2011年中考专题复习(等腰三角形)
中考数学专题复习:等腰三角形
中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。
最新中考数学专题复习—第21讲 等腰三角形与直角三角形
第21讲等腰三角形与直角三角形目录:考点知识梳理中考典例精析基础巩固训练考点训练考点知识梳理考点一等腰三角形的概念及分类1.有两边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形.2.等腰三角形分为:底和腰不相等的等腰三角形和等边三角形.温馨提示1.若题目中没有明确边是底还是腰,角没有明确是顶角还是底角,就需要分类讨论.2.等腰三角形的两腰必须满足两腰之和大于底,底角α满足0°<α<90°,顶角β满足0°<β<180°.考点二等腰三角形的性质和判定1.性质(1)等腰三角形的两个底角相等(简称:等边对等角);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(3)等腰三角形是轴对称图形,有一条对称轴,顶角的平分线(底边上的中线、底边上的高线)所在的直线是它的对称轴.温馨提示这个性质简称“三线合一”,但不能简单地说成“等腰三角形的高线、中线、角平分线三线合一”.2.判定:(1)定义法;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).温馨提示等腰三角形的判定定理,是证明两条线段相等的重要定理,是把三角形中的角的相等关系转化为边的相等关系的重要依据.考点三等边三角形的性质和判定1.性质:等边三角形的三个内角都相等,并且每一个内角都等于60°.2.判定(1) 三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.温馨提示由判定(2)可知,在等腰三角形中,只要有一个角是60°,不论这个角是顶角还是底角,这个三角形就是等边三角形.也可以根据定义判定.考点四线段垂直平分线的性质1.经过线段的中点并且垂直于这条线段的直线,叫做线段的垂直平分线.2.性质(1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)与一条线段两个端点的距离相等的点,在这条线段的垂直平分线上.温馨提示1.三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.2.锐角三角形三边垂直平分线的交点在三角形内部,直角三角形三边垂直平分线的交点恰是斜边的中点,钝角三角形三边垂直平分线的交点在三角形的外部.考点五直角三角形的性质和判定1.性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)直角三角形斜边上的中线等于斜边的一半;(4)勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.温馨提示勾股定理的使用范围是在直角三角形中,因此可作高来构造直角三角形.2.判定(1)有一个角是直角的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.温馨提示1.勾股定理的逆定理是识别一个三角形是否是直角三角形的一种理论依据,在运用时,一定要用两短边的平方和与长边的平方作比较.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.若a,b,c为一直角三角形的三边长,则以ma,mb,mc(m>0)为三边的三角形也是直角三角形.4.如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.中考典例精析考点一等腰三角形的性质例1 如图,AC,BD相交于点O,AB∥DC,AB=BC,∠D=40°,∠ACB=35°,则∠AOD=_______.【点拨】∵AB=BC,∠ACB=35°,∴∠A=∠ACB=35°.∵AB∥DC,∴∠OCD=∠A =35°.∵∠D=40°,∠AOD是△OCD的外角,∴∠AOD=∠OCD+∠D=35°+40°=75°.【答案】75°考点二等腰三角形的判定例2 如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.【点拨】本题考查圆内接四边形的性质与等腰三角形的判定.证明:∵A,B,C,D四点共圆,∴∠A=∠BCE.∵BC=BE,∴∠BCE=∠E,∴∠A=∠E.∴AD=DE,即△ADE是等腰三角形.考点三线段垂直平分线的性质例3 如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC【点拨】∵AC垂直平分BD,∴AB=AD,BC=DC.∴△ABD,△BCD是等腰三角形.∴AC平分∠BCD.再应用“SAS”判定△BEC≌△DEC,∴选项A,B,D正确.故选C.【答案】C方法总结线段垂直平分线上的点到线段两个端点的距离相等.利用这个性质可以证明两条线段相等,进而由等腰三角形的性质解决相关问题.考点四直角三角形的性质与判定例4 在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为_________.【点拨】在△ABC中,∵∠C=90°,AB=7,BC=5,∴AC=AB2-BC2=72-52=2 6.【答案】26方法总结若已知三角形中的一个角为90°,解这个三角形首先应考虑用勾股定理;证明一个三角形为直角三角形,可证明一个内角等于90°,也可利用勾股定理的逆定理.考点五等边三角形的性质与判定例5 已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是_________.【点拨】由题意等边△ABC的高为4,点P到AB的距离是1,点P到AC的距离是2,①若点P在等边△ABC的内部,则可得到点P到BC边的距离PD为1;②若点P′在等边△ABC的外部,则由对称性可以得到点P′到B′C′边的距离P′E为1;这时点P′到BC的距离P′F=EF-P′E=2×4-1=7.所以点P到BC的最小距离和最大距离分别是1和7.【答案】1和7方法总结等边三角形是特殊的三角形,三条边都相等,三个角都等于60°,中线、高线、角平分线为同一条线段,三线合一.根据以上性质可以进行相关的计算与证明.基础巩固训练1.如果等腰三角形的两边长是6 cm和3 cm,那么它的周长是(D)A.9 cm B.12 cmC.15 cm或12 cm D.15 cm解析:分两种情况:(1)等腰三角形的腰长为6 cm,则它的周长为6×2+3=15(cm);(2)等腰三角形的腰长为3 cm,三角形的三边长分别6 cm,3 cm,3 cm,不可能.故选D.2.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为(C)A.40°B.100°C.40°或100°D.70°或50°解析:分两种情况:(1)这个等腰三角形的顶角为40°,则底角为(180°-40°)÷2=70°;(2)这个等腰三角形的底角为40°,则顶角为180°-2×40°=100°.故选C.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为(D)A.60°B.120°C.60°或150°D.60°或120°解析:分两种情况:(1)当这条高在三角形内部时,顶角的度数为90°-30°=60°;(2)当这条高在三角形外部时,顶角的度数为90°+30°=120°.故选D.4.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( C )A .2B .23 C.3 D .3解析:∵△ABC 是等边三角形,BD 平分∠ABC ,∴∠DBA =∠DBC =30°.∵QF 垂直平分BP ,∴BP =2BQ ,且∠BQF =90°.在Rt △BFQ 中,FQ =12BF =1,BQ =BF 2-FQ 2=22-12= 3.于是BP =2 3.在Rt △BPE 中,PE =12BP = 3.故选C. 5.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于点M ,交AC 于点N ,若BM +CN =9,则线段MN 的长为( D )A .6B .7C .8D .9解析:∵∠ABC ,∠ACB 的平分线相交于点E ,∴∠MBE =∠EBC ,∠ECN =∠ECB .∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB .∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN ,∴MN =ME +EN ,即MN =BM +CN =9.故选D.6.已知a ,b ,c 是△ABC 的三边长,且满足关系式c 2-a 2-b 2+|a -b |=0,则△ABC 是 等腰直角三角形.解析:∵c 2-a 2-b 2+|a -b |=0,c 2-a 2-b 2≥0,|a -b |≥0,∴c 2=a 2+b 2,a =b ,∴△ABC 是等腰直角三角形.7.如图,在等腰△ABC 中,AB =AC ,AD 平分∠BAC ,点C 在AE 的垂直平分线上,若DE=10 cm,则AB+BD=10cm.解析:∵AB=AC,AD平分∠BAC,∴BD=CD,又∵点C在AE的垂直平分线上,∴AB+BD=AC+CD=EC+CD=DE=10(cm).8.如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.试判断△ABC的形状,并证明你的结论.解:△ABC是等边三角形.理由:∵EB=ED,∴∠EBD=∠D.∵CE=CD,∴∠CED=∠D.又∵∠BCE=∠D+∠CED,∴∠BCE=2∠D=2∠EBD.∵BE⊥CE,∴∠BCE=60°,∠EBC=30°.∴BC=2CE.∵EA=EC,∴BC=AC.∴△ABC是等边三角形.考点训练一、选择题(每小题4分,共40分)1.等腰三角形的顶角为80°,则它的底角是(B)A.20°B.50°C.60°D.80°2.等腰三角形的一边长为6,另一边长为13,则它的周长为(C)A.25 B.25或32C.32 D.19解析:若腰长是6,则三边长分别为6,6,13,∵6+6<13,∴假设不成立;若腰长是13,则三边长分别为13,13,6,∴周长为13+13+6=32.故选C.3. 如图,点E 在正方形ABCD 内,满足∠A EB =90°.AE =6,BE =8,则阴影部分的面积是( C )A .48B .60C .76D .80解析:∵∠A EB =90°,AE =6,BE =8,∴AB =AE 2+BE 2=62+82=10.∴S 阴影=102-12×6×8=100-24=76.故选C. 4. 一直角三角形的两边长分别为3和4.则第三边的长为( D )A .5 B.7 C. 5 D .5或7解析:当4是直角边时,第三边的长为32+42=5;当4是斜边时,第三边的长为42-32=7.故选D.5. 