勾股定理导学案

合集下载

八年级数学下-勾股定理导学案(全)

八年级数学下-勾股定理导学案(全)

勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2、培养在实际生活中发现问题总结规律的意识和能力。

3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。

重点:勾股定理的内容及证明。

难点:勾股定理的证明。

"学习过程:一、预习新知1、正方形边长和面积有什么数量关系2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系归纳:等腰直角三角形三边之间的特殊关系。

(1)那么一般的直角三角形是否也有这样的特点呢>(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗(4)对于更一般的情形将如何验证呢二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S正方形=_______________=____________________、方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

.以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,>它的面积等于21c 2. 又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC.∴ ABCD 是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是 。

八年级数学下_勾股定理导学案(全)

八年级数学下_勾股定理导学案(全)

18、1 勾股定理(1)学习目标:1、了解勾股定理得发现过程,掌握勾股定理得内容,会用面积法证明勾股定理。

2、培养在实际生活中发现问题总结规律得意识与能力。

3、介绍我国古代在勾股定理研究方面所取得得成就,激发爱国热情,勤奋学习。

重点:勾股定理得内容及证明。

难点:勾股定理得证明。

学习过程: 一、预习新知1、正方形边长与面积有什么数量关系?2、以等腰直角三角形两直角边为边长得小正方形得面积与以斜边为边长得大正方形得面积之间有什么关系?归纳:等腰直角三角形三边之间得特殊关系。

(1)那么一般得直角三角形就是否也有这样得特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3与4得直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

(3)通过三个正方形得面积关系,您能说明直角三角形就是否具有上述结论吗? (4)对于更一般得情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等得直角三角形,拼成如图图形,利用面积证明。

S 正方形=_______________=____________________ 方法二;已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 得对边为a 、b 、c 。

求证:a 2+b 2=c 2。

以a 、b 为直角边,以c 为斜边作两个全等得直角三角形,则每个直角三角形得面积等于21ab 、 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上、 ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC 、∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º、 ∴ ∠DEC = 180º―90º= 90º、 ∴ ΔDEC 就是一个等腰直角三角形, 它得面积等于21c 2、 又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC 、∴ ABCD 就是一个直角梯形,它得面积等于_________________归纳:勾股定理得具体内容就是 。

勾股定理导学案

勾股定理导学案

3.1探究勾股定理(1)学习目标:理解并掌握几种常见的勾股定理验证方法;简单应用。

学习过程:我们发现,正方形 P 、 Q 、 R 的面积之间的关系是 ___________________________ .[网]由此,我们得出直角三角形 ABC 的三边的长度 之间存在关系 __________________________ .2 •课本66页“做一做”(1)_______________________________________________________________(2) _______________________________________________________________________(3) ________________________________________________________________________问题探究:.(每一小方格表示i 平方厘米) 正方形R 的面积二 ______________ 平方厘米. P 的面积3.______________________________________________ 对于任意的直角三角形,____________________________________________________________ 等于斜边的平方。

如果它的两条直角边分别为a、b,斜边为c,那么________ ,这种关系我们称为____________ •定理应用:课本67页“想一想”课堂练习:1、课本67页随堂练习课堂自测:1.如图1,是由一个直角三角开和两个正方形组成的,如果大正方形的面积等于41, AB=5,那么小正方形的边长等于()A.36B.16C.6D.42.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为__________ •3.如图,在底面周长为12cm高为8cm的圆柱体上有A、B两点,在A点,有一只小蚂蚁,现在向点B处爬行,则小蚂蚁爬行的最短距离为()•A.4 cmB.8 cmC.10 cmD.5 cm4.如图,是边长为1m的小正方形地砖铺成的地面示意图,小明沿图中所示的折线从点A到B,再走到点C,最后回到点A,所走的路程为m.[来源:学§科§3.1探索勾股定理(2)学习目标厂…图1A1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动发展学生的探究意识和合作交流的习惯2、 掌握勾股定理和它的简单应用。

八年级数学下_勾股定理导学案(全)

八年级数学下_勾股定理导学案(全)

18.1 勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2、培养在实际生活中发现问题总结规律的意识和能力。

3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。

重点:勾股定理的内容及证明。

难点:勾股定理的证明。

学习过程:一、预习新知1、正方形边长和面积有什么数量关系?2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。

(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S正方形=_______________=____________________方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一个等腰直角三角形,它的面积等于c2.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是。

