厦门二中2012届高三文科数学基础训练(9)

合集下载

2012年高考数学(文科)试卷福建卷(含答案)最完美最高清word版

2012年高考数学(文科)试卷福建卷(含答案)最完美最高清word版

2012年普通高等学校夏季招生全国统一考试数学文史类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题,满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(2+i)2等于( )A .3+4iB .5+4iC .3+2iD .5+2i2.已知集合M ={1,2,3,4},N ={-2,2},下列结论成立的是( ) A .N M B .M ∪N =M C .M ∩N =N D .M ∩N ={2}3.已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .12x =-B .x =-1C .x =5D .x =04.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ). A .球 B .三棱锥 C .正方体 D .圆柱5.已知双曲线22215x ya-=的右焦点为(3,0),则该双曲线的离心率等于( )A .31414B .324C .32D .436.阅读下图所示的程序框图,运行相应的程序,输出的s 值等于()A .-3B .-10C .0D .-2 7.直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .25B .23C .3D .18.函数f (x )=sin(x -π4)的图象的一条对称轴是… ( )A .π4x =B .π2x = C .π4x =-D .π2x =-9.设1,0,()0,0,1,0,x f x x x >⎧⎪==⎨⎪-<⎩1,()0x g x x ⎧=⎨⎩为有理数,,为有理数,则f (g (π))的值为( )A .1B .0C .-1D .π10.若函数y =2x 图象上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( )A .12B .1C .32D .211.数列{a n }的通项公式πcos 2n n a n =,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .012.(文)已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是( )A .①③B .①④C .②③D .②④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.在△ABC 中,已知∠BAC =60°,∠ABC =45°,3BC =,则AC =__________.14.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是__________.15.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是__________.16.某地区规划道路建设,考虑道路铺设方案.方案设计图中,点表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的线路图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55. (1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率. 18.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (件) 90 84 83 80 7568(1)求回归直线方程 y bx a =+,其中b =-20,a y b x =-; (2)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)19.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 为棱DD 1上的一点.(1)求三棱锥A -MCC 1的体积;(2)当A 1M +MC 取得最小值时,求证:B 1M ⊥平面MAC .20.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°;②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.21.如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点. 22.已知函数f (x )=ax sin x -32(a ∈R ),且在[0,π2]上的最大值为π32-. (1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明.1. A (2+i)2=4+4i +i 2=4+4i -1=3+4i .2. D ∵M ={1,2,3,4},N ={-2,2},∴M ∩N ={2}. 3. D ∵a =(x -1,2),b =(2,1),a ⊥b ,∴a ·b =(x -1,2)·(2,1)=2(x -1)+2×1=2x =0,即x =0. 4. D ∵圆柱的三视图中有两个矩形和一个圆, ∴这个几何体不可以是圆柱.5. C 由双曲线的右焦点为(3,0)知c =3,即c 2=9,又∵c 2=a 2+b 2,∴9=a 2+5,即a 2=4,a =2.故所求离心率32c e a ==.6. A (1)k =1,1<4,s =2×1-1=1; (2)k =2,2<4,s =2×1-2=0; (3)k =3,3<4,s =2×0-3=-3; (4)k =4,输出s =-3.7. B 圆心O 到直线AB 的距离|2|113d -==+,所以2222||222123AB r d =-=-=.8. C 函数f (x )=sin(x -π4)的图象的对称轴是x -π4=k π+π2,k ∈Z ,即x =k π+3π4,k ∈Z .当k =-1时x =-π+3π4=π4-.故选C .9.B ∵g (π)=0,∴f (g (π))=f (0)=0.10. B 由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值,即得2x=3-x ,即x =1=m .11. A ∵函数πcos2n y =的周期2π4π2T ==,∴可分四组求和:a 1+a 5+…+a 2 009=0,a 2+a 6+…+a 2 010=-2-6-…-2 010=503(22010)2⨯--=-503×1 006,a 3+a 7+…+a 2 011=0,a 4+a 8+…+a 2 012=4+8+…+2 012=503(42012)2⨯+=503×1 008.故S 2 012=0-503×1 006+0+503×1 008=503×(-1 006+1 008)=1 006. 12. C 设g (x )=x 3-6x 2+9x =0,则x 1=0,x 2=x 3=3,其图象如下图:要使f (x )=x 3-6x 2+9x -abc 有3个零点,需将g (x )的图象向下平移,如图所示:又f ′(x )=3x 2-12x +9=0时,x 1=1,x 2=3,即得f (1)是极大值,f (3)是极小值. 故由图象可知f (0)·f (1)<0,f (0)·f (3)>0.13.答案:2 解析:如图: 由正弦定理得sin sin A C B C BA=,即3sin 45sin 60AC =︒︒,即32322A C =,故2AC =.14.答案:12 解析:∵282987=,即每7人抽取2人,又知女运动员人数为98-56=42(人),∴应抽取女运动员人数为42×27=12(人).15.答案:(0,8)解析:∵x 2-ax +2a >0在R 上恒成立,∴∆=(-a )2-4·2a <0,即a 2-8a <0,0<a <8.故a 的取值范围是(0,8).16.答案:16解析:由题意知,各城市相互到达,且费用最少为1+2+2+3+3+5=16=FG +GD +AE +EF +GC +BC . 17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+1092⨯d =55,b 4=q 3=8,解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2).故所求的概率29P =.18.解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80,所以a =y -b x =80+20×8.5=250,从而回归直线方程为 y =-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -334)2+361.25,当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 19.解:(1)由长方体ABCD -A 1B 1C 1D 1知,AD ⊥平面CDD 1C 1,故点A 到平面CDD 1C 1的距离等于AD =1. 又∵111121122M C C S C C C D ∆=⋅=⨯⨯=,∴111133A M C C M C C V A D S -∆⋅==.(2)将侧面CDD 1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图),当A 1,M ,C ′共线时,A 1M +MC 取得最小值.由AD =CD =1,AA 1=2,得M 为DD 1中点. 连结C 1M ,在△C 1MC 中,12M C =,2M C =,CC 1=2,∴CC 12=MC 12+MC 2,得∠CMC 1=90°,即CM ⊥MC 1. 又由长方体ABCD -A 1B 1C 1D 1知,B 1C 1⊥平面CDD 1C 1, ∴B 1C 1⊥CM .又B 1C 1∩C 1M =C 1,∴CM ⊥平面B 1C 1M ,得CM ⊥B 1M . 同理可证,B 1M ⊥AM ,又AM ∩MC =M ,∴B 1M ⊥平面MAC .20.(理17,文20)解:方法一:(1)选择②式,计算如下: sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α =34sin 2α+34cos 2α=34.方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α) =12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=11131cos2cos24444αα--+=.21.解:方法一:(1)依题意,||83O B =,∠BOy =30°. 设B (x ,y ),则x =|OB |sin30°=43,y =|OB |·cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)由(1)知214y x =,12y'x =.设P (x 0,y 0),则x 0≠0,且直线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 02.由20011,241,y x x x y ⎧=-⎪⎨⎪=-⎩得2004,21.x x x y ⎧-=⎪⎨⎪=-⎩ 所以Q (20042x x -,-1).设M (0,y 1),令0M P M Q ⋅= 对满足20014y x =(x 0≠0)的x 0,y 0恒成立.由于M P =(x 0,y 0-y 1),M Q =(20042x x -,-1-y 1),由0M P M Q ⋅= ,得20042x x --y 0-y 0y 1+y 1+y 12=0,即(y 12+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足20014y x =(x 0≠0)的y 0恒成立,所以121110,20,y y y -=⎧⎨+-=⎩解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二:(1)同方法一.(2)由(1)知214y x =,12y'x =.设P (x 0,y 0),则x 0≠0,且直线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 02.由20011,241,y x x x y ⎧=-⎪⎨⎪=-⎩得2004,21.x x x y ⎧-=⎪⎨⎪=-⎩ 所以Q (20042x x -,-1).取x 0=2,此时P (2,1),Q (0,-1),以PQ 为直径的圆为(x -1)2+y 2=2,交y 轴于点M 1(0,1)或M 2(0,-1);取x 0=1,此时P (1,14),Q (32-,-1),以PQ 为直径的圆为(x +14)2+(y +38)2=12564,交y 轴于M 3(0,1)或M 4(0,74-).故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点.因为M P =(x 0,y 0-1),M Q =(20042x x -,-2),M P M Q ⋅ =2042x --2y 0+2=2y 0-2-2y 0+2=0. 故以PQ 为直径的圆恒过y 轴上的定点M . 22.解:(1)由已知得f ′(x )=a (sin x +x cos x ), 对于任意x ∈(0,π2),有sin x +x cos x >0.当a =0时,3()2f x =-,不合题意;当a <0,x ∈(0,π2)时,f ′(x )<0,从而f (x )在(0,π2)内单调递减,又f (x )在[0,π2]上的图象是连续不断的,故f (x )在[0,π2]上的最大值为3(0)2f =-,不合题意;当a >0,x ∈(0,π2)时,f ′(x )>0,从而f (x )在(0,π2)内单调递增,又f (x )在[0,π2]上的图象是连续不断的,故f (x )在[0,π2]上的最大值为π()2f ,即π3π3222a --=,解得a =1.综上所述,得f (x )=x sin x -32.(2)f (x )在(0,π)内有且只有两个零点. 证明如下:由(1)知,f (x )=x sin x 32-,从而有f (0)=32-<0,ππ3()022f -=>,又f (x )在[0,π2]上的图象是连续不断的, 所以f (x )在(0,π2)内至少存在一个零点.又由(1)知f (x )在[0,π2]上单调递增,故f (x )在(0,π2)内有且仅有一个零点.当x ∈[π2,π]时,令g (x )=f ′(x )=sin x +x cos x .由g (π2)=1>0,g (π)=-π<0,且g (x )在[π2,π]上的图象是连续不断的,故存在m ∈(π2,π),使得g (m )=0.由g ′(x )=2cos x -x sin x ,知x ∈(π2,π)时,有g ′(x )<0,从而g (x )在(π2,π)内单调递减.当x ∈(π2,m )时,g (x )>g (m )=0,即f ′(x )>0,从而f (x )在(π2,m )内单调递增,故当x ∈[π2,m ]时,ππ3()()022f x f -≥=>,故f (x )在[π2,m ]上无零点;当x ∈(m ,π)时,有g (x )<g (m )=0,即f ′(x )<0,从而f (x )在(m ,π)内单调递减.又f (m )>0,f (π)<0,且f (x )在[m ,π]上的图象是连续不断的,从而f (x )在(m ,π)内有且仅有一个零点. 综上所述,f (x )在(0,π)内有且只有两个零点.。

