单随机抽样的特点逐一判断即可.【自主解答】(1)不是简单随机抽样,选三好学生时,不是每位学生被选上的机会都相等.(2)不是简单随机抽样,因为总体N无限,不符合简单随机抽样的定义.(3)不是简单随机抽样,因为是有放回抽样.(4)不是简单随机抽样,因为一次取了两张纸片,不是逐个抽取.1.简单随机抽样的特点是:(1)总体有限;(2)不放回抽取;(3)逐个抽取;(4)机会均等,不满足其中任何一条都不是简单随机抽样.2.判断一种抽样是不是简单随机抽样,评判的惟一标准就是其特征,尤其是总体有限容易被忽视,如本例中的(4),容易误判为简单随机抽样.判断下列抽取样本的方法是否是简单随机抽样:(1)从8台电脑中不放回地逐个随机抽取2台进行质量检验(假设8台电脑已经编号,对编号随机抽取).(2)某班50名同学,指定年龄最小的5个人参加某项活动;(3)从20个零件中一次性抽出3个进行质量检测.【解】(1)是简单随机抽样,简单随机抽样就是从有限个个体中逐个不放回地抽取个体构成样本.(2)不是简单随机抽样,因为每个个体被抽到的机会不是均等的.(3)不是简单随机抽样,因为不是逐个抽取的.抽签法的应用从某班46名学生中随机选出5名参加某项活动.请用抽签法设计抽样方案.【思路探究】按抽签法的步骤进行抽样.【自主解答】第一步,编号.一般用正整数1,2,3,…,46来给总体中所有的个体编号;第二步,写号码标签.把号码写在形状、大小相同的号签上,号签形式可不限,如小球、卡片等;第三步,均匀搅拌.把上述号签放在同一个容器内均匀搅拌;第四步,抽取.从容器中逐个连续地抽取5次,得到一个容量为5的样本.1.一个抽样能否用抽签法关键看两点:一是制签方便,二是易被搅匀.这就要求总体中个体数量不多.2.采用抽签法最重要的是保证每个个体等可能的被抽取,这就要求把号签搅匀.3.若个体中已有编号如考号、学号、标签号码等,可不必重新编号.从40件产品中抽取10件进行质量检验,写出抽取样本的步骤.【解】第一步将40件产品按1,2,…,40进行编号;第二步将1~40这40个号码写在形状、大小均相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步依次从箱中抽取10个号签;第五步将抽到的10个号签上的号码对应的产品取出,即得样本.随机数表法有一批机器,编号为1,2,3, (112)请用随机数表法抽取10台入样,写出抽样过程.【思路探究】各机器的编号位数不一致,需将编号进行调整.【自主解答】第一步将原来的编号调整为001,002,003, (112)第二步在随机数表中,任选一数作为开始,任选一方向作为读数方向,比如,选第9行第7个数“3”向右读;第三步从数“3”开始,向右读,每次读三位,凡是不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步对应原来的编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.1.随机数表的构成与特点:随机数表是由0,1,2,…,9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同.通常根据实际需要和方便使用的原则,将几个数组合成一组,然后通过随机数表抽取样本.2.随机数表的产生方法并不唯一,如抽签法、抛掷骰子法、计算机生成法,编号时号码的位数一定要一致.读数时,读取的每个数的位数与编号的位数也要一致.3.使用随机数表法时,选取开始读的数是随机的,读数的方向也是随机的.因选取开始读的数不同,读数方向不同,所以抽取的样本号码可能不一致,但均符合抽样的公平性、等可能性.只要按随机数表法的步骤抽取,都是符合要求的、正确的.某校有学生1 200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?【解】简单随机抽样分两种:抽签法和随机数表法.尽管此题总体中的个体数不算少,但依题意其操作过程却是等可能的.法一首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用抽签法,则做1 200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,得到一个容量为50的样本.法二首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用随机数表法,则在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取四位,凡不在0 001~1 200中的数跳过去不读,前面已经读过的也跳过去不读.一直到取够50个为止.忽视抽样方法步骤出错某单位支援西部开发,现从报名的20名志愿者中选取5人组成志愿小组到新疆工作,请用抽签法设计抽样方案.【错解】第一步,将20名志愿者编号,号码是01,02,03,…,20;第二步,将号码分成5份:{01,06,11,16},{02,07,12,17},{03,08,13,18},{04,09,14,19},{05,10,15,20},并将每一份中的号码写在一张纸条上,揉成团,制成号签,得5个号签;第三步,在5个号签中随机抽取1个号签,并记录上面的编号;第四步,所得号签对应的5位志愿者就是志愿小组的成员.【错因分析】设计方案时,没有按照抽签法的一般步骤进行方案设计,不符合简单随机抽样的特点.【防范措施】 1.设计方案时步骤要合理、正确.2.方案的设计要符合简单随机抽样的等可能性.3.正确掌握抽签法的步骤.【正解】第一步,将20名志愿者编号,号码是01,02,03,…,19,20;第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并搅拌均匀;第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号;第五步,所得号码对应的志愿者就是志愿小组的成员.1.抽签法与随机数表法都要求被抽取样本的总体的个体数有限,都是从总体中逐个地进行抽取,都是不放回抽样.2.当总体中的个体数较多,样本容量较小时,抽签法将总体的编号“搅拌均匀”比较困难,因此用此种方法产生的样本代表性差的可能性很大,而随机数表法中每个个体被抽到的可能性相等,用这种方法产生的样本代表性较好.3.简单随机抽样每个个体入样的可能性都相等.1.简单随机抽样的常用方法有________和________.随机地选定随机数表读数,选定开始读取的数后,读数的方向可以是________.【解析】根据简单随机抽样的分类及随机数表法的操作步骤可知.【答案】抽签法随机数表法任意的2.关于简单随机抽样的特点,有以下几种说法,其中不正确的是________.①要求总体的个数有限②从总体中逐个抽取③这是一种不放回抽样④每个个体被抽到的机会不一样,与先后顺序有关【解析】简单随机抽样除了具有特点①②③外,还具有等可能性,每个个体被抽到的机会相等,与先后顺序无关,故只有④不正确.【答案】④3.某校有教学班100个,每班50人,要求每班选派2人参加“学生代表大会”,在该问题中,样本容量是________.【解析】N=100×50=5 000,抽取比例250=1 25.∴n=5 000×125=200.【答案】2004.从20名学生中要抽取5名进行问卷调查,写出抽样的过程.【解】①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌;④依次从箱子中取出5个号签,按这5个号签上的号码抽取学生,即得样本.一、填空题1.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取100名运动员抽查.就这个问题,下列说法中正确的是________.①2 000名运动员是总体;②每名运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100.【解析】 2 000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄组成一个样本,样本容量为100.【答案】④2.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③3.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用______进行抽样.【解析】由抽签法特点知易采用抽签法.【答案】抽签法4.