如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( C )A .20B .12C .14D .13解析:∵△ABC 是等腰三角形,AD 平分∠B AC ,∴CD =BD =4.又∵点E 为AC 的中点,∴CE =AE =5,且DE 是△ABC 的中位线,∴DE =12AB =5, ∴△CDE 的周长=CD +CE +DE =4+5+5=14.故选C.6. 如图,在△ABC 中,AB =AC ,点D ,E 在BC 上,连接AD ,AE .如果只添加一个条件使∠DAB =∠EAC ,则添加的条件不能为( C )A .BD =CEB .AD =AEC .DA =DED .BE =CD解析:∵AB =AC ,∴∠B =∠C .A 中,添加BD =CE ,可根据“SAS ”证明△ABD ≌△ACE ,∴∠DAB =∠EAC ;B 中,添加AD =AE ,则∠A DE =∠A ED ,再由外角的性质可得∠DAB =∠EAC ;C 中,添加DA =DE 不能得出∠DAB =∠EAC ;D 中,添加BE =CD ,由等式的性质可得BD =CE ,同A 可得∠DAB =∠EAC .故选C.7.如图,等腰△ABC 的周长为21,底边BC =5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,连接BE ,则△BEC 的周长为( A )A .13B .14C .15D .16解析:因为△ABC 为等腰三角形,所以AB =AC .因为BC =5,所以2AB =2AC =21-5=16,即AB =AC =8.因为DE 是线段AB 的垂直平分线,所以AE =BE ,所以△BEC 的周长=BE +EC +BC =AE +EC +BC =AC +BC =8+5=13.故选A.8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的有( D )A .②B .①②C .①③D .②③解析:①∵22+32=13≠42,∴以这三个数为三角形的三边长不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为三角形的三边长能构成直角三角形,故符合题意;③∵12+(3)2=22,∴以这三个数为三角形的三边长能构成直角三角形,故符合题意.故能构成直角三角形的有②③.故选D.9. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( B)A .8米 B.10米 C.12米 D.14米解析:如图,设大树高AB =10米,小树高CD =4米,过C 点作CE ⊥AB 于点E ,连接AC ,则四边形EBDC 是矩形.∴EB =4米,EC =8米,AE =AB -EB =10-4=6(米).∴在Rt △AEC 中,AC =AE 2+EC 2=10(米).故选B.10.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED =E C.若△ABC 的边长为4,AE =2,则BD 的长为( A )A .2B .3 C. 3 D.3+1解析:如图,延长BC至F点,使得C F=BD,连接E F,∵ED=EC,∴∠EDC=∠ECD,∴∠EDB=∠EC F.∴△EBD≌△EFC.∴EB=EF,∠B=∠F.∵△ABC是等边三角形,∴∠B =60°,∴△BEF是等边三角形,∴AE=CF=2.∴BD=CF=2.故选A.二、填空题(每小题4分,共20分)11.如图所示,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠B AC,∠EBC =∠E=60°,若BE=6 cm,DE=2 cm,则BC=8 cm.解析:如图所示,延长AD交BC于点M,由AB=AC,AD是∠B AC的平分线可得A M⊥BC,B M=MC=12BC.延长ED交BC于点N,则△BEN是等边三角形.故EN=BN=BE=6 cm,∴DN=6-2=4(cm).在Rt△DMN中,∵∠MDN=30°,∴MN=12DN=2(cm).∴BM=6-2=4(cm),∴BC=2BM=8(cm).12.如图,四边形ABCD中,∠B AD=∠B CD=90°,AB=AD,若四边形ABCD的面积是24 cm2,则AC长是43cm.解析:如图,将△ADC 旋转至△ABE 处,则△AEC 的面积和四边形ABCD 的面积相等,为24 cm 2,这时△AEC 为等腰直角三角形,作边EC 上的高AF ,则A F =12EC =FC ,∴S △AEC =12AF ·EC =AF 2=24,∴AC 2=2AF 2=48,AC =43(c m).13. 如图,在Rt △ABC 中,∠A CB =90°,AB 的垂直平分线DE 交AC 于点E ,交BC 的延长线于点F ,若∠F =30°,DE =1,则BE 的长是 2 .解析:在Rt △F DB 中,∵∠F =30° ∴∠DBF =60°.在Rt △ABC 中,∵∠ACB =90°,∠ABC =60°,∴∠A =30°. 在Rt △AED 中,∵∠A =30°, DE =1,∴AE =2.∵DE 垂直平分AB ,∴BE =AE =2.14. 如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠A BC 的平分线交AD 于点O ,连接OC ,若∠A OC =125°,则∠A BC = 70°.解析:∵AD ⊥BC 于点D ,D 为BC 的中点,∴AD 是线段BC 的垂直平分线,∴OB =OC ,∴∠OBC =∠C .∵∠A OC =125°,∴∠C OD =55°.∵∠ODC =90°,∴∠C =35°,∠OBC =35°.∵BO 平分∠A BC ,∴∠A BC =2∠OBC =70°.15.如图,在等腰△ABC 中,AB =AC ,∠B AC =50°,∠B AC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是 100°.解析:如图,由AB =AC ,AO 平分∠B AC ,得AO 是线段BC 的垂直平分线,连接OB ,则OB =OA=OC ,所以∠OAB =∠OBA =12×50°=25°,∠OBC =∠OCB =180°-50°2-25°=40°.由折叠可知EO =EC ,故∠OEC =180°-2×40°=100°.三、解答题(共40分)16.(8分) 将一副三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F .(1)求证:CF ∥AB ;(2)求∠DFC 的度数.解:(1)证明:∵∠DCE =90°,CF 平分∠DCE ,∴∠DCF =45°.∵△ABC 是等腰直角三角形,∴∠B AC =45°.∴∠B AC =∠DCF .∴CF ∥AB .(2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.17.(8分) 如图①,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE =CE ;(2)若BE的延长线交AC于点F,且BF⊥AC,垂足为F,如图②,∠B AC=45°,原题设其他条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,∴AD是BC的垂直平分线,∴BE=CE.(2)∵∠B AC=45°,BF⊥AC,∴△ABF为等腰直角三角形,∴AF=BF.由(1)知AD⊥BC,∴∠EAF=∠C BF.在△AEF和△BCF中,AF=BF,∠A FE=∠B FC=90°,∠EAF=∠C BF,∴△AEF≌△BCF.18.(12分) 如图,Rt△ABC中,∠C=90°,AD平分∠C AB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积解:(1)在Rt△ABC中,∠C=90°,∴AC⊥CD.又∵AD平分∠C AB,DE⊥AB,∴DE =CD,又∵CD=3,∴DE=3.(2)在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=AC2+BC2=62+82=10.∴S△ADB=12AB·DE=12×10×3=15.19.(12分) (1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D,E.证明:DE=BD+CE.图①(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠B DA=∠A EC=∠B AC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.图②(3)拓展与应用:如图③,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠B AC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠B DA=∠A EC=∠B AC,试判断△DEF的形状.解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠B DA=∠C EA=90°.∵∠B AC=90°,∴∠B AD+∠C AE=90°.∵∠B AD+∠A BD=90°,∴∠C AE=∠A BD.又∵AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(2)结论DE=BD+CE成立.证明:∵∠B DA=∠B AC=α,∴∠DBA+∠B AD=∠B AD+∠C AE=180°-α,∴∠DBA=∠C AE.∵∠B DA=∠A EC=α,AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)由(2)知,△ADB≌△CEA,∴∠DBA=∠EAC.∵△ABF和△ACF均为等边三角形,∴∠A BF=∠C AF=60°.∴∠DBA+∠A BF=∠EAC+∠C AF.∴∠DBF=∠EAF.又∵BF=AF,BD=AE,∴△DBF≌△EAF.∴DF=EF,∠B FD=∠A FE.∴∠DFE=∠DFA+∠A FE=∠DFA+∠B FD=60°. ∴△DEF为等边三角形.。
2011年全国各地中考数学真题分类汇编:第23章等腰三角形
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33 (C )34 (D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MEDCBA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有ABCDEF G (第7题)AB CDEA.1个B.2个C.3个D.4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30∘,AB=AC,则∠BDE的度数为何?A.45 B.52.5 C.67.5 D.75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A.2:1 B.3:2 C.4:3 D.5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm【答案】D7. (2011四川凉山州,8,4分)如图,在ABC△中,13AB AC==,10BC=,点D 为BC的中点,D E D E AB⊥,垂足为点E,则D E等于()A.1013B.1513C.6013D.7513【答案】C 8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .224. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
