用样本估计总体练习题
高一数学用样本估计总体试题
高一数学用样本估计总体试题1.一个样本的方差是.【答案】5【解析】由样本可得,所以平均数为4;所以样本的方差为.【考点】样本数值特征.2.在一次选拔运动员中,测得7名选手的身高(单位:cm)的茎叶图为:,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.【答案】8【解析】由茎叶图可知:7名选手的身高分别为170、173、170+x、178、179、180、181,所以由此可得,所以x=8.【考点】茎叶图.3.在一次选拔运动员中,测得7名选手的身高(单位:cm)的茎叶图为:,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.【答案】8【解析】由茎叶图可知:7名选手的身高分别为170、173、170+x、178、179、180、181,所以由此可得,所以x=8.【考点】茎叶图.4.设的平均数是,标准差是,则另一组数的平均数和标准差分别是_________.【答案】,.【解析】另一组数的平均数为:,标准差为:,所以则另一组数的平均数和标准差分别是,.【考点】统计中的期望与方差.5.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是()A.36B.40C.48D.50【答案】C【解析】设报考飞行员的人数为,根据前3个小组的频率之比为,可设前三小组的频率分别为;由题意可知所求频率和为1,即,解得,则,解得.故选C.【考点】频率分布直方图.6.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约()A.30辆B.40辆C.60辆D.80辆【答案】D【解析】时速在[60,70)的频率为,故汽车大约有辆.【考点】频率分布直方图的应用.7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).A.3.5B.-3C.3D.-0.5【答案】B【解析】数据相差了,平均数相差,故求出的平均数与实际平均数相差.【考点】平均数.8.某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为分.【答案】2【解析】设班级总人数为n人,得3分的是人,得2分的是人,得1分的是人,得0分的是人,故班级平均分.【考点】数据的平均数公式及数据的基本处理能力.9.若样本的频率分布直方图中一共有个小矩形,中间一个小矩形的面积等于其余个小矩形面积和的,且样本容量为160,则中间一组的频数是()A.32B.20C.40D.25【答案】A【解析】设中间一个小矩形的面积为,其余个小矩形的面积之和为,依题意有,求解得到,所以中间一组的频率为,中间一组的频数为,故选A.【考点】频率分布直方图.10.200辆汽车通过某一段公路时,时速的频率分布直方图如右图所示,则时速在[50,70)的汽车大约有().A.60辆 B.80辆C.70辆D.140辆【答案】D【解析】需根据直方图中求出各个矩形的面积,即为各组频率,再由总数乘以频率即得各组频数.解:由直方图可知,时速在[50,60]的频率为0.03×10=0.3 时速在[60,70]的频率为0.04×10=0.4 所以时速在[50,70]的汽车大约有200×(0.3+0.4)=140辆.故答案为D.【考点】直方图点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.11.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.分数段【答案】(1).(2)73.(3)10【解析】(1)依题意得,,解得.(2)这100名学生语文成绩的平均分为:(分).(3)数学成绩在的人数为:,数学成绩在的人数为:,数学成绩在的人数为:,数学成绩在的人数为:.所以数学成绩在之外的人数为:.【考点】本题考查了频率分布直方图的运用点评:注意频率分布直方图中用小长方形面积的大小来表示在各个区间内取值的频率,所以在求频率时,通过已知求出所要区间的面积即可12.为了让学生了解更多“社会法律”知识,某中学举行了一次“社会法律知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;(2)填充频率分布表的空格①②③④并作出频率分布直方图;(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?【答案】(1)016 ;(2) 1 8 2 0.28 3 14 4 0.20;(3)256.【解析】(1)编号为016- -2分(2) 1 8 2 0.28 3 14 4 0.20- 每空1分2分在被抽到的学生中获二奖的人数是9+7=16人, 1分占样本的比例是, 1分所以获二等奖的人数估计为800×32%=256人. 1分答:获二等奖的大约有256人. 1分【考点】系统抽样;频率分布表;频率分布直方图。
用样本估计总体(平均数、中位数、众数)练习
用样本估计总体(平均数、中位数、众数)练习1、某厂10名工人在一个小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.b>c>a C.c>a>b D.c>b>a2、如图所示的茎叶图记录了一组数据,关于这组数据,其中说法正确的序号是________.①众数是9;②平均数是10;③中位数是9或10;④标准差是3.4.3、某次测量中A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A 样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( ) A.众数 B.平均数 C.中位数 D.标准差4、已知一组数据的频率分布直方图如图所示.求众数、中位数、平均数.5、如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数)分别是( )A.12.5、12.5 B.12.5 、13C.13、12.5 D.13、136、从下列频率分布直方图中估计所有中位数与众数之和为元。
7.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是( )A.3 B.4 C.5 D.68.关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差一定是正数;⑤如右图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60)的汽车大约是60辆.则这5种说法中错误的个数是( )A.2 B.3 C.4 D.59、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成、绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分及众数.(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.10、如图是某市有关部门根据该市干部的月收入情况,画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题.(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽多少人?(3)试估计样本数据的中位数.答案:1、D 2、①② 3、D 4、众数:65,中位数:65,平均数:67 5、B 6、7400 7、C 8、B 9、(1)0.005(2)73(3)10人 10、(1)2000(2)20人(3)1750元。
28.2《用样本估计总体》综合练习
《用样本估计总体》综合练习◆随堂检测1、某“中学生暑假环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下:(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()A.2000只B.14000只C.21000只D.98000只2、在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有85个成年人不吸烟C.样本是15个吸烟的成年人D.本地区约有15℅的成年人吸烟3、为了解一批节能灯的使用寿命,宜采用的方式进行调查.(填:“全面调查”或“抽样调查”)4、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.5、为了了解某市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是____________(填序号)①100位女性老人②公园内100位老人③在城市和乡镇选10个点,每个点任选10位老人.◆典例分析为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3︰5︰2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是(填“全面调查”或“抽样调查”);(2)写出折线统计图中A、B所代表的值;A:;B:;(3)求该地区喜爱娱乐类节目的成年人的人数.分析:通过利用扇形统计图计算出各个部分的数量,必须要弄清楚各个部分的百分比即可.解:由题意得:(1)抽样调查(2)A=20, B=40(3)5 300000150000352⨯=++10830%360=15000030%45⨯=◆课下作业●拓展提高1、苏州阳澄湖是全国著名的大闸蟹产地,某养蟹专业户为了估计他承包的蟹塘里有多少只蟹,先捕上100只蟹做上标记,然后放回塘里,过了一段时间,待带标记的蟹和塘里的蟹混合后,再捕上100条,发现其中带标记的蟹有10条,则塘里大约有蟹()A.10B.1000C.100D.100002、在元旦晚会上,班长准备了若干张相同的卡片,上面写的是晚会上同学们要回答的问题.晚会开始后,班长问小明:你能设计一个方案,估计晚会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写。
用样本的数字特征估计总体的数字特征练习
在关于居民月均用水量的例子中,平均数
x 1.973
标准差s=0.868
所以
x s 2.841, x 2s 3.709
x s 1.105, x 2s 0.237.
这 100个 数据 中, 在区 间x
2 s ,x
2 s
0 . 2 3 7 , 3 . 790
外 的 只 有 4 个也。就是说, x
7.如果一组数中每个数减去同一个非零
常数,则这一组数的( D).
A.平均数不变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数改变,方差不变
6
频率
频率分布直方图
组距
0.6 前四个小矩形的 面积和=0.49
0.5
0.4
0.25
后四个小矩形的 面积和=0.26
0.3 0.22
均单位面积产量如下(单位:t/hm2),试
根据这组数据估计哪一种水稻品种的产量
比较稳定。
品种 第1年 第2年 第3年 第4年 第5年
甲
9.8
9.9 10.1 10 10.2
乙
9.4 10.3 10.8 9.7
9.8
解:甲品种的样本平均数为10,样本方差 为 [(9.8-10)2 +(9.9-10)2+(10.1-10)2+ (10-10)2+(10.2-10)2]÷5=0.02.