三、随堂练习1、如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B的对边和斜边:;(3)三边之间的关系:四、课堂检测1、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC =________。

初中数学最新版《认识勾股定理》精品导学案(2022年版)

初中数学最新版《认识勾股定理》精品导学案(2022年版)

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理学习目标1、经历用数格子的方法探索勾股定理的过程,进一步开展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2 、探索并理解直角三角形的三边之间的数量关系,进一步开展学生的说理和简单推理的意识及能力。

重点、难点重点:了解勾股定理的由来并能用它解决一些简单问题。

难点:勾股定理的发现。

学习过程一、创设问题的情境,激发学生的学习热情:我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。

对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系。

那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理。

出示投影1〔章前的图文 P1 〕我国是最早了解勾股定理的国家之一介绍商高〔三千多年前周朝数学家〕。

出示投影2。

〔书中P2 图1一2〕并答复:1、观察图1一2,正方形A中有个小方格,即A的面积为个面积单位。

正方形B 中有个小方格.即B的面积为个面积单位。

正方形C 中有个小方格,即C的面积为个面积单位。

2、你是怎样得出上面结果的?在学生交流答复的根底上教师接着发问。

3、图l一2 中,A、B、C之间的面积之间有什么关系?在学生交流后形成共识老师板书。

A + B=C ,接着提出图1一1中A、B、C的关系呢?二、做一做出示投影3〔书中P3 图1一3,图1一4 )提问:1、图1一3中,A 、B、C之间有什么关系?2、图1 一4中,A 、B 、C 之间有什么关系?3、从图1一l 、1一2 、1一3 、l一4中你发现了什么?在学生讨论、交流形成共识后,老师总结:以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。

三、议一议1、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流根底上,老师板书:直角三角边的两直角边的平方和等于斜边的平方。

勾股定理导学案

勾股定理导学案

7.2 探索勾股定理一、学习目标:掌握勾股定理并能利用它来解决简单的实际问题。

二、自学感知:1、三角形按角的大小可分为:、、。

2、三角形的三边关系:三角形的任意两边之和;任意两边之差。

3. 直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。

三、合作探究:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?的面、你能发现直角三角形三边长度之间存在什么关系吗?与同思考:每个图中正方形的面积与三角形的边长有何关系? 归纳得出勾股定理:X直角三角形 等于 ; 几何语言表述:如图,在Rt ΔABC 中, C = 90°, 则: ; 若BC=a ,AC=b ,AB=c ,则上面的定理可以表示 为: 。

总结:如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B 的对边和斜边: ;(3)三边之间的关系:四.交流展示:例题、如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,请你求出旗杆在离底部多少米的位置断裂吗?B例题.在△ABC 中,AB=AC=5cm ,BC=6cm,求△ABC 的面积. 五、达标检测:1.在△ABC 中,∠C=90°,(1)若BC=5,AC=12,则AB= ;(2)若BC=3,AB=5,则AC= ;(3)若BC ∶AC=3∶4,AB=10,则BC= ,AC= . (4) 若AB=8.5,AC=7.5,则BC= 。

2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 . 3.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则BC= ,该直角三角形的面积为 。

4.直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 .5.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。

勾股定理导学案

勾股定理导学案

勾股定理1勾股定理(一)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容, 会用面积法证明勾股定理。

2.利用勾股定理,已知直角三角形的两边求第三条边的长。

学习重点:探索和验证勾股定理。

学习难点:证明勾股定理。

导学流程:一、自主学习前置学习:自学指导:阅读教材第64至66页,完成下列问题。

1.教材第64至65页思考及探究。

2.画一个直角边为3cm和4cm的直角△ ABC,用刻度尺量出AB的长。

(勾3,股4,弦5)o以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

” 这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ ABC,用刻度尺量AB的长。

你是否发现32+ 42与52的关系,52+122和132 的关系,即32 +42______ 52, 52 +122_____ 132,那么就有2 + _______ = ___ 2。

(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?要点感知:如果直角三角形的两直角边长分别是a、b,斜边为c,那么________________________ ,即直角三角形中两直角边的平方和等于斜边的二、展示成果活动1 已知:在^ABC 中,/C=90°, /A、/ B、 /C的对边为a、b、c。