厦门二中2012届高三文科数学基础训练(24)

厦门二中2012届高三文科数学基础训练(24)

厦门二中2012届高三文科数学基础训练(24)姓名班级座号(知识内容:空间几何体的表面积与体积)一、选择题1.有一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的表面积为( )A.12π cm2 B.15π cm2 C.24π cm2 D.36π cm2 2.(2010·陕西高考)若某空间几何体的三视图如下图所示,则该几何体的体积是( )A. B.C.1 D.23.(2011·烟台模拟)已知一个实心铁质的几何体的正视图、侧视图和俯视图都是半径为3的圆,将6个这样的几何体熔成一个实心正方体,则该正方体的表面积为( )A.216 B.216C.210 D.2104.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.π B.2π C.π D.π5.设某几何体的三视图如图(尺寸的长度单位为m),则该几何体的体积为________m3.( )A.4 B.6 C.2 D.86.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是π,那么这个三棱柱的体积是( )A.96 B.16C.24 D.487.如图,啤酒瓶的高为h,瓶内酒面高度为a,若将瓶盖盖好倒置,酒面高度为a′(a′+b=h),则酒瓶容积与瓶内酒的体积之比为( )A.1+且a+b>hB.1+且a+b<hC.1+且a+b>hD.1+且a+b<h第1题 第2题 第5题 第7题8.一个杯子,其三视图如图所示,现在向杯中匀速注水,杯中水面的高度h 随时间t变化的图象是( )二、填空题9.(2010·福建高考)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.10.(2010·天津高考)一个几何体的三视图如图所示,则这个几何体的体积为________.11.如图,E、F分别为正方形ABCD的边BC、CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥的体积为________.12.在中,若,则外接圆半径.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为,则其外接球的半径= .三、解答题13.一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.14.如图,在三角形ABC中,若AC=3,BC=4,AB=5,以AB所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.15.在右图所示的几何体中,平面PAC⊥平面ABC,PM∥BC,PA=PC,AC=1,BC=2PM=2,AB=若该几何体的侧视图(左视图)的面积为(1)求证:PA⊥BC;(2)画出该几何体的正视图,并求其面积S;(3)求出多面体A—BMPC的体积V.1.解析:该几何体是底面半径等于3,母线长等于5的圆锥,其表面积S表=π×3×5+π×32=24π(cm2).答案:C2.解析:由几何体的三视图知几何体是底面以1和为直角边的直角三角形,高为的直三棱柱,∴V=×1××=1.答案:C3.解析:由6××33=a3,∴a=6,∴S=6a2=216.答案:A4.解析:上底半径r=1,下底半径R=2.∵S侧=6π,设母线长为l,则π(1+2)·l=6π,∴l=2,∴高h==,∴V=π·(1+1×2+2×2)=π.答案:D5.解析:由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V=××3×4×2=4 m3.答案:A6.解析:由πR3=π,∴R=2,∴正三棱柱的高h=4,设其底面边长为a,则·a=2,∴a=4,∴V=(4)2·4=48.答案:D7.解析:设酒瓶下底面面积为S,则酒的体积为Sa,酒瓶的体积为Sa+Sb,故体积之比为1+显然有a<a′,又a′+b=h,故a+b<h.选B.答案:B8.解析:由三视图可知杯子是圆柱形的,由于圆柱形的杯子上下大小相同,所以当向杯中匀速注水时,其高度随时间的变化是相同的,反映在图象上,选项B符合题意.故选B.答案:B9.解析:由正视图可知,该三棱柱是底面边长为2,侧棱长为1的正三棱柱,其表面积为2××4+3×2×1=6+2.答案:6+210.解析:由三视图可知,原几何体是由上面一个正四棱锥,下面一个正四棱柱构成的,V=×2×2×1+1×1×2=.答案:11.解:折叠起来后,B、D、C三点重合为S点,则围成的三棱锥为S-AEF,这时SA⊥SE,SA⊥SF,SE⊥SF,且SA=2,SE=SF=1,所以此三棱锥的体积V=··1·1·2=.12.【答案】。