【史上最全】2011中考数学真题解析76_等腰三角形的性质和判定(含答案)
2011全国中考真题解析120考点汇编等腰三角形的性质和判定一、选择题1.(2011•铜仁地区7,3分)下列关于等腰三角形的性质叙述错误的是()A、等腰三角形两底角相等B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C、等腰三角形是中心对称图形D、等腰三角形是轴对称图形考点:等腰三角形的性质;轴对称图形;中心对称图形。
分析:根据等腰三角形的性质:等腰三角形两底角相等(等边对等角),等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合(三线合一),等腰三角形是轴对称图形但不是中心对称图形,即可求得答案.解答:解:A、等腰三角形两底角相等,故本选项正确;B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合,故本选项正确;C、等腰三角形不是中心对称图形,故本选项错误;D、等腰三角形是轴对称图形,故本选项正确.故选C.点评:此题考查了等腰三角形的性质.注意等边对等角,三线合一,以及其对称性的应用.2.(2011内蒙古呼和浩特,7,3)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A、9cmB、12cmC、15cm或12cmD、15cm考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.根据三角形三边关系定理列出不等式,确定是否符合题意.解答:解:当6为腰,3为底时,6-3<6<6+3,能构成等腰三角形,周长为5+5+3=13;当3为腰,6为底时,3+3=6,不能构成三角形.故选D.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.(2011辽宁沈阳,7,3)如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A、2个B、4个C、6个D、8个考点:等腰三角形的判定;矩形的性质。
中考数学专题复习教案:共顶点的等腰三角形与全等
共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
中考数学专题复习课件(第20讲_等腰三角形)
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
7.如图,在边长为 4 的正三角形 ABC 中,AD⊥BC 于点 D,以 AD 为一边向右作正三 角形 ADE.
举 一 反 三
(1)求△ABC 的面积 S; (2)判断 AC、DE 的位置关系,并给出证明.
考 点 训 练
答案:(1)S=4 3 (2)AC⊥DE
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
6. 如图, △ABC 内有一点 D, 且 DA=DB=DC, 若∠DAB=20° , ∠DAC=30° , 则∠BDC 的大小是( A ) A.100° B.80° C.70° D.50°
举 一 反 三
考 点 训 练
)
(3)(2010· 烟台 )如图,在等腰三角形 ABC 中, AB= AC,∠ A= 20° .线段 AB 的垂直平分 线交 AB 于 D,交 AC 于 E,连结 BE,则∠ CBE 等于( ) A. 80° B. 70° C.60° D.50°
举 一 反 三
考 点 训 练
例 1(3)题
目录
首页
上一页
举 一 反 三
【解答】 (1)根据“三角形任意两边之和大于第三边”知腰应为 7, 该三角形三边为 7、 7、 3.故选 B. (2)当 40° 为底角时,顶角为 100° ; 40° 也可以为顶角.故选 C. (3)∵DE 垂直平分 AB ,∴EA = EB ,∴∠EBD =∠A = 20° .∵∠ A = 20° , AB = AC , ∴∠ABC=∠C=80° ,∴∠CBE=80° -20° =60° ,故选 C. 考 (4)等腰三角形分别是△ ABC、△ABD、△BCD、△BCE、△CDE.故选 A. 点
专题19 等腰三角形(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练
专题19等腰三角形【专题目录】技巧1:等腰三角形中四种常用作辅助线的方法技巧2:巧用特殊角构造含30°角的直角三角形技巧3:分类讨论思想在等腰三角形中的应用【题型】一、等腰三角形的定义【题型】二、根据等边对等角求角度【题型】三、根据三线合一求解【题型】四、根据等角对等边证明等腰三角形【题型】五、根据等角对等边求边长【题型】六、等腰三角形性质与判定的综合【题型】七、等边三角形的性质【题型】八、含30°角的直角三角形【考纲要求】1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段中垂线的性质及判定.【考点总结】一、等腰三角形等腰三角形等腰三角形概念有两边相等的三角形角等腰三角形。
等腰三角形性质1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).【考点总结】二、等边三角形【考点总结】三、直角三角形【技巧归纳】技巧1:等腰三角形中四种常用作辅助线的方法【类型】一、作“三线”中的“一线”1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,过点A 作EF ∥BC ,且AE =AF.求证:DE =DF.等边三角形等边三角形概念三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
等边三角形性质和判定(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
数学易错题中考专题复习:《等腰三角形》易错题导学案
《等腰三角形》易错题训练考点1等腰三角形1.等腰三角形周长为18,其中一边长为4,则其它两边长分别为( ) A .4,10B .7,7C .4,10或7,7D .无法确定【分析】由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论. 【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10, ∵4+4=8<10,∴这样的三边不能构成三角形. 当底为4时,腰为(18﹣4)÷2=7, ∵0<7<7+4=11,∴以4,7,7为边能构成三角形 ∴其它两边长分别为7,7. 故选:B .2.若等边三角形ABC 的边长为a ,且三角形内一点P 到各边的距离分别是h a ,h b ,h c ,则h a +h b +h c = .【分析】本题考查的是等边三角形的性质.分别连接P A 、PB 、PC 将△ABC 分成3个小三角形,再根据等边△ABC 的面积等于三个小三角形的面积之和,就可以得出答案.【解答】解:设△ABC 的为h ,根据等边三角形的性质h =32a , 分别链结P A ,PB ,PC ,将△ABC 分割成△APB 、△APC 、△BPC S △ABC =S △APB +S △APC +S △BPC =a •(h a +hb +hc )•12=12ah那么,h a +h b +h c =32a3.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥BC .若AB =7,AC =6,那么△AMN 的周长是 .【分析】根据BO平分∠ABC,CO平分∠ACB,且MN∥BC,可得出MO=MB,NO =NC,所以三角形AMN的周长是AB+AC.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7,AC=6,∴△AMN的周长=AM+MN+AN=AB+AC=6+7=13.故答案为:13.4.如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.【分析】(1)根据等边对等角的性质和全等三角形的判定方法判断解答;(2)连接AD,根据等腰三角形三线合一的性质和角平分线上的点到角的两边的距离相等的性质证明.【解答】(1)解:证明过程正确.推理依据:①等边对等角.②AAS.③全等三角形的对应边相等;(2)证明:连接AD,∵AB=AC,D是底边BC的中点,∴AD平分∠BAC(三线合一),又∵DE⊥AB于E,DF⊥AC于F,∴DE=DF(角平分线上的点到角两边的距离相等).精选例题,错中淘金易错一等腰三角形的分情况讨论思想典例1等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20 B.22 C.20或22 D.不确定[易错分析] 腰长没有说是6还是8,需要分类讨论,有的学生易漏一种情况。
中考数学专题复习:等腰(边)三角形的判定
