高一数学用样本估计总体试题

合集下载

高一数学用样本估计总体试题答案及解析

高一数学用样本估计总体试题答案及解析

高一数学用样本估计总体试题答案及解析1.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取20人参加一项活动,则从身高在[120,130内的学生中选取的人数应为.【答案】10【解析】由频率分布直方图可得:;则[120,130),[130,140),[140,150]三组人数所占的比例为,则在[120,130内选取的人数应为.【考点】频率分布直方图.2.设的平均数是,标准差是,则另一组数的平均数和标准差分别是_________.【答案】,.【解析】另一组数的平均数为:,标准差为:,所以则另一组数的平均数和标准差分别是,.【考点】统计中的期望与方差.3.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约( )A.30辆B.40辆C.60辆D.80辆【答案】D【解析】时速在[60,70)的频率为,故汽车大约有辆.【考点】频率分布直方图的应用.4.某校五四演讲比赛中,七位评委为一选手打出的分数如下:90 86 90 97 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.B.C.D.【答案】B【解析】由题意知,去掉一个最高分和一个最低分后,所剩数据的平均数为;方差为故选B.【考点】样本平均数和方差的计算.5.统计某校800名学生的数学期末成绩,得到频率分布直方图如图所示,若考试采用100分制,并规定不低于60分为及格,则及格率为.【答案】0.8【解析】由图形可知及格率为,答案为0.8.【考点】频率分布直方图6.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( ).A.甲B.乙C.丙D.丁【答案】C.【解析】分析表格可知,乙与丙的平均环数最多,又丙的方差比乙小说明丙成绩发挥的较为稳定,所以最佳人选为丙.【考点】数据的平均数与方差的意义.7.一次选拔运动中,测得7名选手的身高(单位:cm)分布茎叶图如图,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为( )A.5B.6C.7D.8【答案】D【解析】由图可知7名同学的身高分别为180、181、170、173、,178、179而7名同学的平均身高为177,所以有得=178,所以【考点】茎叶图8.由正整数组成的一组数据,其平均数和中位数都是,且标准差等于,则这组数据为 .(从小到大排列)【答案】【解析】由已知不妨假设,则,又因为标准差等于,所以,且都是正整数,观察分析可知这组数据只可为:1,1,3,3.【考点】1.平均数与中位数;2.标准差;3.方程组思想.9.某路段属于限速路段,规定通过该路段的汽车时速不得超过70km/h,否则视为违规扣分,某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图,如下图所示,则违规扣分的汽车大约为辆.【答案】120.【解析】易求得70-80这组的频率为1-0.05-0.18-0.38-0.27=0.12,则违规扣分的汽车大约为辆.【考点】频率分布直方图中每组对应的长方形面积为,总面积为1,频数=频率样本容量.10.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.【答案】0.04;440【解析】由频率分布直方图得:,解得;志愿者年龄在[25,35)的人数为.【考点】概率与统计.11.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用表示,则x的值为( )A.0B.4C.5D.7【答案】A【解析】如果是最高得分的话,,所以是最大值,那么,解得,故选A.【考点】茎叶图12.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差______.【答案】3.2【解析】由平均数及方差的定义可得;.【考点】样本数据的数字特征:平均值与方差.13.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少;(3)这两个班参赛学生的成绩的中位数应落在第几小组内.【答案】(1)第二小组的频率为,补全的频率分布直方图详见解析;(2)100人;(3)九年级两个班参赛学生的成绩的中位数应落在第二小组内.【解析】(1)先从所给的直方图中得出第一、三、四、五小组的频率,然后用1减去第一、三、四、五小组的频率和得到第二小组的频率,接着由确定第二小组的小长方形的高,从而可补全频率分布直方图;(2)用第二小组的频数除以该组的频率,即可计算出九年两个班参赛学生的总人数;(3)要确定中位数所在的小组,只需先确定各小组的频数,从第一小组开始累加,当和达到总人数的一半时的组就是中位数所在的小组.试题解析:(1)∵各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05∴第二小组的频率为:∴落在59.5~69.5的第二小组的小长方形的高,则补全的频率分布直方图如图所示(2)设九年级两个班参赛的学生人数为人∵第二小组的频数为40人,频率为0.40∴,解得所以这两个班参赛的学生人数为100人(3)因为0.3×100=30,0.4×100=40,0.15×100=15,0.10×100=10,0.05×100=5即第一、第二、第三、第四、第五小组的频数分别为30,40,15,10,5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内【考点】1.频率分布直方图;2.转化与运算能力.14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160, 则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C【解析】设公差为d,那么9个小长方形的面积分别为0.02,0.02+d,0.02+2d,0.02+3d,0.02+4d,0.02+3d,0.02+2d,0.02+d,0.02,而9个小长方形的面积和为 1,可得0.18+16d=1 可以求得d=∴中间一组的频数为:160×(0.02+4d)=36.故答案为:36.故选C。