求证:a2+b2 =c2。

证明:如赵爽弦图, ______ 精品教学教案_思考:除此之外,还有证明勾股定理的其他办法吗?活动2如果将活动1中的图中的四个直角三角形按如图所拼,又该如何证明呢?ab知识点归纳:上述问题可视为命题1的证明命题1如果直角三角形的两直角边长分别为a、b,斜边为c,那么______________________ o总结:经过证明被确认正确的命题叫 ____________ o 命题1在我国称为__________________ ,而在西方称为 __________三、合作探究活动3 已知在RtAABC 中,/ C=90°, a、b、c 是^ ABC的三边,贝U(1)__________________ a=(2)__________________ b=(3)__________________ c=活动4 △ABC的三边a2=c ,2>c,2<c,o (已知c、o (已知a、o(已知a、b、c,则/C是—则/C是—则/C是—(1)若满足a2+b2(2)若满足a2+b2(3)若满足a2+b2四、当堂自测基础训练:1.在直角三角形ABC中,/C=90°,若a=5,b = 12,贝y c = ____ o2.在直角三角形ABC中,若a=3,b=5,则c ― _____________ o3.若把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的4.在M B C中,N C =90°.角;角;角o1勾股定理(二)精品教学教案(1) 已知AC =6,BC =8,求AB 的长(2) 已知 AB =17,AC =15,求 BC 的长能力提升: 5.直角三角形的两边长的比是3:4,斜边长是20, 贝U 它的两直角边的长分别是 _____________________ 。

勾股定理课堂导学案

勾股定理课堂导学案

勾股定理课堂导学案勾股定理课堂导学案勾股定理课堂导学案一、学习目标:1、了解多种拼图方法,验证勾股定理,感受解决同一个问题方法的多样性。

2、通过实例进一步了解勾股定理,应用勾股定理进行简单的计算和证明。

,3、进一步体会数形结合的思想以及数学知识之间内在联系。

二、学习重点:通过自主学习验证归纳勾股定理。

并进行应用。

三、学习过程:(一)、学前准备:1、每位同学准备四个全等的直角三角形。

2、自主阅读课本本节内容。

(二)、自学、合作探究:活动一:各小组用8个同样大小的直角三角形,如图1、2拼图。

活动二:各小组派代表上来展示自己的拼图,并说出它的特点。

活动三、计算你所拼的图形的阴影面积,你能发现什么?每一小组选一种图形写出验证的过程,小组间进行交流。

(三).归纳定理:①用语言表达勾股定理②用式子表达勾股定理③运用勾股定理时该注意些什么?(四).定理应用:例1、在Rt△ABC中,∠C=90°,(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。

(提示先构好图)例2、下列各图中所示的线段的长度或正方形的面积为多少。

(注:下列各图中的三角形均为直角三角形)教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。

下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。

请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。

]鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:场景二:正方形的性质师:这些性质里那些是矩形的性质?[学生活动:寻找矩形性质。

勾股定理导学案

勾股定理导学案

第十八章勾股定理第一课时勾股定理【学习目标】1.了解勾股定理的文化背景,体验勾股定理的探索过程。

2.了解利用拼图验证勾股定理的方法。

3.利用勾股定理,已知直角三角形的两边求第三边的长。

【重点难点】重点:探索和体验勾股定理。

难点:用拼图的方法验证勾股定理。

【授课时数】四课时第一课时【导学过程】一、自主学习毕达哥拉斯是古希腊著名的数学家,相传2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

是什么呢?我们来研究一下吧。

阅读教材P64-P66内容,思考、讨论、合作交流后完成下列问题。

1.请同学们观察一下,教材P64图18.1-1中的等腰直角三角形有什么特点?请用语言描述你发现的特点。

2.等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足这种特点?你能解决教材P65的探究吗?由此你得出什么结论?2.我们如何证明你得出的结论呢?你看懂我国古人赵爽的证法了吗?动手摆一摆,想一想,画一画,证一证吧。

二、合作探究1.教材P69习题18.1第1题。

2.求下图字母A,B所代表的正方形的面积。

3.在直角三角形ABC中,∠C=90°,若a=4,c=8,则b= .三、课堂展示四、感悟释疑五、课堂小结本节课你学到了什么知识?还存在什么困惑?与同伴交流一下。

六.达标测试1.直角三角形的两边长分别是3cm,5cm,试求第三边的长度。

2.你能用下面这个图形证明勾股定理吗?【课后反思】第二课时 勾股定理的应用(1)学校 回郭镇六中 年级 八年级 学科 数学 (下册)执笔 杨晓梅 审核 王晓霞【学习目标】1.能熟练的叙述勾股定理的内容,能用勾股定理进行简单的计算。

