07应力应变分析、强度理论
合集下载
材料力学第七章应力状态和强度理论

2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学第七章_3_ 应变能密度和强度理论概要

材料力学
第 7章 应力和应变分析·强度理论
[例9-8]证明弹性模量E 、泊松比µ 、切变弹性模量G 之间 的关系为 G E 。
2(1 )
证明: 纯剪应力状态应变能密度为
3
v1
1
2
1 2
2G
1 , 2 0, 3
1
用主应力计算比能
v2
1 2E
[
2 1
2 2
2 3
2 (1 2
2 3
1
3
k
1
3
2
OC
B
3
1
2
1 3
河南理工大学土木工程学院
A
材料力学
第 7章 应力和应变分析·强度理论
各向同性材料的广义胡克定律:
εx
1 E
σx
μ
σy
σz
εy
1 E
σy
μσz
σx
εz
1 E
σz
μ
σx σy
xy
xy
G
,
yz
yz
G
,
zx
zx
G
上述一组方程为用应力表示应变,若用应变表示应力,
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
二、常用四个强度理论
● 第一强度理论(最大拉应力理论) 该理论不论材料处于什么应力状态,引起材料脆性断裂
破坏的主要原因是最大拉应力,并认为当复杂应力状态的最 大拉应力达到单向应力状态破坏时的最大拉应力时,材料便 发生断裂破坏。由此,材料的断裂判据为
一、强度理论的概念
1. 什么是强度理论 强度理论是关于材料破坏原因的学说。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(应力和应变分析强度理论)【圣才出品】

平面的外法线方向。
7 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、三向应力状态分析 1.三向应力圆 如图 7-1-4 所示,以三个主应力表示的单元体,由三个相互垂直的平面分别作应力圆, 将三个平面的应力圆绘在同一平面上得到三向应力状态下的应力圆,如图 7-1-5 所示。与 每一主应力所对应的应力圆可由与该主平面相正交的其余面上的应力作出。 注意:作三向应力圆应至少知道一个主应力的大小和方向。
1 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
实例:在滚珠轴承中,滚珠与外圈接触点处的应力状态,可以作为三向应力状态的实例。 二、二向应力状态分析 1.解析法 如图 7-1-1(a)所示,一单元体 abcd 处于平面应力状态,采用截面法取左边部分单 元体 eaf 为研究对象,如图 7-1-1(b)所示。
5 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 7-1-3(a)
图 7-1-3(b) ③求主应力数值和主平面位置 a.求主应力数值的方法 如图 7-1-3(b)所示,点 A1 和点 B1 分别为代表最大主应力和最小主应力,其大小为
6 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 7 章 应力和应变分析强度理论
7.1 复习笔记
一、应力状态 一点的应力状态:过一点不同方向面上应力的集合。 应力状态的研究对象是单元体,其特征为:①单元体的尺寸无限小,每个面上应力均匀 分布;②任意一对平行平面上的应力相等。 主单元体是指各侧面上切应力均为零的单元体。其中,单元体上切应力为零的面称为主 平面,主平面上的正应力称为主应力。 说明:一点处必定存在一个单元体,使得三个相互垂直的面均为主平面,三个互相垂直 的主应力分别记为 σ1、σ2、σ3,且规定按代数值大小的顺序来排列,即 σ1≥σ2≥σ3。 应力状态分类及实例 (1)单向应力状态:也称为简单应力状态,三个主应力 σ1、σ2、σ3 中只有一个不等 于零。 实例:简单的拉伸或压缩。 (2)平面(二向)应力状态:三个主应力 σ1、σ2、σ3 中有两个不等于零。 实例:薄壁圆筒横截面上的点和圆形容器包含直径的任意横截面上的点。 (3)空间(三向)应力状态:和平面应力状态统称为复杂应力状态,三个主应力 σ1、 σ2、σ3,均不等于零。
工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
第七章+应力应变分析+强度理论