(2013·苏州高一检测)采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本∴所有可能的样本为{1,3},{1,8},{3,8}.【答案】{1,3},{1,8},{3,8}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.【解析】简单随机抽样中,每个个体被抽取的机会均等,都为110.【答案】110,1106.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是________.【解析】采用随机数表编号时,所编号码应位数相同,以保证每个号码被抽到的机率相等.【答案】②③7.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,以每人被抽到的机会为0.02,从该中学学生中抽取一个容量为n的样本,则n=________.【解析】三个年级的总人数为1 400+1 320+1 280=4 000(人),每人被抽到的机会均为0.02,∴n=4 000×0.02=80.【答案】808.(2013·江西高考改编)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816657208026314070243699728019832049234493582003623486969387481 【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】01二、解答题9.要从北京某中学文艺部30名学生中随机抽取3名参加国庆阅兵仪式,试写出利用抽签法抽样的过程.【解】第一步将30名学生编号为1,2,3, (30)第二步将这30个号码写到形状、大小相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步从箱中每次抽取1个号签,连续抽取3次;第五步抽到的3个号签上的号码对应的3名学生就是参加国庆阅兵仪式的学生.10.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?【解】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.11.某次数学竞赛中要求考生解答的12道题是这样产生的:从30道选择题中随机抽取3道,从50道填空题中随机抽取5道,从40道解答题中随机抽取4道,试确定某考生所要解答的12道题的序号.【解】法一:(抽签法)第一步:将选择题、填空题、解答题编号,号码是1,2,3, (120)第二步:将1~120这120个号码分别写在大小、形状都相同的号签上;第三步:将选择题、填空题、解答题的号签分别放入三个箱子中,都搅拌均匀;第四步:分别从装有选择题、填空题、解答题号签的箱子中逐个抽取3个、5个、4个号签,并且记录所得号签的号码,这就是所要解答的问题的序号.法二:(随机数表法)第一步:对题目编号,选择题编号为001,002,...,030;填空题编号为031,032,...,080;解答题编号为081,082, (120)第二步:在随机数表中任意选择一个数作为开始,任选一个方向作为读数方向,比如,选第15行第6列的数4作为开始,向右读;第三步:从数字4开始向右读下去,每次读三位,凡是不在001~120中的数跳过去不读,遇到已经读过的数也跳过去,从001~030中选3个号码,从031~080中选5个号码,从081~120中选4个号码,依次可以得到038,119,033,099,004,047,094,116,044,068,013,030.第四步:以上号码就是所要解答的问题序号,选择题的序号是4,13,30;填空题的序号是38,33,47,44,68;解答题的序号是119,99,94,116.(教师用书独具)中央电视台希望在春节联欢晚会播出一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把春节联欢晚会收视率调查表放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快反馈到我的电脑中,这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一个住户发一份是否在除夕那天晚上看中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案是否能够获得比较准确的收视率?为什么?【思路点拨】判断的标准是所有可能看电视的人群是否有相同的的机会被抽中.【规范解答】调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是上网而且登录该网址的人群,那些不能上网的人,或者不登录该网址的人就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种方案都有一定的片面性,不能得到比较准确的收视率.1936年,美国进行总统选举.竞选的是民主党的罗斯福和共和党的兰登,罗斯福是在任的总统.美国权威的《文学摘要》杂志社,为了预测总统候选人中谁能当选,采用了大规模的模拟选举.他们以电话簿上的地址和俱乐部成员名单上的地址发出100万封信,收到回信20万封.在调查史上,样本容量这么大是少见的,杂志社花费了大量的人力和物力.他们相信自己的调查统计结果,即兰登将以57%对43%的比例获胜,并大力进行宣传.最后选举结果却是罗斯福以62%对38%的巨大优势获胜,连任总统.这个调查使《文学摘要》杂志社威信扫地,不久只得关门停刊.试分析这次调查失败的原因.【解】统计不当的原因,其中之一是选取了不适当的样本作为统计调查的基础,如果抽样时使用了不适当的方法,往往得到错误的结论.失败的原因:①抽样方法不正确.样本不是从总体(全体美国公民)中随机地抽取.1936年,美国有私人电话和参加俱乐部的家庭,都是比较富裕的家庭.1929~1933年的世界经济危机,使美国经济遭受沉重打击.“罗斯福新政”动用行政手段干预市场经济,损害了部分富人的利益,“喝了富人的血”,但广大的美国人民从中得到了好处.所以,从这部分富人中抽取的样本严重偏离了总体,导致样本不具有代表性.②样本容量相对太小也是导致估计出现偏差的一个原因,因为样本容量越大,估计才越准确,发出的信不少,但回收率太低.2.1.2 系统抽样(教师用书独具)●三维目标1.知识与技能(1)理解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感态度与价值观:(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,合作探讨、相互交流的能力,概括归纳的能力.●重点难点重点:系统抽样的定义及操作步骤;难点:系统抽样中的处理办法.(教师用书独具)●教学建议在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力.让学生体会学数学的成就感.通过师生的互动,理解系统抽样概念.●教学流程创设问题情境,引出问题:从500名学生中抽取50名学生调查对老师的意见除了用简单随机抽样外还有其他方法吗?⇒引导学生结合前面学习过的简单随机抽样的知识,观察、比较、分析,得出系统抽样的概念.⇒通过引导学生回答所提问题,理解系统抽样的应用条件、应用范围及由系统抽样能够解决的问题.⇒通过例1及其变式训练,使学生掌握系统抽样概念问题的解题方法.⇒通过例2及其变式训练,使学生掌握简单的系统抽样的方案设计问题的解题策略.⇒通过例3及其变式训练阐明需剔除个体的系统抽样的方法,使学生明确抽样方法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.。
高中数学-苏教版-必修3-第二章-统-计(课件+学案)2.2.1-频率分布表-2.2.2-频率分布直方图与折线图(一)