2012年厦门市高中毕业班质量检查数学(文科)试卷

2012年厦门市高中毕业班质量检查数学(文科)试卷

2012年厦门市高中毕业班质量检查数学(文科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.本卷满分150分,考试时间120分钟. 参考公式:方差2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦L第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|(1)(2)0}A x x x =+-<,集合{|0}B x x =<,则A B =IA .{|12}x x -<<B .{|1x x <}C .{|20}x x -<<D .{|10}x x -<< 2.已知样本3,,2,1x 的平均数为2 ,则样本方差是A .31 B .22C .21D .41 3.执行右边的程序框图,输出的结果是18,则①处应填入的条件是A .K >2B .K >3C .K >4D .K >54.已知锐角α满足3sin 5α=,则sin(2)πα+= A .1225- B .2425- C..1225D .24255.若x R ∈,则“12x -≤≤”是“1x <”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.设0,0x y >>,4xy =,则22x y s y x=+的最小值为 A .1 B .2 C .4 D .87.已知,αβ是两个不同平面,,m n 是两条不同直线,则以下命题正确的是A .若//,m n n α⊂,则//m αB .若,m m αβ⊥⊂,则αβ⊥C .若,m n αβ⊥⊥,m n ⊥,则//αβD .若//m α,n αβ⋂=,则//m n8.在平面区域00x y x y ⎧≥⎪≥⎨⎪+≤⎩内随机取一点,则所取的点恰好落在圆221x y +=内的概率是A .2πB .4πC .8π D .16π9.已知函数()y f x =在R 上满足(1)(1)f x f x +=-,且在[)1,+∞上单调递增,则下列结论正确的是A .(0)(1)(3)f f f >>B .(0)(3)(1)f f f >>C .(3)(1)(0)f f f >>D .(3)(0)(1)f f f >> 10.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,3B π=,且sin :sin 3:1A C=,则:b c 的值为A B .2C D .711.设P 是椭圆2214x y +=上任意一点,A 是椭圆的左顶点,1F ,2F 分别是椭圆的左焦点和右焦点,则→→→→⋅+⋅21PF PA PF PA 的最大值为A .8B .12C .16D .20 12.如图,直角梯形ABCD 中,//AB DC ,90=∠DAB ,3,3,1===AD AB DC ,点E 在边BC 上,且AC ,AE ,AB 成等比数列.若→→=EB CE λ,则λ=A .3153+ B .31523+ CD 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡的相应位置. 13.设1z i =+(i 是虚数单位),则复数21z +在复平面上对应点的坐标为 . 14.已知1()cos f x x =,且1()()n n f x f x +'=(*)n N ∈,则2012()f x =.15.已知双曲线2221(0)9x y a a -=>的渐近线与圆9)5(22=+-y x 相切,则a 的值为 . 16.如果函数()y f x =在定义域D 的子区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在[,]a b 上的一个“均值点”.例如,0是2y x =在[]1,1-上的一个“均值点”.已知函数4()1f x x mx =-++在区间[]2,1-上存在均值点,则实数m 的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.把解答过程填写在答题卡的相应位置. 17.(本小题满分12分)已知等比数列{}n a 中,公比1q >,1a 与3a 的等差中项为52,1a 与3a 的等比中项为2. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2log n n b a =,求数列{}n b 的前n 项和n S . 18.(本小题满分12分)将函数sin y x =图象上的所有点向右平移6π个单位长度,得到曲线1C ,再把曲线1C 上所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()y f x =的图象. (Ⅰ)写出函数()y f x =的解析式,并求()f x 的周期;(Ⅱ)若函数()()cos2g x f x x =+,求()g x 在[]0,π上的单调递增区间. 19.(本小题满分12分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表一:男生 表二:女生(Ⅰ)计算,x y 的值;(Ⅱ)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率; (Ⅲ)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.参考数据与公式:22()()()()()n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++.临界值表:20.(本小题满分12分)已知椭圆2222:1(0)y x C a b a b +=>> 的两焦点与短轴的一个端点连结构成等腰直角三角形,直线l :0x y b --=是抛物线24x y =的一条切线.(Ⅰ)求椭圆C 的方程;(Ⅱ)直线l 交椭圆C 于,A B 两点,若点P 满足0OP OA OB ++=u u u r u u r u u u r r(O 为坐标原点),判断点P 是否在椭圆C 上,并说明理由.21.(本小题满分12分)某人请一家装公司为其新购住房进行装修设计,房主计划在墙面及天花板处涂每平方米20元的水泥漆,地面铺设每平方米100元的木地板.家装公司给出了某一房间的三视图如图一,直观图如图二(单位:米).(Ⅰ)问该房间涂水泥漆及铺木地板共需材料费多少元?(Ⅱ)如图二,点E 在棱11A D 上,且10.3D E =,M 为11PQ 的中点.房主希望在墙面11A ADD 上确定一条过点1D 的装饰线1D N (N 在棱1AA 上),并要求装饰线与平面EDPM 垂直.请你帮助装修公司确定1A N 的长,并给出理由.. ABP Q D A 1 B 1Q 1P 1D 1E NM图二22.(本小题满分14分)已知函数1()()ln f x a x b x x=--(,a b R ∈),2()g x x =.(Ⅰ)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (Ⅱ)在(Ⅰ)的条件下,求证:()()2ln 2g x f x >-;(Ⅲ)若2b =,试探究函数()f x 与()g x 的图象在其公共点处是否存在公切线,若存在,研究a 值的个数;若不存在,请说明理由.2012年厦门市高中毕业班质量检查数学(文科)参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分60分.1. D2. C3. A4.B5. B6. C7.B8.B9.D 10. C 11. C 12. A 二、填空题:本题考查基础知识和基本运算. 每小题4分,满分16分. 13. (1,2) 14. sin x 15. 4 16. (5,4)-三、解答题:本题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.本题考查等差数列、等比数列基础知识,考查运算求解能力,考查函数与方程思想方法.满分12分.解:(Ⅰ)依题意得131354a a a a +=⎧⎨⋅=⎩,又1q >, -----------------------------------------------------------2分∴1314a a =⎧⎨=⎩ ,∴2314a q a ==,即2q = ----------------------------------------------------4分∴ 11122n n n a --=⨯= ------------------------------------------------------6分(Ⅱ)122log log 21n n n b a n -===-, -----------------------------------------------------------8分 ∴1(1)1n n b b n n +-=--=(为常数),所以,{}n b 是以0为首项,1为公差的等差数列,∴21()(01)222n n n b b n n n nS ++--===. ----------------------------------------------------12分 18.本题考查三角函数图象及其性质等基础知识,考查推理论证能力、运算求解能力,考查方程与函数、数形结合等数学思想方法.满分12分.解:(Ⅰ)由已知,曲线C 1对应的函数解析式为 sin()6y x π=--------------------------------1分曲线C 2对应的函数解析式为()sin(2)6f x x π=- --------------------------3分∴()f x 的周期22T ππ== -------------------------------------------------------------4分 (Ⅱ)由已知及(Ⅰ)()()cos 2g x f x x =+sin(2)cos 26x x π=-+sin 2coscos 2sincos 266x x x ππ=-+12cos 222x x =+sin(2)6x π=+ -----------------------------7分要使()g x 单调递增,只须222,262k x k k Z πππππ-+≤+≤+∈,即:,36k x k k Z ππππ-+≤≤+∈, ----------------------------------------------------------9分又∵[0,]x π∈,∴满足条件的x 的取值范围是06x π≤≤或23x ππ≤≤, ∴所求单调递增区间为[0,]6π和2[,]3ππ.------------------------------------------------------------12分 19.本题考查概率、统计等基础知识,考查数据处理能力、推理论证能力、运算求解能力及应用意识,考查特殊与一般、化归与转化等数学思想方法.满分12分. 解:(Ⅰ)设从高一年级男生中抽出m 人,则45500500400m =+,25m =, ∴ 21820,52025=-==-=y x -----------------------------------------------------2分(Ⅱ)表二中非优秀学生共5人,记测评等级为合格的3人为c b a ,,,尚待改进的2人为A,B ,则从这5人中任选2人的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c b c A B a A a B b A b B c A c B ,共10种.-------------4分设事件C 表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”, 则C 的结果为:(,),(,),(,),(,),(,),(,)a A a B b A b B c A c B 共6种. ----------------------------6分 ∴53106)(==C P , 故所求概率为53. ---------------------------------------------------7分 (Ⅲ)-------------------------------------------9分∵10.90.1-=,2( 2.706)0.10P K ≥=,而706.2125.189202515305154520251530)1015515(452222<==⨯⨯⨯⨯⨯=⨯⨯⨯⨯-⨯=K , ---------------11分 答:没有90%的把握认为“测评结果优秀与性别有关”. -----------------------------------12分 20.本题考查直线、抛物线、椭圆及平面向量等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想及化归与转化思想.满分12分. 解:(Ⅰ)(法一)由220:4404x y b y x x b x y--=⎧-+=⎨=⎩消去得∵ 直线y x b x y 42=-=与抛物线相切,∴24160b ∆=-=,∴1b =,---------------------3分∵椭圆)0(1:2222>>=+b a bx a y C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴22==b a -------------------------------------------------------------------------------5分故所求椭圆方程为2212y x +=. --------------------------------------------------------------------6分 (法二)直线L:0=+-b x y 是抛物线y x 42=的一条切线.故切线斜率为1k =, 又,112k y x === 求得切点坐标为(2,1),又点(2,1)在直线L:0=+-b x y 上, 代入求得1b =, --------------------------------------------------------------------------3分∵椭圆)0(1:2222>>=+b a bx a y C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴22==b a --------------------------------------------------------------------------------5分故所求椭圆方程为2212y x +=. --------------------------------------------------------------------6分 (Ⅱ)由⎪⎩⎪⎨⎧=+-=12122x y x y 得30122=--x x ,解得31,121-==x x ,---------------------------------------8分 ∴14(1,0),(,)33A B --,设(,)P x y ,→→→→=++0OP OB OA , )0,0()340,311(=+-+-=++→→→y x OP OB OA ,--------------------------------------------------10分 解得:34,32=-=y x , ∴24(,)33P -,把点24(,)33P -代入椭圆方程2212y x +=左边, 得221424()()12333+-=≠, ∴点P 不在椭圆C 上 ---------------------------------------12分 21.本题考查空间线面位置关系、三视图、多面体表面积计算等基础知识,考查空间想象能力、逻辑思维能力、推理论证能力、运算求解能力及应用意识,考查数形结合、化归与转化等数学思想方法.满分12分.解:(Ⅰ)墙及天花板的表面积114343 3.2313 3.43(440.60.8)62.562S =⨯+⨯+⨯+⨯+⨯+⨯-⨯⨯=(2m ),-----2分∴水泥漆的费用为62.56201251.2⨯=(元), -----------------------------------3分 又地面的面积为21440.60.815.762S =⨯-⨯⨯=(2m ), ∴木地板的费用为15.761001576⨯=(元), --------------------------------------------------4分∴该房间涂水泥漆及铺木地板共需材料费1251.215762827.2+=元.-------------------5分 (Ⅱ)∵DP ⊥平面11A ADD ,又1D N ⊂平面11A ADD ∴1DP D N ⊥,要使装饰线1D N ⊥平面EDPM ,须且只须1D N DE ⊥,-----------------------------------9分 设1A N x =,由1D N DE ⊥知,111D A N DD E ∆∆:, ∴11111D E A ND D A D =,又11110.3,3,4DE D D A D ===,∴10.4A N =, -------------------------------------------------11分 ∴当10.4A N =米时,装饰线1D N 与平面EDPM 垂直.-----------------------------------12分22.本题考查函数与导数基础知识及其应用,考查运算求解能力、推理论证能力,考查函数与方程思想、分类与整合思想、数形结合思想、特殊与一般思想及化归与转化思想.满分14分. 解:(Ⅰ)1a =Q ,1()ln f x x b x x=--, ∴22211()1b x bx f x x x x -+'=+-=, ----------------------------------------------2分 依题意得 (1)20f b '=-=,∴2b =. ------------------------------------------3分 (Ⅱ)由(Ⅰ)得1()2ln f x x x x=--,定义域为(0,)+∞, 要证()()2ln 2g x f x >-,只须证212ln 2ln 20x x x x-+++>, 设21()2ln 2ln 2,(0)F x x x x x x=-+++>, --------------------------------4分 则32222212212(1)(21)()21x x x x x F x x x x x x--++-'=--+==, 令()0F x '=,得12x =, ------------------------------------------------------6分 列表得∴12x =时,()F x 取极小值也是最小值,且min 7()()024F x F ==>, ∴()0F x >,∴()()2ln 2g x f x >-. ----------------------------------------------8分 (Ⅲ)假设函数()f x 与()g x 的图象在其公共点00(,)x y 处存在公切线, ∵2b =,∴1()()2ln f x a x x x=--,∵222()ax x a f x x -+'=,()2g x x '=,由00()()f x g x ''=得,20002022ax x ax x -+=, 即32000220x ax x a -+-=,∴2000(1)(2)02ax x a x +-=⇒=,---------------------9分 ∵()f x 的定义域为(0,)+∞, 当0a ≤时,0(0,)2ax =∉+∞,∴函数()f x 与()g x 的图象在其公共点处不存在公切线;---10分 当0a >时,令 ()()22a a f g =,∵221()()2ln()2ln()222222a a a a f a a a=--=--,21()24a g a =, ∴22112ln()2224a a a --=,即28ln()(0)82a aa -=>,-----------------------------------11分 下面研究满足此等式的a 值的个数:(方法一)由28ln()82a a -=得 28l n 88l n 20(0)a a a -+-=>, 设函数2()8ln 88ln 2,(0)h x x x x =-+->,2882()2x h x x x x-'=-=,令()0h x '=得2x =,当(0,2)x ∈时,()0,()h x h x '>递增; 当(2,)x ∈+∞时,()0,()h x h x '<递减;所以,max ()(2)8ln 2488ln 240h x h ==-+-=>,又0x →时,()h x →-∞,242x ==时,2(2)8ln 280h =-<,所以,函数()h x 的图象与x 轴有且仅有两个交点,即符合题意的a 值有且仅有两个. 综上,当0a ≤时,函数()f x 与()g x 的图象在其公共点处不存在公切线; 当0a >时,函数()f x 与()g x 的图象在其公共点处存在公切线, 且符合题意的a 值有且仅有两个.---------------------------------------14分第 11 页 共 11 页(方法二)设2a t =,则2a t =,且0t >,方程28ln()82a a -=化为21ln 12t t =-, 分别画出ln y t =和2112y t =-的图象,因为1t =时,211ln 0,1022t t =-=-<, 由函数图象性质可得ln y t =和2112y t =-图象有且只有两个公共点(且均符合0t >), 所以方程28ln()82a a -=有且只有两个解. 综上,当0a ≤时,函数()f x 与()g x 的图象在其公共点处不存在公切线;当0a >时,函数()f x 与()g x 的图象在其公共点处存在公切线,且符合题意的a 值有且仅有两个.------------------------------------------14分。