一个社会调查机构就某地居民的月收入调 查了10000人,并根据所得数据画了样本的 频率分布直方图如图所示,根据样本估计 月收入的平均数为 2400 ,众数为2500 中位数为 2400
练习:”八.一”前夕,某中学举行国防知识竞赛:满分为 100分,80分以上为优秀,现将高一的两个班参赛学生的 成绩进行整理后分成五组绘制成如图所示的频率分布直 方图,已知图中从左到右的第一、第二、第三、第四、 第五小组的频率分别是0.3,0.4,0.15,0.1,0.05
高一数学用样本估计总体试题答案及解析
高一数学用样本估计总体试题答案及解析1.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取20人参加一项活动,则从身高在[120,130内的学生中选取的人数应为.【答案】10【解析】由频率分布直方图可得:;则[120,130),[130,140),[140,150]三组人数所占的比例为,则在[120,130内选取的人数应为.【考点】频率分布直方图.2.设的平均数是,标准差是,则另一组数的平均数和标准差分别是_________.【答案】,.【解析】另一组数的平均数为:,标准差为:,所以则另一组数的平均数和标准差分别是,.【考点】统计中的期望与方差.3.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约( )A.30辆B.40辆C.60辆D.80辆【答案】D【解析】时速在[60,70)的频率为,故汽车大约有辆.【考点】频率分布直方图的应用.4.某校五四演讲比赛中,七位评委为一选手打出的分数如下:90 86 90 97 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.B.C.D.【答案】B【解析】由题意知,去掉一个最高分和一个最低分后,所剩数据的平均数为;方差为故选B.【考点】样本平均数和方差的计算.5.统计某校800名学生的数学期末成绩,得到频率分布直方图如图所示,若考试采用100分制,并规定不低于60分为及格,则及格率为.【答案】0.8【解析】由图形可知及格率为,答案为0.8.【考点】频率分布直方图6.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( ).A.甲B.乙C.丙D.丁【答案】C.【解析】分析表格可知,乙与丙的平均环数最多,又丙的方差比乙小说明丙成绩发挥的较为稳定,所以最佳人选为丙.【考点】数据的平均数与方差的意义.7.一次选拔运动中,测得7名选手的身高(单位:cm)分布茎叶图如图,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为( )A.5B.6C.7D.8【答案】D【解析】由图可知7名同学的身高分别为180、181、170、173、,178、179而7名同学的平均身高为177,所以有得=178,所以【考点】茎叶图8.由正整数组成的一组数据,其平均数和中位数都是,且标准差等于,则这组数据为 .(从小到大排列)【答案】【解析】由已知不妨假设,则,又因为标准差等于,所以,且都是正整数,观察分析可知这组数据只可为:1,1,3,3.【考点】1.平均数与中位数;2.标准差;3.方程组思想.9.某路段属于限速路段,规定通过该路段的汽车时速不得超过70km/h,否则视为违规扣分,某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图,如下图所示,则违规扣分的汽车大约为辆.【答案】120.【解析】易求得70-80这组的频率为1-0.05-0.18-0.38-0.27=0.12,则违规扣分的汽车大约为辆.【考点】频率分布直方图中每组对应的长方形面积为,总面积为1,频数=频率样本容量.10.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.【答案】0.04;440【解析】由频率分布直方图得:,解得;志愿者年龄在[25,35)的人数为.【考点】概率与统计.11.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用表示,则x的值为( )A.0B.4C.5D.7【答案】A【解析】如果是最高得分的话,,所以是最大值,那么,解得,故选A.【考点】茎叶图12.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差______.【答案】3.2【解析】由平均数及方差的定义可得;.【考点】样本数据的数字特征:平均值与方差.13.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少;(3)这两个班参赛学生的成绩的中位数应落在第几小组内.【答案】(1)第二小组的频率为,补全的频率分布直方图详见解析;(2)100人;(3)九年级两个班参赛学生的成绩的中位数应落在第二小组内.【解析】(1)先从所给的直方图中得出第一、三、四、五小组的频率,然后用1减去第一、三、四、五小组的频率和得到第二小组的频率,接着由确定第二小组的小长方形的高,从而可补全频率分布直方图;(2)用第二小组的频数除以该组的频率,即可计算出九年两个班参赛学生的总人数;(3)要确定中位数所在的小组,只需先确定各小组的频数,从第一小组开始累加,当和达到总人数的一半时的组就是中位数所在的小组.试题解析:(1)∵各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05∴第二小组的频率为:∴落在59.5~69.5的第二小组的小长方形的高,则补全的频率分布直方图如图所示(2)设九年级两个班参赛的学生人数为人∵第二小组的频数为40人,频率为0.40∴,解得所以这两个班参赛的学生人数为100人(3)因为0.3×100=30,0.4×100=40,0.15×100=15,0.10×100=10,0.05×100=5即第一、第二、第三、第四、第五小组的频数分别为30,40,15,10,5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内【考点】1.频率分布直方图;2.转化与运算能力.14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160, 则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C【解析】设公差为d,那么9个小长方形的面积分别为0.02,0.02+d,0.02+2d,0.02+3d,0.02+4d,0.02+3d,0.02+2d,0.02+d,0.02,而9个小长方形的面积和为 1,可得0.18+16d=1 可以求得d=∴中间一组的频数为:160×(0.02+4d)=36.故答案为:36.故选C。
5_1_4_用样本估计总体练习(原卷版)
5.1.4用样本估计总体【基础练习】一、单选题1.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为()A.150B.177.8C.183.3D.2002.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1033.有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如下:请根据表格中的信息,估计这4万个数据的平均数为()A.92.16B.85.23C.84.73D.77.974.如图是某学校的教研处根据调查结果绘制的本校学生每天放学后的自学时间情况的频率分布直方图:根据频率分布直方图,求出自学时间的中位数和众数的估计值(精确到0.01)分别是()A .2.20,2.25B .2.29,2.20C .2.29,2.25D .2.25,2.255.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下:嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>二、填空题6.解放战争中,国民党军队拥有过多辆各型坦克,编成了1个装甲兵团(师级编制).我军为了知道这个装甲兵团的各型坦克的数量,釆用了两种方法:一种是传统的情报窃取,一种是用统计学的方法进行估计.统计学的方法最后被证实比传统的情报收集更精确.这个装甲兵团对各型坦克从1开始进行了连续编号,在解放战争期间我军把缴获的这些坦克的编号进行记录并计算出这些编号的平均值为112.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计这个装甲兵团的各型坦克的数量大约有_______.7.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将该数据按照[0,0.5),[0.5,1),…[4.4.5]分成9组,绘制了如图所示的频率分布直方图,政府要试行居民用水定额管理,制定了一个用水量标准a,使85%的居民用水量不超过a(假设a为整数),按平价收水费,超出a的部分按议价收费,则a的最小值为_____.8.我国高铁发展迅速,技术先进,经统计在经停某站的高铁列车,有10个车次的正点率为0.97,有20个车次的正点率为0.99,有10个车次的正点率为0.98,则经停该站高铁列车的所有车次的平均正点率估计值为______.三、解答题9.某工厂为生产一种标准长度为40cm的精密器件,研发了一台生产该精密器件的车床,该精密器件的实际长度为acm,“长度误差”为40a cm,只要“长度误差”不超过0.03cm就认为合格.已知这台车床分昼、夜两个独立批次生产,每天每批次各生产1000件.已知每件产品的成本为5元,每件合格品的利润为10元.在昼、夜两个批次生产的产品中分别随机抽取20件,检测其长度并绘制了如下茎叶图:(1)分别估计在昼、夜两个批次的产品中随机抽取一件产品为合格品的概率;(2)以上述样本的频率作为概率,求这台车床一天的总利润的平均值.10.《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018年10月1日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:(1)已知小李2018年9月份上交的税费是295元,10月份工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.(i)请根据频率分布直方图估计该公司员工税前收入的中位数;(ii)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?【提升练习】1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定不总体分布在[100,110)的频数相等2.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸3.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤,()1150k b k ≤≤为n名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( )A .12150b b b M n ++= B .12150150b b b M ++=C .12150b b b M n++>D .12150150b b b M ++>4.