高中数学-苏教版-必修3-第二章-统-计(课件+学案)2.2.1-频率分布表-2.2.2-频率分布直方图与折线图(一)2.2.1频率分布表2.2.2频率分布直方图与折线图(一)学习目标1.体会分布的意义和作用;2.学会用频率分布表,画频率分布直方图表示样本数据;3.能通过频率分布表或频率分布直方图对数据做出总体统计.知识点一用样本估计总体思考还记得我们抽样的初衷吗?梳理用样本估计总体的两种情况:(1)用样本的____________估计总体的频率分布.(2)用样本的数字特征估计总体的数字特征.知识点二频率分布表思考通过抽样获得的数据有什么缺点?梳理一般地,制作频率分布表的步骤如下:(1)求全距,决定组数和组距,组距=________;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.知识点三频率分布表与频率分布直方图思考表格与图形,哪个更直观?梳理一般地,(1)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用__________________来表示,各小长方形的面积的总和等于______.(2)将频率分布直方图中各相邻的矩形的______底边的______点顺次连结起来,就得到频率分布折线图.(3)当样本容量足够______时,组距足够______时,频率分布折线图就趋近于总体分布的密度曲线.类型一利用原始数据绘制频率分布表例1从某校高一年级的1 002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,并估计身高不小于170(cm)的同学所占的百分率.16 8165171167171651715217517416 51716816917116616415516415817 0155166158155161616415616216171616171716171617008440593 218 01741731591631721671616416915 116815816817615516516516916217 715817516516915116316616316717 81651581716915915516315315516 716316415816816716116216716816 1165174156167166162161164166反思与感悟分组时先找到最大值和最小值,以便于确定分组的起点和终点.组距的选择应力求“取整”.区间端点要不重不漏,以便每个数据进且只进一个组.跟踪训练1有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人.(1)列出学生参加运动队的频率分布表;(2)画出频率直方图.类型二根据频率分布表绘制频率分布直方图例2下表给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).区间界限[122,126)[126,130)[130,134)[134,138)[138,142)人数58102233 区[150[15间界限[142,146)[146,150),154)4,158]人数20116 5(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.反思与感悟频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.跟踪训练2从某校高三学生中抽取50名参加数学竞赛,成绩分组(单位:分)及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.类型三频率分布表及频率分布直方图的应用例3为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?反思与感悟在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.跟踪训练3在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:分组频数频率[1.30,1.34)4 [1.34,1.38)25 [1.38,1.42)30 [1.42,1.46)29 [1.46,1.50)10[1.50,21.54]合计100(1)完成频率分布表,并画出频率分布直方图;(2)估计纤度落在[1.38,1.50)内的可能性及纤度小于1.42的可能性各是多少?1.有一个容量为45的样本数据,分组后各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5],4.由此估计,不大于27.5的数据约为总体的________.2.某校为了解学生的睡眠情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用下面的频率直方图表示,根据频率直方图可得这50名学生这一天平均每人的睡眠时间为________ h.3.下列命题正确的是________.(填序号)①频率分布直方图中每个小矩形的面积等于相应组的频数;②频率分布直方图中所有小矩形的面积之和等于1;③频率分布直方图中各小矩形的高(平行于纵轴的边)表示频率与组距的比.4.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生总人数是________.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式,用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.答案精析问题导学 知识点一思考 用样本去估计总体,为决策提供依据. 梳理 (1)频率分布 知识点二思考 多而杂乱,无法从中提取信息,交流传递.因而,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布,我们把反映总体频率分布的表格称为频率分布表.其中,我们将整个取值区间的长度称为全距,分成的区间的长度称为组距. 梳理 (1)全距组数知识点三 思考 图形.梳理 (1)频率组距小长方形的面积 1 (2)上 中(3)大小题型探究例1解(1)在全部数据中找出最大值180与最小值151,它们相差(极差)29,决定组距为3;(2)将区间[150.5,180.5]分成10组;分别是[150.5,153.5),[153.5,156.5),…,[177.5,180.5);(3)从第一组[150.5,153.5)开始分别统计各组的频数,再计算各组的频率,列频率分布表;分组频数累计频数频率[150.5,153.5)40.04[153.5,156.5)80.08[156.5,159.5)80.08[159.5,162.5)110.11[162.5,165.5)220.22[165.5,168.5)190.19[168.5,171.5)140.14[171.5,174.5)70.07[174.5,177.5)40.04[177.5,180.5]30.03合计100 1身高不小于170(cm)的同学所占的百分率为9+7+4+3100×100%=23%.跟踪训练1解(1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:试验结果频数频率参加足球队300.3(记为1)参加篮球队(记为2)270.27参加排球队(记为3)230.23参加乒乓球队(记为4)200.2合计100 1.00 (2)由上表可知频率直方图如下:例2解(1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,220.1138)8[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158]50.04合计120 1 (2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.跟踪训练2解(1)频率分布表如下:成绩分组频数频率累积频率[40,50)20.040.04[50,60)30.00.16 [60,70)100.20.3 [70,80)150.30.6[80,90)120.240.84[90,100]80.161.00合计50 1.00 (2)频率分布直方图如图所示:(3)成绩在[60,90)分的学生比例,即学生成绩在[60,90)分的频率为0.2+0.3+0.24=0.74=74%.所以估计成绩在[60,90)分的学生比例为74%. 例3解(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08;又因为频率=频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.(2)由图可估计该学校全体高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%. 