厦门二中2012届高三数学(文科)考前温书指导

厦门二中2012届高三数学(文科)考前温书指导

厦门二中2012届高三数学(文科)考前温书指导高考临近,请同学们务必充分利用六天的温书时间,将各部分知识重新温故,努力做到:知识上不留死角;方法上不存含糊;注意点不再遗漏。

为了帮助同学们更有序、有效的进行温书,根据学科特点,结合多年的经验,我们认为,温书期间,同学们关键是要做好以下四个方面的工作:一是进行知识回顾,确保各块知识(特别是平常比较少遇到的冷僻知识)都再次熟悉一遍,知识回顾时,要将课本与老师配发的回顾提纲结合起来;二是适当进行笔练(每天利用30分钟时间,完成老师配发的笔练作业,如果冲刺练习没完成的,也要抽时间去做做),保证手不生疏,题不陌生;三是要去看以往练习中的错题,找出自己常犯的错误,务必做到在高考中不再犯同类错误;四是看看自己以往摘抄的各种知识要点。

根据以上四个方面,我们提出以下时间安排,请同学们遵照执行。

★温书第一天(5月19日,星期六):1.抽30分钟时间完成笔练(一),并校对好答案,做好纠错工作;2.理解知识回顾提纲第一部分(集合)与第二部分(函数与导数),并阅读课本相应的内容;3.审读5份曾经做过的试卷,查清做错题目的原因,默记所犯过的错误。

★温书第二天(5月20日,星期日):1.抽30分钟时间完成笔练(二),并校对好答案,做好纠错工作;2.理解知识回顾提纲第三部分(三角函数)与第四部分(立体几何),并阅读课本相应的内容;3.审读5份曾经做过的试卷,查清做错题目的原因,默记所犯过的错误。

★温书第三天(5月25日,星期五):1.抽30分钟时间完成笔练(三),并校对好答案,做好纠错工作;2.理解知识回顾提纲第四部分(立体几何),并阅读课本相应的内容;3.审读5份曾经做过的试卷,查清做错题目的原因,默记所犯过的错误。

★温书第四天(5月26日,星期六):1.抽30分钟时间完成笔练(四),并校对好答案,做好纠错工作;2.理解知识回顾提纲第五部分(直线与圆)与第六部分(圆锥曲线),并阅读课本相应的内容;3.审读5份曾经做过的试卷,查清做错题目的原因,默记所犯过的错误。

2012年福建省高三质检文科数学试卷及答案

2012年福建省高三质检文科数学试卷及答案

2012年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.1A 25A .45B . 45- C . 35D . 35-3.若0.320.32,0.3,log 2a b c ===,则,.a b c 的大小顺序是A . a b c <<B . c a b <<C . c b a <<D . b c a <<4.在空间中,下列命题正确的是A . 平行于同一平面的两条直线平行B . 垂直于同一平面的两条直线平行C . 平行于同一直线的两个平面平行D . 垂直于同一平面的两个平面平行5.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x x 甲乙,,则下列判断正确的是6A7A89C . )62sin()(π+=x x fD . x x f 2sin )(=10.已知)2,0(),0,2(B A -, 点M 是圆2220x y x +-=上的动点,则点M 到直线AB 的最大距离是 A .1- B . C 1+ D .11. 一只蚂蚁从正方体1111ABC D A B C D -的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是12f 13141516③*M P ⋂=∅.其中正确的结论是 .(写出所有正确结论的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 的公差为2-,且134,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1(*)(12)n n b n n a =∈-N ,求数列{}n b 的前n 项和n S .18. (本小题满分12分)在直角梯形ABCD 中,AD //BC ,1,AB AD ==,AB BC CD BD ⊥⊥,如图(1).把ABD ∆沿BD 翻1912分)阅读下面材料:根据两角和与差的正弦公式,有(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin22A B A B A B +--=-;(Ⅱ)若A B C ∆的三个内角,,A B C 满足2cos 2cos 22sin A B C -=,试判断A B C ∆的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论) 20. (本小题满分12分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:(21222012年福建省普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法1712 ((Ⅱ)由(Ⅰ)可得(12)(1)1n n b n a n n n n ===--++,……………………………8分所以12n n S b b b =++⋅⋅⋅+11111(1)()()2231n n =-+-+⋅⋅⋅+-+1111n n n =-=++. ……………12分18.本小题主要考查直线与直线、直线与平面的位置关系、棱锥体积公式等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想.满分12分. 解:(Ⅰ)∵平面A BD BCD '⊥平面,A BD BCD BD '⋂=平面平面,C D BD ⊥ ∴CD A BD '⊥平面, ……………………………2分 又∵AB A BD '⊂平面,∴C D A B '⊥. ……………………………4分解法一:(Ⅰ)因为cos()cos cos sin sin αβαβαβ+=-, ① c o s ()c o sc o ss i n αβαβαβ-=+, ②………………………2分①-② 得cos()cos()2sin sin αβαβαβ+--=-. ③……………3分令,A B αβαβ+=-=有,22A B A Bαβ+-==,代入③得cos cos 2sinsin22A B A B A B +--=-. …………………6分(Ⅱ)由二倍角公式,2cos 2cos 22sin A B C -=可化为22212s i n 12s i n 2s i nA B C --+=,……………………………8分20(75,100)内的两天记为12,B B .所以5天任取2天的情况有:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B 共10种. ……………………4分 其中符合条件的有:11A B ,12A B ,21A B ,22A B ,31A B ,32A B 共6种. …………6分所以所求的概率63105P ==. ……………………8分(Ⅱ)去年该居民区PM2.5年平均浓度为:12.50.2537.50.562.50.1587.50.140⨯+⨯+⨯+⨯=(微克/立方米).……………………………………………10分因为4035>,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环21F 由①,②得222216166y y ⎛⎫+--= ⎪⎝⎭,所以4222222560y y -+=. ③ 因为2(22)42565400∆=--⨯=-<.所以方程③无解,从而A B C ∆不可能是直角三角形.…………………12分解法二:(Ⅰ)同解法一(Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,由0FA FB FC ++=,得1233x x x ++=,1230y y y ++=.……………………………6分 由条件的对称性,欲证A B C ∆不是直角三角形,只需证明90A ∠≠ .(1)当A B x ⊥轴时,12x x =,12y y =-,从而3132x x =-,30y =,数形结合思想、考查化归与转化思想.满分12分.解法一:(Ⅰ)因为2()ln f x x a x =+,所以'()2a f x x x=+,函数()f x 的图象在点(1,(1))P f 处的切线斜率'(1)2k f a ==+. 由210a +=得:8a =. …………………4分(Ⅱ)由(Ⅰ)知,2()8ln f x x x =+,令()()2F x f x x =-228ln x x x =-+. 因为(1)10F =-<,(2)8ln 20F =>,所以()0F x =在(0,)+∞至少有一个根.又因为8'()22260F x x x =-+≥=>,所以()F x 在(0,)+∞上递增,所以函数()F x 在(0,)+∞上有且只有一个零点,即方程()2f x x =有且只有一(,)x t ∈+∞时,'()0h x >.故()h x 在4(,)t t 上单调递减,在(,)t +∞上单调递增. 又()0h t =,所以当4(,)x t t ∈时,()0h x >;当(,)x t ∈+∞时,()0h x >, 即曲线在点(,())A t f t 附近的左、右两部分都位于曲线在该点处切线的同侧. ………………… 13分(3)当4t t<,即02t <<时, (0,)x t ∈时,'()0h x >;4(,)x t t ∈时,'()0h x <;4(,)x t∈+∞时,'()0h x >. 故()h x 在(0,)t 上单调递增,在4(,)t t上单调递减.所以()h x 在()0,+∞上递增.又()0h t =,所以当(0,2)x ∈时,()0h x <;当(2,)x ∈+∞时,()0h x >, 即存在唯一点(2,48ln 2)A +,使得曲线在点A 附近的左、右两部分分别 位于曲线在该点处切线的两侧. ………………… 14分。