高一数学用样本估计总体试题答案及解析

高一数学用样本估计总体试题答案及解析

高一数学用样本估计总体试题答案及解析1.一个样本的平均数是4,则这个样本的方差是.【答案】5【解析】由样本的平均数是4可得;所以样本的方差为.【考点】样本数值特征.2.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约( )A.30辆B.40辆C.60辆D.80辆【答案】D【解析】时速在[60,70)的频率为,故汽车大约有辆.【考点】频率分布直方图的应用.3.某班5次数学测验中,甲、乙两同学的成绩如下: ( )甲:90 82 88 96 94;乙:94 86 88 90 92A.甲的平均成绩比乙好B.甲的平均成绩比乙差C.甲乙平均分相同,甲的成绩稳定性比乙好D.甲乙平均分相同,乙的成绩稳定性比甲好【答案】D【解析】因为,,所以有,,所以答案选D.【考点】样本平均数与方差4.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是.【答案】13【解析】由题可知在的人数比率为,故人数约为13.【考点】频率分布直方图.5.假定下述数据是甲、乙两个供货商的交货天数:甲:109101011119111010乙:81014710111081512估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间较具一致性与可靠性.【解析】由已知数据利用平均值公式先计算出甲供货商的平均供货时间和乙供货商的平均供货时间,哪个供货商的平均供货时间小,则该供货商交货时间短一些;然后利用方差公式计算出甲供货商的交货时间的方差与甲供货商的交货时间的方差,比较方差大小,方差小的供货商交货时间具有一致性与可靠性.试题解析:因为=(10+9+10+10+11+11+9+11+10+10)=10.1,=[+ +++++ + ++]=0.49,=(8+10+14+7+10+11+10+8+15+12)=10.5,=[+ +++++ + ++]=6.05,所以<,<,所以甲供货商交货时间短一些,甲供货商交货时间具有一致性与可靠性. 考点:样本的均值与方差;总体估计6.一组数据6,7,7,8,7的方差= .【答案】【解析】数据6,7,7,8,7的平均数∴.故答案为.【考点】平均数公式;方差的计算公式.7.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用表示,则x的值为( )A.0B.4C.5D.7【答案】A【解析】如果是最高得分的话,,所以是最大值,那么,解得,故选A.【考点】茎叶图8.甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用、表示,则下列结论正确的是()A.,且甲比乙成绩稳定B.,且乙比甲成绩稳定C.,且甲比乙成绩稳定D.,且乙比甲成绩稳定【答案】A【解析】由茎叶图可得,,所以,从茎叶图中看出甲的成绩比乙更集中(也可计算),所以甲的方差比乙的方差小,故甲比乙的成绩更稳定,所以选A.【考点】茎叶图与平均数.9.在某项体育比赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.,B.,C.,D.,【答案】B【解析】本题主要考查平均数与方差的求法,熟记方差公式,属于基础题型.由题意知,所剩数据为90,90,93,94,93,所以其平均值为;方差为,故选B.【考点】样本数据的数字特征:平均数与方差.10.某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)求出表中字母所对应的数值;(2)在给出的直角坐标系中画出频率分布直方图;(3)估计该校高一女生身高在149.5~165.5范围内有多少人?【答案】(1),,,;(2)详见解析;(3)342人.【解析】(1)在145.5~149.5这组数据中频率是,频数为8,可得到样本空量为,即,用50减去其它各组中的频数,得到的值,从而再计算出的值,表示总频率,得;(2)根据频率分布表所给的分组和频率,作出频率分布直方图;(3)根据频率分布表中的数据,可得高一女生身高在149.5~165.5的频率,然后用高一女生的总人数乘以这个频率即可得到该校高一女生身高在149.5~165.5范围内的人数.试题解析:(1)由题意落在区间165.5~169.5内数据频数频率为,总频率(2)频率分布直方图如下(3)该所学校高一女生身高在149.5~165.5 之间的比例为,则该校高一女生在此范围内的人数为450×0.76=342(人).【考点】频率分布表及频率分布直方图.11.某种产品特约经销商根据以往当地的需求情况,得出如下该种产品日需求量的频率分布直方图.(1)求图中的值,并估计日需求量的众数;(2)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为件(),纯利润为元.(ⅰ)将表示为的函数;(ⅱ)根据直方图估计当天纯利润不少于元的概率.【答案】(1),日需求量的众数为125件;(2)(ⅰ)(ⅱ)【解析】(1)利用频率分布直方图中所有的小长方形的面积之和为一求出的值,利用直方图中最高的小长方形底边的中点的横坐标求出众数;(2)(ⅰ)设当天的需求量为件,当时,全部售出,获利元;若,剩余件,可得纯利润为元,由此可将表示为的函数(分段函数);(ⅱ)由(ⅰ)中所得函数解出纯利润不少于元时的范围,再利用直方图中频率估计相应的概率值.试题解析:解:(1)由直方图可知:(0.013+0.015+0.017++0.030)×10=1,∴. 2分∵∴估计日需求量的众数为125件. 4分(2)(ⅰ)当时, 6分当时, 8分∴. 9分(ⅱ)若由得,∵,∴. 11分∴由直方图可知当时的频率是,∴可估计当天纯利润S不少于3400元的概率是0.7. 14分【考点】1、频率分布直方图的应用;2、分段函数.12.已知x,y取值如下表:从散点图中可以看出y与x线性相关,且回归方程为=0.95x+a,则a=___【答案】2.6【解析】根据题意,由于散点图中可以看出y与x线性相关,且回归方程为=0.95x+a,x的平均值为2,y的平均值为4.5,则可知回归方程必定过样本中心点(2,4.5),代入可知得到a的值为2.6,故答案为2.6.【考点】回归方程点评:主要是考查了回归方程的基本运用,属于基础题。