2.运用勾股定理解决生活中的问题。

【重点难点】重点:运用勾股定理进行简单的计算。

难点:应用勾股定理解决简单的实际问题。

【授课时数】 第二课时【导学过程】一、自主学习1.什么是勾股定理?它描述了直角三角形中的什么的关系?2、求出下列直角三角形的未知边。

勾股定理导学案

勾股定理导学案

12.11勾股定理(第一课时)一、学习目标:1. 探索并掌握勾股定理。

2.能运用勾股定理解决实际问题。

3.学生经历“观察---猜想---归纳---验证”勾股定理的探索过程,并体会数形结合思想和从特殊到一般的思想方法。

4.通过勾股定理在中国古代的研究,激发学生热爱祖国的热情。

二、学习过程:设疑自探:自探1:观察图形,分别以直角三角形的三边向外做正方形,三个正方形的面积之间有什么关系?直角三角形三边长度之间存在什么关系?自探2:(1)分别以3cm,4cm 为直角边作直角三角形,测量斜边长为____cm 。

(2)计算:32=_____42=______52=_____它们的关系式为______________。

(3)如果两直角边长是6cm,8cm,那么斜边长是______。

(4)猜想:直角三角形中若两条直角边分别为a,b,斜边为c 。

那么a,b,c 所具有的关系是:______________。

解疑合探:利用手中四个全等的直角三角形拼成一个正方形,结合图形,用两种不同方法求出面积,尝试证明:a 2+b 2=c 2 (小组合作探究拼图,证明) 证明:归纳总结得出:几何语言:质疑再探:通过上面的学习,你还有什么问题或疑惑请提出来,大家共同解决。

运用拓展:1.用勾股定理的知识编一道题,两人交换解决。

好的题目班内展示,先展示先得分。

2.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底边的垂直距离AB的长.学科班长总结:1、知识上的收获:2、方法上的收获:3、学生表现:作业:115页1、2题。

人教版数学八年级下册导学案:(勾股定理)勾股定理(导学案)

人教版数学八年级下册导学案:(勾股定理)勾股定理(导学案)

第十七章 勾股定理17.1 勾股定理第1课时 勾股定理一、导学1.导入课题在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦,并探索出了勾、股、弦之间的关系(即直角三角形三边之间的关系),这种关系是怎样的关系呢?又把这种关系叫做什么呢?2.学习目标(1)了解勾股定理的文化背景,了解常见的利用拼图验证勾股定理的方法.(2)知道勾股定理的内容.3.学习重、难点重点:勾股定理内容的条件与结论.难点:勾股定理的几何验证方法.4.自学指导(1)自学内容:探究:直角三角形三边之间存在怎样的等量关系.(2)自学时间:10分钟.(3)自学方法:结合探究提纲动手拼图,思考面积关系.(4)探究提纲:①投影家中地板砖铺成的地面图案,并框定某一个直角三角形.a.右图中正方形ABFG 、正方形ACDE 和正方形BMNC 的面积之间有何关系?b.如果设AB=a ,AC=b ,BC=c,那么由a.可得到a 2+b 2=c 2.c.猜想:直角三角形两直角边的平方和等于斜边的平方.②根据下面拼图,验证猜想的正确性.拼成的正方形面积等于4个直角三角形面积+小正方形面积,即()22142c ab a b =⨯+-,化简得222c a b =+ .二、自学结合探究提纲进行自学.三、助学1.师助生:(1)明了学情:了解学生探究中存在的问题.(2)差异指导:指导学生运用面积法找到等量关系.2.生助生:同桌之间相互研讨,帮助解决疑难.四、强化1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.五、评价1.学生的自我评价:小组学生代表介绍自己的学习方法、收获和疑惑.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、合作探究的成绩和不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课通过向学生介绍勾股定理的悠久历史,让学生了解古代劳动人民在数学方面的成就,感受数学文化是人类文化的重要组成部分.本节课教学应把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流;另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,从而教给学生探求知识的方法,教会学生获取知识的本领.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)在Rt△ABC中,两直角边长分别为35,则斜边长为14.2.(15分)在Rt△ABC5,一条直角边的长为2,则另一条直角边的长为1.3.(10分)在Rt△ABC中,∠C=90°,a=6,c=10,则b=8.4.(20分)在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知6,∠A=60°,求b,c.()()22222221251520260,90,2,2,22 2.a c b A C c b a b c b c b =-=-=∠=︒∠=︒∴=+====解:;,代入得:二、综合运用(20分)5.已知直角三角形的两边长分别为3,2,求另一条边长.解:当斜边的长为3时,另一条边长22325=-=;当两条直角边长分别为3、2时,斜边长 223213=+= .三、拓展延伸(20分)6.如图,已知长方形ABCD 沿直线BD 折叠,使点C 落在C ′处,BC ′交AD 于E ,AD=8,AB=4,求DE 的长. 解:∵∠A=∠C ′=∠C=90°,∠AEB=∠C ′ED,AB=C ′D,∴△AEB ≌△C ′ED.∴AE=C ′E,∴C ′E=AD-ED=8-ED.又在Rt EC D ' 中,222ED C E C D ='+'∴()222845ED ED ED =-+=,解得.。