厦门二中2012

厦门二中2012

厦门二中2012—2013高二(上)文科数学期中复习提纲(3)(内容:数列) 班级 座号 姓名 一、选择题 1.数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n n n a nnB .12)3()1(++-=n n n a n nC .121)1()1(2--+-=n n a nnD .12)2()1(++-=n n n a nn2.设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )A .1B .1-C .2D .213.在等比数列}{n a 中,,8,1641=-=a a 则=7a ( ) A 4- B 4± C 2- D 2±4.等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为 ( )A .-2B .1C .-2或1D .2或-15.已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16= ( )A .7B .16C .27D .646.一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是 ( ) A .3 B .3- C .33-D .不确定7.若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .128.在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .20二、填空题9.已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 10. 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 11.数列11111,2,3,,,2482nn ++++……的前n 项和是 .12.在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =三、解答题13.(1)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,求n 、n S 的值(2)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .14.已知:等差数列{n a }中,4a =14,前10项和18510=S .(1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .15.已知等比数列{}n b 与数列{}n a 满足*,3N n b na n ∈=(1) 判断{}n a 是何种数列,并给出证明;(2)若2021138,b b b m a a 求=+16.已知数列{a n }中,其前n 项和为S n ,且n ,a n ,S n 成等差数列(n ∈N *).(1)求数列{a n }的通项公式;(2)求S n >57时n 的取值范围.厦门二中2012—2013高二(上)文科数学期中复习提纲(3)答案一、选择题 题号 1 2 3 4 5 6 7 8 答案DAACCBAB二、填空题9.132-⨯n 10.510 11.nn n 2112)1(-++12.4951三、解答题 13.(1)n=50,25003n S =(2)解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n=--,即 3243n=,解得 n =5.∴ 数列{}n a 的首项12a =,项数n=5 14.解:(1)由41014185a S =⎧⎨=⎩ ∴11314,110109185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩由23,3)1(5+=∴⋅-+=n a n a n n(2)设新数列为{n b },由已知,2232+⋅==nn n a b.2)12(62)2222(3321n n G n n n +-=+++++=∴ *)(,62231N n n G n n ∈-+⋅=∴+ 15.解:(1){}n b 是等比数列,依题意可设{}n b 的公比为)0(>q q2(1≥=∴-n q b b n n ) )2(331≥=∴-n q n na a )2(31≥=∴--n q n n a a)2(log31≥=-∴-n q a a n n 为一常数。

厦门二中2012-2013高二(上)文科数学限时训练(8)20121106

厦门二中2012-2013高二(上)文科数学限时训练(8)20121106

厦门二中2012-2013高二(上)文科数学限时训练(8)20121106(内容:二元一次不等式(组)与简单的线性规划)班级______座号______姓名______一、选择题(每小题5分,共40分)1. 不等式2x+y+1<0表示的平面区域在直线2x+y+1=0 ( )A、右上方B、右下方C、左上方D、左下方2.已知点(3 , 1)和点(-4 , 6)在直线 3x–2y + m = 0 的两侧,则 ( )A.m<-7或m>2 B.-7<m<24 C.m=-7或m=24 D.-7≤m≤ 243.不等式表示的平面区域是一个 ( )A.三角形 B.直角三角形 C.梯形 D.矩形4.如图所示,表示阴影部分的二元一次不等式组是( )A. B. C. D.5.在△ABC中,三顶点坐标为A(2 ,4),B(-1,2),C(1 ,0),点P(x,y)在△ABC内部及边界运动,则 z = x – y 的最大值和最小值分别是( )A.3,1 B.-1,-3 C.1,-3 D.-16.如图,已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是( )A、13,1B、13,2C、13,D、,7.给出平面区域如下图所示,其中A(5,3),B(1,1),C(1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值是( )A. B. C.2 D.8. 设集合A={(x,y)|x,y, 1-x-y是三角形的三边长},则A 表示的平面区域(不含边界的阴影部分)是 ( )二、填空题(每小题5分,共20分)9. 已知1≤x≤3, -1≤y≤4,则3x+2y的取值范围是。

10. 在x,y的值都是不小于零的整数点(x,y)中,满足x+y≤4的点的个数为 。

11.某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有 种。

2012高考福建文科数学试题及答案(高清版)

2012高考福建文科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学文史类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题,满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(2+i)2等于()A.3+4i B.5+4i C.3+2i D.5+2i2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N M B.M∪N=MC.M∩N=N D.M∩N={2}3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是()A.12x=-B.x=-1C.x=5 D.x=04.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是().A.球B.三棱锥C.正方体D.圆柱5.已知双曲线22215x ya-=的右焦点为(3,0),则该双曲线的离心率等于()A.14B4C.32D.436.阅读下图所示的程序框图,运行相应的程序,输出的s值等于()A.-3 B.-10 C.0 D.-27.直线x+-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于()A.B.C D.18.函数f(x)=sin(x-π4)的图象的一条对称轴是… ()A.π4x=B.π2x=C.π4x=-D.π2x=-9.设1,0,()0,0,1,0,xf x xx>⎧⎪==⎨⎪-<⎩1,()xg xx⎧=⎨⎩为有理数,,为有理数,则f(g(π))的值为()A.1 B.0 C.-1 D.π10.若函数y=2x图象上存在点(x,y)满足约束条件30,230,,x yx yx m+-≤⎧⎪--≤⎨⎪≥⎩则实数m的最大值为()A.12B.1 C.32D.211.数列{a n}的通项公式πcos2nna n=,其前n项和为S n,则S2 012等于()A.1 006 B.2 012 C.503 D.012.(文)已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.在△ABC中,已知∠BAC=60°,∠ABC=45°,BC=,则AC=__________.14.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是__________.15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是__________.16.某地区规划道路建设,考虑道路铺设方案.方案设计图中,点表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的线路图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.在等差数列{a n}和等比数列{b n}中,a1=b1=1,b4=8,{a n}的前10项和S10=55.(1)求a n和b n;(2)现分别从{a n}和{b n}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.18.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试(1)求回归直线方程 y bx a=+,其中b=-20,a y b x=-;(2)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本) 19.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.(1)求三棱锥A-MCC1的体积;(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.20.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.21.如图,等边三角形OAB的边长为E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点.22.已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1.A(2+i)2=4+4i+i2=4+4i-1=3+4i.2. D ∵M ={1,2,3,4},N ={-2,2},∴M ∩N ={2}. 3. D ∵a =(x -1,2),b =(2,1),a ⊥b ,∴a ·b =(x -1,2)·(2,1)=2(x -1)+2×1=2x =0,即x =0.4. D ∵圆柱的三视图中有两个矩形和一个圆, ∴这个几何体不可以是圆柱.5. C 由双曲线的右焦点为(3,0)知c =3,即c 2=9,又∵c 2=a 2+b 2,∴9=a 2+5,即a 2=4,a =2.故所求离心率32c e a ==.6. A (1)k =1,1<4,s =2×1-1=1; (2)k =2,2<4,s =2×1-2=0; (3)k =3,3<4,s =2×0-3=-3; (4)k =4,输出s =-3.7. B 圆心O 到直线AB的距离1d ==,所以||AB ===. 8. C 函数f (x )=sin(x -π4)的图象的对称轴是x -π4=k π+π2,k ∈Z ,即x =k π+3π4,k ∈Z .当k =-1时x =-π+3π4=π4-.故选C .9.B ∵g (π)=0,∴f (g (π))=f (0)=0.10. B 由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值,即得2x =3-x ,即x =1=m .11. A ∵函数πcos 2n y =的周期2π4π2T ==,∴可分四组求和:a 1+a 5+…+a 2 009=0,a 2+a 6+…+a 2 010=-2-6-…-2 010=503(22010)2⨯--=-503×1 006,a 3+a 7+…+a 2 011=0,a 4+a 8+…+a 2 012=4+8+…+2 012=503(42012)2⨯+=503×1 008.故S 2 012=0-503×1 006+0+503×1 008=503×(-1 006+1 008)=1 006.12. C 设g (x )=x 3-6x 2+9x =0,则x 1=0,x 2=x 3=3,其图象如下图:要使f (x )=x 3-6x 2+9x -abc 有3个零点,需将g (x )的图象向下平移,如图所示:又f ′(x )=3x 2-12x +9=0时,x 1=1,x 2=3,即得f (1)是极大值,f (3)是极小值. 故由图象可知f (0)·f (1)<0,f (0)·f (3)>0.13.解析:如图: 由正弦定理得sin sin AC BC BA=,即sin 45sin 60AC =︒︒22=,故AC =14.答案:12 解析:∵282987=,即每7人抽取2人,又知女运动员人数为98-56=42(人),∴应抽取女运动员人数为42×27=12(人).15.答案:(0,8) 解析:∵x 2-ax +2a >0在R 上恒成立,∴∆=(-a )2-4·2a <0,即a 2-8a <0,0<a <8.故a 的取值范围是(0,8).16.答案:16解析:由题意知,各城市相互到达,且费用最少为1+2+2+3+3+5=16=FG +GD +AE +EF +GC +BC .17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+1092⨯d =55,b 4=q 3=8,解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2).故所求的概率29P =.18.解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80,所以a =y -b x =80+20×8.5=250,从而回归直线方程为 y =-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -334)2+361.25,当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 19.解:(1)由长方体ABCD -A 1B 1C 1D 1知,AD ⊥平面CDD 1C 1,故点A 到平面CDD 1C 1的距离等于AD =1. 又∵111121122M C C S C C C D ∆=⋅=⨯⨯=,∴111133A M C C M C C V A D S -∆⋅==.(2)将侧面CDD 1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图),当A 1,M ,C ′共线时,A 1M +MC 取得最小值. 由AD =CD =1,AA 1=2,得M 为DD 中点.连结C 1M ,在△C 1MC 中,1M C =,MC =,CC 1=2,∴CC 12=MC 12+MC 2,得∠CMC 1=90°,即CM ⊥MC 1. 又由长方体ABCD -A 1B 1C 1D 1知,B 1C 1⊥平面CDD 1C 1, ∴B 1C 1⊥CM .又B 1C 1∩C 1M =C 1,∴CM ⊥平面B 1C 1M ,得CM ⊥B 1M . 同理可证,B 1M ⊥AM ,又AM ∩MC =M ,∴B 1M ⊥平面MAC .20.(理17,文20)解:方法一:(1)选择②式,计算如下: sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α) =12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)-2sin αcos α-12sin 2α=12-12cos2α+12+14cos2α4sin2α-4sin2α-14(1-cos2α)=11131cos2cos24444αα--+=.21.解:方法一:(1)依题意,||O B =BOy =30°. 设B (x ,y ),则x =|OB |sin30°= y =|OB |·cos 30°=12.因为点B(12)在x 2=2py 上,所以(2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)由(1)知214y x =,12y'x =.设P (x 0,y 0),则x 0≠0,且直线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 02.由20011,241,y x x x y ⎧=-⎪⎨⎪=-⎩得2004,21.x x x y ⎧-=⎪⎨⎪=-⎩ 所以Q (20042x x -,-1).设M (0,y 1),令0M P M Q ⋅= 对满足20014y x =(x 0≠0)的x 0,y 0恒成立.由于M P =(x 0,y 0-y 1),M Q =(20042x x -,-1-y 1),由0M P M Q ⋅= ,得20042x x --y 0-y 0y 1+y 1+y 12=0,即(y 12+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足20014y x =(x 0≠0)的y 0恒成立,所以121110,20,y y y -=⎧⎨+-=⎩解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).方法二:(1)同方法一. (2)由(1)知214y x =,12y'x =.设P (x 0,y 0),则x 0≠0,且直线l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 02.由20011,241,y x x x y ⎧=-⎪⎨⎪=-⎩得2004,21.x x x y ⎧-=⎪⎨⎪=-⎩ 所以Q (20042x x -,-1).取x 0=2,此时P (2,1),Q (0,-1),以PQ 为直径的圆为(x -1)2+y 2=2,交y 轴于点M 1(0,1)或M 2(0,-1);取x 0=1,此时P (1,14),Q (32-,-1),以PQ 为直径的圆为(x +14)2+(y +38)2=12564,交y 轴于M 3(0,1)或M 4(0,74-).故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点.因为M P =(x 0,y 0-1),M Q =(20042x x -,-2),M P M Q ⋅ =2042x --2y 0+2=2y 0-2-2y 0+2=0. 故以PQ 为直径的圆恒过y 轴上的定点M . 22.解:(1)由已知得f ′(x )=a (sin x +x cos x ), 对于任意x ∈(0,π2),有sin x +x cos x >0.当a =0时,3()2f x =-,不合题意;当a <0,x ∈(0,π2)时,f ′(x )<0,从而f (x )在(0,π2)内单调递减,又f (x )在[0,π2]上的图象是连续不断的,故f (x )在[0,π2]上的最大值为3(0)2f =-,不合题意;当a >0,x ∈(0,π2)时,f ′(x )>0,从而f (x )在(0,π2)内单调递增,又f (x )在[0,π2]上的图象是连续不断的,故f (x )在[0,π2]上的最大值为π()2f ,即π3π3222a --=,解得a =1.综上所述,得f (x )=x sin x -32.(2)f (x )在(0,π)内有且只有两个零点. 证明如下:由(1)知,f (x )=x sin x 32-,从而有f (0)=32-<0,ππ3()022f -=>,又f(x)在[0,π2]上的图象是连续不断的,所以f(x)在(0,π2)内至少存在一个零点.又由(1)知f(x)在[0,π2]上单调递增,故f(x)在(0,π2)内有且仅有一个零点.当x∈[π2,π]时,令g(x)=f′(x)=sin x+x cos x.由g(π2)=1>0,g(π)=-π<0,且g(x)在[π2,π]上的图象是连续不断的,故存在m∈(π2,π),使得g(m)=0.由g′(x)=2cos x-x sin x,知x∈(π2,π)时,有g′(x)<0,从而g(x)在(π2,π)内单调递减.当x∈(π2,m)时,g(x)>g(m)=0,即f′(x)>0,从而f(x)在(π2,m)内单调递增,故当x∈[π2,m]时,ππ3()()022f x f-≥=>,故f(x)在[π2,m]上无零点;当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(m,π)内单调递减.又f(m)>0,f(π)<0,且f(x)在[m,π]上的图象是连续不断的,从而f(x)在(m,π)内有且仅有一个零点.综上所述,f(x)在(0,π)内有且只有两个零点.。