用样本估计总体 - 简单 - 习题

用样本估计总体 - 简单 - 习题

用样本估计总体一、选择题(共12小题;共60分)1. 下列说法正确的是A. 在两组数据中,平均数较大的一组方差较大B. 平均数反应数据的集中趋势,方差则反应数据离平均数的波动大小C. 方差的求法是求出各个数据与平均数的差的平方之后求和D. 在两个人射击环数的两组数据中,方差大的表示射击水平高2. 一组数据,,,,,,,,,,,,的中位数是A. B. C. D.3. 下列说法正确的是:A. 甲、乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况—样B. 期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好C. 期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好D. 期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好4. 下列关于茎叶图的叙述正确的是A. 茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同B. 对于重复的数据,只算一个C. 茎叶图中的叶是“茎”十进制的上一级单位D. 作茎叶图的程序是:第一步画出茎;第二步画出叶;第三步将“叶子”,任意排列5. 茎叶图记录了甲、乙两组各名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. ,B. ,C. ,D. ,6. 下图是某公司个销售店某月销售某产品数量(单位:台)的茎叶图,则数据在区间内的频率为A. B. C. D.7. 某班的全体学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为,,,.若低于分的人数是,则该班的学生人数是A. B. C. D.8. 某赛季甲、乙两名篮球运动员各场比赛得分情况用茎叶图表示如下:根据上图对这两名运动员的成绩进行比较,下列四个结论中,不正确的是A. 甲运动员得分的极差大于乙运动员得分的极差B. 甲运动员得分的中位数大于乙运动员得分的中位数C. 甲运动员得分的平均值大于乙运动员得分的平均值D. 甲运动员的成绩比乙运动员的成绩稳定9. 甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数方差从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是A. 甲B. 乙C. 丙D. 丁10. 一个频数分布表(样本容量为)不小心被损坏了一部分,若样本中数据在内的频率为,则样本中在内的数据个数为A. B. C. D.11. 将某选手的个得分去掉一个最高分,去掉一个最低分,个剩余分数的平均分为,现场做的个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为A. B. C. D.12. 一名射击运动员射击次,命中环数如下,则该运动员命中环数的标准差为A. B. C. D.二、填空题(共5小题;共25分)13. 在频率分布直方图中,各个小矩形的面积表示.14. 用茎叶图对两组数据进行比较时,左侧的叶按的顺序写,右侧的叶按的顺序写.15. —组数据从小到大排列后,如果第个数和第个数的平均数是这组数据的中位数,则该组数据共有个数.16. 从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如图,则分以上的人数为.17. 为了比较甲、乙两名划艇运动员的成绩,在相同的条件下对他们进行了次测验,测得他们的平均速度(单位:)分别如下:甲:,,,,,;乙:,,,,,.已知两名运动员成绩的茎叶图如图所示,则运动员更优秀.三、解答题(共5小题;共65分)18. 有关部门从甲、乙两个城市所有的自动售货机中随机抽取了台,记录上午之间各自的销售情况(单位:元):甲:,,,,,,,,,,,,,,,;乙:,,,,,,,,,,,,,,,.试用两种不同的方式分别表示上面的数据,并简要说明各自的优点.19. 如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:(1)这一组的频数,频率分别是多少;(2)估计这次环保知识竞赛的及格率(分及以上为及格).20. 从甲、乙两品种的棉花中各抽测了根棉花的纤维长度(单位:),结果如下:甲品种:,,,,,,,,,,,,,,,,,,,,,,,,;乙品种:,,,,,,,,,,,,,,,,,,,,,,,,.请由以上数据设计茎叶图.21. 为了调查高二年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了名同学,他们每天完成作业所需时间(单位:分钟)分别为,,,,,,,.(1)求这组数据的众数、中位数.(2)求这名学生每天完成家庭作业的平均时间.按照学校要求,学生每天完成家庭作业所需的平均时间不能超过分钟,该班学生每天完成家庭作业的平均时间是否符合学校的要求? 22. 某校从高一年级学生中随机抽取名学生,将其期中考试的数学成绩(均为整数)分成六段:,,,后得到如下频率分布直方图.(1)求分数在内的频率;(2)根据频率分布直方图,估计该校高一年级学生期中考试数学成绩的平均分;(3)用分层抽样的方法在分以上(含分)的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任意选取人,求其中恰有人的分数不低于分的概率.。

高中数学必修二 9 2 用样本估计总体(精讲)(含答案)

高中数学必修二  9 2 用样本估计总体(精讲)(含答案)