Chapter7 Analysis of Stress and Strain Failure Criteria
(Analysis of stress-state and strain-state)
§7-1 应力状态概述 (Introduction of stress-state)
一、应力状态的概念 (Concepts of stresses-state)
σ1 ≥ σ 2 ≥ σ 3
(Analysis of stress-state and strain-state)
三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力σ1 ,σ2 ,σ3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力σ1 ,σ2 ,σ3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 σ1 ,σ2 ,σ3 中只有一个不等于零
x
− 62.5
σ3
因为 σx < σy ,所以 α0= 27.5°与σmin对应
σx −σ y 2 ⎧σ max σ x + σ y ⎧ 26MPa 2 ) + τ xy = ⎨ = ± ( ⎨ 2 2 ⎩ − 96MPa ⎩σ min σ 1 = 26MPa , σ 2 = 0, σ 3 = −96MPa
1.求单元体上任一截面上的应力(Determine the stresses on any inclined plane by using stress-circle) 从应力圆的半径 CD 按方位角α的转向转动2α得到半径CE. 圆周上 E 点的坐标就依次为斜截面上的正应力σα 和切应力τα.
(Analysis of stress-state and strain-state)
§7-1 应力状态概述 (Introduction of stress-state)
一、应力状态的概念 (Concepts of stresses-state)
σ1 ≥ σ 2 ≥ σ 3
(Analysis of stress-state and strain-state)
三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力σ1 ,σ2 ,σ3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力σ1 ,σ2 ,σ3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 σ1 ,σ2 ,σ3 中只有一个不等于零
x
− 62.5
σ3
因为 σx < σy ,所以 α0= 27.5°与σmin对应
σx −σ y 2 ⎧σ max σ x + σ y ⎧ 26MPa 2 ) + τ xy = ⎨ = ± ( ⎨ 2 2 ⎩ − 96MPa ⎩σ min σ 1 = 26MPa , σ 2 = 0, σ 3 = −96MPa
1.求单元体上任一截面上的应力(Determine the stresses on any inclined plane by using stress-circle) 从应力圆的半径 CD 按方位角α的转向转动2α得到半径CE. 圆周上 E 点的坐标就依次为斜截面上的正应力σα 和切应力τα.
《材料力学》第7章-应力状态和强度理论-习题解

解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。
第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
应力应变分析与强度理论

ax in
m
ax
2
m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax in
x
2
y
2
2 xy
m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零
应力分析和强度理论

要点二
详细描述
在机械工程领域,应力分析用于研究 机械零件和结构在各种工况下的受力 情况,以及由此产生的内部应力分布 。强度理论则用于评估这些应力是否 在材料的承受范围内,以确定结构是 否安全可靠。
要点三
应用举例
在机械设计中,通过对发动机、传动 系统、轴承等关键部件进行应力分析 ,可以优化设计,提高其承载能力和 可靠性。
该理论认为最大拉应力是导致材料破坏的 主要因素,当最大拉应力达到材料的极限 抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大剪应力理论
详细描述
该理论认为最大剪应力是导致材料破坏的主 要因素,当最大剪应力达到材料的极限抗剪 强度时,材料发生断裂。
第三强度理论
总结词
最大应变能密度理论
详细描述
该理论认为最大应变能密度是导致材料破坏 的主要因素,当最大应变能密度达到材料的
应力分析
目录
• 应力分析概述 • 应力分析方法 • 材料力学中的应力分析 • 强度理论 • 实际应用中的应力分析与强度理
论
01
应力分析概述
定义与目的
定义
应力分析是研究物体在受力状态下应 力分布、大小和方向的一种方法。
目的
评估物体的强度、刚度、稳定性以及 预测可能的破坏模式,为结构设计提 供依据。
平衡方程
根据力的平衡原理,物体内部的应力分布满足平衡方程。
应变与应力的关系
通过材料的力学性能试验,可以得到应变与应力的关系,即应力-应变曲线。
弹性力学基本方程
根据弹性力学的基本原理,建立物体内部的应力、应变和位移之间的关系。
02
应力分析方法
有限元法
总结词
有限元法是一种广泛应用于解决复杂工程问题的数值分析方法。
应力和应变分析和强度