厦门二中2012-2013高二(下)文科数学限时训练(4)--推理与证明

厦门二中2012-2013高二(下)文科数学限时训练(4)--推理与证明

厦门二中2012-2013高二(下)文科数学限时训练(4)2013.4.2.(内容:推理与证明)班级______座号______姓名一、选择题:(每题5分,共40分)1、由数列1,10,100,1000,……猜测该数列的第n项可能是------------------------------------------()A.; B.1; C.; D.。

2、类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是 ---------------------------------------------------------------------------------------()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。

A.①; B.①②; C.①②③; D.③。

3、下列表述正确的是 ---------------------------------------------------------------------------------------()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。

A.①②③; B.②③④; C.②④⑤; D.①③⑤。

4、演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法。

---------------------()A.一般的原理原则; B.特定的命题; C.一般的命题; D.定理、公式。

实数a、b、c不全为0的条件是 ----------------------------------------------------------------------()A.a、b、c均不为0; B.a、b、c中至少有一个为0;C.a、b、c至多有一个为0; D.a、b、c至少有一个不为0。

福建省2012届高三高考模拟试题数学文

福建省2012届高三高考模拟试题数学文

2012年普通高等学校招生全国统一考试福建模拟卷(1)数学试题(文史类)试卷组稿:福建省安溪第八中学 楚留香(362402)前言:教学离不开评价,评价离不开试卷。

一份好的试卷不仅可以帮助学生巩固所学知识,轻松掌握重点、攻克难点、化解疑点,还使考试成为学生展示才华的舞台,成为学生旅途中的一个加油站,成为学生生命成长过程中的一种美丽的体验。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设2{|1},{|4}M x x N x x =<=<,则M N =( )A .{|12}x x -<<B .{|31}x x -<<-C .{|14}x x <<-D .{|21}x x -<<2. 已知i 为虚数单位, 则复数z =i (2+i )在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限3. 设等差数列{}na 的前n 项和为35789,9,20,nS S S a a a ==++=若则( ) A .63 B .45 C .36 D .27 4. 已知向量(,1),(4,)a n b n ==,则2n =是//a b ( ),A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不要必条件5。

已知函数f(x )=sin (3πω+x )(0>ω)的最小正周期为π,则该函数的图象( )A 。

关于点(3π,0)对称B. 关于直线x =4π对称C 。

关于点(4π,0)对称 D. 关于直线x =3π对称6. 设m 、n 表示不同直线,α、β表示不同平面,下列命题中正确的是 ( )A. 若m α,m n ,则n αB. 若m ⊂α,n ⊂α,m β,n β,则αβ C. 若α⊥β,m ⊥α,m ⊥n,则n βD 。

厦门二中2012

厦门二中2012

厦门二中2012—2013高二(上)文科数学期中复习提纲(2)(内容:解三角形)班级 座号 姓名一、选择题 1.在△ABC 中,若,则与的大小关系为 ( )A.A>BB.A<BC.≥D.、的大小关系不能确定2. 在A B C ∆中,a=15,b=10,A=60°,则cos B = ( )A -3B3C -3D33. 某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于 ( ) A3B 32C3或 32D 34. 在△ABC 中,tan A tan B = 2 c -bb,则∠A 等于 ( ) A.30° B.45° C.60°D.90°5. 在△ABC 中,已知5cos 13A =,3sin 5B =,则cos C 的值为 ( )A 1665B5665C 1665或 5665D 1665-6. 在△ABC 中,已知|AB →|=4,|AC →|=1,S △ABC = 3 ,则AB →²AC →等于 ( )A.-2B.2C.±2D.±47. 设A 是△ABC 中的最小角,且11cos +-=a a A ,则实数a 的取值范围是( )A .a ≥3B .a >-1C .-1<a ≤3D .a >08. 在△ABC 中,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,那么△ABC 是 ( ) A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形二、填空题9. 在△ABC 中,A 、B 、C 相对应的边分别是a 、b 、c ,则a cos B +b cos A =______.10. 三角形的一边长为14,这条边所对的角为60,另两边之比为8 : 5,则这个三角形的面积为________ 11. 在A B C △中,若1tan 3A =,150C =,1B C =,则A B =______.12. 在△ABC 中,a +c =2b ,A -C=60°,则sinB= . 三、解答题13. A B C ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =。

厦门二中2012-2013高二(上)文科数学期末综合卷(二)

厦门二中2012-2013高二(上)文科数学期末综合卷(二)