9.2 用样本估计总体(精讲)考法一总体取值规律的估计【例1】(2021·全国高一课时练习)某市2020年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,空间质量为良;在101~150之间时,空间质量为轻微污染;在151~200之间时,空间质量为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.【答案】(1)频率分布表见解析;(2)频率分布直方图见解析;(3)该市空气质量有待进一步改善.【解析】(1)频率分布表(2)频率分布直方图(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的1 15;有26天处于良的水平,占当月天数的13 15;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.【一隅三反】1.(2020·全国高一单元测试)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:用户用水量频数直方图用户用水量扇形统计图(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格.【答案】(1)答案见解析;(2)答案见解析,79.2°;(3)4.08万户.【解析】(1)1010%100÷=;(2)用水15~20吨的户数为100-10-36-24-8=22(户),“15~20吨”部分的圆心角的度数为22 36079.2100︒⨯=︒(3)1022366 4.08100++⨯=(万户)所以该地区6万用户中约有4.08万户的用水全部享受基本价格.2.(2020·全国高一单元测试)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数. 【答案】(1)M =40,0.075p =,0.125a =;(2)90人. 【解析】(1)由[10,15)内的频数是10,频率是0.25知,100.25M=,所以M =40. 因为频数之和为40,所以10+25+m +2=40,m =3.330.07540p M ===. 因为a 是对应分组[15,20)的频率与组距的商,所以250.125405a ==⨯. (2)因为该校高一学生有360人,分组[10,15)内的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为3600.25⨯=90人.3.(2021·北京丰台区)为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW ·h 至350kW ·h 之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW ·h 的户数;(III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW ·h )的建议,并简要说明理由. 【答案】(I )0.006;(Ⅱ)18;(III )245.5 kW ·h.【解析】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW ·h ”的频率为()0.00240.0012500.18+⨯=, 所以用电量大于250kW ·h 的户数为:1000.1818⨯=, 故用电量大于250kW ·h 有18户;(3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW ·h.故第一档用电标准为245.5 kW ·h.4.(2021·陕西咸阳市)某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.【答案】(Ⅰ)0.02;(Ⅱ)10800元. 【解析】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为: ()0.040.025309+⨯⨯=(天), 一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.考法二 总体百分数的估计【例2】(2020·天津和平区)已知一组数据为4,5,67,8,8,,第40百分位数是( ) A .8 B .7C .6D .5【答案】C【解析】因为有6位数,所以640 2.4⨯=%,所以第40百分位数是第三个数6.故选:C 【一隅三反】1.(2020·山东菏泽市·高一期末)数据1,2,3,4,5,6的60%分位数为( ) A .3 B .3.5C .3.6D .4【答案】D【解析】由6⨯60%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D2.(2021·山东高一期末)已知从某中学高一年级随机抽取20名女生,测量她们的身高(单位:cm ),把这20名同学的身高数据从小到大排序:148.0 149.0 150.0 152.0 154.0 154.0 155.0 155.5 157.0 157.0 158.0 159.0 161.0 162.0 163.0 164.0 165.0 170.0 171.0 172.0 则这组数据的第75百分位数是( ) A .163.0 B .164.0C .163.5D .164.5【答案】A【解析】因为这组数据从小到大已排序,所以这组数据的第75百分位数为第200.7515⨯=个数,即为163.0故选:A3.(2020·山东滨州市·高一期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( ) A .7 B .7.5C .8D .9【答案】C【解析】该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=,故选:C.考法三 总体集中趋势的估计【例3】(2021·湖北荆州市)因受新冠疫情的影响,某企业的产品销售面临困难.为了改变现状,该企业欲借助电商和“网红”直播带货扩大销售.受网红效应的影响,产品销售取得了较好的效果.现将该企业一段时间内网上销售的日销售额统计整理后绘制成如下图所示的频率分布直方图:请根据图中所给数据,求: (1)实数a 的值;(2)该企业网上销售日销售额的众数和中位数; (3)该企业在统计时间段内网上销售日销售额的平均数. 【答案】(1)0.012;(2)55万元,57万元;(3)57.4万元. 【解析】(1)由频率分布直方图知:(0.0080.0160.0200.0180.0100.0042)101a ++++++⨯=,解得:0.012a =;(2)用频率分布直方图中最高矩形所在区间的中点值作为众数的近似值,得众数为55万元;因为第一个小矩形的面积为0.08,第二个小矩形的面积为0.12, 第三个小矩形的面积为0.16,0.080.120.160.36++=,设第四个小矩形中底边的一部分长为x ,则0.0200.50.36x ⨯=-,解得7x =, 所以中位数为50757+=万元; (3)依题意,日销售额的平均值为:250.08350.12450.16550.20650.18750.12850.10950.0457.4⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=所以该企业在统计时间段内网上销售日销售额的平均数为57.4万元. 【一隅三反】1.(2020·定边县第四中学高一期末)如图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:(Ⅰ)79.5-89.5这一组的频数、频率分别是多少? (Ⅱ)估计这次数学竞赛的平均成绩是多少?(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格). 【答案】(Ⅰ)15;0.25;(Ⅱ)70.5;(Ⅲ)75%. 【解析】(Ⅰ)79.589.5这一组的频率为0.025100.25⨯=,79.589.5这一组的频数为600.2515⨯=;(Ⅱ)估计这次数学竞赛的平均成绩是:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.故估计这次数学竞赛的平均成绩是70.5.(Ⅲ)估计这次环保知识竞赛的及格率(60分及以上为及格)()10.010.0151075%P =-+⨯=. 2.(2021·河北唐山市·开滦第一中学高一期末)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[)[)[]40,50,50,60,,90,100⋯后画出如下频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的众数m 与中位数n (结果保留一位小数); (2)估计这次考试的优秀率(80分及以上为及格)和平均分. 【答案】(1)75m =,73.3n =;(2)优秀率30%,平均分71分. 【解析】(1)众数是最高小矩形中点的横坐标,所以众数为75m =(分)前三个小矩形面积为0.01100.015100.015100.4⨯+⨯+⨯=, ∵中位数要平分直方图的面积, ∴0.50.47073.30.03n -=+=.(2)依题意,80及以上的分数所在的第五、六组, 频率和为 ()0.0250.005100.3+⨯=, 所以,抽样学生成绩的合格率是30%, 利用组中值估算抽样学生的平均分:450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=,估计这次考试的平均分是71分.3.(2021·吉林市)某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x 的值;并估计出月平均用水量的众数. (2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【答案】(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【解析】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为(0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5,解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯=(3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++, ∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 考点四 总体离散程度的估计【例4】(2021·山东威海市·高一期末)如图所示的四组数据,标准差最小的是( )A .B .C .D .【答案】A【解析】对A ,()12106206302402516x =⨯+⨯+⨯+⨯=,s == 对B ,()16102202306402516x =⨯+⨯+⨯+⨯=,s == 对C ,()13105205303402516x =⨯+⨯+⨯+⨯=,10s ==, 对D ,()15103203305402516x =⨯+⨯+⨯+⨯=,s == 所以标准差最小的是A.故选:A.【一隅三反】1.(2020·全国高一)已知数据12,,,n x x x 的平均数为x ,方差为2s ,则123x +,223x +,…,23n x +的平均数和方差分别为( )A .x 和2sB .23x +和24sC .23x +和2sD .23x +和24129s s ++ 【答案】B【解析】因为数据12,,,n x x x 的平均数为x ,方差为2s ,所以123x +,223x +,…,23n x +的平均数和方差分别为23x +和24s故选:B2.(2020·安徽蚌埠市·蚌埠二中高一月考)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是( )A .17.2,3.6B .54.8,3.6C .17.2,0.4D .54.8,0.4 【答案】C【解析】设一组数据为i x (1,2,3,,)i n =,平均数为x ,方差为21s ,所得一组新数据为i y (1,2,3,,)i n =,平均数为y ,方差为22s ,则350i i y x =-(1,2,3,,)i n =,12 1.6n y y y y n +++==, 所以123503503501.6n x x x n -+-++-=, 所以350 1.6x -=,所以51.617.23x ==, 由题意得22222121()()() 3.6n s y y y y y y n ⎡⎤=-+-++-=⎣⎦, 所以222121(350 1.6)(350 1.6)(350 1.6) 3.6n x x x n⎡⎤--+--++--=⎣⎦, 所以2221219(17.2)(17.2)(17.2) 3.6n x x x n ⎡⎤⨯-+-++-=⎣⎦ 所以2221219()()() 3.6n x x x x x x n⎡⎤⨯-+-++-=⎣⎦, 所以219 3.6s =,所以210.4s =.故选:C.3.(2020·唐山市第十一中学)已知样本数据由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a ,b 的值分别为( ).A .10,11B .10.5,9.5C .10.4,10.6D .10.5,10.5 【答案】D【解析】由于样本共有10个值,且中间两个数为a ,b ,依题意,得10.52a b +=,即21b a =-. 因为平均数为23371213.718.320101()0a b +++++++++÷=,所以要使该样本的方差最小,只需()()221010a b -+-最小.又()()()()222221010102110242221a b a a a a -+-=-+--=-+, 所以当4210.522a -=-=⨯时,()()221010a b -+-最小,此时10.5b =. 故选:D4.(2021·合肥市第六中学=)为了测试小班教学的实践效果,刘老师对A 、B 两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A 、B 两班学生的平均成绩分别为A x ,B x ,A 、B 两班学生成绩的方差分别为2A s ,2B s ,则观察茎叶图可知( )A .AB x x <,22A B s s < B .A B x x >,22A B s s <C .A B x x <,22A B s s >D .A B x x >,22A B s s >【答案】B【解析】根据茎叶图中数据的分布可得,A 班学生的分数多集中在[]70,80之间, B 班学生的分数集中在[]50,70 之间,所以A B x x >.相对两个班级的成绩分布来说,A 班学生的分数更加集中,B 班学生的分数更加离散,所以22A B s s <.故选:B。