跟踪训练3解(1)频率分布表如下:分组频数频率[1.30,1.34)40.04[1.34,1.38)250.25[1.38,1.42)300.3[1.42,1.46)290.29[1.46,1.50)100.1[1.50,1.54]20.02合计100 1.0频率分布直方图如图所示:(2)纤度落在[1.38,1.50)的可能性即为纤度落在[1.38,1.50)的频率,即为0.3+0.29+0.10=0.69=69%.纤度小于1.42的可能性即为纤度小于1.42的频率,即为0.04+0.25+0.30=0.59=59%.当堂训练1.91.1%解析不大于27.5的样本数为3+8+9+11+10=41,所以约占总体的百分比为4145×100%≈91.1%.2.6.4解析由题意可知这50名学生这一天平均每人的睡眠时间为(5.5+7+7.5)×0.1+6×0.3+6.5×0.4=6.4(h).3.②③解析在频率分布直方图中,横轴表示样本数据;纵轴表示频率组距.由于小矩形的面积=组距×频率组距=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.综上可知②③正确.4.48解析 因为第2小组的频数为12,且前3个小组的频率之比为1∶2∶3,所以前3个小组的频数分别为6,12,18,共6+12+18=36,第4,5两小组的频率和为5×0.037 5+5×0.012 5=5×0.05=0.25,所以前3个小组的频率和为1-0.25=0.75,所以抽取的学生总人数是360.75=48.。
2019—2020年最新苏教版高中数学必修三第2章《统计》同步练习试题4及解析.docx
(新课标)2019—2020学年苏教版高中数学必修三学业分层测评(十四)(建议用时:45分钟)[学业达标]一、填空题1.以下茎叶图234记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).图234已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x =________,y =________.【解析】 由甲组数据中位数为15知,x =5;而乙组数据的平均数16.8=9+15+(10+y )+18+245, 可得y =8.故填5,8.【答案】 5 82.x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 50的平均数为b ,则x 1,x 2,…,x 50的平均数是________.【解析】 由题意知前10个数的总和为10a ,后40个数的总和为40b ,又总个数为50,∴x1,x2,…,x50的平均数为10a+40b50=a+4b5.【答案】a+4b 53.某学校高一(5)班在一次数学测验中,全班数学成绩的平均分为91分,其中某生得分为140分,是该班的最高分.若不包括该生的其他同学在这次测验中的平均分为90分,则该班学生的总人数为________.【解析】设该班有n名学生,则有91n-140n-1=90.∴n=50.【答案】504.在一次射击训练中,一小组的成绩如下表:环数789人数2 3已知该小组的平均成绩是8.1环,那么成绩为8环的人数是________.【解析】设成绩为8环的人数是x,由平均数的概念,得7×2+8x+9×3=8.1×(2+x+3),解得x=5.【答案】 55.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.【解析】取m=15,则所形成的新数据为0,2,-1,-5,0,2,2,1,-1,-3.∴a ′=0+2-1-5+0+2+2+1-1-310=-0.3. ∴a =15+(-0.3)=14.7.数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,中位数b =15,众数c =17.则大小关系为c >b >a .【答案】 c >b >a6.在一组数据中出现10的频率为0.08,出现15的频率为0.01,出现11的频率为0.2;出现12的频率为0.31.出现13的频率为0.18,出现14的频率为0.16,出现16的频率为0.06,则这组数据的平均数为________.【解析】 由平均数的计算公式可得:x -=10×0.08+15×0.01+11×0.2+12×0.31+13×0.18+14×0.16+16×0.06=12.41.【答案】 12.417.如果a 1、a 2、a 3、a 4、a 5、a 6的平均数为3,那么2(a 1-3)、2(a 2-3)、2(a 3-3)、2(a 4-3)、2(a 5-3)、2(a 6-3)的平均数为________.【解析】 由题意知a 1+a 2+a 3+a 4+a 5+a 6=3×6=18,故所求平均数为16[2(a 1-3)+2(a 2-3)+2(a 3-3)+2(a 4-3)+2(a 5-3)+2(a 6-3)]=16[2(a 1+a 2+a 3+a 4+a 5+a 6)-6×6]=13×18-6=0. 【答案】 08.一位教师出了一份含有3个问题的测验卷,每个问题1分.班级中30%的学生得了3分,50%的学生得了2分,10%的学生得了1分,另外还有10%的学生得0分,则全班的平均分是________分.【导学号:11032047】【解析】设全班学生为n,则全班平均分为3×30%+2×50%+1×10%=2(分).【答案】 2二、解答题9.某农科所有芒果树200棵,2016年全部挂果,成熟期一到,随意摘下其中10棵树上的芒果,分别称得重量如下(单位:kg):10,13,8,12,11,8,9,12,8,9.(1)求样本平均数;(2)估计该农科所2016年芒果的总产量.【解】应用样本平均数的公式计算样本平均数,再估计总体平均数,从而求出该农科所2016年芒果的总产量.(1)样本平均数x-=110(10+13+8+12+11+8+9+12+8+9)=10(kg).(2)由样本的平均数为10 kg,估计总体平均数也是10 kg.所以总产量为200×10=2 000(kg).10.学校对王老师与张老师的工作态度、数学成绩及业务学习三个方面做了一个初步的评估,成绩如下表:工作态度教学成绩业务学习王老师989596张老师909998(1)如果以工作态度、教学成绩及业务学习三个方面的平均分来计算他们的成绩,作为评优的依据,你认为谁会被评为优秀?(2)如果三项成绩的比例依次为20%、60%、20%来计算他们的成绩,结果又会如何?【解】(1)王老师的平均分是(98+95+96)÷3≈96.张老师的平均分是(90+99+98)÷3≈95.7.王老师的平均分较高,评王老师为优秀.(2)王老师的平均分是(98×20%+95×60%+96×20%)=95.8,张老师的平均分为(90×20%+99×60%+98×20%)=97.张老师的得分高,评张老师为优秀.[能力提升]1.某校从参加高二年级学业水平测试的学生中抽出80名,其数学成绩(均为整数)的频率分布直方图如图235所示.则可估计该校学生的平均成绩为________.图235【解析】x=45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72.【答案】722.在一组数据:13,8,1,9,7,6,4,3,18,11中抽去一个,新的一组数据的平均数与原数据的平均数相同,则被抽去的数是________.【解析】抽去一个数后平均数没有变,说明被抽取的数应是平均数,从而有13+8+1+9+7+6+4+3+18+11=8.10【答案】83.某鱼塘放养鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%.一段时间后准备打捞出售,第一次从网中取出40条,称得平均每条鱼重2.5 kg;第二次网出25条,称得平均每条鱼重2.2 kg;第三次网出35条,称得平均每条鱼重2.8 kg.请你根据这些数据,估计鱼塘中的鱼的总重量约是________ kg.【解析】先算出三次称鱼的平均数为:2.5×40+2.2×25+2.8×35=2.53(kg),40+25+35所以鱼塘中的鱼的总重量为2.53×(100 000×95%)≈24万(kg).【答案】24万4.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.23.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.31.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图236,从茎叶图看,哪种药的疗效更好?图236【解】(1)x-A=120(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3(h).x-B=120(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6(h).从计算结果看,A药服用者的睡眠时间增加的平均数大于服用B药的.所以A药的疗效更好.(2)从茎叶图看,A药的疗效更好.。