厦门二中2012-2013高二(上)文科数学期末综合卷(二)A 卷(100分) 班级 座号 姓名一、选择题(本大题共10个小题,每个小题5分,共50分)1.已知等差数列{a n }中,a 2=4,a 6=12,则公差d 等于 ( )A.12 B .32C .2D .32.已知△ABC 中,AB =3,AC =1且B =30°,则△ABC 的面积等于 ( )A.32 B .34 C .32或 3 D.34或323.平面内有一长度为2的线段AB 和一动点P ,若满足6PA PB +=,则PA 的取值范围是 ( ) A.[]14,B.[]16,C.[]62,D.[]24,4.已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5·a 7,则P 与Q 的大小关系是( )A .P >QB .P <QC .P =QD .无法确定 5.双曲线19422=-yx的渐近线方程是 ( )A .x y 23±=B .x y 32±= C .x y 49±= D .x y 94±=6.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件4元,乙每件7元,甲商品每件卖出去后可赚1元,乙每件卖出去后可赚1.8元.若要使赚的钱最多,那么该商贩购买甲、乙两种商品的件数应分别为 ( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件7.已知点)0,2(),0,2(21F F -,动点P 满足2||||12=-PF PF ,当点P 的纵坐标为21时,点P 到原点的距离为 ( ) A.26B.23 C .32 D.538.已知F 是抛物线214y x=的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是 ( ) A.221x y =-B.21216x y =-C.212x y =-D.222x y =-9.双曲线与椭圆1422=+y x 有相同的焦点,它的一条渐近线方程为x y 2=,则这个双曲线的方程为( ) A.14222=-y x B.34222=-y x C.14222=-x y D.34222=-x y 10.下列结论中,正确的是 ( )①命题“如果222p q +=,则2p q +≤”的逆否命题是“如果2p q +>,则222p q +≠”; ②已知,,a b c 为非零的平面向量.甲:a b a c =··,乙:bc=,则甲是乙的必要条件,但不是充分条件;③:(01)=>≠,且x p y a a a 是周期函数,:sin q y x =是周期函数,则p q ∧是真命题; ④命题2:320p x x x ∃∈-+R ,≥的否定是:2:320p x x x ⌝∀∈-+<R ,. A.①② B.①④C.①②④D.①③④题号 12345678910答案二、填空题(本大题共4个小题,每个小题4分,共16分) 11.命题“若b a >,则122->b a ”的否命题为 .12.令2():210p x ax x ++>,若对()x p x ∀∈R ,是真命题,则实数a 的取值范围是 . 13.等比数列{a n }中,a 2=9,a 5=243,则=4S . 14. 在A B C ∆中,若cos 4cos 3A b Ba ==,则A B C ∆是 三角形.三、解答题(本大题共3个小题,共34分)15.(10分)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列, ∠B =30°,△ABC 的面积为32,求b .16.(10分)有穷数列{}n a 的前n 项和22n S n n =+,(Ⅰ)求数列{}n a 的通项n a ,并证明{}n a 是等差数列;(Ⅱ)现从中抽取某一项(不包括首项、末项)后,余下的项的平均值是79,求这个数列的项数,抽取的是第几项?17. (10分) 设椭圆C:()222210x y a b ab+=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被椭圆所截线段的中点坐标B 卷(100分) 四、填空题(本大题共4个小题,每个小题4分,共16分)18.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 .19.(2011·重庆文)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4,设{b n }是首项为1,公差为2的等差数列,则数列{a n +b n }的前n 项和S n=_____ .20. 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得456010BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为60 ,求塔高AB =________.21.一个正整数表如下(表中下一行中数的数的个数是上一行中的个数的2倍):第1行 1 第2行 2 3 第3行 4 5 6 7 …………则第9行中的第4个数是________.五、解答题(本大题共3个小题,共34分)22. (10分)如图,某农厂要修建3个矩形养鱼塘,每个面积为10 000平方米.鱼塘前面要留4米宽的运料通道,其余各边为 2米宽的堤埂,问每个鱼塘的长、宽各为多少米时占地面积最少?23.(12分)抛物线的顶点在原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线相交于A 、B 两点,且|AB |=8611.(Ⅰ)求抛物线的方程;(Ⅱ)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出C 点的坐标;若不存在,请说明理由.24.(12分)设关于x 的一元二次方程n a x 2-1n a +x+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3. (1)试用n a 表示a 1n +;厦门二中2012-2013高二(上)文科数学期末综合卷(二)答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CDDAADAACC1.[解析]C ∵a 2=4,a 6=12,∴a 6-a 12=4d =8,∴d =2. 2.[解析]D c =AB =3,b =AC =1,B =30°.由于c sin B =3×12=32,c sin B <b <c ,∴符合条件的三角形有两个∵b sin B =c sin C ,即112=3sin C .∴sin C =32. ∴C =60°或120°,∵A =90°或30°,∴S △ABC =32或34. 4.[解析]A 由等比知识得,Q =a 5·a 7=a 3·a 9而P =a 3+a 92且a 3>0,a 9>0,a 3≠a 9 ∴a 3+a 92>a 3·a 9,即P >Q .6.[解析] D 设该商贩购买甲、乙两种商品的件数为x 件和y 件,此时该商贩赚的钱为z 元, 则由题意可得4750,*x y x y N +≤⎧⎨∈⎩,z =x +1.8y .如图所示,经分析可知,要使z 最大, 则只需通过点(2,6),∴当x =2,y =6时,z max =2+1.8×6=12.8 二、填空题11.若b a ≤,则122-≤ba ;12.),1(+∞ 13.120 14. 直角三、解答题15.解: ∵a ,b ,c 成等差数列,∴2b =a +c ,平方得a 2+c 2=4b 2-2ac ,又S △ABC =32且∠B =30°.∴由S △ABC =12ac sin B =12ac sin30°=ac 4=32,得ac =6,∴a 2+c 2=4b 2-12.由余弦定理cos B =a 2+c 2-b 22ac =b 2-44=32,又b >0解得b =1+ 3.16. 解:(1)由22n S n n =+得113a S ==,当2n ≥时,141n n n a S S n -=-=-,显然满足1n =,∴41n a n =-,∴数列{}n a 是公差为4的递增等差数列.(2)设抽取的是第k 项,则79(1)n k S a n -=-,22(2)79(1)27879ka n n n n n =+--=-+.由21227879338402787941k k n a a n n n a a n n n ⎧>-+>⎧⎪⇒⇒<<⎨⎨<-+<-⎪⎩⎩,∵n N *∈,∴39n =, 由222787923978397941k a n n k =-+=⨯-⨯+=-⇒20k =.故数列{}n a 共有39项,抽取的是第20项.17.解:(Ⅰ)将(0,4)代入C 的方程得2161b= ∴b=4又35c e a==得222925a b a-=即2169125a-=,∴5a = ∴C 的方程为2212516xy+=( Ⅱ)过点()3,0且斜率为45的直线方程为()435y x =-,设直线与C的交点为A()11,x y ,B()22,x y ,将直线方程()435y x =-代入C的方程,得()22312525x x-+=,即2380x x --=,解得13412x -=,23412x +=,∴ AB 的中点坐标12322x x x +==, ()1212266255y y y x x +==+-=-,即中点为36,25⎛⎫-⎪⎝⎭。

2012高考文科数学(新课标)试题及答案(高清版)

2012高考文科数学(新课标)试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学文史类(全国卷新课标)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=2.复数3i2iz-+=+的共轭复数是()A.2+i B.2-iC.-1+i D.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线112y x=+上,则这组样本数据的样本相关系数为()A.-1 B.0 C.12D.14.设F1,F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.12B.23C.34D.455.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC 内部,则z=-x+y的取值范围是()A.(1-B.(0,2)C.(1,2) D.(0,1+6.如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则()A .A +B 为a 1,a 2,…,a N 的和 B .2A B +为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为( )A .B .C .D . 9.已知ω>0,0<φ<π,直线π4x =和5π4x =是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )A .π4B .π3C .π2D .3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||A B =C 的实轴长为( )A .B .C .4D .811.(文)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(0,2) B .(2,1)C .(1,)D .2)12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为__________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =__________.15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b ||b |=__________. 16.设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M +m =__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C sin C -b -c=0.(1)求A ;(2)若a =2,△ABC b ,c .18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2))的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.20.设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.22.选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4—4:坐标系与参数方程已知曲线C1的参数方程是2cos3sinxyϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3 ).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.1.B由题意可得,A={x|-1<x<2},而B={x|-1<x<1},故B A.2.D3i(3i)(2i)55i1i2i(2i)(2i)5z-+-+--+====-+++-,故z的共轭复数为-1-i.3.D样本相关系数越接近1,相关性越强,现在所有的样本点都在直线112y x=+上,样本的相关系数应为1.4.C设直线32ax=与x轴交于点M,则∠PF2M=60°,在Rt△PF2M中,PF2=F1F2=2c ,232a F M c =-,故22312cos6022a c F M P F c-︒===,解得34c a =,故离心率34e =.5. A 由顶点C 在第一象限且与A ,B 构成正三角形可求得点C 坐标为(1+2),将目标函数化为斜截式为y =x +z ,结合图形可知当y =x +z 过点C 时z取到最小值,此时min 1z =-y =x +z 过点B 时z 取到最大值,此时z max =2,综合可知z 的取值范围为(1-2).6.C 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A ,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A ,B 分别是这N 个数中的最大数与最小数.7.B 由三视图可推知,几何体的直观图如下图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为11(63)3932⨯⨯⨯⨯=.8.B 设球O 的半径为R,则R ==34π3V R ==球.9. A 由题意可知函数f (x )的周期5ππ2()2π44T =⨯-=,故ω=1,∴f (x )=sin(x +φ).令x +φ=k π+π2,将π4x =代入可得φ=k π+π4,∵0<φ<π,∴π4ϕ=.10. C 设双曲线的方程为22221x y aa-=,抛物线的准线为x =-4,且||4A B =可得A (-4,,B (-4,-,将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.11. B 由0<x ≤12,且log a x >4x >0,可得0<a <1,由1214log 2a=,可得2a =.令f (x )=4x,g (x )=log a x ,若4x <log a x ,则说明当102x <≤时,f (x )的图象恒在g (x )图象的下方(如下图所示),此时需2a >.综上可得a 的取值范围是2,1).12. D ∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=115-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+ (234)15(10234)18302⨯+=.13.答案:4x -y -3=0解析:因为y ′=3ln x +4,故y ′|x =1=4,所以曲线在点(1,1)处的切线方程为y -1=4(x -1),化为一般式方程为4x -y -3=0.14.答案:-2解析:由S 3=-3S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.15.答案:解析:∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |×|b |cos45°2|b |,|2a -b |2=4-4×2|b |+|b |2=10,∴=b16.答案:2 解析:222(1)sin 2sin ()111x xx x f x x x +++==+++,设22sin ()1x x g x x +=+,则g (-x )=-g (x ),∴g (x )是奇函数.由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.17.解:(1)由a cos C a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0. 因为B =π-A -C ,A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=.又0<A <π,故π3A =.(2)△ABC 的面积1sin 2S bc A ==,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为1085<17()8517n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4.②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.19.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC , CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC1平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°, 所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC1平面BDC 1,故平面BDC 1⊥平面BDC . (2)设棱锥B -DACC 1的体积为V 1,AC =1. 由题意得1112111322V +=⨯⨯⨯=.又三棱柱ABC -A 1B 1C 1的体积V =1, 所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径||F A =.由抛物线定义可知A 到l 的距离=||d FA =.因为△ABD 的面积为,所以1||2B D d ⋅=,即122p ⋅=解得p =-2(舍去),p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8. (2)因为A ,B ,F 三点在同一直线m 上, 所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|F A |=12|AB |,所以∠ABD =30°,m 的斜率为3或3-.当m 3时,由已知可设n :y 3x +b ,代入x 2=2py ,得x 23-2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-.因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0,所以,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于k <1e 1xx +-+x (x >0).①令g (x )=1e 1xx +-+x ,则22e 1e e 2()1e 1e 1xx xxxx x g'x --(--)=+=(-)(-).由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增. 而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点. 故g ′(x )在(0,+∞)上存在唯一的零点. 设此零点为α,则α∈(1,2). 当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.22.证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.23.解:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1,B(1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].24.解:(1)当a=-3时,25,2, ()1,23,25, 3.x xf x xx x-+≤⎧⎪=<<⎨⎪-≥⎩当x≤2时,由f(x)≥3,得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3,得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1}∪{x|x≥4}.(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|4-x-(2-x)≥|x+a|-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0. 故满足条件的a的取值范围为[-3,0].。