中考数学专题复习:等腰(边)三角形的判定一、选择题1.在△ABC中,若△A=15°,△B=150°,则△ABC是( )A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形2.下列条件中,不能判定△ABC是等腰三角形的是( )A.a=3,b=3,c=4B.a:b:c=4:5:6C.△B=50°,△C=80°D.△A:△B:△C=1:1:23.如图1所示,已知OC平分△AOB,CD△OB.若OD=3 cm,则CD的长为( )图1A.4 cmB.3 cmC.2 cmD.1.5 cm4.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形5.如图2,△A=36°,△C=72°,BE为△ABC的平分线,DE△BC,则图中等腰三角形的个数有( )图2A.6个B.5个C.4个D.3个6.在如图3所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,那么满足条件的点C有( )图3A.6个B.7个C.8个D.9个二、填空题7.已知△ABC,AB=AC,请补充一个条件:_______________,使△ABC成为等边三角形.8.如图4所示,BD,CE分别是△ABC两个外角的平分线,DE过点A,且DE△BC.若DE=14,BC=7,则△ABC的周长为__________.图49.在一次活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图5所示),由此可知,B,C两地相距__________m.图5三、解答题10.如图6,在等边三角形ABC中,D是AB上一点,DE△BC,垂足为E,EF△AC,垂足为F,FD△AB.求证:△DEF为等边三角形.图611.如图7,AD平分△BAC,AD△BD,垂足为D,DE△AC交AB于点E.求证:△BDE是等腰三角形.图712.如图8所示,在等边三角形ABC中,△ABC与△ACB的平分线相交于点O,且OD△AB 交BC于点D,OE△AC交BC于点E.(1)试判断△ODE的形状,并说明你的理由;(2)线段BD,DE,EC三者有什么关系?并说明理由.图813.如图9所示,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动.设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ能否成为等边三角形?若能,请求出t值;若不能,请说明理由.图914.在△ABC中,CA=CB,△ACB=120°,将一块足够大的三角尺PMN(△M=90°,△MPN=30°)按图10所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角△PCB=α,斜边PN交AC于点D.(1)当PN△BC时,△ACP=________°.(2)当α=15°时,求△ADN的度数.(3)在点P滑动的过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的度数.图10参考答案1.A2.B [解析] 选项A,a=3,b=3,c=4,△a=b,△△ABC是等腰三角形;选项B,△a:b:c=4:5:6,△a≠b≠c,△△ABC不是等腰三角形;选项C,△△B=50°,△C=80°,△△A=180°-△B-△C=50°,则△A=△B,△AC=BC,△△ABC是等腰三角形;选项D,△△A:△B:△C=1:1:2,△△A=△B,△AC=BC,△△ABC是等腰三角形.故选B.3.B [解析] 根据题意,得△AOC=△BOC.因为CD△OB,所以△C=△BOC,所以△C=△AOC,则CD=OD.又因为OD=3 cm,所以CD=3 cm.4.C [解析] △若120°的角为顶角的外角,则顶角为180°-120°=60°,底角为(180°-60°)÷2=60°,三角形为等边三角形;△若120°的角为底角的外角,则底角为180°-120°=60°,顶角为180°-60°×2=60°,所以三角形为等边三角形.综上,该等腰三角形为等边三角形.5.B [解析] △ABC,△ADE,△ABE,△DBE,△BCE是等腰三角形.6.C [解析] 如图,分情况讨论.△AB为等腰三角形ABC的底边时,符合条件的点C有4个;△AB为等腰三角形ABC其中的一条腰时,符合条件的点C有4个.故符合条件的点C共有8个.7.AB=BC或AC=BC或△BAC=60°等(答案不唯一) [解析] 三边相等或有一个角是60°的等腰三角形是等边三角形.8.219.200 [解析] 如图,由已知可得AM△BN,所以△MAC=△ALB=60°.由△ALB=△NBC+△C,△NBC=30°,得△C=30°.又因为△BAC=△MAB-△MAC=30°,所以△C=△BAC,故BC=AB=200 m.10.证明:在等边三角形ABC中,△B=60°.△DE△BC,△△DEB=90°,△△BDE=30°.△FD△AB,△△ADF=90°,△△EDF=60°.同理△DEF=△DFE=60°,△△DEF为等边三角形.11.[解析] 如图,直接利用平行线的性质得出△1=△3,进而利用角平分线的定义结合互余的性质得出△B=△BDE,即可得出答案.证明:如图,△DE△AC,△△1=△3.△AD平分△BAC,△△1=△2,△△2=△3.△AD△BD,△△2+△B=90°,△3+△BDE=90°,△△B=△BDE,△△BDE是等腰三角形.12.[解析] (1)根据平行线的性质及等边三角形的判定定理可得到△ODE是等边三角形; (2)根据角平分线的性质及平行线的性质可得到△DBO=△DOB,根据等角对等边可得到DB=DO,同理可证明EC=EO.因为DE=OD=OE,所以BD=DE=EC.解:(1)△ODE是等边三角形.理由:△△ABC是等边三角形,△△ABC=△ACB=60°.△OD△AB,OE△AC,△△ODE=△ABC=60°,△OED=△ACB=60°,△△ODE是等边三角形.(2)BD=DE=EC.理由:△BO平分△ABC,且△ABC=60°,△△ABO=△OBD=30°.△OD△AB,△△BOD=△ABO=30°,△△DBO=△DOB,△BD=OD.同理EC=OE.△△ODE是等边三角形,△OD=DE=OE,△BD=DE=EC.13.解:(1)当点Q到达点C时,PQ与AB垂直.理由:△AB=AC=BC=6 cm,△当点Q到达点C时,AP=3 cm,△P为AB的中点,△PQ△AB.(2)能.假设在点P与点Q的运动过程中,△BPQ能成为等边三角形,△BP=PQ=BQ.△△B=60°,△BP=BQ时,△BPQ为等边三角形.此时有6-t=2t ,解得t=2.△当t=2时,△BPQ 是等边三角形. 14.[解析] (1)△PN△BC ,△MPN=30°,△△PCB=△MPN=30°. △△ACB=120°,△△ACP=△ACB -△PCB=90°. 解:(1)90(2)△△ACB=120°,△PCB=15°, △△PCD=△ACB -△PCB=105°,△△PDC=180°-△PCD -△MPN=180°-105°-30°=45°, △△ADN=△PDC=45°.(3)△PCD 的形状可以是等腰三角形. 由题意得△PCD=120°-α,△CPD=30°. △当PC=PD 时,△PCD 是等腰三角形,△PCD=12(180°-△CPD)=12×(180°-30°)=75°,即120°-α=75°,解得α=45°;△当PD=CD 时,△PCD 是等腰三角形,△PCD=△CPD=30°, 即120°-α=30°,解得α=90°;△当PC=CD 时,△PCD 是等腰三角形,△PCD=180°-2×30°=120°, 即120°-α=120°,解得α=0°,此时点P 与点B 重合,点D 与点A 重合.综上所述,当△PCD 是等腰三角形时,α的度数是45°或90°或0°.。
中考数学《等腰三角形的存在性》专题复习
中考压轴题(1)等腰三角形的存在性问题【典型例题】如图,直线33+-=x y 与x 轴、y 轴分别交于点A 、B ,抛物线()k x a y +-=22 经过点A 、B ,并与x 轴交于另一点C ,其顶点为P . (1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标.知识点思想方法 步 骤 其 他【对应练习】1.如图,在平面直角坐标xOy 中,抛物线c bx x y ++-=2与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P 为线段OA 上方抛物线上的一点,过点P 作x 轴的垂线,交OA 于点Q ,求线段PQ 长度的最大值.(3)在抛物线的对称轴上是否存在一点N ,使得△BAN 为以AB 为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N 的坐标.2.如图,抛物线a ax ax y 122--=经过点C(0,4),与x 轴交于A ,B 两点,连接AC ,BC ,M 为线段OB 上的一个动点,过点M 作PM ⊥x 轴,交抛物线于点P ,交BC 于点Q . (1)直接写出a 的值以及A ,B 的坐标:a = ,A ( , ),B ( , );(2)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.3.如图,二次函数2y x bx c =++的图象与x 轴交于A (3,0),B (-1,0)与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动. (1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q为顶点的三角形为等腰三角形?若存在,请直接写出E 点坐标;若不存在,请说明理由.。
中考数学备考专题复习等腰三角形含解析(2)
中考数学备考专题复习等腰三角形含解析(2)一、单选题(共12题;共24分)1、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°2、如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A、25B、30C、45D、603、如图所示,A是斜边长为m的等腰直角三角形,B , C , D都是正方形.则A,B,C,D 的面积的和等于 ( )A、B、C、D、4、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( )A、2B、2.4C、2.6D、35、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A、15 dmB、20dmC、25dmD、30dm6、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A、B、C、3D、47、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD 的长度为( )A、B、C、D、8、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD是()A、1B、2C、3D、49、在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A、②③B、③④C、①②④D、②③④10、(20__•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(20__•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、412、(20__•黔东南州)20__年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A、13B、19C、25D、169二、填空题(共5题;共6分)13、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是________,对角线的长是________.14、如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.15、(20__•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=________.16、(20__•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为________.17、(20__•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm.三、解答题(共2题;共10分)18、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.19、如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E,D分别为边AB,AC上的点,且满足OE⊥OD,求证:OE=OD.四、综合题(共5题;共65分)20、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.21、(20__•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(20__•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23、(20__•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO 绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)24、(20__•义乌)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2_+3,直线l2:y=2_﹣3.(1)分别求直线l1与_轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F 上,Q是坐标平面内的点,且N点的横坐标为_,请直接写出_的取值范围(不用说明理由).答案解析部分一、单选题【答案】A【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形【解析】【解答】此题有两种情况,一种是该高线在等腰三角形内部,另外一种是在等腰三角形外部.当该高线在三角形内部时,那么该三角形的顶角度数为30°,其底角也就是为75°.当高线在三角形外部时,其顶角度数为150°,那么其底角为15°.【分析】此题有一定的难度.考生容易忽视两种情况,只考虑到一种情况.此类型题经常出现在各种试卷上,希望考生能通过此题达到举一反三的效果.【答案】B【考点】等边三角形的判定,直角三角形斜边上的中线,翻折变换(折叠问题)【解析】【解答】△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【答案】A【考点】勾股定理,等腰直角三角形【解析】【解答】等腰直角三角形中斜边长为m,则腰长为, C,D的边长为,∴A的面积为,C,D的面积为,B的面积为m2 ,故A、B、C、D的面积和为.故选 A.【分析】根据等腰直角三角形斜边长为m,即可求得等腰直角三角形腰长,则正方形B、C、D 的面积均可以求出来.【答案】B【考点】垂线段最短,直角三角形斜边上的中线,矩形的判定与性质,相似三角形的判定与性质【解析】【解答】连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴,∴,∴AP最短时,AP=4.8∴当AM最短时,AM==2.4.故选B.【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【答案】C【考点】平面展开-最短路径问题【解析】【解答】依题意知作楼梯平面图.易知AB=.选C.【分析】本题难度较低,主要考查学生对直角三角形勾股定理知识点的掌握.【答案】C【考点】等腰三角形的判定与性质,三角形中位线定理【解析】【解答】∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形.同理△CAD是等腰三角形.∴点Q是AE中点,点P是AD中点(三线合一).∴PQ是△ADE的中位线.∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6.∴PQ=DE=3.故选C.【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.【答案】A【考点】平行线之间的距离,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】如图,分别过点A、B、D作AF⊥l3 ,BE⊥l3 ,DG⊥l3 ,∵△ABC是等腰直角三角形,∴AC=BC.∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF.在△BCE与△ACF中,∵∠EBC=∠ACF,BC=AC,∠BCE=∠CAF,∴△BCE≌△ACF(ASA).∴CF=BE=3,CE=AF=4.在Rt△ACF中,∵AF=4,CF=3,∴.∵AF⊥l3 ,DG⊥l3 ,∴△CDG∽△CAF. ∴,即,解得.在Rt△BCD中,∵, BC=5,∴.故选A.【分析】分别过点A、B、D作AF⊥l3 ,BE⊥l3 ,DG⊥l3 ,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【答案】C【考点】角平分线的定义,等腰三角形的判定,含30度角的直角三角形【解析】【解答】因为△ABC中,∠C=90° ,∠ABC=60° ,所以∠BAC=30°;因为BD平分∠ABC ,所以∠ABD=∠DBC=30° ,所以AD=BD,因为AD=6,所以CD=3,故C项正确.【分析】结合根据角平分线的定义得∠ABD=∠DBC=30°,由含30°角的直角三角形可得CD是BD的一半即可得CD的长度,【答案】D【考点】角平分线的性质,等腰三角形的性质,等边三角形的性质,矩形的性质【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.【答案】D【考点】对顶角、邻补角,三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED= (180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG ,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG ,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.【答案】C【考点】勾股定理的证明【解析】【解答】解:根据题意得:c2=a2+b2=13,4_ ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【分析】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.二、填空题【答案】5;10【考点】等边三角形的判定与性质,矩形的性质【解析】【解答】如下图所示,∠AOB=60°,AB+AC=15;∵在矩形ABCD中,∠AOB=60°,∴△AOB是正三角形,∴AB=OA ,∴AC=2AB ,又∵AB+AC=15,∴AB=5,AC=10即短边的长是5,对角线的长是10.【分析】矩形的性质与两条对角线的夹角为60°相结合得到所需的正三角形.【答案】【考点】等边三角形的判定与性质,菱形的性质,弧长的计算【解析】【解答】∵菱形ABCD中,AB=BC,又∵AC=AB,∴AB=BC=AC,即△ABC是等边三角形.∴∠BAC=60°,∴弧BC的长是: =故答案是:【分析】本题考查了弧长公式,理解B,C两点恰好落在扇形AEF的弧EF上,即B、C在同一个圆上,得到△ABC是等边三角形是关键.【答案】【考点】正方形的性质,解直角三角形,等腰直角三角形【解析】【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD= CE= a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD= a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF= CE= a,在Rt△BEF中,tan∠EBF= = = ,即∠EBC= .故答案为.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE= a,∠DCE=45°,再利用正方形的性质得CB=CD= a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF= CE= a,然后在Rt△BEF中根据正切的定义求解.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.【答案】【考点】勾股定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,∴BD= = ,∵弦AD平分∠BAC,∴ ,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED_AD,∴()2=ED_5,解得DE= .故答案为:.【分析】此题主要考查了相似三角形的判定和性质,以及圆周角定理,解答此题的关键是作辅助线,构造出△ABD∽△BED.连接BD,由勾股定理先求出BD的长,再判定△ABD∽△BED,根据对应边成比例列出比例式,可求得DE的长.【答案】8【考点】勾股定理,矩形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2 ,即(8﹣a)2=42+a2 ,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴ = = = .∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF= C△HAE=8.故答案为:8.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.三、解答题【答案】解:∵DE垂直平分AB,∴∠DAE=∠B,∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=(90°-∠B)=∠B,∴3∠B=90°,∴∠B=30°.【考点】三角形内角和定理,角平分线的性质,线段垂直平分线的性质【解析】【分析】根据DE垂直平分AB,求证∠DAE=∠B,再利用角平分线的性质和三角形内角和定理,即可求得∠B的度数.【答案】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,在△AOD和△BOE中∴△AOD≌△BOE,∴OE=OD.【考点】全等三角形的判定与性质,等腰直角三角形【解析】【分析】连接AO,证明△BEO≌△ADO即可.