苏教版必修3第二章统计(数学)
第2章统计§2.1 抽样方法重难点:结合实际问题情境,理解随机抽样的必要性和重要性,在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法.考纲要求:①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.经典例题:某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?当堂练习:1.为了了解全校900名高一学生的身高情况,从中抽取90名学生进行测量,下列说法正确的是()A.总体是900 B.个体是每个学生 C.样本是90名学生 D.样本容量是90 2.某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:①1000名考生是总体的一个样本;②1000名考生数学成绩的平均数是总体平均数;③70000名考生是总体;④样本容量是1000,其中正确的说法有:()A.1种 B.2种 C.3种 D.4种3.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为()A.120 B.200 C.150 D.1004.从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为()A. 1000 B. 1200 C. 130 D.13005.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5,10,15,20,25,30 B.3,13,23,33,43,53C.1,2,3,4,5,6D.2,4,8,16,32,486.从N个编号中抽取n个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为()A.NnB.n C.Nn⎡⎤⎢⎥⎣⎦D.1Nn+⎡⎤⎢⎥⎣⎦7.某小礼堂有25排座位,每排有20个座位。
苏教版高中数学必修3第2章 统计 全章复习讲义设计(含答案解析)
【知识梳理】知识点一:抽样方法从调查的对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标做出推断,这就是抽样调查.调查对象的全体称为总体,被抽取的一部分称为样本.1.简单的随机抽样简单随机抽样的概念:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.①用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时,任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②简单随机抽样的特点是:不放回抽样,逐个地进行抽取,各个个体被抽到的概率相等;③简单随机抽样方法体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.简单抽样常用方法:①抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.②随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.【解析】由题意可得1011910,5x y ++++=22222(10)(10)(1010)(1110)(910)25x y -+-+-+-+-=,解得12,8.||4x y x y ==-=,故选D .例3. 对某电子元件进行寿命追踪调查,情况如下:寿命(h ) 100~200 200~300300~400400~500500~600个 数2030804030(1)列出频率分布表;(2)画出频率分布直方图和累积频率分布图; (3)估计电子元件寿命在100~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.【思路点拨】 通过本题可掌握总体分布估计的各种方法和步骤. 【解析】(1)频率分布表如下:寿命(h ) 频 数 频 率 累积频率 100~200 20 0.10 0.10 200~300 30 0.15 0.25 300~400 80 0.40 0.65 400~500 40 0.20 0.85 500~600 30 0.15 1 合 计2001(2)频率分布直方图如下:(3)由累积频率分布图可以看出,寿命在100~400 h内的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100~400 h内的概率为0.65.(4)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35.【总结升华】画频率分布条形图、直方图时要注意纵、横坐标轴的意义.举一反三:【变式1】为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是()(A)20 (B)30 (C)40 (D)50【答案】C;【解析】根据运算的算式:体重在〔56.5,64.5〕学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在〔56.5,64.5〕学生的人数为0.4×100=40.【变式2】某班学生在一次数学考试中成绩分布如下表:分数段[0,80)[80,90)[90,100)人数 2 5 6)分数段[100,110)[110,120 [120,130)人数8 12 6分数段[130,140)[140,150)人数 4 2那么分数在[100,110)中的频率和分数不满110分的累积频率分别是_______、_______(精确到0.01). 【答案】0.18 0.47【解析】由频率计算方法知:总人数=45.分数在[100,110)中的频率为458=0.178≈0.18. 分数不满110分的累积频率为458652+++=4521≈0.47【变式3】为检测某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品为13件,次品4件 (1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计商品为二级品或三级品的概率约是多少? 【解析】(1)样本的频率分布表为产品频数频率 一级品 5 0.17 二级品 8 0.27 三级品 13 0.43 次品40.13(2)样本频率分布的条形图为:(3)此种产品为二级品或三级品的概率约为0.27+0.43=0.7.例4.甲、乙两小组各10名学生的英语口语测试成绩如下:(单位:分) 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 用茎叶图表示两小组的成绩,并判断哪个小组的成绩更整齐一些?【思路点拨】学会用茎叶图表示数据的方法;并会进行统计推断.【解析】用茎叶图表示两小组的成绩如图:由图可知甲组成绩较集中,即甲组成绩更整齐一些.【总结升华】对各数据是二、三位数,且数据量不是很大时,用茎叶图表示较为方便,也便于进行统计推断,否则,应改用其他方法.举一反三:【变式1】甲、乙两个学习小组各有10名同学,他们在一次数学测验中成绩的茎叶图如图所示,则他们在这次测验中成绩较好的是组.【答案】甲小组类型三:变量的相关性和回归分析例5.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元)12 28 42 56(1) 画出表中数据的散点图;(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?