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据被墨迹污损不清(如图1),但甲得分的折线图完好(如图2),则下列结论错误的是( )A .乙运动员得分的中位数是17,甲运动员得分的极差是19B .甲运动员发挥的稳定性比乙运动员发挥的稳定性差C .甲运动员得分有12的叶集中在茎1上 D .甲运动员得分的平均值一定比乙运动员得分的平均值低5.学校随机抽查了本校20个学生,调查他们平均每天进行体育锻炼的时间(单位:min ),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )A .B .C .D .6.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.7.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)8.2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.9.某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a ,若某住户某月用电量不超过a 度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过a 度,则超出部分按议价b (单位:元/度)计费,未超出部分按平价计费.为确定a 的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值a;(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达a度的住户用电量保持不变;月用电量超过a度的住户节省“超出部分”的60%,试估计全市每月节约的电量.10.某校的3000名高三学生参加了天一大联考,为了分析此次联考数学学科的情况,现随机从中抽取15名学生的数学成绩(满分:150分),并绘制成如图所示的茎叶图.将成绩低于90分的称为“不及格”,不低于120分的称为“优秀”,其余的称为“良好”.根据样本的数字特征估计总体的情况.(1)估算此次联考该校高三学生的数学学科的平均成绩.(2)估算此次联考该校高三学生数学成绩“不及格”和“优秀”的人数各是多少.(3)在国家扶贫政策的倡导下,该地教育部门提出了教育扶贫活动,要求对此次数学成绩“不及格”的学生分两期进行学业辅导:一期由优秀学生进行一对一帮扶辅导,二期由老师进行集中辅导.根据实践总结,优秀学生进行一对一辅导的转化率为20%;老师集中辅导的转化率为30%,试估算经过两期辅导后,该校高三学生中数学成绩仍然不及格的人数.注:转化率=-辅导前不及格人数辅导后不及格人数辅导前不及格人数100%⨯。
高中数学必修第二册用样本估计总体练习题(平均数、方差、众数、百分位数等)
用样本估计总体(平均数、众数、方差、百分位数等)一、单选题1.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差S甲2,S乙2,S丙2的大小关系是()A. S丙2<S乙2<S甲2B. S丙2<S甲2<S乙2C. S乙2<S丙2<S甲2D. S乙2<S甲2<S丙22.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花的纤维长度(棉花的纤维长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.估计棉花的纤维长度的样本数据的80%分位数是()A. 28mmB. 28.5mmC. 29mmD. 29.5mm3.某校为了解高三年级学生在线学习情况,统计了2020年4月18日∼27日(共10天)学生在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A. 这10天学生在线学习人数的增长比例在逐日减小B. 前5天在线学习人数的方差大于后5天在线学习人数的方差C. 这10天学生在线学习人数在逐日增加D. 前5天在线学习人数增长比例的极差大于后5天在线学习人数增长比例的极差4.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差的平方是这组数据的方差C. 数据2,3,4,5的方差是数据4,6,8,10的方差的一半D. 频率分布直方图中各小矩形的面积等于相应各组的频数5.为促进精准扶贫,某县计划引进一批果树树苗免费提供给贫困户种植.为了解果树树苗的生长情况,现从甲、乙两个品种中各随机抽取了100株,进行高度测量,并将高度数据制作成了如图所示的频率分布直方图.由频率分布直方图求得甲、乙两个品种高度的平均值都是66.5,用样本估计总体,则下列描述正确的是()A. 甲品种的平均高度高于乙品种,且乙品种比甲品种长的整齐B. 乙品种的平均高度高于甲品种,且甲品种比乙品种长的整齐C. 甲、乙品种的平均高度差不多,且甲品种比乙品种长的整齐D. 甲、乙品种的平均高度差不多,且乙品种比甲品种长的整齐6.从某中学抽取10名同学,他们的数学成绩如下:82,85,88,90,92,92,92,96,96,98(单位:分),则这10名同学数学成绩的众数、第25百分位数分别为()A. 92,85B. 92,88C. 95,88D. 96,857.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数3x1−2,3x2−2,3x3−2,3x4−2,3x5−2的平均数,方差分别是()A. 2,13B. 2,1 C. 4,3 D. 4,238.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x8.68.98.98.2方差s2 3.5 3.5 2.1 5.6从这四人中选择一人参加奥运会射击项目比赛,最佳人选是()A. 甲B. 乙C. 丙D. 丁9.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则()A. x A>x B,s A>s BB. x A<x B,s A<s BC. x A>x B,s A<s BD. x A<x B,s A>s B10.某工厂的机器上有一种易损元件,这种元件发生损坏时,需要及时维修.现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.日期1日2日3日4日5日6日7日8日9日10日甲3546463784乙4745545547由于甲、乙的任务量大,拟增加工人,为使增加工人后平均每人每天维修的元件不超过3件,请利用上表数据估计最少需要增加工人的人数为()A. 2B. 3C. 4D. 5二、多选题(本大题共2小题,共10.0分)11.某赛季甲乙两名篮球运动员各6场比赛得分情况如表:场次123456甲得分31162434189乙得分232132113510则下列说法正确的是()A. 甲运动员得分的极差小于乙运动员得分的极差B. 甲运动员得分的中位数小于乙运动员得分的中位数C. 甲运动员得分的平均值大于乙运动员得分的平均值D. 甲运动员的成绩比乙运动员的成绩稳定12.一组样本数据的频率分布直方图如图所示,每组数据取中间值为代表,则下列说法正确的是()A. 此样本数据的中位数估计值为12B. 此样本数据的众数估计值为12C. 此样本数据的均值估计值为11.52D. 若将样本数据中每个数扩大1倍,则数据的方差也扩大1倍第II卷(非选择题)三、单空题13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为.14.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则60分为成绩的第百分位数.15.为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,图是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.四、多空题16.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)年龄组[25,30)对应小长方形的高度为;(2)由频率分布直方图估计这800名志愿者年龄的85%分位数为岁.(精确到0.01)五、解答题17.某市为了了解人们对“中国梦”的伟大构想的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有5人.(1)求x;(2)求抽取的x人的年龄的50%分位数(结果保留整数);(3)以下是参赛的10人的成绩:90,96,97,95,92,92,98,88,96,99,求这10人成绩的20%分位数和平均数,以这两个数据为依据,评价参赛人员对“一带一路”的认知程度,并谈谈你的感想.18.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.(3)根据(2)中求得的数据计算用电量的75%分位数.19.某校研究性学习课题小组为了了解某市工薪阶层的工资水平,从该市工薪阶层中随机调查了50位市民,调查结果如下表.(1)完成下图的月收入频率分布直方图(注意填写纵坐标);(2)估计该市市民月收入的第25和70百分位数.20.起源于汉代的“踢键子”运动,虽有两千多年历史,但由于简便易行,至今仍很流行.某校为丰富课外活动、增强学生体质,在高一年级进行了“踢键子”比赛,以学生每分钟踢毯子的个数记录分值,一个记一分.参赛学生踢键子的分值均在40∼100分之间,从中随机抽取了100个样本学生踢键子的成绩进行统计分析,绘制了如图所示的频率分布直方图,并称得分在80∼90之间为“踢毽健将”,90分以上为“踢建达人”.(1)求样本的平均值x(同一组数据用该区间的中点值代替);(2)求下列数据的四分位数.13,15,12,27,22,24,28,30,31,18,19,20.(3)求上述数据的40百分位数。
23.4 用样本估计总体(习题)
6.(青岛中考)某茶厂用甲、乙两台分装机分装某种茶
叶(每袋茶叶的标准质量为200 g). 为了监控分装质
量,该厂从它们各自分装的茶叶中随机抽取了50袋,
测得它们的实际质量分析如下表:
甲分装机 乙分装机
平均数(g) 200 200
方差 16.23 5.84
则这两台分装机中,分装的茶叶质量更稳定的是 ____乙_____(填“甲”或“乙”).
B.170千克
C.180千克
D.200千克
3.某商场4月份随机抽查了6天的营业额,并由此估算 出该商场4月份的总营业额大约是96万元.已知这6天 的统计数据(单位:万元)前五天的分别是:2.8,3.2, 3.4,3.7,3.0,则第6天的数据是万元__3_.__1__. 4.某地举行了一次数学竞赛,为了估计平均成绩,在 抽取的部分试卷中,有1人得10分,3人得9分,8人得8 分,12人得7分,9人得6分,7人得5分,则样本容量是 40,样本平均数是__6_._8_5_分___.由此估计这次数学竞赛 的平均成绩是_6_._8_5_分__.
14.为了解某一路口某一时段的汽车流量,小明同学 10天中在同一时段统计通过该路口的汽车数量(单位: 辆),将统计结果绘制成如下折线统计图:
由此估计一个月(30天)该时段通过该路口的汽车数量 超过200辆的天数为___1_2___天.
知识点2 用样本方差估计总体方差 5. (东营中考)市运会举行射击比赛,某校射击队从甲 、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每 人射击10次,计算他们10次成绩的平均数(环)及方差 如下表,请你根据表中数据选一人参加比赛,最合适 的人选是____丙_____.