泊松比
总结词
泊松比是描述材料横向变形与纵向变形之间关系的物理量。
详细描述
当材料受到外力作用时,会发生形变。泊松比是表示材料在受到外力作用时,横向变形与纵向变形之间的比例关 系。其值通常在-0.5到0.5之间,但不同材料的泊松比可能会有所不同。
屈服强度
总结词
屈服强度是描述材料在受到外力作用时开始发生屈服现象的应力极限。
应力和应变分析和强度
目录
• 应力分析 • 应变分析 • 强度分析 • 材料性能 • 应力和应变的关系 • 工程应用
01
应力分析
定义与概念
01
02
03
应力
物体受到外力作用时,单 位面积上的内力。
应变
物体在外力作用下发生的 形状和尺寸的改变。
应力分析
通过数学模型和实验手段, 研究物体在受力状态下的 应力分布、大小和方向的 过程。
应力分类
正弯曲应力
由于弯曲产生的应力。
扭曲应力
由于扭曲产生的应力。
应力计算方法
解析法
通过数学公式和物理定律,计算应力 的方法。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的应力,再组合得到 整体的应力分布。
实验法
通过实验手段测量物体的应力分布。
应变计算方法
有限元分析法
有限元分析是一种数值计算方法,通过将物体离散化为有限个小的单元,对每个 单元进行受力分析和形变计算,再通过单元的集合来模拟整个物体的形变。这种 方法可以处理复杂的几何形状和边界条件,广泛应用于工程领域。
实验测量法
通过在物体上粘贴应变片或使用激光干涉仪等设备来测量物体的形变,这种方法 可以直接获得物体的应变值,但需要专业的设备和操作技能。
材料力学—— 应力分析 强度理论

z
sz
zy
zx
yz
xz
sy y
sx xy yx x
x'
s1 旋转
z' s3
s2 y'
③主应力:主平面上的正应力,用s1、s2、s3 表示, 有s1≥s2≥s3。
2.应力状态按主应力分类:
应力与应变分析
①只有一个主应力不为零称单向应力状态;
②只有一个主应力为零称两向应力状态(平面应力状态);
2.任意a角斜截面上的应力
y
应力与应变分析
sy
t
n
sx
sx x
xy
ssxxxy
sα
a
a
dA
α
x
C
yx
sy
sy yx
n 0:sa dA (sxdc Aoa)scoa s(sydA sia n)sia n
(xd y A coas)sia n(yxdA sia n)coas 0
D(sx, xy) 2a
2a0 A A1
C
s' s
D' (sy, yx)
G2 "
3.应力圆的应用
①点面对应关系:应力圆上一点坐标代表单元体某个面上的 应力;
②角度对应关系:应力圆上半径转过2a,单元体上坐标轴转 过a;
③旋向对应关系:应力圆上半径的旋向与单元体坐标轴旋向 相同;
④求外法线与x轴夹角为a斜截面上的应力,只要以D为起点, 按a转动方向同向转过2a到E点,E点坐标即为所求应力值。
单元体ABCD:Me /Wn
2)s s'''02
022 2
tg2a00 a045o 3)s1s', s20, s3s''
材料力学第七章知识点总结

研究应力状态的目的:找出一点处沿不同方向应力的变化
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
材料力学 第七章 应力状态与强度理论

取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
应力和应变分析和强度理论

机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。
材料力学-07-应力分析和强度理论

§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
1.斜截面上的应力 1.斜截面上的应力
y
σx
a
τ yx
τ xy
σx α
τa
n
τ xy
σa
dA
x
σy
n
τ yx
σy
t
t
∑F = 0
∑F =0
13
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
tan 2α0 = − 2τ xy
σ x −σ y
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 − 1 2
单元体
单元体——构件内的点的代表物, 单元体——构件内的点的代表物,是包围被研究点的 ——构件内的点的代表物 无限小的几何体。 常用的是正六面体。 无限小的几何体。 常用的是正六面体。 单元体的性质—— 平行面上,应力均布; 单元体的性质——1) 平行面上,应力均布; —— 2) 平行面上,应力相等。 平行面上,应力相等。
2 2
σy
τ xy
α
60 − 40 60 + 40 = + cos(−60o ) + 30 sin(−60o ) 2 2
σx
= 9.02 MPa
τα =
σ x −σ y
2 60 + 40 = sin(−60o ) − 30 cos(−60o ) 2
材料力学第七章应力应变分析

x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
第七章:应力状态、强度理论

s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
工程力学(材料力学部分第七章)