【解析】(1)作出的散点图如下图所示(2)观测散点图可知各点大致分布在一条直线附近,由此可知散点图大致表现为线性相关.列出下表:序号 x y X 2xy 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 44 56 16 224 ∑1013830418易得569,22x y ==所以 414222156944184732255304()42i ii ii x y xyb xx ==--⨯⨯===-⨯-∑∑ 697352252a y bx =-=-⨯=- 故y 对x 的回归直线方程为73ˆ25yx =- (3)当x=9时, 73ˆ92129.45y=⨯-= 012 3 4x(万元)Y(万元)1020 30 40 50 60 .. . .08.0423.15=⨯-=-=bx y a .∴线性回归方程为:08.023.1^+=+=x a bx y .(2)当x=10时,38.1208.01023.1^=+⨯=y (万元) 即估计使用10年时维修费用是12.38万元.【变式2】一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间有如下一组数据:x 1.08 1.12 1.19 1.28 1.36 1.48 y 2.25 2.37 2.40 2.55 2.64 2.75 x 1.59 1.68 1.80 1.87 1.98 2.07 y 2.92 3.03 3.14 3.26 3.36 3.50(1)画出散点图;(2)求月总成本y 与月产量x 之间的回归直线方程. 【解析】(1)画出散点图:(2)设回归直线方程a bx y+=ˆ, 利用计算a ,b ,得b ≈1.215, 974.0ˆ≈-=+=x b y a bx y,从中抽取一个容量为100的样本,较为恰当的抽样方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.以上三种均可3. 从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为( ) A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大5.要从已编号(160:)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,486. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( ) A.0.6 h B.0.9 h C.1.0 h D.1.5 h7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……;第六组,成绩大于等于18秒且小于等于19秒.下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,458.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米B .49米C .50米D .51米9.用系统抽样法要从160名学生抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,则第一组中抽签方法确定的号码是________.10.从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数1231031则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.11.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 . 12.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下甲 6 8 9 9 8乙 10 7 7 7 9则两人射击成绩的稳定程度是__________________.13.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5~149.5 1 0.02149.5~153.5 4 0.08153.5~157.5 20 0.40157.5~161.5 15 0.30161.5~165.5 8 0.16165.5~169.5 m n合计M Nm n M N所表示的数分别是多少?(1)求出表中,,,(2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?14.从两个班中各随机的抽取10名学生,他们的数学成绩如下:甲班76 74 82 96 66 76 78 72 52 68乙班86 84 62 76 78 92 82 74 88 85画出茎叶图并分析两个班学生的数学学习情况.15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?16.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格.【答案与解析】1.【答案】B 【解析】∵n40=0.125,∴n=320.故选B. 2. 【答案】C 3. 【答案】C 【解析】剔除零头 4. 【答案】B【解析】平均数不大于最大值,不小于最小值 5. 【答案】B 【解析】60106=,间隔应为10 6. 【答案】B 【解析】505.020)5.11(1025⨯++⨯+⨯=0.9.7.【答案】A【解析】由图知,成绩小于17秒的学生人数占全班总人数的频率为0.020.180.360.340.9+++=, 所以0.9x =;成绩大于等于15秒且小于17秒的的频率为0.360.340.7+=,104416461451222222=++++=)(甲s 5627313751222222=++++=)(乙s ∵ 22乙甲乙甲,s s x x >>∴ 甲的平均成绩较好,乙的各门功课发展较平衡16.【解析】(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx , 308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=), 则1962.01570308≈==xx xyl l b 8166.115703081092.23≈⨯-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y )(3)据(2),当2150x m =时,销售价格的估计值为: 2466.318166.11501962.0=+⨯=y )(万元)。
苏教版高中数学必修三第二章-统计2.4ppt课件
1.函数关系:变量之间的关系可以用 函数 表示,是一 种 确定性函数 关系. 2.相关关系:变量之间有 一定的联系 用 函数 来表达. ,但不能完全
散点图与线性回归方程
【问题导思】 在研究两个变量的相关关系时通常采用哪些方法?
【提示】 散点图与线性回归方程.
1.散点图 从一个统计数表中,为了更清楚地看出 x 与 y 是否有相 关关系,常将 x 的取值作为 横坐标 ,将 y 的相应取值作 为 纵坐标 ,在直角坐标系中描点(x ,y )(i=1,2,3,„),这
求线性回归方程
一个车间为了规定工时定额,需要确定加工零 件所花费的时间, 为此进行了 10 次实验, 测得的数据如下表.
零件数x(个) 10 20 30 40 50 60 70 10 加工时间y( 62 68 75 81 89 95 2 分)
80 10 8
90 11 5
10 0 12 2
(1)y 与 x 是否具有线性相关关系? (2)如果 y 与 x 具有线性相关关系,求: ①y 关于 x 的线性回归方程; ②x 关于 y 的线性回归方程.
§2.4 线性回归方程
教师用书独具演示
●三维目标 1.知识与技能 通过收集现实问题中两个有关联变量的数据认识变量间 的相关关系.
2.过程与方法 认识现实生活中变量间除了存在确定的关系外,仍存在 大量的非确定性的相关关系,并利用散点图直观体会这种相 关关系. 3.情感态度与价值观 知道可用线性回归方程近似地表示两个具有相关关系的 改变量之间的关系.
x 10 15 17 20 25 28 32 y 1 1.3 1.8 2 2.6 2.7 3.3
(1)画出散点图; (2)判断 y 与 x 是否具有线性相关关系.