四、综合题【答案】(1)【解答】证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△A FE和Rt△BCA中∴△AFE≌△BCA(HL),∴AC=EF;(2)【解答】∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【考点】全等三角形的判定与性质,等边三角形的性质,平行四边形的判定【解析】【分析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【答案】(1)证明;∵在矩形ABCD中,∠DCE=90°,F是斜边DE的中点,∴CF= DE=EF,∴∠FEC=∠FCE,∵∠BFC=90°,E为BC中点,∴EF=EC,∴CF=CE,在△BCF和△DEC中,,∴△BCF≌△DEC(ASA)(2)解:设CE=a,由BE=2CE,得:BE=2a,BC=3a,∵CF是Rt△DCE斜边上的中线,∴CF= DE,∵∠FEC=∠FCE,∠BFC=∠DCE=90°,∴△BCF∽△DEC,∴ ,即: = ,解得:ED2=6a2 ,由勾股定理得:DC= = = a,∴ = =(3)解:过C′作C′H⊥AF于点H,连接CC′交EF于M,如图所示:∵CF是Rt△DCE斜边上的中线,∴FC=FE=FD,∴∠FEC=∠FCE,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠ADF=∠CEF,∴∠ADF=∠BCF,在△ADF和△BCF中,,∴△ADF≌△BCF(SAS),∴∠AFD=∠BFC=90°,∵CH⊥AF,C′C⊥EF,∠HFE=∠C′HF=∠C′MF=90°,∴四边形C′MFH是矩形,∴FM=C′H= ,设EM=_,则FC=FE=_+ ,在Rt△EMC和Rt△FMC中,由勾股定理得:CE2﹣EM2=CF2﹣FM2 ,∴12﹣_2=(_+ )2﹣()2 ,解得:_= ,或_=﹣(舍去),∴EM= ,FC=FE= + ;由(2)得:,把CE=1,BE=n代入计算得:CF= ,∴ = +解得:n=4【考点】直角三角形斜边上的中线,勾股定理的应用,平行四边形的判定与性质,相似三角形的判定与性质【解析】【分析】本题是四边形综合题目,考查了矩形的性质与判定、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质等知识;本题综合性强,难度较大,证明三角形全等和三角形相似是解决问题的关键.【答案】(1)解:①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△F AE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为_,则EC=_﹣2,FC=_﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2 ,即(_﹣2)2+(_﹣3)2=25.解得:_=6.∴AB=6.∴AH=6.(2)解:如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2 .∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2 .【考点】全等三角形的判定与性质,勾股定理的应用,正方形的性质,旋转的性质【解析】【分析】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为_,接下来,在Rt△EFC中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明明即可.【答案】(1)解:如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB= =5,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′= BA=5(2)解:作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH= BO′= ,O′H= BH= ,∴OH=OB+BH=3+ = ,∴O′点的坐标为(,)(3)解:∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于_轴的对称点C,连结O′C交_轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于_轴对称,∴C(0,﹣3),设直线O′C的解析式为y=k_+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y= _﹣3,当y=0时, _﹣3=0,解得_= ,则P(,0),∴OP= ,∴O′P′=OP= ,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D= O′P′= ,P′D= O′D= ,∴DH=O′H﹣O′D= ﹣ = ,∴P′点的坐标为(,)【考点】线段的性质:两点之间线段最短,含30度角的直角三角形,旋转的性质,坐标与图形变化-旋转【解析】【分析】本题考查了几何变换综合题:熟练掌握旋转的性质;理解坐标与图形性质;会利用两点之间线段最短解决最短路径问题;记住含30度的直角三角形三边的关系.(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于_轴的对称点C,连结O′C交_轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y= _﹣3,从而得到P(,0),则O′P′=OP= ,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【答案】(1)解:直线l1:当y=0时,2_+3=0,_=﹣则直线l1与_轴坐标为(﹣,0)直线l2:当y=3时,2_﹣3=3,_=3则直线l2与AB的交点坐标为(3,3)(2)解:①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(_,2_﹣3),则MN=_﹣4,∴2_﹣3=4+3﹣(_﹣4),_= ,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(_,2_﹣3),过点M1作M1G1⊥OA,交BC于点H1 ,则Rt△AM1G1≌Rt△PM1H1 ,∴AG1=M1H1=3﹣(2_﹣3),∴_+3﹣(2_﹣3)=4,_=2∴M1(2,1);设M2(_,2_﹣3),同理可得_+2_﹣3﹣3=4,∴_= ,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,)【考点】矩形的性质,等腰直角三角形【解析】【分析】考查了四边形综合题,涉及的知识点有:坐标轴上点的坐标特征,等腰直角三角形的性质,矩形的性质,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.(1)根据坐标轴上点的坐标特征可求直线l1与_轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标_的取值范围.。
数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形
考点15 等腰三角形与直角三角形一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.学-科网3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是 A .35°B .20°C .35°或20°D .无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35°,70°是底角,顶角是40°,它的一腰上的高与底边所夹的角的度数是20°,故选C .典例2 如图,等腰三角形ABC 中,∠BAC =90°,在底边BC 上截取BD =AB ,过D 作DE ⊥BC 交AC 于E ,连接AD ,则图中等腰三角形的个数是A .1B .2C .3D .4【答案】D【名师点睛】此题考查了等腰三角形的性质和判定以及三角形的内角和定理,由已知的条件利用相关的性质,求得各个角的度数是正确解题的关键.1.等腰三角形的周长为15 cm,其中一边长为3 cm.则该等腰三角形的腰长为A.3 cm B.6 cm C.3 cm或6 cm D.3 cm或9 cm考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.学_科网【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,∠PAB的度数是A.10°B.15°C.20°D.25°【答案】C【解析】因为AD=AP,所以∠APD=∠ADP,因为∠APD=70°,所以∠ADP=70°,所以∠PAD=180°-70°-70°=40°,因为∠BAC=60°,所以∠PAB=60°-40°=20°,故选C.3.如图,四边形ABCD是正方形,△PAD是等边三角形,则∠BPC等于A.20°B.30°C.35°D.40°考向四等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有A.1组B.2组C.3组D.4组【答案】D【解析】①∵62+82=100=102,∴6、8、10是勾股数;②∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2-1)2+(2n)2=(n2+1)2,∴n2-1,2n,n2+1(n)(n是大于1的整数)是勾股数,故选D.【名师点睛】本题考查了勾股数的判断,解题的关键是根据勾股数的定义分别对每一组数进行分析.6.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是A.12 cm B.10 cm C.8 cm D.6 cm1.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形2.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于A.30°B.40°C.45°D.36°3.下列长度的线段中,能构成直角三角形的一组是A.3,4,5B.6,7,8C.12,25,27 D.23,25,424.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为A.8 B.4 C.12 D.65.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A∶∠B∶∠C=3∶4∶56.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17 C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5 C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A.8个B.9个C.10个D.11个9.如图,Rt△ABC中,∠B=90〬,AB=9,BC=6,,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于A.5 B.6 C.4 D.310.