平均数 方差
甲
《用样本估计总体》典型例题
《用样本估计总体》典型例题【考情分析】用样本的频率分布估计总体分布的有关问题在高考中的常考题型有两个:(1)根据频率分布表和频率分布直方图进行频数或频率的计算,这种考查形式出现的频率很高;(2)频率分布直方图的绘制,这种考查形式常出现在解答题中,用样本的数字特征估计总体的数字特征也是高考中的常考题型,从近几年高考命题的趋势可以看出,对本节概念的考查开始逐步朝着对数据分析能力考查的方向发展,题目往往需结合相关数字特征的统计意义进行求解.题型1统计图表的信息读取(逻辑推理)典例1、[推测解释能力](2018·全国卷I)某地区经过1年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半思路本题以实际生活为背景考查了统计图表信息提取的知识,图表命题涉及广泛,解决本题时要注意题目条件中的“农村的经济收入增加了一倍,实现翻番”,否则计算出错,导致判断失误.解析方法一(通解)设建设前经济收入为a,则建设后经济收入为2a,则由图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以只有A是错误的.方法二(优解)因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.答案A题型2与统计图表有关的计算(数据分析)典例2、[分析计算能力(2020-天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36×组距,进行求解思路本题通过分析、读取频率分布直方图中数据的信息,利用公式频率=频率组距运算.解析根据题意,在被抽取的零件中,直径落在区间[5.43,5.47)内的频率为(6.25+5.00)×0.02= 0.225,则个数为80×0.225=18.答案 B题型3数字特征的含义与计算(数据分析)典例3-1[概括理解能力](全国II卷)为了评估一种农作物的种植效果,选了n块地作试验田.这n 块地的亩产量(单位:kg)分别为x1,x2,x3,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,x3,⋯,x n的平均数B.x1,x2,x3,⋯,x n的标准差C.x1,x2,x3,⋯,x n的最大值D.x1,x2,x3,⋯,x n的中位数思路 本题依据数据的数字特征的意义,分析判断数据运用数字特征进行评价时,应从平均数、众数、中位数、方差、极差等多个角度对这组数据进行分析,全面考虑各数字特征的优缺点. 解析 平均数和中位数都能反映一组数据的集中趋势,而且平均数能反映一组数据的平均水平;标准差和方差都能反映一组数据的稳定程度.答案 B典例3-2、(2019-江苏卷)已知一组数据6,7,8,9,10,则该组数据的方差是_________.思路 本题考查了平均数和方差的计算公式,解决本题的关键是熟记平均数和方差的计算公式,本题考查了学生的分析计算能力和数学运算核心素养.解析 由平均数公式可得这组数据的平均数为8,则方差为(−2)2+(−1)2+0+0+12+226=53. 答案 53题型4用样本数字特征估计总体数字特征的简单计算典例4、[简单问题解决能力]某学校高一年级共有三个班,按优秀率进行评选.1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为_________.解析 本题通过优秀率、加权平均数来考查样本估计总体的数字特征,分析题意,根据班级优秀率求解全年级优秀率.由于某学校高一年级共有三个班,按优秀率进行评选:1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为:30×30%+35×60%+35×40%30+35+35=44%.答案 44%题型5用样本数字特征估计总体数字特征的综合计算(数学建模)典例5、[综合问题解决能力](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲,乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).思路本题属于样本平均值估计总体的综合应用,根据频率分布直方图的特征,通过数据分析,在频率分布直方距计算a的值.解析(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1−0.05−0.15−0.70=0.10. (2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。
用样本估计总体练习题含答案
用样本估计总体练习题(1)1. 张先生去某城市参加学术会议,拟选择在会议中心附近的A、B两酒店中的一个人住.两酒店条件和价格相当,张先生在网上查看了最近入住两个酒店的客人对两酒店的综合评分,并将评分数据记录为如图的茎叶图.记A、B两酒店的宗合评分数据的均值为,,方差为S A2,S B2,若以此为依据,下述判断较合理的是()A.因为,S A2>S B2,应选择A酒店B.因为,S A2<S B2,应选择A酒店C.因为,S A2>S B2,应选择B酒店D.因为,S A2<S B2,应选择B酒店2. 根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关3. 某市为调查学生的学习负担,在某一所学校门口随机抽取一部分学生进行询问调查,这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.以上都不是4. (5分)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.5.(5分) 2020年,面对突如其来的新冠肺炎疫情冲击,在党中央领导下,各地区各部门统筹疫情防控和经济社会发展取得显著成效,商业模式创新发展,消费结构升级持续发展.某主打线上零售产品的企业随机抽取了50名销售员,统计了其2020年的月均销售额(单位:万元),将数据按照[12,14),[14,16),⋯,[22,24]分成6组,制成了如图所示的频率分布直方图.已知[14,16)组的频数比[12,14)组多4.(1)求频率分布直方图中a和b的值;(2)该企业为了挖掘销售员的工作潜力,对销售员实行冲刺目标管理,即给销售员确定一个具体的冲刺目标,完成这个冲刺目标,则给予额外的奖励.若公司希望恰有20%的销售人员能够获得额外奖励,求该企业应该制定的月销售冲刺目标值.参考答案与试题解析用样本估计总体练习题(1)一、选择题(本题共计 3 小题,每题 5 分,共计15分)1.【答案】B【考点】茎叶图【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】频率分布直方图【解析】此题暂无解析【解答】解:从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;2004−2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;从图中看出,2006年以来我国二氧化硫年排放量呈减少趋势,故C正确;2006年以来我国二氧化硫年排放量呈减少趋势,而不是与年份正相关,故D错误.故选D.3.【答案】D【考点】收集数据的方法【解析】利用排除法,本题既不是系统抽样,又不是分层抽样,它的形式类似于简单随机抽样,但它不符合简单随机抽样的两种形式抽签法和随机数表法,不属于三种抽样方法的任一种.【解答】解:由题意知,本题既不是系统抽样,也不是分层抽样,它的形式类似于简单随机抽样,但是它不符合简单随机抽样的两种形式,即抽签法和随机数表法;∴排除系统抽样,分层抽样和简单随机抽样三种方法.故选:D.二、填空题(本题共计 1 小题,共计5分)4.【答案】6.8【考点】茎叶图极差、方差与标准差【解析】根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.【解答】∵ 根据茎叶图可知这组数据是8,9,10,13,15这组数据的平均数是8+9+10+13+155=11 ∴ 这组数据的方差是15[(8−11)2+(9−11)2+(10−11)2+(13−11)2+(15−11)2]=15[9+4+1+4+16]=6.8三、 解答题 (本题共计 1 小题 ,共计5分 )5.【答案】解:(1)由题意得{(a +b +0.12+0.14+0.10+0.04)×2=1,50×b ×2−50×a ×2=4,解得a =0.03,b =0.07.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为1−0.8=0.2.最后一组的面积是0.04×2=0.08,最后两组的面积之和为0.10×2+0.04×2=0.28.因为0.08<0.2<0.28,所以x 位于倒数第二组,则(22−x )×0.10+0.08=0.2,解得x =20.8.所以该企业的月销售冲刺目标值应该定为20.8万元.【考点】频率分布直方图【解析】无无【解答】解:(1)由题意得{(a +b +0.12+0.14+0.10+0.04)×2=1,50×b ×2−50×a ×2=4,解得a =0.03,b =0.07.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为1−0.8=0.2.最后一组的面积是0.04×2=0.08,最后两组的面积之和为0.10×2+0.04×2=0.28.因为0.08<0.2<0.28,所以x位于倒数第二组,则(22−x)×0.10+0.08=0.2,解得x=20.8.所以该企业的月销售冲刺目标值应该定为20.8万元.。
随机抽样、用样本估计总体习题及答案解析
随机抽样、用样本估计总体1.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有 根棉花纤维的长度小于20 mm.惠生活 观影指南爱尚嘟嘟园迅播影院请支持我们,有更多资源和动力【答案】 30【解析】 因为频率分布直方图的矩形的高为,频率概率故矩形的高⨯组距即为频率.从图中可知长 度小于20 mm 的频率为(0.01+0.01+0.04)50⨯=.3,又总体为100根,故纤维长度小于20 mm 的根 数为1000⨯.3=30根. 惠生活 观影指南 爱尚 嘟嘟园 迅播影院 请支持我们,有更多资源和动力 课后作业夯基基础巩固2.从2 008名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽 样从2 008人中剔除8人,剩下的2 000人再按系统抽样的方法抽取,则这2 008名学生中每人入选的概率( )A.不全相等B.均不相等C.都相等,且为502008D.都相等,且为140【答案】 C 【解析】 随机抽样过程中,保证每个个体被抽取的可能性是相等的,所以每人入选的概率都相等,且为502008. 3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年 级的学生中应抽取的人数为… ( )A.6B.8C.10D.12【答案】 B【解析】 分层抽样的原理是按照各部分所占的比例抽取样本,设从高二年级抽取的学生数为n ,则30640n=,得n =8. 4.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的 频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C.60D.45【答案】A【解析】样本中产品净重小于100克的频率为(0.050+0.100)⨯2=0.3,频数为36.样本总数为36120 03= ..∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)20⨯=.75, ∴样本中净重大于或等于98克并且小于104克的产品的个数为1200⨯.75=90.5.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92【答案】A【解析】按照从小到大的顺序排列为87,89,90,91,92,93,94,96.