苏教版高中数学必修三第2章统计2.1.1.docx
高中数学学习材料鼎尚图文*整理制作第2章 统 计2.1.1 简单随机抽样 课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样的定义一般地,从个体数为N 的总体中________________取出n 个个体作为样本(n <N ),如果每个个体____________被取到,那么这样的抽样方法称为__________________.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体____________的情况下是行之有效的.一、填空题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是________.①200个表示发芽天数的数值;②200个球根;③无数个球根发芽天数的数值集合;④无法确定.2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是____________.3.抽签法中确保样本代表性的关键是________.4.下列抽样实验中,用抽签法方便的有________.①从某厂生产的3 000件产品中抽取600件进行质量检验; ②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验; ③从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验; ④从某厂生产的3 000件产品中抽取10件进行质量检验.5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是________.①1 000名运动员是总体;②每个运动员是个体;③抽取的100名运动员是样本;④样本容量是100.6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是________.7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)二、解答题10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?能力提升12.在简单随机抽样中,某一个个体被抽到的可能性________.①与第几次抽样有关,第一次抽到的可能性大一些;②与第几次抽样无关,每次抽到的可能性相等;③与第几次抽样有关,最后一次抽到的可能性大些;④与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同.13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性如果四个特征有一个不满足就不是简单随机抽样.2.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.3.在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.2.1抽样方法2.1.1简单随机抽样知识梳理1.逐个不放回地都有相同的机会简单随机抽样2.抽签法随机数表法 3.个体数不多作业设计1.①2.120解析由于样本容量即样本的个数,抽取的样本的个数为40×3=120.3.搅拌均匀解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以要求搅拌均匀.4.②解析①总体容量较大,样本容量也较大不适宜用抽签法;②总体容量较小,样本容量也较小可用抽签法;③中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;④总体容量较大,不适宜用抽签法.5.④解析此问题研究的是运动员的年龄情况,不是运动员,故①、②、③错.6.1 10,1107.简单随机抽样解析由简单随机抽样的特点可知,该抽样方法是简单随机抽样.8.抽签法9.①③②10.解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.11.解(1)将元件的编号调整为010,011,012,…,099,100,…600;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.12.②解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.13.解方法一抽签法.(1)将50个轴进行编号01,02, (50)(2)把编号写在大小、形状相同的纸片上作为号签;(3)把纸片揉成团,放在箱子里,并搅拌均匀;(4)依次不放回抽取5个号签,并记下编号;(5)把号签对应的轴组成样本.方法二随机数表法(1)将50个轴进行编号为00,01, (49)(2)在随机数表中任意选定一个数并按向右方向读取;(3)每次读两位,并记下在00~49之间的5个数,不能重复;(4)把与读数相对应的编号相同的5个轴取出组成样本.。
数学第2章统计本章优化总结课件(苏教版必修3)
专题三 用样本的数字特征估计总体的数字 特征 总体的平均数与标准差往往通过样本的平均 数、标准差来估计.一般地,样本容量越 大,对总体的估计越准确. (1)从数字特征上描述一组数据的情况 平均数、众数、中位数描述其集中趋势,方 差、极差和标准差描述其波动大小,也可以 说方差、标准差和极差反映各个数据与其平 均数的离散程度.
【点评】 (1)在系统抽样和分层抽样中要把总体 分成几个互不重叠的部分,常常会出现总体个数 与样本容量不能整除的情况,此时需用简单随机 抽样法从总体中剔除部分个体,以保证每个个体 入样的可能性不发生变化. (2)如果总体中的个体有明显的差异,则只能用分 层抽样,否则抽取的样本可能不具有代表性.
专题二 用样本的频率分布估计总体分布 用样本的分布规律来估计总体的分布,这是 统计的基本思想.样本的频率分布表、频率 分布直方图和折线图、茎叶图是必须熟练掌 握的,在此基础上,可以由频率分布折线图 反映的数据变化趋势来近似得出总体分布的 密度曲线,以此来估计总体的分布情况.
(2)方差和标准差的运用 一组数据的方差或标准差越大,说明这组数 据波动越大,方差的单位是原数据的单位的 平方,标准差的单位与原单位相同.
甲、乙例两3 名运动员在相同条件下各射靶10 次,进行射击水平测试,每次命中的环数分别是: 甲:8 6 7 8 6 5 9 10 4 7 乙:6 7 7 8 6 7 8 7 9 5 (1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差; (3)根据计算结果估计一下两名运动员的射击情 况,你认为应该选拔哪位运动员参加射击比赛?
(2)系统抽样: 因为2013=20×100+13,为了保证“等距” 分段,应先剔除13人. 第一步,将2013人用随机方式编号. 第二步,从总体中剔除13人(剔除方法可用随 机数表法),将剩下的2000人用随机方式编 号,编号分别为0001,0002,…,2000,并均 分成100段.
苏教高中数必修3教:第2章 统计 2.3.1 平均数及其估计
结论:
1.平均数最能代表一个样本数据的集中趋势,也就是说 它与样本数据的离差最小;
__
2.数据 a1,a2,,an 的平均数或均值,一般记为 a
ቤተ መጻሕፍቲ ባይዱ
a1
a2 an n
;
3.若取值为 x1,x2,x3,,xn 的频率分别为 p1,p2,,pn ,则其平均数为 x x1 p1 x2 p2 xn pn .
例2 下面是某校学生日睡眠时间抽样频率分布表(单位:h ),试估 计该校学生的日平均睡眠时间.
睡眠时间
[6,6.5) [6.5,7) [7,7.5) [7.5,8) [8,8.5) [8.5,9)
合计
人数
5 17 33 37 6 2 100
频率
0.05 0.17 0.33 0.37 0.06 0.02
例1.某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩 如下(总分:150 分),试确定这次考试中,哪个班的语文成绩更 好一些. 甲班
112 86 106 84 100 105 98 102 94 107 87 112 94 94 99 90 120 98 95 119 108 100 96 115 111 104 95 108 111 105 104 107 119 107 93 102 98 112 112 99 92 102 93 84 94 94 100 90 84 114
1
例 3 某 单 位 年 收 入 在 10000 到 15000 , 15000 到 20000 , 20000到25000,25000到30000,30000到35000,35000到 40000及40000到50000元之间的职工所占的比分别为10%, 15%,20%,25%,15%,10%和5%,试估计该单位职工的平 均年收入. 分析:上述百分比就是各组的频率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 线性回归方程
课时目标
1.理解两个变量的相关关系的概念.