将一个有45°角的三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A.6 B.32C.42D.6211.等腰三角形的一腰的中线把三角形的周长分成16 cm和12 cm,则等腰三角形的底边长为______.12.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.学科_网13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE 的长为__________.14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠EFD =__________°.17.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上的一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为__________.18.如图,在等腰三角形ABC 中,AC =BC ,分别以BC 和AC 为直角边向上作等腰直角三角形△BCD 和△ACE ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G .求证:CG 垂直平分AB .19.如图,一架2.5 m长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7 m.(1)求OA的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.如图,△ABC是等边三角形,点D、E分别在边BC、AC上,AE=BD,连接DE,过点E作EF⊥DE,交线段BC的延长线于点F.(1)求证:CE=CF;(2)若BD=12CE,AB=9,求线段DF的长.21.已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=62米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.1.(2018·南通)下列长度的三条线段能组成直角三角形的是 A .3,4,5 B .2,3,4 C .4,6,7D .5,11,122.(2018·滨州)在直角三角形中,若勾为3,股为4,则弦为 A .5 B .6 C .7D .83.(2018·湖州)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则 ∠ACE 的度数是A .20°B .35°C .40°D .70°4.(2018·宿迁)若实数m 、n 满足|2|40m n -+-=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 A .12 B .10 C .8D .65.(2018·绥化)已知等腰三角形的一个外角为130︒,则它的顶角的度数为__________.6.(2018·青海)如图,将Rt ABC △绕直角顶点C 顺时针旋转90°,得到DEC △,连接AD ,若∠BAC =25°,则∠BAD =__________.7.(2018·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__________.8.(2018·桂林)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则图中等腰三角形的个数是__________.9.(2018·襄阳)已知CD 是△ABC 的边AB 上的高,若CD =3,AD =1,AB =2AC ,则BC 的长为__________. 10.(2018·嘉兴)已知,在ABC △中,AB AC =,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E F ,,且DE DF =.求证:ABC △是等边三角形.11.(2018·广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形. (2)画一个底边长为4,面积为8的等腰三角形. (3)画一个面积为5的等腰直角三角形.(4)画一个边长为22,面积为6的等腰三角形.1.【答案】B【解析】当3 cm 是底时,则腰长是(15-3)÷2=6(cm ),此时能够组成三角形;当3 cm 是腰时,则底是15-3×2=9(cm ),此时3+3<9,不能组成三角形,应舍去,故选B . 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】B【解析】∵四边形ABCD 是正方形,△PAD 是等边三角形, ∴9060150BAP BAD PAB ∠=∠+∠=︒+︒=︒. ∵PA =AD ,AB =AD ,∴PA =AB , ∴180150152ABP ︒-︒∠==︒,∴901575PBC ABC ABP ∠=∠-∠=︒-︒=︒,同理:75PCB ∠=︒,∴180757530BPC ∠=︒-︒-︒=︒.故选B . 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】B【解析】如图,底面圆周长为2πr ,底面半圆弧长为πr ,即半圆弧长为:12×2π×6π=6(cm ),展开得:变式拓展∵BC=8 cm,AC=6 cm,根据勾股定理得:AB=2268+=10(cm),故选B.1.【答案】C【解析】∵原式可化为a2+b2=c2,∴此三角形是直角三角形,故选C.2.【答案】D【解析】∵AD=BD,∴∠A=∠ABD,∴∠BDC=2∠A.∵BD=BC,∴∠C=∠BDC=2∠A.∵AB=AC,∴∠ABC=∠C=2∠A,由三角形内角和定理,得∠A+2∠A+2∠A=180°,即∠A=36°.故选D.4.【答案】C【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4,∴BC=BD+DC=8+4=12,故选C.5.【答案】D【解析】A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A∶∠B∶∠C=3∶4∶5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形.故选D.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD22AB BD-=4.故选C.考点冲关8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt△ACH中,∵AH=3,∠AHC=90°,∠ACH=30°,∴AC=2AH=6,在Rt△ABC中,AB22226662AC BC+=+=D.11.【答案】203cm或12 cm【解析】设等腰三角形的腰长是x,底边是y,根据题意得162122xxxy⎧+=⎪⎪⎨⎪+=⎪⎩或122162xxxy⎧+=⎪⎪⎨⎪+=⎪⎩,解得323203xy⎧=⎪⎪⎨⎪=⎪⎩或812xy=⎧⎨=⎩,经检验,均符合三角形的三边关系.因此三角形的底边是203cm或12 cm.故答案为:203cm或12 cm.12.【答案】60°【解析】∵△ABC是等边三角形,∴∠A=∠B=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=360°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°,故答案为:60°.13.【答案】4【解析】∵△BDE是正三角形,∴∠DBE=60°.∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°,∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=4,∴BE=DE=4,故答案为:4.14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10.16.【答案】15【解析】∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.17.【答案】32或42【解析】如图,过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∠BCD=90°,∴∠A1CM=45°,即△AMC是等腰直角三角形,∴设CM=A1M=x,则BM=7-x.又由折叠的性质知AB=A1B=5,∴在直角△A1MB中,由勾股定理得A1M2=A1B2-BM2=25-(7-x)2,∴25-(7-x)2=x2,解得x1=3,x2=4,∵在等腰Rt△A1CM中,CA1A1M,∴CA118.【解析】∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△BCF中,AF BF AC BC CF CF=⎧⎪=⎨⎪=⎩,∴△ACF≌△BCF(SSS),∴∠ACF=∠BCF,∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.19.【解析】在直角△ABO中,已知AB=2.5 m,BO=0.7 m,则AO,∵AO=AA′+OA′,∴OA′=2 m,∵在直角△A′B′O中,AB=A′B′,且A′B′为斜边,∴OB′=1.5 m,∴BB′=OB′-OB=1.5 m-0.7 m=0.8 m.答:梯足向外移动了0.8 m.20.【解析】(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AE=BD,∴AC-AE=BC-BD,∴CE=CD,且∠ACB=60°,∴△CDE是等边三角形,∴∠ECD=∠DEC=60°,∵EF⊥DE,∴∠DEF=90°,∴∠CEF=30°,∵∠DCE=∠CEF+∠CFE=60°,∴∠CEF=∠CFE=30°,∴CE=CF.(2)∵BD=12 CE,CE=CD,∴BD=12CD,∵AB=9,∴BC=9,∴BD=3,CD=6,∵CE=CF=CD,∴CF=6,∴DF=DC+CF=12.21.【解析】(1)由题意可得:AC=6 m,DC=62m,∠CAD=90°,可得AD=22CD AC-=6(m),故△ACD是等腰直角三角形.(2)∵AC=6 m,BC=10 m,∠CAD=90°,∴AB=22BC AC-=8(m),则BD=AB-AD=8-6=2(m).答:船体移动距离BD的长度为2 m.1.【答案】A【解析】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.直通中考4.【答案】B【解析】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去;②若腰为4,底为2,则周长为:4+4+2=10,故选B.5.【答案】50︒或80︒【解析】∵等腰三角形的一个外角为130︒,∴与130°相邻的内角为50°,当50︒为顶角时,其他两角都为65︒,65︒;当50︒为底角时,其他两角为50︒,80︒,所以等腰三角形的顶角为50︒或80︒,故答案为:50︒或80︒.6.【答案】70°【解析】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.7.【答案】2或2.5【解析】如图,∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB 或BC=CD,∴BC=2或BC=2.5,故答案为:2或2.5.8.【答案】3【解析】∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.9.【答案】2327△是锐角三角形,如图1,【解析】分两种情况:①当ABC∵CD⊥AB,∴∠CDA=90°,∵CD=3,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4-1=3,∴BC2222CD BD+=+=;3(3)23②当ABC△是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=2222CD BD+=+=.综上所述,BC的长为23或27,(3)527故答案为:23或27.10.【解析】∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.11.【解析】如图所示:。