勾股定理导学案

勾股定理导学案

课题名称:勾股定理(1)一、学习目标:1 •了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

了解我国古代在勾股定理研究方面所取得的成就。

3.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识学习重点:勾股定理的内容及证明。

学习难点:勾股定理的证明。

二、教学过程:㈠、自助探究1、2002年北京召开了被誉为数学界“奥运会”的国际数学家大会,这就是当时采用的会徽.你知道这个图案的名字吗?你知道它的背景吗?你知道为什么会用它作为会徽吗?2、相传2500年前,古希腊的数学家毕达哥拉斯在朋友家做客时,发现朋友家用地砖铺成的地面中反映了直角三角形三边的某种数量关系.请同学们也观察一下,看看能发现什么?(1)引导学生观察三个正方形之间的面积的关系;(2)引导学生把面积的关系转化为边的关系.结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和3、等腰直角三角形有上述性质,其它直角三角形也有这个性质吗?4、猜想:由此,我们得出直角三角形ABC的三边长度之间存在的关系是:㈡、自助提升1、定理证明(1)赵爽利用弦图证明。

显然4个_________ 的面积+中间小正方形的面积二该图案的面积1即4 X X ________ +〔〕2 = C2,化简后得到________ . _________2 概括:由上面的探索可以发现:对于任意的直角三角形,如果它的两条直角边分别为a,b斜边为c,那么一定有这个关系我们称为勾股定理。

勾股定理直角三角形两直角边的平方和等于斜边的平方。

(2)其他证明方法:教材101页做一做。

应用:例题分析:使点D 落在BC 边的点F 处,已知AB=8cm , BC=10cm ,求CF CE6、 一个大树高8米,折断后大树顶端落在离大树底端2米处,折断处离地面的高度是多少?长,则斜边长为.13同理以 _____ 和 _为直角三角形的两直角边长,则斜边长为■. 17&如图1-1-4,所有的四边形都是正方形,所有的三角 形都是直角三角形,其中最大的正方形的边长为 7 cm , 则正方形A , B , C , D 的面积之和是多少?三、小结与反思 这节课你学到了一些什么?你想进一步探究的问题是什么? 一A§ 18.1 勾股定理(2)一、学习目标77 cm通过经历和体验,运用勾股定理解决一些实际问题的过程,进一步掌握勾股定理 重点:勾股定理的应用。

17.1 勾股定理导学案

17.1 勾股定理导学案

第17章 勾股定理第1课时 17.1 勾股定理导学案(1)【学习目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.养成在实际生活中发现问题总结规律的意识和能力。

【学习重点】勾股定理的内容及证明。

【学习难点】勾股定理的证明。

一、学前准备1、每位同学准备四个全等的直角三角形。

2、查阅资料,网络搜索有关勾股定理的知识。

3、自主阅读课本P22-24,P30。

二、探索思考1、思考:由P22图17.1-1,你发现直角三角形的三边有怎样的关系?2、探究一:等腰直角三角形三边关系3、探究二:一般的直角三角形三边关系三、证明猜想猜想的结论: 已知: 求证: 方法:利用拼图来验证勾股定理四、当堂反馈1、求下列图中字母所表示的正方形的面积2、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A ,B ,C ,D 的面积之和为___________cm2。

3、求出下列直角三角形中未知边的长度五、学习反思:(1)知识点:(2)数学方法:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积) 图1 图2 A 、B 、C 面积关系直角三角形三边关系 A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积) 图3 图4A 、B 、C 面积关系 直角三角形三边关系A B CA B C(图中每个小方格代表一个单位面积) 图1图2 AB C 图3 ABC图4 c a bc acac a bc abb cabc AD225 400 A 225 81B A BC D7cm 6 8 x 5 x 13第2、3课时 17.1 勾股定理导学案(2)【学习目标】1.会用勾股定理进行简单的计算。