∵有8个数据,∴中位数是中间两个数的平均数:91922+=91.5,平均数为8789909192939496918+++++++=.5,故选A.6.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.6【答案】D【解析】每一个数据都加上60时,平均数也应加上60,而方差不变.7.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为.【答案】40【解析】在系统抽样中,确定分段间隔k,对编号进行分段,(N k N n=为总体的容量,n 为样本的容量), ∴12004030N k n ===. 8.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知 学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 .【答案】 20【解析】 根据题意,56人应分为4组,每组14人,第一组为6号,第二组为6+14=20号,第三组为20+14=34号,第四组为34+14=48号,故还有一个同学的学号为20.9.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频率分布直方图如图,则由此估计该厂工人一天生产该产品数量在[55,70)的人数约占该厂工人总数的百分率是 .【答案】 52.5%【解析】 结合频率分布直方图可以看出:生产数量在[55,65)的人数频率为0.04100⨯=.4,生产数量在[65,75)的人数频率为0.025⨯10=0.25,而生产数量在[65,70)的人数频率约为0.25⨯102=.125,那么生产数量在[55,70)的人数频率约为0.4+0.125=0.525,即52.5%. 10.(2011江苏高考,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差2s = .【答案】 165【解析】 ∵10685675x ++++==, ∴2s = 22222(107)(67)(87)(57)(67)1655-+-+-+-+-=. 11.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图,则该组数据的方差为.【答案】 5 【解析】 该运动员6场的总得分为14+17+18+18+20+21=108,平均得分为10818(6=分),方差为 2222221[(1418)(1718)(1818)(1818)(2018)(2118)]56-+-+-+-+-+-=,故填5. 12.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如 下表:惠生活 观影指南 爱尚 嘟嘟园 迅播影院 请支持我们,有更多资源和动力(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适【解】 (1)画茎叶图,如图所示,中间数为数据的十位数.从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙总体得分情况比甲好(2)根据公式得3333x x =,=甲乙;s =甲 3.96s ,=乙 3.35;甲的中位数是33,乙的中位数是综合比较选乙参加比赛较为合适.。
高三数学用样本估计总体试题
高三数学用样本估计总体试题1.某学生在一门功课的22次考试中,所得分数如下茎叶图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117B.118C.118.5D.119.5【答案】B【解析】22次考试分数最大为98,最小为56,所以极差为98-56=42,从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118,故选B.【考点】茎叶图.2. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,一般情况下PM2.5的浓度越大,大气环境质量越差.右边的茎叶图表示的是成都市区甲乙两个监测站某10日内每天的PM2.5浓度读数(单位:),则下列说法正确的是( )A.这10日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等【答案】C【解析】甲的极差是98-43=55,乙的极差是94-37=57,两者不相等,A错误;甲的中位数是=74,乙的中位数是68,甲的中位数较大,B错误;乙的众数为68,与中位数相同,C正确;甲的平均数是(43+63+65+72+73+75+78+81+86+98)×=73.4乙的平均数是(37+58+61+65+68+68+71+77+82+94)×=68.1,可知D错误【考点】统计,茎叶图,极差,中位数,众数,平均数.3.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5) 4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5) 3根据样本的概率分布估计,大于或等于31.5的数据约占()A.B.C.D.【答案】B【解析】大于或等于31.5的数据是最后的3组,故大于或等于31.5的数据约占=.4.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)(2)质量指标值的样本平均数为100,质量指标值的样本方差为104(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)根据频率分布表与频率分布直方图的关系,先根据:频率=频数/总数计算出各组的频率,再根据:高度=频率/组距计算出各组的高度,即可以组距为横坐标高度为纵坐标作出频率分布直方图;(2)根据题意欲计算样本方差先要计算出样本平均数,由平均数计算公式可得:质量指标值的样本平均数为,进而由方差公式可得:质量指标值的样本方差为;(3)根据题意可知质量指标值不低于95的产品所占比例的估计值为,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.试题解析:(1)(2)质量指标值的样本平均数为.质量指标值的样本方差为.所以这种产品质量指标值(3)质量指标值不低于95的产品所占比例的估计值为,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【考点】1.频率分布表;2.频率分布直方图;3.平均数与方差的计算5.某车间名工人年龄数据如下表:合计(1)求这名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这名工人年龄的茎叶图;(3)求这名工人年龄的方差.【答案】(1)众数为,极差为;(2)详见解析;(3).【解析】(1)根据频率分布表中的相关信息结合众数与极差的定义求出众数与极差;(2)根据频率分布表中的信息以及茎叶图的作法作出这名工人年龄的茎叶图;(3)根据茎叶图所反映的信息,先求出平均数,然后根据方差的计算公式求出这名工人年龄的方差.(1)这名工人年龄的众数为,极差为;(2)茎叶图如下:(3)年龄的平均数为,故这名工人年龄的方差为.【考点】本题考查茎叶图、样本的数字特征,考查茎叶图的绘制,以及样本的众数、极差、平均数以及方差的计算,属于中等题.6.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【答案】C【解析】由图知,样本总数为设第三组中有疗效的人数为,则,故选C.【考点】频率分布直方图.7.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)【答案】(1);(2),;(3)第4组.【解析】(1)由频率分布表与频率分布直方图即可得结果;(2)由频率分布直方图即可得的值;(3)求平均数..(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6=2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是.从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为.(2)课外阅读时间落在组的有17人,频率为,所以,课外阅读时间落在组的有25人,频率为,所以.(3)估计样本中的100名学生课外阅读时间的平均数在第4组.【考点】本小题主要考查频率分布表、频率分布直方图、频率与概率的关系等基础知识,难度不大,熟练基础知识是解决好本类题目的关键.8.(2014·厦门模拟)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.B.C.D.2【答案】D【解析】因为=1,得a=-1,所以s2=[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.9.在样本的频率分布直方图中,共有n个小矩形,若中间一个小矩形的面积等于其余(n-1)个小矩形面积的,且样本容量为300,则中间一组的频数为( )A.30B.40C.50D.60【答案】C【解析】设中间一个小矩形的面积为x,则其余(n-1)个小矩形面积和为5x,所以x=。
分层抽样和用样本数据估计总体专练
分层抽样练习1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是()A.①用简单随机抽样法;②用系统抽样法B.①用分层抽样法;②用简单随机抽样法C.①用系统抽样法;②用分层抽样法D.①用分层抽样法;②用系统抽样法2.简单随机抽样、系统抽样和分层抽样之间的共同点是()A.都是从总体中逐个抽取B.将总体分成几部分,按事先确定的规则在各部分抽取C.抽样过程中每个个体被抽到的机会是相等的D.将总体分成几层,然后各层按照比例抽取3.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法D.分层抽样法4.一个年级有12个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为14的同学参加交流活动,这里运用的是什么抽样方法()A.分层抽样B.抽签法C.随机数表法D.系统抽样5.某工厂生产A、B、C 三种不同型号的产品,产品的数量之比依次为现在用分层抽样的方法抽出容量为n的样本,样本中A号产品有15件,那么样本容量n为() A.50 B.60 C.70 D.806.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工的身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为() A.9 B.18 C.7 D.367.2011年某市共有30万公务员参加计算机等级考试,为了分析考试情况,评卷人员对其中1000名公务员的成绩进行分析,下列说法中正确的是()A.30万公务员是总体B.每名参加考试的公务员的考试成绩是个体C.1000名公务员是总体的一个样本D.1000名公务员是样本的容量8.在某班元旦晚会上,现场的一个游戏要求从观众中选出5人参与,下列抽样方法最合适的是() A.分层抽样B.系统抽样C.随机数表法D.抽签法9.采用分层抽样的方法抽取一个容量为45的样本,高一年级被抽取20人,高三年级被抽取10人,高二年级共有300人,则这个学校共有高中学生____人.()A.1350 B.675 C.900 D.45010.某单位有老年人28人,中年人54人,青年人81人.为了调查它们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样11.某地区有农民、工人、知识分子家庭共计2004户,其中农民家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上) ①简单随机抽样②系统抽样③分层抽样12.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________人.13.