4 主应力及应力状态的分类
主应力和主平面
切应力全为零时的正应力称为主应力;
主应力所在的平面称为主平面;
主平面的外法线方向称为主方向。
主应力用1 , 2 , 3 表示 (1 2 3 ) 。
应力状态分类
单向应力状态
11
应力状态分类
单向应力状态 二向应力状态(平面应力状态)
三向应力状态(空间应力状态)
D点
由 y 40, yx 60
D'点
画出应力圆
52
圆心坐标
OC x y 80 (40)
2
2
20
半径
R
x
2
y
2
2 xy
80 (40) 2
(60)2
84.85 85
2
53
圆心坐标 OC 20
半径
R 85
1 OA1 OC R
E
105 MPa
3 OC R
65 MPa
D (x ,xy)
x y
2
R 1 2
x y
2
4
2 xy
38
3 应力圆上的点与单元体面上的应力的对应关系 (1) 点面对应
应力圆上某一点 的坐标值对应着 单元体某一方向面上的正应力和切应力。
39
(1) 点面对应
应力圆上某一点的坐 标 值对应着单元体某 一方向面上的正应力 和切应力。
D点对应的面与E点 对应的面的关系
主应力。
从半径CD转到CA1 的角度即为从x轴转
到主平面的角度的
两倍。
44
主应力 即为A1, B1处的正应力。
max min
x
y
2
x
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
− (σ x −σ y ) sin 2α0 − 2τ xy cos 2α0 = 0
(σ − y ) x σ −2 sin2α+τ cos2α = −2τ0 = 0 0 xy 0 α 2
即α=α0 时,切应力为零
15
7-2 解析法分析二向应力状态
tan 2α0 = − 2τ xy
σ x −σ y
4
3、单元体法 、 (1)单元体截取方法 围绕 )单元体截取方法: 该点取出一个单元体。 该点取出一个单元体。 例如 图 9-1a 所示矩形截面 悬臂梁内A点的应力状态 悬臂梁内 点的应力状态
τ
(b) (a)
P A
a
τ σ τ τ τ
σ
b σ
(c)
d A τ τ c
τ
σ
5
7—1 应力状态的概念
6
7—1 应力状态的概念
l
S平面
T y
1 4
S
F a
1
z
2 3 Mz
T τ= Wp
σ = Mz Wz
x
Fa
T
(+) (−)
3
τ= T Wp
σ =−
7
M
Fl
Mz Wz
目录
7—1 应力状态的概念
σz
z
τ zy τ yz
σ2 σ1
σy
τ zx
x
σx
τ xz
τ xyτ yx
y
σ3
σ1 ≥ σ 2 ≥ σ 3
3、几种对应关系 点面对应——应力圆上某一点的坐标值对应着 点面对应 应力圆上某一点的坐标值对应着 微元某一截面上的正应力和切应力
y
σy
H
τ
n
H (σa ,τa )
2α
τ yx
τ xy α x σx
c
D (σx ,τxy)
(σy ,τyx)
D/
σ
σ x +σ y
2
29
30
求图示单元体的主应力及主平面的位置。 单位 单位: 例 求图示单元体的主应力及主平面的位置。(单位:MPa)
31
主应力及主平面如图
25 3
σ2
45 B
150°
95
A
σ 1 =120 σ 2 =20 σ 3 =0
α0
25 3
σ1
α 0 = − 30 o
τα (MPa)
B A 2σ 0 C 20MPa
σ3
O σ2
σ1
σ坐标系如图 解析法:分析 解法 解析法 建立坐标系如图
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 1 − 2
(σ (σ
τ2 −σ y ) + 4 xy x
25 3
45
150°
95
60°
σ1 σ x +σ y σ x −σ y 2 2 ±( ) τ xy + = 2 2 σ 2
25 3
σ y =45 MPa τ yx =25 3MPa =−τ xy
y O x25
3
45
150°
σ x =?
95
25 3
σ 60 =95 MPa τ 60 =25 3MPa
σ 1 = 68 .3MPa, σ 2 = 0, σ 3 = −48 .3MPa
19
7-2 解析法分析二向应力状态
σy
τ xy
α 主平面的方位: 主平面的方位:
tg2α0 = −
2τ xy
σx
− 60 =− = 0.6 60+ 40