高中数学必修第二册用样本估计总体练习题(平均数、方差、众数、百分位数等)

高中数学必修第二册用样本估计总体练习题(平均数、方差、众数、百分位数等)

用样本估计总体(平均数、众数、方差、百分位数等)一、单选题1.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差S甲2,S乙2,S丙2的大小关系是()A. S丙2<S乙2<S甲2B. S丙2<S甲2<S乙2C. S乙2<S丙2<S甲2D. S乙2<S甲2<S丙22.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花的纤维长度(棉花的纤维长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.估计棉花的纤维长度的样本数据的80%分位数是()A. 28mmB. 28.5mmC. 29mmD. 29.5mm3.某校为了解高三年级学生在线学习情况,统计了2020年4月18日∼27日(共10天)学生在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A. 这10天学生在线学习人数的增长比例在逐日减小B. 前5天在线学习人数的方差大于后5天在线学习人数的方差C. 这10天学生在线学习人数在逐日增加D. 前5天在线学习人数增长比例的极差大于后5天在线学习人数增长比例的极差4.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差的平方是这组数据的方差C. 数据2,3,4,5的方差是数据4,6,8,10的方差的一半D. 频率分布直方图中各小矩形的面积等于相应各组的频数5.为促进精准扶贫,某县计划引进一批果树树苗免费提供给贫困户种植.为了解果树树苗的生长情况,现从甲、乙两个品种中各随机抽取了100株,进行高度测量,并将高度数据制作成了如图所示的频率分布直方图.由频率分布直方图求得甲、乙两个品种高度的平均值都是66.5,用样本估计总体,则下列描述正确的是()A. 甲品种的平均高度高于乙品种,且乙品种比甲品种长的整齐B. 乙品种的平均高度高于甲品种,且甲品种比乙品种长的整齐C. 甲、乙品种的平均高度差不多,且甲品种比乙品种长的整齐D. 甲、乙品种的平均高度差不多,且乙品种比甲品种长的整齐6.从某中学抽取10名同学,他们的数学成绩如下:82,85,88,90,92,92,92,96,96,98(单位:分),则这10名同学数学成绩的众数、第25百分位数分别为()A. 92,85B. 92,88C. 95,88D. 96,857.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数3x1−2,3x2−2,3x3−2,3x4−2,3x5−2的平均数,方差分别是()A. 2,13B. 2,1 C. 4,3 D. 4,238.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x8.68.98.98.2方差s2 3.5 3.5 2.1 5.6从这四人中选择一人参加奥运会射击项目比赛,最佳人选是()A. 甲B. 乙C. 丙D. 丁9.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则()A. x A>x B,s A>s BB. x A<x B,s A<s BC. x A>x B,s A<s BD. x A<x B,s A>s B10.某工厂的机器上有一种易损元件,这种元件发生损坏时,需要及时维修.现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.日期1日2日3日4日5日6日7日8日9日10日甲3546463784乙4745545547由于甲、乙的任务量大,拟增加工人,为使增加工人后平均每人每天维修的元件不超过3件,请利用上表数据估计最少需要增加工人的人数为()A. 2B. 3C. 4D. 5二、多选题(本大题共2小题,共10.0分)11.某赛季甲乙两名篮球运动员各6场比赛得分情况如表:场次123456甲得分31162434189乙得分232132113510则下列说法正确的是()A. 甲运动员得分的极差小于乙运动员得分的极差B. 甲运动员得分的中位数小于乙运动员得分的中位数C. 甲运动员得分的平均值大于乙运动员得分的平均值D. 甲运动员的成绩比乙运动员的成绩稳定12.一组样本数据的频率分布直方图如图所示,每组数据取中间值为代表,则下列说法正确的是()A. 此样本数据的中位数估计值为12B. 此样本数据的众数估计值为12C. 此样本数据的均值估计值为11.52D. 若将样本数据中每个数扩大1倍,则数据的方差也扩大1倍第II卷(非选择题)三、单空题13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为.14.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则60分为成绩的第百分位数.15.为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,图是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.四、多空题16.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)年龄组[25,30)对应小长方形的高度为;(2)由频率分布直方图估计这800名志愿者年龄的85%分位数为岁.(精确到0.01)五、解答题17.某市为了了解人们对“中国梦”的伟大构想的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有5人.(1)求x;(2)求抽取的x人的年龄的50%分位数(结果保留整数);(3)以下是参赛的10人的成绩:90,96,97,95,92,92,98,88,96,99,求这10人成绩的20%分位数和平均数,以这两个数据为依据,评价参赛人员对“一带一路”的认知程度,并谈谈你的感想.18.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.(3)根据(2)中求得的数据计算用电量的75%分位数.19.某校研究性学习课题小组为了了解某市工薪阶层的工资水平,从该市工薪阶层中随机调查了50位市民,调查结果如下表.(1)完成下图的月收入频率分布直方图(注意填写纵坐标);(2)估计该市市民月收入的第25和70百分位数.20.起源于汉代的“踢键子”运动,虽有两千多年历史,但由于简便易行,至今仍很流行.某校为丰富课外活动、增强学生体质,在高一年级进行了“踢键子”比赛,以学生每分钟踢毯子的个数记录分值,一个记一分.参赛学生踢键子的分值均在40∼100分之间,从中随机抽取了100个样本学生踢键子的成绩进行统计分析,绘制了如图所示的频率分布直方图,并称得分在80∼90之间为“踢毽健将”,90分以上为“踢建达人”.(1)求样本的平均值x(同一组数据用该区间的中点值代替);(2)求下列数据的四分位数.13,15,12,27,22,24,28,30,31,18,19,20.(3)求上述数据的40百分位数。

5.1.4用样本估计总体(原卷版)