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.14.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示.15.某校在校高中学生有1600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问应当采用何种抽样方法?高三学生中应抽查多少人?17.一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法,从这批产品中抽取一个容量为20的样本.18.对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供如下资料:请根据上述资料,设计一个样本容量为总体容量的110的抽样方案.用样本的数字特征估计总体的数字特征同步练习题一、选择题:1.关于平均数、中位数、众数的下列说法中正确一个是( )A.中位数可以准确的反映出总体的情况B.平均数数可以准确的反映出总体的情况C.众数数可以准确的反映出总体的情况D.平均数、中位数、众数都有局限性,都不能准确的反映出总体的情况 2.设6,5,4321===x x x ,则该样本的标准差为( )A.33 B.36 C.35 D.37 3.一个样本数据从小到大的顺序排列为50,30,28,23,,20,15,12x ,其中,中位数为22, 则=x ( )A.21B.15C.22D.354.甲、乙两名射击运动员,在一次连续10次的射击中,他们所射中环数的平均数一样, 但方差不同,正确评价他们的水平是( )A.因为他们所射中环数的平均数一样,所以他们水平相同;B.虽然射中环数的平均数一样,但方差较大的,潜力较大,更有发展前途;C.虽然射中环数的平均数一样,但方差较小的,发挥较稳定,更有发展前途;D.虽然射中环数的平均数一样,但方差较小的,发挥较不稳定,忽高忽低;5.已知一组数据为13,10,,4,1,8x --且这组数的中位数是7,那么数据中的众数是( ) A.7 B.6 C.4 D.106.一组数据的方差为2s ,将这组数据中的每个数据都扩大2倍,所得一组新数据的 方差为( )A.2s B.221s C.22s D.24s 7.若x 是10021,,,x x x 的平均值,1a 为4021,,,x x x 的平均值,2a 为100241,,,x x x 的 平均值,则下列式子中正确的是( ) A.100604021a a x +=B.100406021a a x +=C.21a a x +=D.221a a x +=二、填空题:8.数据11,10,8,7,7,5的中位数、众数、平均数分别是 9.若6个数的标准差为2,平均数为1,则此六数的平方和为 10.若40个数据的平方和是36,平均数是22,则这组数据的标准差是 11.一组数据的方差为231,若将该组数据中的每一个数都减去10得到一组新数据,则该组新数据的方差为 三、解答题:12.甲乙两位同学进行投篮比赛,每人玩5局.每局在指定线外投篮,若第一次不进,再投第二次,依此类推,但最多只能投6次.当投进时,该局结束,并记下投篮次数.当6投不进,该局也结束,记为“×”.当第一次投进得6分,第二次投进得5分,第三次投进得4分,依此类推.第6次不投进,得0分.两人投篮情况如下:请通过计算,判断那个投篮的水平高?。
初三用样本估计总体练习题
初三用样本估计总体练习题样本估计是统计学中一种重要的方法,它通过从总体中抽取一部分样本数据,来推断总体的特征。
在初三数学学习中,样本估计也是一个重要的概念。
下面是一些初三用样本估计总体的练习题,帮助学生更好地理解和应用样本估计。
一、选择题1. 一位班级有50名学生的数学老师想要了解学生们的平均数学成绩。
他从这个班级中随机选择了10名学生,并计算出他们的平均成绩。
这个平均数是属于:A. 样本均值B. 总体均值C. 总体标准差D. 样本标准差2. 一位研究员想要了解某工厂的员工平均工资。
他从该工厂中随机选择了200名员工,并计算出他们的平均工资。
这个平均数是属于:A. 样本均值B. 总体均值C. 总体标准差D. 样本标准差3. 在一项市场调查中,研究员通过电话随机抽取了1000名市民进行问卷调查,以了解他们对某产品的购买意愿。
这里的1000名市民构成了:A. 总体B. 样本C. 参数D. 统计量二、填空题1. 从总体抽取的样本是对总体的 _________.2. 样本均值是对总体均值的 _________估计.3. 当样本容量增加,样本均值的标准差会 _________.三、解答题1. 一个森林里有许多树木,研究员想要了解这个森林中树木的平均高度。
由于时间和资源有限,研究员只能测量50棵树的高度。
请简要说明研究员是如何使用样本估计总体的平均高度的。
研究员选择了一个样本,测量了其中的50棵树木的高度。
通过计算这50个测量值的平均数,即样本均值,研究员可以得到一个关于样本的平均高度的估计。
然后,研究员可以将这个样本均值作为总体平均高度的估计值,即用样本估计总体平均高度。
2. 一家餐厅想要了解每晚就餐的平均人数。
为了估计总体平均人数,餐厅在连续的20个晚上每晚都记录了顾客的人数。
请简要说明餐厅是如何使用样本估计总体的平均人数的。
餐厅记录了连续的20个晚上的顾客人数,并计算了这20个晚上的人数的平均值,即样本均值。
用样本估计总体练习试题
第二节用样本估计总体时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·卷)如下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)的频率为( )A.0.2 B.0.4C.0.5 D.0.6解析由茎叶图可知数据落在区间[22,30)的频数为4,所以数据落在区间[22,30)的频率为410=0.4,故选B.答案 B2.(2013·卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.答案 D3.(2013·卷)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析由茎叶图知,各组频数统计如下表:分组区间[0,5)[5,10)[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)频数统计1142433 2答案 A4.(2014·预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲B.乙C.甲乙相等D.无法确定解析由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选A.答案 A5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:最佳人选是( )A .甲B .乙C .丙D .丁解析 由题目表格中数据可知,丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好,选C.答案 C6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ) A .n <mB .n >mC .n =mD .不能确定解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y ,所以n x +m y =(m +n )αx +(m +n )(1-α)y .所以⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α). 于是有n -m =(m +n )[α-(1-α)]=(m+n)(2α-1).因为0<α<12,所以2α-1<0.所以n-m<0,即n<m.答案 A二、填空题(本大题共3小题,每小题5分,共15分)7.某校举行2014年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为________.解析根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85.答案858.(2014·调研)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x =________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.解析 由频率分布直方图知20x =1-20×(0.025+0.006 5+0.003+0.003),解得x =0.012 5.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72人可以申请住宿.答案 0.012 5 729.(2014·联考)已知x 是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x ,-y 这四个数据的平均数为1,则1x+y 的最小值为__________.解析 由已知得3≤x ≤5,1+3+x -y 4=1, ∴y =x ,∴1x +y =1x +x ,又函数y =1x+x 在[3,5]上单调递增,∴当x =3时取最小值103. 答案 103三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·调研)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出的次品数分别是:分别计算两个样本的平均数与方差,从计算结果看,哪台机床10天生产中出次品的平均数较小?出次品的波动较小?解x甲=110×(0×3+1×2+2×3+3×1+4×1)=1.5,x乙=110×(0×2+1×5+2×2+3×1)=1.2,s2甲=110×[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4-1.5)2]=1.65,s22=110×[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2+(1-1.2)2]=0.76.从结果看乙台机床10天生产中出次品的平均数较小,出次品的波动也较小.11.(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度的市场需求量,T(单位:元)表示下一个销售季度经销该农产品的利润.(1)将T 表示为X 的函数; (2)根据直方图估计利润T 不少于57 000元的概率.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度的利润T 不少于57 000元的概率的估计值为0.7.12.(2013·卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2, 估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600. 样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56. (2)设甲、乙两校样本平均数分别为x ′1,x ′2.根据样本茎叶图可知,30(x ′1-x ′2)=30x ′1-30x ′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x ′1-x ′2=0.5.故x 1-x 2的估计值为0.5分.。
样本估计总体高中练习题及讲解
样本估计总体高中练习题及讲解### 样本估计总体高中练习题及讲解#### 练习题一:简单随机抽样题目:某高中有1000名学生,为了估计该校学生的数学平均成绩,学校决定随机抽取50名学生的成绩进行样本估计。
如果样本平均成绩为85分,样本标准差为10分,求总体数学平均成绩的估计值。
解答:根据简单随机抽样的原理,样本平均数是总体平均数的无偏估计量。
因此,我们可以直接使用样本平均成绩作为总体平均成绩的估计值。
即:\[ \bar{x} = 85 \]这里,\(\bar{x}\) 表示样本平均成绩。