会用勾股定理解决简单的实际问题。

2.会用勾股定理解决简单的实际问题。

3. 树立数形结合的思想。

【学习重点】勾股定理的应用。

【学习难点】实际问题向数学问题的转化。

勾股定理导学案92120

勾股定理导学案92120

______________________________________________________________________________________________________________-可编辑修改-韶关市一中实验学校校本教材◆导学案 年级:八年级 学科:数学 课题:18.1勾股定理 第一课时学案课型:新课 主备人:张邦国 审核人:张邦国 班级: 姓名: 使用时间: 一、课前复习1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 . 2、函数2x y -=和函数xy 2=的图像有 个交点. 3、反比例函数xky =的图像经过点(-23,5)、(a ,-3)及点(10,b ),则k = ,a = ,b = .4、若22)1(--=k xk y 是反比列函数,则k = ___ ____.5、如上右图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点, 若S △AOB =3,则k 的值为( ) A 、6 B 、3C 、23D 、不能确定二、目标展示学习目标:1、在探索勾股定理的过程中,掌握直角三角形三边之间的数量关系 2、学会初步运用勾股定理进行简单的计算,并解决实际问题 学习重点:探索和验证勾股定理学习难点:在方格纸上通过计算面积的方法探索勾股定理以及利用拼图验证勾股定理三、目标导学及释标活动一 探索直角三角形三边关系1、观察下图,回答下列问题:想一想: 1、正方形A 、B 、C 的面积之间有什么数量关系?2、等腰直角三角形的三边之间有什么数量关系?2、观察下图,完成表格(网格中每个小正方形的边长为单位长度1)ABOx八年级数学(上) 第3页 共4页八年级数学(上) 第 4 页 共 4页猜想:等腰直角三角形的三边有这样的结论:两直角边的平方和等于斜边的平方 想一想:对于任意直角三角形也有类似的结论吗?3、观察图1和图2,完成下列表格通过活动一的几个例子,我们猜想:命题1 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+ 活动二 验证命题1(赵爽证法——课本65页)想一想:你还有其它证明方法吗?活动三 总结归纳1、归纳:在直角三角形中两直角边的平方和等于斜边的平方。

勾股定理导学案

勾股定理导学案

《17.1 勾股定理》导学案学习目标:1.经历勾股定理的探索过程,能熟记定理的内容.2.能运用勾股定理由直角三角形的已知两边求第三边.3.能运用勾股定理解一些简单的实际问题.一、探究新知1、探究1.观察下图,并回答问题:(1)观察图 1 正方形A 中含有________个小方格,即A 的面积是________个单位面积;正方形B 中含有________个小方格,即B 的面积是________个单位面积;正方形C 中含有________个小方格,即C 的面积是________个单位面积.(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)请将上述结果填入下表,你能发现正方形A ,B ,C 的面积之间有何关系吗? 即:如果正方形A 、B 、C 的边长分别为a 、b 、c ,则正方形A 、B 、C 的面积分别是___,___,___。

结论1:等腰直角三角形的两直角边的平方和等于______________________. A 的面积 (单位面积) B 的面积 (单位面积)C 的面积(单位面积)图1图2图32、探究2.(1)等腰直角三角形有上述性质,其他的直角三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A 、B 、C ,的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于某个正方形的面积减去四个直角三角形的面积)(2)观察右边两幅图,填表。

(3)你是怎样得到正方形C 的面积的?与同伴交流.3、猜想命题1:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么 。

二、合作探究1、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证: 222a b c +=证明:4S △+S 小正=________________ ,S 大正= _________________.根据的等量关系:_______________________ ,由此我们得出:_________________________ .2、归纳定理:直角三角形两条________的平方和等于________的平方.即:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么A 的面积B 的面积C 的面积左图右图_________________.3.归纳结论:经过证明被确认正确的命题叫做定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)一、三角形的边角关系:边: 角: 引例:二、探索直角三角形三边的特殊关系:(1)画一个直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表; (2)猜想:直角三角形的三边满足什么关系?勾股定理:三、利用拼图验证勾股定理:用四个全等的直角三角形拼出图1,并思考:1.拼成的图1中有_______个正方形,___个直角三角形。