(word版)福建省厦门市2012届高三适应性考试题数学文(2012厦门5月质检)

(word版)福建省厦门市2012届高三适应性考试题数学文(2012厦门5月质检)

福建省厦门市2012年高中毕业班适应性考试数学(文)试题注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷内填写学校、班级、学号、姓名;2.本试卷分为第1卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 参考公式:圆锥的侧面积公式:S=rl π,其中r 为圆锥的底面圆半径,l 为圆锥的母线长;用最小二乘法求线性回归直线方程y=如+a ,其中1122211()()ˆˆˆˆˆˆ:,()nnii i ii i n i i i i xx y y x ynx yya bxb ay bx x x x nx====---=+===---∑∑∑∑中第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项符合要求. 1.设全集U={0,l,2,3,4,5},A={0,1},B={2|20x x x -=},则()U A C B =A .ϕB .{3,4}C .{1,3,5}D .{l}2.命题“3,10x R x x ∀∈-+≥”的否定是 A .x ∀∈R ,31x x -+≤0 B .3,1x R x x ∃∈-+≤0C .3,1x R x x ∃∈-+<0D .x ∀∈R ,31x x -+<03.右边茎叶图的数据是10名学生1分钟跳绳的成绩,则这10名学生 1分钟跳绳成绩的中位数是 A .173 B .174 C .175 D .179 4.已知a ∈(3,2ππ),且cos α=,则tan α A .43 B .一43C .-2D .25.执行右图中的程序框图,输出的T 值为 A .4 B .10C .18D .206.已知不等式组400x y y x x +-=⎧⎪≥⎨⎪≥⎩确定的区域为D ,若M (x ,y )为区域D 上的动点,点A 的坐标为(2,1),则|AM的最大值为A.2B .1CD7.已知圆(x-1)2+(y-a )2=4(a>0)被直线x-y-l =0截得的弦长为a 的值为ABClDl8.函数f (x )=3sin 2x x -+的图象 A .关于点(2,0)对称 B .关于点(0,2)对称C .关于点(-2,0)对称D .关于点(0,-2)对称9.在△ABC 中,若3,BD DC AD mAB nAC ==+,则mn,的值是A .316B .516C .512D .3210.函数y=sin (ωx 十ϕ)在一个周期内的图象如图所示,M 、N分别是最高、最低点,O 为坐标原点且0OM ON ⋅=,则函数()f x 的最小正周期为A .32B .52C .3D .411.已知双曲线2221(0)yx b b-=>的左、右焦点分别是F 1、F 2,点B (0,b ),若△BF 1F 2ABC .2D .12.已知{n a }是斐波那契数列,满足12211,1,(*).{}n n n n a a a a a n N a ++===+∈中各项除以4所得余数按原顺序构成的数列记为{n b },则b 2012=A .0B .1C .2D .3第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡的相应位置.13.设i 为虚数单位,若1a ii+-为实数,则实数a 的值为 . 14.如图,曲线OB 的方程为2y x =(0≤x ≤1),为估计阴影部 分的面积,采用随机模拟方式产生菇∈(0,1),y ∈(0,1)的200个点(x ,y ),经统计,落在阴影部分的点共134个,则估 计阴影部分的面积是 .15.一个几何体的三视图如图所示,其中正视图是腰长为2的等 腰三角形,俯视图是半径为1的半圆,则该几何体的表面积 是 . 16.已知函数3211()132f x ax ax bx b =+-+-在x=1处的切 线与x 轴平行,若函数f(x )的图象经过四个象限,则实数a的取值范围是 , 三、解答题:本大题共6小题,共74分.解答应写出必要文字说明、证明过程或演算步骤.把答案填写在答题卡的相应位置. 17.(本小题满分12分) 已知三棱柱ADF - BCE 中,D F ⊥平面ABCD ,G 是DF 的中点. (I )求证:BF ∥平面ACG; (Ⅱ)若AD =DF =1,AB =2,∠DAB= 60°,求三棱锥B -ADF 的体积.18.(本小题满分12分)为了解某居住小区住户的年收入和年饮食支出的关系,抽取了其中5户家庭的调查数据如下表:(I )根据表中数据用最小二乘法求得回归直线方程 y =bx +a 中的6=0.31,请预测年收入为9万元家庭的年饮食支出;(Ⅱ)从5户家庭中任选2户,求“恰有一户家庭年饮食支出小于1.6万元”的概率.19.(本小题浦分12分)等差数列{n a }的前n 项和为1,1n S a =;等比数列{n b }中,11b =.若3314a S +=,b 2S 2=12. (I )求n a 与n b ;(Ⅱ)设2n n n c a b =+,数列{c n }的前n 项和为T n .求证:n T ≥3n .20.(本小题满分12分)已知锐角△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,224cos ,a b ab C +=且c 2. (I )求角C 的大小;(Ⅱ)设函数()sin()cos (0),f x x C x ωωω=-->且直线y=()f x y=f 图象相邻两交点间的距离为π,求f(A )的取值范围.21.(本小题满分12分) 某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米.现以椭圆长轴所在直线为x 轴,短轴所在直线为y 轴,建立平面直角坐标系,如图所示. (I )为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程; (Ⅱ)为增强水池的观赏性,拟划出一个以椭圆的长轴顶点A 、短轴顶点B 及椭圆上某点M 构成的三角形区域进行夜景灯光布置.请确定点肘的位置,使此三角形区域面积最大.22.(本小题满分14分) 已知:1()(),()ln .a f x x a R g x x x+=+∈= (I )若(1)2f '=,求a 的值;(Ⅱ)已知a>e -1,若在[1,e](e=2.718…)上存在一点x 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门二中2012届高三文科数学基础训练(9)
姓名 班级 座号
(知识内容:平面向量的概念及其线性运算)
一、选择题
1.对于非零向量a 、b,“a+b=0”是“a ∥b ”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
2.如图所示,D 是△ABC 的边AB 的中点,则向量CD
=( )
A .-
B
C +12BA B .-B C -12BA C .B C -12BA D. B C +12
BA 3.已知O 为△ABC 内一点,且OB OC OA 2++=0,则△AOC 与△ABC 的面积之比是( )
A.1∶2
B.1∶3
C.2∶3
D.1∶1
4.在△ABC 中,AB =c ,AC =b,若点D 满足DC BD 2=,则AD 等于(

A. c b 31
32
+ B. b c 32
35
- C. c b 31
32
- D. c b 32
31
+ 5.在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于 点F .若AC =a, BD =b,则AF 等于
( ) A. b a 21
41
+ B. b a 31
32
+ C. b a 41
21
+ D. b a 32
31
+
6.平面向量a,b 共线的充要条件是 ( )
A.a,b 方向相同
B.a,b 两向量中至少有一个为零向量
C.λ∈R,b=λa
D.存在不全为零的实数λ1, λ2, λ1a+λ2b=0
7.已知向量a 、b 、c 中任意两个都不共线,并且a+b 与c 共线,b+c 与a 共线,
那么a+b+c 等于( )
A.a
B.b
C.c
D.0
8.在四边形ABCD 中,AB =a+2b ,BC =-4a-b ,CD =-5a-3b ,其中a ,b 不共线,
则四边形ABCD 为( )
A.梯形
B.平行四边形
C.菱形
D.矩形
二、填空题
9.设e 1、e 2是两个不共线的向量,已知AB =2e 1+ke 2,CB =e 1+3e 2,CD =2e 1-e 2,若A 、B 、D 三点共线,则实数k 的值为 .
10.在△ABC 中,CA =a ,CB =b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则AP 可用a 、b 表示为 .
11.在△ABC 中,已知D 是AB 边上一点,若式,2DB AD = CB CA CD λ+=
31,则λ= .
12.如图,两块斜边长相等的直角三角板拼在一起.
若AD =x A B
+y A C ,则x =________,y =________.
三、解答题
13.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,==
AB AD AE ,32a ,AC =b.
(1)用a 、b 表示向量AD 、AE 、AF 、BE 、BF ;
(2)求证:B 、E 、F 三点共线.
14.若a,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,tb ,31(a+b )三向量的终点在同一条直线上?
15.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:).(21DC AB EF +=。

相关文档
最新文档