#### 练习题二:分层抽样题目:某校有1000名学生,其中男生500名,女生500名。
为了估计全校学生的体育课平均成绩,学校决定采用分层抽样方法。
已知男生样本平均成绩为75分,女生样本平均成绩为80分,样本大小分别为100和50。
求总体体育课平均成绩的估计值。
解答:分层抽样的总体平均成绩估计值可以通过加权平均数来计算。
首先,计算男生和女生的加权平均数:\[ \bar{x}_{男} = 75 \]\[ \bar{x}_{女} = 80 \]然后,根据样本大小进行加权:\[ \bar{x}_{总} = \frac{100 \times \bar{x}_{男} + 50 \times \bar{x}_{女}}{100 + 50} \]\[ \bar{x}_{总} = \frac{100 \times 75 + 50 \times 80}{150} \] \[ \bar{x}_{总} = \frac{7500 + 4000}{150} \]\[ \bar{x}_{总} = \frac{11500}{150} \]\[ \bar{x}_{总} = 76.67 \]#### 练习题三:系统抽样题目:某班级有60名学生,为了估计该班级学生的英语成绩,学校决定采用系统抽样方法。
如果从第1名学生开始,每隔5名学生抽取一名,共抽取12名学生的成绩。
第02讲 用样本估计总体 (精练)(教师版)
A .x x <,<s sB .x x <,s s >,,n x 的平均数为),2,3,,n 的平均数为,了解生产的产品是否合格,合理的调查方式为抽样调查,故,根据分层抽样抽样比可知,样本容量为135,故B S 乙,所以甲的数据更稳定,故,,n x 的平均数为nx ++,()1,2,3,,i n =的平均数为n a bx ++-)n x b b b bax n++++++-=·商丘市第一高级中学高一阶段练习)甲、乙、丙、丁四人各掷骰子52,3,4,,6),并分别记录每次出现的点数,四人根据统计结果对各自的试验数据分别做了如下描述:①中位数为,众数为5;②中位数为2,,n ),c .方差 ,原样本数据的平均数nx n++,新样本数据的平均数12nny x x x c nn+++++=+(0c ≠),所以A 错误;,原样本数据的方差())(22211x n s x x x x x n ⎡=⨯--++-⎣(n x ⎡+++⎣(n x x ++-所以B 正确;2,…,n x ,则新样本数据1,2x ,…,分别为最小值和最大值,分别为最小值和最大值,极差为A .甲社团宣传次数的众数小于乙社团宣传次数的众数1,2,,6.⨯⎦636⎤x,则171x,则90 175(= 20166.5cm(1)以每组数据的区间中点值为代表,根据图1估计A公司员工月均工资的平均数、中位数,你认为用哪个(1)求频率分布表中a,b,c的值,并求过去30天内苹果的日平均销售量(单位:kg)(同组数据用该组区(1)根据频率分布直方图,估计该市20到80岁居民年龄的第80百分位数;100100.01010万人,⨯=万人,0.01818⨯=万人,0.02525100100.03030万人,100.01212⨯⨯=万人,⨯⨯=万人,100.0055⨯”100.4(1)求m的值,并估计此次校内测试分数的平均值x;。
28_2 用样本估计总体(重点练)解析版
28.2用样本估计总体(重点练)一、单选题1.(2019·重庆市育才中学九年级期中)为了调查红旗小学六年级学生的兴趣爱好,以下样本最具代表性的是()A.该年级书法社团的学生B.该年级部分女学生C.该年级跑步较快的学生D.从每个班级中,抽取学号为10的整数倍的学生【答案】D【分析】抽样调查中具有代表性是指具有随机性、大众性.【详解】A.书法社团的学生的兴趣爱好大多数是书法,不具代表性,故错误;B.部分女生没有考虑到男生的兴趣爱好,故错误;C.跑步较快的学生兴趣爱好偏向与运动,故错误;D.抽取学号为10的整数倍,具有随机性,故正确.【点睛】此题主要考察抽样调查样本的代表性.2.(2019·湖南望城·九年级期末)为了解我县七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本;⑤500名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个【答案】B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】这种调查方式是抽样调查;故①正确;总体是我市七年级6000名学生期中数学考试情况;故②错误;个体是每名学生的数学成绩;故③正确;样本是所抽取的500名学生的数学成绩,故④错误;样本容量是500,故⑤错误.故选B【点睛】本题考查了总体、个体与样本.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位,难度适中.3.(2020·山东烟台·二模)为了了解2018年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图.根据图中信息,下面3个推断中,合理的是______.①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中至少有一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的范围是60~120元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【答案】D【分析】①根据图中信息可得月均花费超过80元的有500人,故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60-120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,20%左右的人有200人,根据图形可得乘坐地铁的月均花费达到120元的人有200人可以享受折扣.【详解】解:①月均花费超过80元的有200+100+80+50+25+25+15+5=500人,小明乘坐地铁的月均花费是75元,∴所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60-120之间,估计平均每人乘坐地铁的月均花费的范围是60-120;故②正确;③∵1000×20%=200,而80+50+25+25+15+5=00,∴乘坐地铁的月均花费达到120元的人可享受折扣,③正确;故选D.【点睛】本题主要考查了频数分布直方图,抽样调查以及用样本估计总体等内容,准确识图并合理分析是解题的关键.二、填空题4.(2021·全国·九年级单元测试)为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅________只.【答案】200【分析】重新捕捉40只,数一数带有标记的天鹅有2只,说明在样本中,有标记的所占比例为240,而在总体中,有标记的共有10只,估计所占比例,即可解答.【详解】10240÷=200(只).故答案为200.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.5.(2019·全国·九年级单元测试)小新家今年4月份头6天用米量如表:估计小新家4月份用米量为________kg.【分析】先计算出这6天一共用米的量,再算出平均每天用米的量,从而计算出小新家4月份用米的总量.【详解】解根据题意得:(0.6+0.8⨯2+0.9⨯2+1.0)÷6=56 (kg),则小新家4月份用米量为: 56⨯30=25(kg);故答案为:25.;【点睛】本题考查的是通过样本去估计总体,总体平均数约等于样本平均数. 6.(2020·北京·九年级专题练习)小明调查了他所在年级三个班学生的身高,并进行了统计,列出如下频数分布表:155cm”可能性最大.【答案】1班【分析】先计算出三个班中身高不低于155cm 的人数占总人数的比例,分别进行比较大小即可.【详解】解:1班中身高不低于155cm 的人数占总人数的比例为3940;2班中身高不低于155cm 的人数占总人数的比例为3040;3班中身高不低于155cm 的人数占总人数的比例为3540;通过比较大小可得,抽到1班的身高不低于155cm 可能性最大.故答案为1班. 【点睛】本题考查的可能性的大小.准确计算概率是解题的关键.7.(2020·广东·东莞市长安雅正学校九年级月考)田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________. 【答案】3000【分析】设鱼塘中估计有鱼条,第一次捞出200条,并将每条鱼做上记号再放入水中,当做了记号完全混于鱼群中,又捞出300条,发现带有记号的鱼有20条,由此根据样本估计总体的思想可以列出方程300:20:200x ,解方程即可求解. 【详解】解:∵20÷300=115∴200÷115=3000.故答案为:3000【点睛】本题考查的是概率问题,利用样本估计总体的思想,理解题意找到相等关系是解题关键. 三、解答题8.(2021·全国·九年级课时练习)为了顾及鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n 条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a 条鱼,如果在这a 条中有b 条鱼是有记号的,那么估计鱼塘中鱼的条数为anb,你认为这种估计方法有道理吗?为什么? 【答案】有道理,理由见解析.【分析】首先求出有记号的b 条鱼在a 条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a 条鱼,发现其中带标记的鱼有b 条,∴有标记的鱼占b a. ∵共有n 条鱼做上标记,∴鱼塘中估计有n ÷b a=nab(条),∴这种说法有道理. 【点睛】本题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.9.(2021·河南省淮滨县第一中学九年级期末)一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?【答案】(1)小明可估计口袋中的白球的个数是6个.(2)需准备720个红球.试题分析:(1)用白球的个数:(白球的个数+红球的个数)=40:100,列方程求解;(2)用彩球的总数乘以10040100,即可得到红球的个数.试题解析:(1)解:设白球的个数为x个,根据题意得:解得:x=6小明可估计口袋中的白球的个数是6个.(2)1200×=720.答:需准备720个红球.点睛:本题主要考查了用样本估计总体,其本质是利用概率相等来解决问题,如口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,随机摸出一个,摸出白球的概率与重复100次摸到40次白球的概率相同,从而列方程求解.10.(2018·安徽·宣城市第六中学九年级月考)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.【答案】(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.【分析】(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;【详解】(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为a=10,b=0.28,c=50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).11.(2019·全国·九年级单元测试)小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.【答案】(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.【分析】(1)根据15——40岁的居民所占百分比求出总人数,再得各段的百分比,从而求出a,b 的值,(2)见下图,(3)根据年龄在0~14岁的居民所占比重求出总人数,乘以年龄在15~59岁的居民的占比即可.