2.图中大正方形的边长为_______,小正方形的边长为_______。

3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗?例2、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。

旗杆折断之前有多高?例3、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000米处,过了25秒,飞机距离女孩头顶5000米处,则飞机的飞行速度是多少?例4、求下图中字母所代表的正方形的面积。

x 1517CB A,则斜边上的高为 . 1.在△ABC 中,∠C=90°,(1)若BC =5,AC =12,则AB = ; (2)若BC =3,AB =5,则AC = ;(3)若BC ∶AC =3∶4,AB =10,则BC = ,AC = .2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 .3.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。

4最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2.5.一个直角三角形的两直角边长为3cm 、4cm ,斜边长为 a cm ,则以斜边为半径的圆的面积是 。

6.等腰三角形的腰长为13cm ,底边长为10cm ,则其面积为 .2)BC=8㎝,现将ABC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AE 重合,求CD 的长例2、如图,一架梯子长25米,斜靠在一面墙上,梯子顶端离地面15米,要使梯子顶端离地24米,则梯子的底部在水平方向上应滑动多少米?例3、某隧道的截面是一个半径为3.6米的半圆形,一辆高2.4米、宽3米的卡车能否顺利通过该隧道?例4、 如图,铁路上A 、B 两站相距25㎞,C 、D 为两村庄,DA ⊥AB 于A,CB ⊥AB 于B,已知DA=15㎞,CB=10㎞.现在要在铁路上建一个收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在距A 站多少㎞处?例5、在一棵树的10米高处有两只猴子,其中一只爬下树走向离树20米的池塘,而另一只猴子只爬到树顶后直扑池塘,如果两只猴子经过的路程相等,问这棵树有多高?EDBCAADEBCS 1、S 2、S 3之间有什么关系?二、知识巩固1.等腰直角三角形三边的平方比为2.等腰三角形的底边为10cm ,周长为36cm ,则它的面积是 cm 2.3.长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是4.Rt ∆ABC 中,︒=∠90C ,AB=2,则AB 2+BC 2+CA 2= .5.一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .6.直角三角形两直角边的比为3:4,面积是24,求这个三角形的周长.D条件: 结论: 2、分别以下列每组数为三边作出三角形,它们都是直角三角形吗? (1)3, 4, 5, (2)6, 8, 10 (3)9,12,15 勾股逆定理:条件: 结论: 3、勾股数: 。

下列几组数是否为勾股数?说说你的理由。

(1)12,18,22(2) 9, 12, 15二、典型例题例1、一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角。

工人师傅量得AB=3,AD=4,BD=5,BC=12,DC=13,这个零件符合要求吗?例2、如图,在正方形ABCD 中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?例3、(1)如果将一组勾股数扩大相同的倍数,得到的还是勾股数吗?填写下表,并验证。

(2)如果一直角三角形的三边长为a 、b 、c(c 是斜边长),将三边长都扩大k 倍(k 为任意正整数)后,得到的还是直角三角形吗?说明理由。

例4、在△ABC 中,三条边长分别为a,b,c,a=n 2-1,b=2n,c=n 2+1(n >1)。

试判断△ABC 的形状.例5、 如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=900, 求这块草地的面积。

三、知识巩固:1. 下列说法正确的是( )A. 若a 、b 、c 是ABC 的三边,则222a b c +=B. 若a 、b 、c 是Rt ABC 的三边,则222a b c +=C. 若a 、b 、c 是Rt ABC 的三边90A ∠= ,则222a b c +=D. 若a 、b 、c 是Rt ABC 的三边90C ∠= ,则222a b c +=2、下列几组数中,是勾股数的是( )A 、4,5,6B 、12,16,20C 、-10,24,26D 、2.4,4.5,5.1(a2+b2-c2)=0,则△ABC是C、等腰直角三角形 D、等腰三角形或直角三角形4、 有一个木工师傅测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来﹙ ﹚ A .13,12,12 ; B .12,12,8; C .13,10,12 ; D .5,8,45、如图,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形ABCD 的面积为6、当m= 时,以m+1,m+2,m+3的长为边的三角形是直角三角形。

D一、知识回顾: 有理数:______和______统称为有理数,任何一个有理数都可以写成分数m/n (m ,n 都是整数,且n≠0)的形式。

任何有限小数或无限循环小数都是有理数. 有理数的分类:无理数:无限不循环小数叫无理数 。

像π,0.585885888588885…,1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数 实数:分为有理数和无理数两类。