5.1.4用样本估计总体(原卷版)
分组
频数
频率
10
24
2
合计
1
(1)写出表中 、 及图中 的值(不需过程);
(2)若该校高三年级学生有240人,试估计该校高三年级学生参加社区服务的次数在区间 上的人数;
(3)估计该校高三年级学生参加社区服务次数的中位数.(结果精确到0.01)
【变式11】4.(2023·高一课时练习)某校240名学生参加某次数学选择题测验(共10题每题1分),随机调查了20个学生的成绩如下:
A.a的值为0.005
B.估计这组数据的众数为75
C.估计这组数据的第85百分位数为86
D.估计成绩低于60分的有25人
【变式13】3.(2022·安徽·涡阳县第九中学高一期末)某县在创文明县城期间安排了“垃圾分类知识普及实践活动”.为了解市民的学习成果,该县从某社区随机抽取了160名市民作为样本进行测试,记录他们的成绩,测试卷满分为100分,将数据收集,并整理得到频率分布直方图,如图所示:
(1)求频率分布直方图中a的值;
(2)估计该100名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);
(3)该俱乐部计划招募成绩位列前10%的滑雪爱好者组成集训队备战明年的滑雪俱乐部联盟赛,请根据图中信息,估计集训队入围成绩(记为k).
【变式21】3.(2023下·湖南益阳·高一统考期末)某校有高一学生1000人,其中男生 600人,女生 400人,为了解该校全体高一学生的身高信息,甲与乙分别进行了调查.
成绩
1分
2分
3分
4分
5分
6分
7分
8分
9分
10分
人数
6
0
0
2
4
2

高一数学必修3同步练习:2-2-2用样本的数字特征估计总体的数字特

高一数学必修3同步练习:2-2-2用样本的数字特征估计总体的数字特

2-2-2用样本的数字特征估计总体的数字特一、选择题1.甲、乙两中学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是()A.因为他们平均分相等,所以学习水平一样B.成绩平均分虽然一样,方差较大的,说明潜力大,学习态度端正C.表面上看这两个学生平均成绩一样,但方差小的成绩稳定D.平均分相等,方差不等,说明学习不一样,方差较小的同学,学习成绩不稳定,忽高忽低[答案] C2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3[答案] D3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>aC.c>a>b D.c>b>a[答案] D4.甲、乙两台机床同时生产一种零件,现要检验它们的运行情况,统计10天中两台机床每天出次品数分别为甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则从平均数考试,甲、乙两台机器出次品数较少的为( )A .甲B .乙C .相同D .不能比较[答案] B[解析] x 甲=110(0+1+0+2+…+4)=1.5,x 乙=110(2+3+…+1)=1.2.x 乙<x 甲.5.已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( ) A .1 B .2 C .3 D .4 [答案] B[解析] x =3+5+7+4+655,则方差s 2=15[(3-5)2+(5-5)2+(7-5)2+(4-5)2+(6-5)2]=2.6.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是( )A.63 B.64C.65 D.66[答案] A[解析]甲、乙两人在这几场比赛中得分的中位数分别是36和27,则中位数之和是36+27=63.7.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s 123差,则有( )A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 1[答案] B8.某市在非典期间一手抓防治非典,一手抓经济发展,下表是利群超市5月份一周的利润情况记录:A .6.51万元B .6.4万元C .1.47万元D .5.88万元[答案] A[解析] 从表中一周的利润可得一天的平均利润为 x =0.20+0.17+0.23+0.21+0.23+0.18+0.257=0.21.又五月份共有31天,∴五月份的总利润约是0.21×31=6.51(万元).9.(2011~2012·江西南昌一模)甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示,如图所示.若甲、乙小组的平均成绩分别是x 甲、x 乙,则下列结论正确的是( )A.x甲>x乙,甲比乙成绩稳定B.x甲>x乙,乙比甲成绩稳定C.x甲<x乙,甲比乙成绩稳定D.x甲<x乙,乙比甲成绩稳定[答案] A[解析]根据茎叶图可知,甲组5名同学的成绩分别是88,89,90,91,92,乙组5名同学的成绩分别是83,84,88,89,91,可得x甲=90,x乙=87,故有x甲>x乙;s2甲=2,s2乙=9.2,故有s2甲>s2乙,所以甲比乙的成绩稳定,所以选A.10.如图是一次考试结果的频数分布直方图,根据该图可估计,这次考试的平均分数为()A.46 B.36C.56 D.60[答案] A[解析] 根据频数分布直方图,可估计有4人成绩在[0,20)之间,其考试分数之和为4×10=40;有8人成绩在[20,40)之间,其考试分数之和为8×30=240;有10人成绩在[40,60)之间,其考试分数之和为10×50=500;有6人成绩在[60,80)之间,其考试分数之和为6×70=420;有2人成绩在[80,100)之间,其考试分数之和为2×90=180,由此可知,考生总人数为4+8+10+6+2=30,考虑总成绩为40+240+500+420+180=1 380,平均数=1 38030=46.二、填空题11.已知样本101,100,99,a ,b 的平均数为100,方差为2,这个样本中的数据a 与b 的取值为________.[答案] 102,98或98,102[解析] 由题设知⎩⎪⎨⎪⎧a +b =2002+(a -100)2+(b -100)2=10, ∴⎩⎪⎨⎪⎧ a =102b =98或⎩⎪⎨⎪⎧a =98b =102. 12.(2012·广东高考卷)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[答案] 1,1,3,3[解析] 不妨设x 1≤x 2≤x 3≤x 4,得:x 2+x 3=4,x 1+x 2+x 3+x 4=8⇒x 1+x 4=4 s 2=1⇔(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=4⇒①如果有一个数为0或4;则其余数为2,不合题意; ②只能取|x 1-2|=1;得:这组数据为1,1,3,3.13.某班50名学生右眼视力的检查结果如下表所示:[答案] 1.2 0.814.(2011~2012·江苏南京高三一模)为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.[答案] 5[解析] 由茎叶图可知,该篮球运动员6场比赛的得分分别是14,17,18,18,20,21,得分的平均数x =14+17+18+18+20+216=18,根据方差公式得s 2=16[(14-18)2+(17-18)2+(18-18)2+(18-18)2+(20-18)2+(21-18)2]=5.三、解答题15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:(1)(2)谁的各门功课发展较平衡?[解析] (1)x 甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73,故甲的平均成绩较好.(2)s 2甲=15[(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2]=104,s 2乙=15[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=56,由s 2甲>s 2乙,知乙的各门功课发展较平衡.16.某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B 进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)完成所附的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A 与B 的亩产量及其稳定性进行比较,写出统计结论.[解析] (1)(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了的展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A的亩产标准差(或方差)比品种B大,故品种A 的亩产稳定性较差.17.某学校高一(1)班和高一(2)班各有49名学生,两班在一次数学测验中的成绩统计如下:(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算上上游了!”(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.[分析](1)根据平均数、中位数、众数所反映的情况来分析;(2)结合方差的意义来提出建议.[解析](1)由于(1)班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.(2)①班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.②班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.18.从某校参加数学竞赛的试卷中抽取一个样本,考查竞赛的成绩分布,将样本分成6组,得到频率分布直方图如图,从左到右各小组的小长方形的高的比为1:1:3:6:4:2,最右边的一组的频数是8.请结合直方图的信息,解答下列问题:(1)样本容量是多少?(2)成绩落在哪个范围的人数最多?并求出该小组的频数和频率.(3)估计这次数学竞赛成绩的众数、中位数和平均数.[解析] (1)从左到右各小组的频率分别为117,117,317,617,417,217样本容量为8217=68. (2)成绩落在70~80之间的人数最多;频率为617;频数为68×617=24.(3)众数的估计值是75,中位数的估计值是70+12-117-117-317617×10 =4556≈75.83. 平均数的估计值是117×45+117×55+317×65+617×75+417×85+217×95=75.。