α0 = 15.5o , α0 = 15.5o + 90o = 105.5o
2
σmin =
σ x +σ y
2
τ2 −σ y ) + 4 xy x
2
16
主应力按代数值排序:σ1 ≥ σ2 ≥ σ3 主应力按代数值排序: 按代数值排序
7-2 解析法分析二向应力状态
例题1 一点处的平面应力状态如图所示。 例题1:一点处的平面应力状态如图所示。 已知
σ x = 60MPa, τ xy = −30 MPa,
(σα −
σ x +σ y
2
) +τ
2
2
α
=(
σ x −σ y
2
)2 +τ 2 xy
这个方程恰好表示一个圆, 这个方程恰好表示一个圆,这个圆称为应力圆
26
7-3 图解法分析二向应力状态
应力圆: 1. 应力圆:
τ
R= (
(σ α −
σ x +σ y
2
) +τ
2
2
α
=(
σ x −σ y
2
)2 + τ 2 xy
破坏分析
低碳钢 :σ
s
= 240 MPa ;τ s = 200 MPa
Lb
灰口铸铁 :σ
=98 ~ 280 MPa
σ yb = 640 ~ 960 MPa ;τ b =198 ~ 300 MPa
低碳钢
铸铁
25
7-3 图解法分析二向应力状态
1 1 σα = (σ x +σ y ) + (σ x −σ y ) cos 2α −τ xy sin 2α 2 2 1 τα = (σ x −σ y ) sin 2α +τ xy cos 2α 2
tg 2α 0 = − 2τ xy
σ x −σ y
= −∞ ∴ α 0 = − 45 o
′ σ x −σ y 2 2 τ max = ±( ) + τ xy = ±τ ′ 2 τ min
σ x −σ y tg 2 α 1 = = 0∴α 1 = 0 2 τ xy
23
低碳钢
铸铁
24
7-2 解析法分析二向应力状态
解: 主应力坐标系如图 在坐标系内画出点
25 3
σ2
45 B
150°
95
A
α0
25 3
σ1
A ( 95 , 25
3)
B ( 45 , 25
3)
τα (MPa)
B A 2σ0 C 20MPa
AB的垂直平分线与σα 轴的交点C便是圆心, 以C为圆心,以AC为 半径画圆——应力圆
σ3
O σ2
σ1
σα
(MPa)
τα =
σ x −σ y
2
sin 2α +τ xy cos 2α
33
例题
q
图为承受均布载荷作用的 简支梁。 简支梁。 m − m 截面距离 左端支座为 a(a < l 2) 。 横截面1至 ①指出 m − m 横截面 至5 点沿纵横截面截取的单元 体各面上的应力方向。 体各面上的应力方向。 ②若2点的横截面上的正 点的横截面上的正 应力为 σ = −70MPa,剪应 试确定2 力为 τ = 50MPa,试确定 点的主应力及主平面的方 位。
σ y = −40MPa, α = − 30 o 。
σy
τ xy
α
试求( 斜面上的应力; 试求(1)α 斜面上的应力; (2)主应力、主平面; 主应力、主平面; (3)绘出主应力单元体。 绘出主应力单元体。
σx
17
7-2 解析法分析二向应力状态
( 解: 1)α 斜面上的应力 σ x + σ y σ x −σ y σα = + cos 2α − τ xy sin 2α
τ yx
σy
t
∑F =0
t
τ α dA − τ xy (dA cos α ) cos α − σ x (dA cos α ) sin α + τ yx (dA sin α ) sin α + σ y (dA sin α ) cos α = 0
12
7-2 解析法分析二向应力状态
利用三角函数公式
{
1 cos2 α = (1+ cos 2α) 2 1 2 sin α = (1− cos 2α ) 2
8
单元体上没有切应力的面称为主平面; 单元体上没有切应力的面称为主平面;主平面上的正应力 主平面 称为主应力, 表示, 称为主应力,分别用 σ1,σ2 ,σ3 表示,并且 主应力 该单元体称为主应力单元。 该单元体称为主应力单元。 主应力单元
7—1 应力状态的概念
空间(三向)应力状态: 空间(三向)应力状态:三个主应力均不为零 平面(二向)应力状态: 平面(二向)应力状态:一个主应力为零 单向应力状态: 单向应力状态:两个主应力为零
并注意到 τ yx = τ xy 化简得
2sinα cosα = sin2α