实数的分类:⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数例:练习:在73; -π; ;0;0.3 ;3π;0.33 ;0.3131131113…(两个3之间依次多一个1)中属于有理数的有: 属于无理数的有: 属于实数的有: 训练作业:一、按要求完成下列题目有理数∙7.3,-π,-712..把下列各数分别填入相应的集合里: π31-,1322-,7,327,0.1010010001…,0.5,36.0-,39,924,16 实数集{ …}, 无理数集{ …}, 有理数集{ …}, 分数集{ …}, 负无理数集{ …} 3.判断下面的语句对不对?并说明判断的理由。

(1) 无限小数都是无理数;( ) (2) 无理数都是无限小数( ) (3)有理数都是实数,实数不都是有理数;( ) (4) 实数都是无理数,无理数都是实数;( ) (5) 实数的绝对值都是非负实数;( ) (6)有理数都可以表示成分数的形式。

( )(7) 有理数与无理数的差都是有理数. ( ) (8) 两个无理数的和不一定是无理数( )平方根(一)一、预习导学: 1. 算术平方根1.计算:42= ; 72= ;92 = ;112= 。

2.填底数:( )2=16,( )2=49,( )2=81,( )2=121. 3.2z =______2w =______二、探索新知算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的 ____记做 ;读叫做 .注:特别地,我们规定0的算术平方根是0,即00 . 2. 例1 求下列各数的算术平方根:(1)900; (2)1; (3)6449; (4)14. 例2自由下落物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?结论:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.0的算术平方根是0;负1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ; 3.232(的算术平方根是 ; 4.若22=+m ,则2)2(+m = . (二)、求下列各数的算术平方根:36,144121,15,0.81,410-,1.96,0)65(,610,259三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?四、一个正方形的面积变为原来的4倍,其边长变为原来的多少倍?面积变为原来的9倍,其边长变为原来的多少倍?面积变为原来的100倍,其边长变为原来的多少倍?面积变为原来的n 倍,其边长变为原来的多少倍?CA9.什么样的数有平方根?10.算术平方根与平方根的区别与联系是什么?谈谈你的看法?11.负数为什么没有平方根,即负数不能进行开平方运算的原因是什么?12.什么叫开平方呢?我们共学了几种运算呢,这几种运算之间有怎样的联系呢?13.一个正数有几个平方根?14.0有几个平方根?二、探讨,总结:A.平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为±a,正数a的算术平方根表示为a.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.B.一个正数有两个平方根,它们互为相反数。

0只有一个平方根,它是0本身。

负数没有平方根。

一个正数a有两个平方根,它们互为相反数。

正数aa 的负的平方根,记作“-a ”,这两个C. 开平方与平方互为逆运算。

因此,我们可以通过平方运算来求一个数的平方根。

D.E. 一般地,如果一个数的平方根等于a,那么这个数叫做a 的平方根,也称为二次方根.也就是说,如果x2=a,那么x 叫做a 的平方根.三、巩固练习:1、判断题(正确的打“∨”,错误的打“×”);(1)任意一个数都有两个平方根,它们互为相反数; ( ) (2)数a ( ) (3)—4的算术平方根是2; ( ) (4)负数不能开平方; ( )(5=8. ( ) 2.判断下列各数是否有平方根?并说明理由.(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a 2;(6)a 2-2a +2 3.求下列各数的平方根. (1)121;(2)0.01;(3)297;(4)(-13)2;(5)-(-4)34.对于任意数a ,2a 一定等于a 吗?5.a 中的被开方数a 在什么情况下有意义,(a )2等于什么?四、作业_a的负平方_a的正平方_ 被开方_ 根A.±8 B.±4 C.±2 D 3. 4的平方的倒数的算术平方根是()A.4 B.18C.-14D.144.计算:(1)(2(3(4 5.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.096_______;9的平方根是_______.立方根预习导学一、创设问题情境,引入立方根概念1.问题2要做一只容积为125cm3的正方体木箱,它的棱长是多少? 与“平方根”类似,讨论和研究以下问题:(A)这个实际问题,在数学上提出怎样的一个计算问题?如何解?(B)你能找一个数,使这个数的立方等于125吗?2.试一试我们先来算一算一些数的立方.23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______;(23)3=_____;-(23)3•=_____ ; 03=______.3.立方根的表示方法:类似平方根定义可知,若3x=a则x为a的立方根,读作“三次根号a”51253= a 叫做被开放数。

相关文档
最新文档