《用样本估计总体》典型例题

《用样本估计总体》典型例题

《用样本估计总体》典型例题【考情分析】用样本的频率分布估计总体分布的有关问题在高考中的常考题型有两个:(1)根据频率分布表和频率分布直方图进行频数或频率的计算,这种考查形式出现的频率很高;(2)频率分布直方图的绘制,这种考查形式常出现在解答题中,用样本的数字特征估计总体的数字特征也是高考中的常考题型,从近几年高考命题的趋势可以看出,对本节概念的考查开始逐步朝着对数据分析能力考查的方向发展,题目往往需结合相关数字特征的统计意义进行求解.题型1统计图表的信息读取(逻辑推理)典例1、[推测解释能力](2018·全国卷I)某地区经过1年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半思路本题以实际生活为背景考查了统计图表信息提取的知识,图表命题涉及广泛,解决本题时要注意题目条件中的“农村的经济收入增加了一倍,实现翻番”,否则计算出错,导致判断失误.解析方法一(通解)设建设前经济收入为a,则建设后经济收入为2a,则由图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以只有A是错误的.方法二(优解)因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.答案A题型2与统计图表有关的计算(数据分析)典例2、[分析计算能力(2020-天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36×组距,进行求解思路本题通过分析、读取频率分布直方图中数据的信息,利用公式频率=频率组距运算.解析根据题意,在被抽取的零件中,直径落在区间[5.43,5.47)内的频率为(6.25+5.00)×0.02= 0.225,则个数为80×0.225=18.答案 B题型3数字特征的含义与计算(数据分析)典例3-1[概括理解能力](全国II卷)为了评估一种农作物的种植效果,选了n块地作试验田.这n 块地的亩产量(单位:kg)分别为x1,x2,x3,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,x3,⋯,x n的平均数B.x1,x2,x3,⋯,x n的标准差C.x1,x2,x3,⋯,x n的最大值D.x1,x2,x3,⋯,x n的中位数思路 本题依据数据的数字特征的意义,分析判断数据运用数字特征进行评价时,应从平均数、众数、中位数、方差、极差等多个角度对这组数据进行分析,全面考虑各数字特征的优缺点. 解析 平均数和中位数都能反映一组数据的集中趋势,而且平均数能反映一组数据的平均水平;标准差和方差都能反映一组数据的稳定程度.答案 B典例3-2、(2019-江苏卷)已知一组数据6,7,8,9,10,则该组数据的方差是_________.思路 本题考查了平均数和方差的计算公式,解决本题的关键是熟记平均数和方差的计算公式,本题考查了学生的分析计算能力和数学运算核心素养.解析 由平均数公式可得这组数据的平均数为8,则方差为(−2)2+(−1)2+0+0+12+226=53. 答案 53题型4用样本数字特征估计总体数字特征的简单计算典例4、[简单问题解决能力]某学校高一年级共有三个班,按优秀率进行评选.1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为_________.解析 本题通过优秀率、加权平均数来考查样本估计总体的数字特征,分析题意,根据班级优秀率求解全年级优秀率.由于某学校高一年级共有三个班,按优秀率进行评选:1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为:30×30%+35×60%+35×40%30+35+35=44%.答案 44%题型5用样本数字特征估计总体数字特征的综合计算(数学建模)典例5、[综合问题解决能力](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲,乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).思路本题属于样本平均值估计总体的综合应用,根据频率分布直方图的特征,通过数据分析,在频率分布直方距计算a的值.解析(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1−0.05−0.15−0.70=0.10. (2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学用样本估计总体试题1.一个样本的方差是.【答案】5【解析】由样本可得,所以平均数为4;所以样本的方差为.【考点】样本数值特征.2.在一次选拔运动员中,测得7名选手的身高(单位:cm)的茎叶图为:,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.【答案】8【解析】由茎叶图可知:7名选手的身高分别为170、173、170+x、178、179、180、181,所以由此可得,所以x=8.【考点】茎叶图.3.在一次选拔运动员中,测得7名选手的身高(单位:cm)的茎叶图为:,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.【答案】8【解析】由茎叶图可知:7名选手的身高分别为170、173、170+x、178、179、180、181,所以由此可得,所以x=8.【考点】茎叶图.4.设的平均数是,标准差是,则另一组数的平均数和标准差分别是_________.【答案】,.【解析】另一组数的平均数为:,标准差为:,所以则另一组数的平均数和标准差分别是,.【考点】统计中的期望与方差.5.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是()A.36B.40C.48D.50【答案】C【解析】设报考飞行员的人数为,根据前3个小组的频率之比为,可设前三小组的频率分别为;由题意可知所求频率和为1,即,解得,则,解得.故选C.【考点】频率分布直方图.6.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约()A.30辆B.40辆C.60辆D.80辆【答案】D【解析】时速在[60,70)的频率为,故汽车大约有辆.【考点】频率分布直方图的应用.7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).A.3.5B.-3C.3D.-0.5【答案】B【解析】数据相差了,平均数相差,故求出的平均数与实际平均数相差.【考点】平均数.8.某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为分.【答案】2【解析】设班级总人数为n人,得3分的是人,得2分的是人,得1分的是人,得0分的是人,故班级平均分.【考点】数据的平均数公式及数据的基本处理能力.9.若样本的频率分布直方图中一共有个小矩形,中间一个小矩形的面积等于其余个小矩形面积和的,且样本容量为160,则中间一组的频数是()A.32B.20C.40D.25【答案】A【解析】设中间一个小矩形的面积为,其余个小矩形的面积之和为,依题意有,求解得到,所以中间一组的频率为,中间一组的频数为,故选A.【考点】频率分布直方图.10.200辆汽车通过某一段公路时,时速的频率分布直方图如右图所示,则时速在[50,70)的汽车大约有().A.60辆 B.80辆C.70辆D.140辆【答案】D【解析】需根据直方图中求出各个矩形的面积,即为各组频率,再由总数乘以频率即得各组频数.解:由直方图可知,时速在[50,60]的频率为0.03×10=0.3 时速在[60,70]的频率为0.04×10=0.4 所以时速在[50,70]的汽车大约有200×(0.3+0.4)=140辆.故答案为D.【考点】直方图点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.11.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.分数段【答案】(1).(2)73.(3)10【解析】(1)依题意得,,解得.(2)这100名学生语文成绩的平均分为:(分).(3)数学成绩在的人数为:,数学成绩在的人数为:,数学成绩在的人数为:,数学成绩在的人数为:.所以数学成绩在之外的人数为:.【考点】本题考查了频率分布直方图的运用点评:注意频率分布直方图中用小长方形面积的大小来表示在各个区间内取值的频率,所以在求频率时,通过已知求出所要区间的面积即可12.为了让学生了解更多“社会法律”知识,某中学举行了一次“社会法律知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;(2)填充频率分布表的空格①②③④并作出频率分布直方图;(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?【答案】(1)016 ;(2) 1 8 2 0.28 3 14 4 0.20;(3)256.【解析】(1)编号为016- -2分(2) 1 8 2 0.28 3 14 4 0.20- 每空1分2分在被抽到的学生中获二奖的人数是9+7=16人, 1分占样本的比例是, 1分所以获二等奖的人数估计为800×32%=256人. 1分答:获二等奖的大约有256人. 1分【考点】系统抽样;频率分布表;频率分布直方图。