1 1 σα = (σ x +σ y ) + (σ x −σ y ) cos 2α −τ xy sin 2α 2 2
1 τα = (σ x −σ y ) sin 2α +τ xy cos 2α 2
13
7-2 解析法分析二向应力状态
1、一点处的应力状态: 受力构件内一点处不同方 、一点处的应力状态 位的截面上应力的集合, 称为一点处的应力状态。 位的截面上应力的集合 称为一点处的应力状态。 2、受力构件内应力特征: 、受力构件内应力特征: (1)构件不同截面上的应力状况一般是不同的; )构件不同截面上的应力状况一般是不同的; (2)构件同一截面上不同点处的应力状况一般是 ) 不同的; 不同的; (3)构件同一点处,在不同方位截面上应力状况 )构件同一点处, 一般是不同的。 一般是不同的。
(σ − y ) x σ −2 sin2α+τ cos2α = −2τ0 = 0 0 xy 0 α 2
即α=α0 时,切应力为零
15
7-2 解析法分析二向应力状态
tan 2α0 = − 2τ xy
σ x −σ y
4
3、单元体法 、 (1)单元体截取方法 围绕 )单元体截取方法: 该点取出一个单元体。 该点取出一个单元体。 例如 图 9-1a 所示矩形截面 悬臂梁内A点的应力状态 悬臂梁内 点的应力状态
τ
(b) (a)
P A
a
τ σ τ τ τ
σ
b σ
(c)
d A τ τ c
τ
σ
5
7—1 应力状态的概念
6
7—1 应力状态的概念
l
S平面
T y
1 4
S
F a
1
z
2 3 Mz
T τ= Wp
σ = Mz Wz
x
Fa
T
(+) (−)
3
τ= T Wp
σ =−
7
M
Fl
Mz Wz
目录
7—1 应力状态的概念
σz
z
τ zy τ yz
σ2 σ1
σy
τ zx
x
σx
τ xz
τ xyτ yx
y
σ3
σ1 ≥ σ 2 ≥ σ 3
3、几种对应关系 点面对应——应力圆上某一点的坐标值对应着 点面对应 应力圆上某一点的坐标值对应着 微元某一截面上的正应力和切应力
y
σy
H
τ
n
H (σa ,τa )
2α
τ yx
τ xy α x σx
c
D (σx ,τxy)
(σy ,τyx)
D/
σ
σ x +σ y
2
29
30
求图示单元体的主应力及主平面的位置。 单位 单位: 例 求图示单元体的主应力及主平面的位置。(单位:MPa)
31
主应力及主平面如图
25 3
σ2
45 B
150°
95
A
σ 1 =120 σ 2 =20 σ 3 =0
α0
25 3
σ1
α 0 = − 30 o
τα (MPa)
B A 2σ 0 C 20MPa
σ3
O σ2
σ1
σ坐标系如图 解析法:分析 解法 解析法 建立坐标系如图
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 1 − 2
(σ (σ
τ2 −σ y ) + 4 xy x
25 3
45
150°
95
60°
σ1 σ x +σ y σ x −σ y 2 2 ±( ) τ xy + = 2 2 σ 2
25 3
σ y =45 MPa τ yx =25 3MPa =−τ xy
y O x25
3
45
150°
σ x =?
95
25 3
σ 60 =95 MPa τ 60 =25 3MPa
σ 1 = 68 .3MPa, σ 2 = 0, σ 3 = −48 .3MPa
19
7-2 解析法分析二向应力状态
σy
τ xy
α 主平面的方位: 主平面的方位:
tg2α0 = −
2τ xy
σx
− 60 =− = 0.6 60+ 40
α0 = 15.5o , α0 = 15.5o + 90o = 105.5o
2
σmin =
σ x +σ y
2
τ2 −σ y ) + 4 xy x
2
16
主应力按代数值排序:σ1 ≥ σ2 ≥ σ3 主应力按代数值排序: 按代数值排序
7-2 解析法分析二向应力状态
例题1 一点处的平面应力状态如图所示。 例题1:一点处的平面应力状态如图所示。 已知
σ x = 60MPa, τ xy = −30 MPa,
(σα −
σ x +σ y
2
) +τ
2
2
α
=(
σ x −σ y
2
)2 +τ 2 xy
这个方程恰好表示一个圆, 这个方程恰好表示一个圆,这个圆称为应力圆
26
7-3 图解法分析二向应力状态
应力圆: 1. 应力圆:
τ
R= (