2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.
3.会求线性回归方程.
1.与函数关系不同,相关关系是一种有关系,但不是确定性的关系.
2.能用直线方程________近似表示的相关关系叫做线性相关关系,该方程叫______,给出一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),线性回归方程中的系数a ,b 满足
⎩⎪⎨⎪⎧
b = a =
.
上式还可以表示为
⎩⎨
⎧
b = ,a = .
一、填空题
1.下列两个变量之间的关系,不是函数关系的为______.(填序号) ①匀速行驶车辆的行驶距离与时间; ②圆半径与圆的面积;
③正n 边形的边数与内角度数之和; ④人的年龄与身高.
2.下列有关线性回归的说法,不正确的是________.
①变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;
②在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图;
③线性回归方程最能代表观测值x、y之间的关系;
④任何一组观测值都能得到具有代表意义的线性回归方程.
3.工人月工资(元)依劳动生产率(千元)变化的线性回归方程为=60+90x,下列判断正确的是________.
①劳动生产率为1千元时,工资为50元;
②劳动生产率提高1千元时,工资提高150元;
③劳动生产率提高1千元时,工资约提高90元;
④劳动生产率为1千元时,工资90元.
4.某商品销售量y(件)与销售价格x(元/件)在实际生活中的回归方程可能是________.①=-10x+200;②=10x+200;③=-10x-200;④=10x-200.
5.给出两组数据x、y的对应值如下表,若已知x、y是线性相关的,且线性回归方程:y=a+bx
6..
7.若对某个地区人均工资x与该地区人均消费y进行调查统计得y与x具有相关关系,且线性回归方程=0.7x+2.1(单位:千元),若该地区人均消费水平为10.5,则估计该地区人均消费额占人均工资收入的百分比约为________.
8.设有一个回归方程=3-2.5x,当变量x增加一个单位时,变量y________个单位.9.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y对总成绩x的线性回归方程为=6+0.4x.由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差______分.
二、解答题
10
11.5
能力提升
12.在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下:
13.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼
(1)求线性回归方程.
(2)预测当钢水含碳量为160时,应冶炼多少分钟?
2.4 线性回归方程
知识梳理
2. =bx +a 线性回归方程
n ∑n
i =1x i y i -(∑n
i =1x i )(∑n
i =1y i )n ∑n i =1x 2i -(∑n i =1x i )2 y -b x ∑n
i =1x i y i -n x y ∑n i =1x 2i -n x 2 =∑n
i =1
(x i -x )(y i -y )∑n
i =1 (x i -x )2
y -b x
作业设计 1.④
解析 人的年龄与身高具有相关关系. 2.④
解析 只有所有的数据点都分布在一条直线附近时,才能得到回归直线. 3.③
解析 因工人月工资与劳动生产率变化的线性回归方程为 =60+90x ,当x 由a 提高到a +1时, 2- 1=60+90(a +1)-60-90a =90. 4.①
解析 ∵在实际生活中,当销售价格提高时,商品销售量一般要降低,∴排除②、④,又∵③中x>0时 <0不合题意,∴③错. 5.17.4
解析 x =1
5(4+5+6+7+8)=6,
y =1
5(12+10+9+8+6)=9.
a =y -
b x =9+1.4×6=9+8.4=17.4. 6.(x ,y )
解析 由a =y -b x 得y =b x +a , 即点(x ,y )适合方程 =a +bx. 7.87.5%
解析 设该地区人均工资收入为y , 则y =0.7x +2.1,
当y =10.5时,x =10.5-2.1
0.7
=12.
10.5
12
×100%=87.5%. 8.减少2.5
解析 ′=3-2.5(x +1)=3-2.5x -2.5= -2.5, 因此,y 的值平均减少2.5个单位. 9.20
解析 令两人的总成绩分别为x 1,x 2.
则对应的数学成绩估计为 =6+0.4x 1, 2=6+0.4x 2, 所以| 1- 2|=|0.4(x 1-x 2)|=0.4×50=20.
10.解 x =706=353,y =2306=1153
,∑6i =1x 2
i =1+16+100+169+324+676=1 286,∑6
i =1x i y i =-20+96+340+13×38+18×50+26×64=3 474.
b =∑6
i =1
x i y i -6x y ∑6i =1
x 2
i -6x 2=3 474-6×353×115
31 286-6×(353
)2≈1.68,
a =y -
b x ≈18.73,
即所求的回归方程为 =1.68x +18.73.
11.解 以x 轴表示数学成绩,y 轴表示物理成绩,可得到相应的散点图如图所示:
由散点图可知,两者之间具有相关关系,且为线性相关.
b =
∑5
i =1
x i y i -5x y
∑5i =1
x 2
i -5x
2
=
90
250
=0.36, a =y -b x =40.8.
∴所求回归方程为 =0.36x +40.8. 12.0.880 9
解析 x =30,y =93.6,∑5
i =1x 2i
=7 900,∑5
i =1x i y i =17 035, 所以回归直线的斜率
b =
∑5
i =1
x i y i -5x y
∑5
i =1
x 2
i -5x 2
=
17 035-5×30×93.6
7 900-4 500
≈0.880 9.
b =
∑10
i =1
x i y i -10x y
∑10i =1
x 2
i
-10x
2
≈1.27,
a =y -
b x ≈-30.95.
即所求的线性回归方程为 =1.27x -30.95.
(2)当x =160时, =1.27×160-30.95≈172(min ),即大约冶炼172 min .。