中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)
中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。
中考数学复习《等腰、等边及直角三角形》经典题型(含答案)
中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。
2)、“角平分线+垂线”构造等腰三角形。
3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。
2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MEDCBA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有ABCDEF G (第7题)ABCD EA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .7513【答案】C 8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
(第14题)A BCD【答案】80°。
提示:∠A=180°-2×50°=80°。
7. (2011山东济宁,15,3分)如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF= .【答案】128. (2011湖南怀化,13,3分)如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6,则AD=__________________.【答案】49. (2011四川乐山16,3分)如图,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1 B 2= B 1 A 2,连结A 2 B 2…按此规律上去,记∠A 2 B 1 B 2=1θ,∠3232A B B θ=,…,∠n+11A n n n B B θ+= 则⑴1θ= ; ⑵ n θ= 。
GFE CBA第15题D【答案】⑴2180α+︒ ⑵()nn 218012α+︒⋅- 10.(2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
【答案】80°。
11. (2011贵州贵阳,15,4分)如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为______.(第15题图)【答案】31212. (2011广东茂名,14,3分)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.【答案】15三、解答题1.(2011广东东莞,21,9分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE 重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?【解】(1)△HGA及△HAB;(2)由(1)可知△AGC∽△HAB∴CG ACAB BH=,即99xy=,所以,81 yx =(3)当CG<12BC时,∠GAC=∠H<∠HAC,∴AC<CH∵AG<AC,∴AG<GH又AH>AG,AH>GH此时,△AGH不可能是等腰三角形;当CG=12BC时,G为BC的中点,H与C重合,△AGH是等腰三角形;此时,当CG>12BC时,由(1)可知△AGC∽△HGA所以,若△AGH必是等腰三角形,只可能存在AG=AH若AG=AH,则AC=CG,此时x=9综上,当x=9AGH是等腰三角形.2. (2011山东德州19,8分)如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2) 连接OA,BC,试判断直线OA,BC的关系并说明理由.【答案】(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 3分 ∴ AD=AE . ……………………4分 (2) 互相垂直 ……………………5分 在Rt △ADO 与△AEO 中, ∵OA=OA ,AD=AE ,∴ △ADO ≌△AEO . ……………………………………6分 ∴ ∠DAO =∠EAO .即OA 是∠BAC 的平分线. ………………………………………7分 又∵AB =AC ,∴ OA ⊥BC . ………………………………………8分3. (2011山东日照,23,10分)如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM , 求证: ME=BD .【答案】(1)在等腰直角△ABC 中,∵∠CAD =∠CBD =15o ,∴∠BAD =∠ABD =45o -15o =30o , ∴BD=AD ,∴△BDC ≌△ADC , ∴∠DCA =∠DCB =45o .ABEDO由∠BDM =∠ABD+∠BAD =30o +30o =60o , ∠EDC=∠DAC +∠DCA =15o +45o =60o , ∴∠BDM =∠EDC , ∴DE 平分∠BDC ; (2)如图,连接MC ,∵DC=DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM=CD .又∵∠EMC =180°-∠DMC =180°-60°=120°, ∠ADC =180°-∠MDC =180°-60°=120°, ∴∠EMC =∠ADC . 又∵CE=CA ,∴∠DAC =∠CEM =15°,∴△ADC ≌△EMC ,∴ME=AD=DB .4. (2011湖北鄂州,18,7分)如图,在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.【答案】连结BD ,证△BED ≌△CFD 和△AED ≌△BFD ,求得EF=55. (2011浙江衢州,23,10分)ABC ∆是一张等腰直角三角形纸板,R t 2C A C B C ∠=∠==,.要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的第18题图BAEFCFEBQADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = . 求第10次剪取后,余下的所有小三角形的面积和.【答案】(1)解法1:如图甲,由题意得,1,1CFDE AE DE EC EC S ====正方形即.如图乙,设MN x =,则由题意,得,AM MQ PN NB MN x =====238(39PNMQx x S ∴==∴==正方形解得又819>∴甲种剪法所得的正方形的面积更大说明:图甲可另解为:由题意得点D 、E 、F 分别为AB AC BC 、、的中点,112ABC CFDE S S == 正方形 解法2:如图甲,由题意得AE DE EC ==,即EC=1如图乙,设,MN x AM MQ QP PN NB MN x =======则由题意得313x x EC MN ∴==>> 解得又即∴甲种剪法所得的正方形的面积更大(2)212S =(3)10912S =(3)解法1:探索规律可知:112n n S -=‘剩余三角形的面积和为:()12109911112212422S S S ⎛⎫-+++=-++++= ⎪⎝⎭ 解法2:由题意可知,第一次剪取后剩余三角形面积和为112=1=S S -第二次剪取后剩余三角形面积和为12211122S S S -=-== 第三次剪取后剩余三角形面积和为233111244S S S -=-==…第十次剪取后剩余三角形面积和为9101091=2S S S -=6. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目.A小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论: AE DB (填“>”,“<”或“=”).CDD(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F . (请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).【答案】(1)= . (2)=.方法一:如图,等边三角形ABC 中,D60,ABC ACB BAC AB BC AC ∠=∠=∠=︒==, //,EF BC60,AEF AFE BAC ∴∠=∠=︒=∠ AEF ∴∆是等边三角形,,AE AF EF ∴==,,AB AE AC AF BE CF ∴-=-=即又60ABC EDB BED ∠=∠+∠=︒ , 60ACB ECB FCE ∠=∠+∠=︒.,,,,,.ED EC EDB ECB BED FCE DBE EFC DB EF AE BD =∴∠=∠∴∠=∠∴∆≅∆∴=∴=方法二:在等边三角形ABC 中,60120,,,,,,//,60,180120,,ABC ACB ABD ABC EDB BED ACB ECB ACE ED EC EDB ECB BED ACE FE BC AEF AFE BAC AEF EFC ACB ABD EFC DBE DB EF ∠=∠=︒∠=︒∠=∠+∠∠=∠+∠=∴∠=∠∴∠=∠∴∠=∠=︒=∠∴∆∠=︒-∠=︒=∠∴∆≅∆∴= ,是正三角形,而由AEF ∆是正三角形可得.EF AE = .AE DB ∴= (3)1或3.7. (2011浙江台州,23,12分)如图1,过△ABC 的顶点A 分别做对边BC 上的高AD 和中线AE ,点D 是垂足,点E 是BC 中点,规定BEDEA =λ。