【详解】解:(1)根据题意得:144÷48%=300(名),a=60÷300×100%=20%,b=36÷300×100%=12%,(2)41~59岁的居民有300×20%=60(人),补图如下:(3)根据题意得:总人数:1500÷20%=7500(人),7500×(20%+48%)=5100(人).【点睛】本题考查了统计图的实际应用,用样本估计总体,中等难度,从统计图中得到有用信息是解题关键.12.(2019·山西·九年级专题练习)晋剧(山西梆子)是我国北方的一个重要戏剧剧种,也叫中路戏,是国家级非物质文化遗产.某校在传统文化活动周期间拟向同学们推介晋剧,并就“你想要听哪部晋剧曲目”调查了部分学生,选择曲目有:A.《打金枝》,B.《战宛城》,C.《杀宫》,D.《火焰驹》,E,《双锁山》,每个学生只能选择一部,根据统计结果绘制了如下不完整的统计图.请根据以上信息,解答下列问题:(1)请补全条形统计图;(2)在扇形统计图中,扇形A的圆心角是多少度?(3)若该校共有2000名学生,请你估计想听《战宛城》的学生有多少人?(4)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到想听《火焰驹》的学生的概率是多少?【答案】(1)补图见解析;(2)54°;(3)500人;(4)15【分析】(1)根据E 的特征,结合两种统计图求出总人数,进而求出B,D 组对应的人数即可; (2)先求出A 组所占的百分比,再乘以360°即可; (3)用2000乘以B 组所占百分比即可; (4)根据概率=D 组人数÷总人数即可解题. 【详解】解:(1)补全条形统计图如解图;调查学生的总人数为2430%80÷=(人),选择B 的人数为8025%20⨯=(人),选择D 的人数为80122082416----=(人),据此补全条形统计图. (2)选择A 的人数所占百分比为12100%15%80⨯=, ∴扇形A 所对应扇形的圆心角度数为3601554%︒︒⨯=.(3)200025%500⨯=(人),∴估计想听《战宛城》的学生有500人;(4)共有80人,其中想听《火焰驹》的有16人,P ∴(正好抽到想听《火焰驹》的学生)161805==, ∴随机抽取一人正好抽到想听《火焰驹》的学生的概率是15【点睛】本题考查了统计与概率,用样本信息估计总体信息,属于简单题,找到两种统计图之间的信息关联是解题关键,主要失分原因是: ①找不到扇形统计图和条形统计图中的对应关系;②补全条形统计时作图不规范;③在计算概率时发生错误.13.(2020·江苏吴江·一模)苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.(1)a=,b=;(2)补全频数分布直方图;(3)请估计该校1500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.【答案】(1)12;0.2;(2)见解析;(3)975人【分析】(1)首先求得总人数,然后根据频率的定义求得a和b的值;(2)根据(1)即可直接补全直方图;(3)利用总人数乘以对应的频率即可求解.【详解】解:(1)调查的总人数是:4÷0.1=40(人),则a=40×0.3=12(人),b=8÷40=0.2,故答案是:12,0.2;(2)根据(1)求出的频数,补全统计图如下:(3)根据题意得:1500×(0.1+0.3+0.25)=975(人),答:该校1500名初中学生中,约有975名学生在1.5小时以内完成家庭作业.【点睛】此题考查了统计表及频数分布直方图,读懂统计图表.,会计算部分的数量,根据部分的百分比求总体的数量,从统计图中得到必要的信息是解决问题的关键. 14.(2021·山东巨野·一模)2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在-----范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.【答案】(1)85~90(2)24人(3)1/3【详解】解:(1)由条形图可知,分数段在85~90范围的人数最多为10人,故答案为85~90;(2)全校参加比赛的人数=5+10+6+3=24人;(3)上衣和裤子搭配的所有可能出现的结果如图所示,共有9总搭配方案,其中,上衣和裤子能搭配成同一种颜色的有3种,上衣和裤子能搭配成同一种颜色的概率为:31 93(1)由条形图可直接得出人数最多的分数段;(2)把各小组人数相加,得出全校参加比赛的人数;(3)利用“树形图法”,画出搭配方案,由此可求上衣和裤子能搭配成同一种颜色的概率15.(2020·北京市第十三中学九年级开学考试)某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y低于0.4的有人;②将20名患者的指标x的平均数记作1x,方差记作21s,20名非患者的指标x的平均数记作2x,方差记作22s,则1x2x,21s22s(填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x低于0.3的大约有人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.【答案】(1)①9;②<,>;(2)100;(3)0.25【分析】(1)①直接统计指标y低于0.4的有人的个数即可;②通过观察图表估算出指标x、y的平均数,然后再进行比较即可确定平均数的大小;根据点的分散程度可以确定方差的大小关系.(2)先估算出样本中未患这种疾病的人中指标x低于0.3的概率,然后500乘以该概率即可;(3)通过观察统计图确定不在“指标x低于0.3,且指标y低于0.8”范围内且患病的人数,最后用概率公式求解即可.【详解】解:(1)①经统计指标y低于0.4的有9人,故答案为9;②观察统计图可以发现,1x大约在0.3左右,2x大约在0.6左右,故1x<2x;观察图表可以发现,x指标的离散程度大于y指标,故21s>22s;故答案为<、>;(2)由统计图可知:在20名未患病的样本中,指标x低于0.3的大约有4人,则概率为420;所以的500名未患这种疾病的人中,估计指标x低于0.3的大约有500×420=100人.故答案为100;(3)通过统计图可以发现有五名患病者没在“指标x低于0.3,且指标y低于0.8”,漏判;则被漏判的概率为520=0.25.答:被漏判的概率为0.25.【点睛】本题考查概率的求法,平均数、方差的估计等基础知识,从统计图中获取信息、估计平均数和方差是解答本题的关键.16.(2021·浙江湖州·九年级月考)感恩节即将来临,小王调查了初三年级部分同学在感恩节当天将以何种方式对帮助过自己的人表达感谢,他将调查结果分为如下四类:A类——当面表示感谢、B类——打电话表示感谢、C类——发短信表示感谢、D类——写书信表示感谢.他将调查结果绘制成了如图所示的扇形统计图和条形统计图.请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有4人来自同一班级,其中有2人主持过班会.现准备从他们4人中随机抽出两位同学主持感恩节主题班会课,请用树状图或列表法求抽出1人主持过班会而另一人没主持过班会的概率.【答案】(1)见解析;(2)2 3【分析】(1)联系扇形统计图和条形统计图的信息分别求出调查的学生总数、C类人数和B 类人数,然后画图即可;(2)先采用列表法或树状图法列出所有机会均等的结果,然后求出抽出1人主持过班会而另一人没主持过班会的概率.【详解】(1)调查的学生总数为510÷%50=(人),C类人数为1085015360⨯=(人),B类人数为505151218---=(人),条形统计图为:(2)设主持过班会的两人分别为1A 、2A ,另两人分别为1B 、2B ,填表如下:所以P (抽出1人主持过班会而另一人没主持过班会)82123==. 【点睛】此题主要考查关联扇形统计图与条形统计图、通过列表法与树状图法求概率,解题关键是正确读懂统计图的信息.17.(2021·山东中区·一模)加强劳动教育是学校贯彻“五育并举”的重要举措.为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项: A .1小时以下 B .1~2小时(不包含2小时) C .2~3小时(包含2小时) D .3小时以上图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)填空:本次问卷调查一共调查了______名学生; (2)请将图①的条形统计图补充完整; (3)并求出图②中D 部分所对应的圆心角度数;(4)若该校共有1800名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)?【答案】(1)200;(2)见解析;(3)18︒;(4)估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)【分析】(1)根据B 选项人数及其占被调查人数的比例计算即可得出答案. (2)用总人数减去其他选项的人数求出D 选项的人数,即可补全统计图; (3)用360︒乘以D 部分所占的百分比即可得出D 部分所对应的圆心角度数;(4)用该校的总人数乘以每周在家参加家务劳动的时间在2小时以上(包含2小时)的人数所占的百分比即可.【详解】解:(1)本次问卷调查一共调查的学生数是:10050%200÷=(名) 故答案为:200;(2)劳动的时间在3小时以上的人数有:200601003010---=(名),补全统计图如下:(3)D 部分所对应的圆心角度数是1036018200⨯=︒︒; (4)根据题意得:30101800360200+⨯=(名), 答:估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时). 【点睛】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,学会用样本估计总体的思想解决问题,属于基础题,中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.4 用样本估计总体习题课
1、随机抽样的三种方法是、、
2、在简单随机抽样中,常用的两种办法是、
3、画频率分布直方图的步骤是:
4、茎叶图的两个优点是:
(1)
(2)
课内探究一:用样本的平均数估计总体的平均数
【例1】从一种棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352
计算这25根棉花的纤维的平均长度,并估计这种棉花的纤维的平均长度?
问题一:计算数据的平均数有没有较为简便的方法?
跟踪训练:上图是CBA篮球联赛中,甲乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的运动员是________.
课内探究二:用样本的标准差估计总体的标准差
【例2】在一次跳远选拔比赛中,甲、乙两名运动员各进行了10次测试,成绩如下:
甲运动员﹕5.85 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19;
乙运动员﹕6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21;
观察上述样本数据,如果你是教练,选哪位选手去参加正式比赛?为什么?
跟踪训练:
1、甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):
甲:99,100,98,100,100,103
乙:99,100,102,99,100,100
(1)分别计算上述两组数据的平均数和方差;
(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求.
2、某校开展“爱我海西、爱我家乡”摄
影比赛,9位评委为参赛作品A给出的
分数如茎叶图所示.记分员在去掉一个
最高分和一个最低分后,算得平均分为
91.复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是________.。