点评:此题主要考查频率分布直方图。

在频率分布直方图中,小长方形的面积就是这组数据的频率。

此题属于基础题型。

13.林管部门在每年3·1 2植树节前,为保证树苗的质量,都会在植树前对树苗进行检测。

现从甲乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图。

根据茎叶图,下列描述正确的是A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐【答案】D【解析】解:由茎叶图中的数据,我们可得甲、乙两种树苗抽取的样本高度分别为:甲:19,20,21,23,25,29,31,32,33,37乙:10,10,14,26,27,30,44,46,46,47由已知易得:甲的均值为 ="(19+20+21+23+25+29+31+32+33+37)" 10 =27乙的均值为 ="(10+10+14+26+27+30+44+46+46+47)" 10 =30S甲2<S乙2故:乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐.故选D14.(14分)某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率.【答案】(Ⅰ)分数在内的频率为:,故,(求频率3分,作图3分)(Ⅱ).【解析】本试题主要是考查而来直方图的运用以及分层抽样问题的求解和古典概型概率的计算的综合运用。

(1)根据面积代表频率可知)分数在内的频率为:,那么可知结论。

(2)由题意,分数段的人数为:人;分分数段的人数为:人;∵在的学生中抽取一个容量为的样本,分析总的试验空间和事件A发生的事件数,然后结合古典概型概率公式得到。

解:(Ⅰ)分数在内的频率为:,故,如图所示:……6分(求频率3分,作图3分)(Ⅱ)由题意,分数段的人数为:人;……8分分数段的人数为:人;……10分∵在的学生中抽取一个容量为的样本,∴分数段抽取2人,分别记为;分数段抽取4人,分别记为;设从样本中任取人,至多有1人在分数段为事件,则基本事件空间包含的基本事件有:、、、、、……、共15种,则事件包含的基本事件有:、、、、、、、、共9种,∴.……14分15.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.回答正确回答正确的人数273(Ⅰ) 分别求出的值;(Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人? (Ⅲ) 在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.【答案】解:(Ⅰ)由频率表中第1组数据可知,第1组总人数为,再结合频率分布直方图可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人, 第3组:人, 第4组:人.(Ⅲ)设第2组的2人为、,第3组的3人为、、,第4组的1人为,则从6人中抽2人所有可能的结果有:,,,,,,,,,,,,,,,共15个基本事件,其中第2组至少有1人被抽中的有,,,,,,,,这9个基本事件.∴第2组至少有1人获得幸运奖的概率为【解析】本题考查分层抽样方法、统计基础知识与等可能事件的概率。

注意等可能事件中的基本事件数的准确性。

16.在某中学举行的数学知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组。

已知第三小组的频数是15。

(1)求成绩在50—70分的频率是多少;(2)求这三个年级参赛学生的总人数是多少;(3)求成绩在80—100分的学生人数是多少;【答案】(1)0.7(2)100(3)15(人)【解析】(1)根据频率分布直方图的矩形面积表示频率,求出成绩在50-70分的矩形面积,即为所求;(2)求出第三组的频率,然后根据三个年级参赛学生的总人数=频数频率,可求出所求;(3)先求出成绩在80-100分的频率,然后利用频数=总数×频率可求出成绩在80-100分的学生人数.解:(1)成绩在50—70分的频率为:0.03*10+0.04*10=0.7 …4分(2)第三小组的频率为:0.015*10=0.15这三个年级参赛学生的总人数(总数=频数/频率)为:15/0.15=100(人) …8分(3)成绩在80—100分的频率为:0.01*10+0.005*10=0.15则成绩在80—100分的人数为:100*0.15=15(人)…12分17.(本小题满分14分)对甲、乙的学习成绩进行抽样分析,各抽门功课,得到的观测值如下:问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?【答案】甲的平均成绩较好. 乙的各门功课发展较平衡。

相关文档
最新文档