(σ α −
σ x +σ y
2
) +τ
2
2
α
=(
σ x −σ y
2
)2 + τ 2 xy
破坏分析
低碳钢 :σ
s
= 240 MPa ;τ s = 200 MPa
Lb
灰口铸铁 :σ
=98 ~ 280 MPa
σ yb = 640 ~ 960 MPa ;τ b =198 ~ 300 MPa
低碳钢
铸铁
25
7-3 图解法分析二向应力状态
1 1 σα = (σ x +σ y ) + (σ x −σ y ) cos 2α −τ xy sin 2α 2 2 1 τα = (σ x −σ y ) sin 2α +τ xy cos 2α 2
tg 2α 0 = − 2τ xy
σ x −σ y
= −∞ ∴ α 0 = − 45 o
′ σ x −σ y 2 2 τ max = ±( ) + τ xy = ±τ ′ 2 τ min
σ x −σ y tg 2 α 1 = = 0∴α 1 = 0 2 τ xy
23
低碳钢
铸铁
24
7-2 解析法分析二向应力状态
解: 主应力坐标系如图 在坐标系内画出点
25 3
σ2
45 B
150°
95
A
α0
25 3
σ1
A ( 95 , 25
3)
B ( 45 , 25
3)
τα (MPa)
B A 2σ0 C 20MPa
AB的垂直平分线与σα 轴的交点C便是圆心, 以C为圆心,以AC为 半径画圆——应力圆
σ3
O σ2
σ1
σα
(MPa)
τα =
σ x −σ y
2
sin 2α +τ xy cos 2α
33
例题
q
图为承受均布载荷作用的 简支梁。 简支梁。 m − m 截面距离 左端支座为 a(a < l 2) 。 横截面1至 ①指出 m − m 横截面 至5 点沿纵横截面截取的单元 体各面上的应力方向。 体各面上的应力方向。 ②若2点的横截面上的正 点的横截面上的正 应力为 σ = −70MPa,剪应 试确定2 力为 τ = 50MPa,试确定 点的主应力及主平面的方 位。
σ y = −40MPa, α = − 30 o 。
σy
τ xy
α
试求( 斜面上的应力; 试求(1)α 斜面上的应力; (2)主应力、主平面; 主应力、主平面; (3)绘出主应力单元体。 绘出主应力单元体。
σx
17
7-2 解析法分析二向应力状态
( 解: 1)α 斜面上的应力 σ x + σ y σ x −σ y σα = + cos 2α − τ xy sin 2α
τ yx
σy
t
∑F =0
t
τ α dA − τ xy (dA cos α ) cos α − σ x (dA cos α ) sin α + τ yx (dA sin α ) sin α + σ y (dA sin α ) cos α = 0
12
7-2 解析法分析二向应力状态
利用三角函数公式
{
1 cos2 α = (1+ cos 2α) 2 1 2 sin α = (1− cos 2α ) 2
8
单元体上没有切应力的面称为主平面; 单元体上没有切应力的面称为主平面;主平面上的正应力 主平面 称为主应力, 表示, 称为主应力,分别用 σ1,σ2 ,σ3 表示,并且 主应力 该单元体称为主应力单元。 该单元体称为主应力单元。 主应力单元
7—1 应力状态的概念
空间(三向)应力状态: 空间(三向)应力状态:三个主应力均不为零 平面(二向)应力状态: 平面(二向)应力状态:一个主应力为零 单向应力状态: 单向应力状态:两个主应力为零
并注意到 τ yx = τ xy 化简得
2sinα cosα = sin2α
1 1 σα = (σ x +σ y ) + (σ x −σ y ) cos 2α −τ xy sin 2α 2 2
1 τα = (σ x −σ y ) sin 2α +τ xy cos 2α 2
13
7-2 解析法分析二向应力状态
1、一点处的应力状态: 受力构件内一点处不同方 、一点处的应力状态 位的截面上应力的集合, 称为一点处的应力状态。 位的截面上应力的集合 称为一点处的应力状态。 2、受力构件内应力特征: 、受力构件内应力特征: (1)构件不同截面上的应力状况一般是不同的; )构件不同截面上的应力状况一般是不同的; (2)构件同一截面上不同点处的应力状况一般是 ) 不同的; 不同的; (3)构件同一点处,在不同方位截面上应力状况 )构件同一点处, 一般是不同的。 一般是不同的。