应力与应变分析强度理论
材料力学带答疑

第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。
)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。
)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。
A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。
)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。
A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。
)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。
A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。
第七章 应力应变分析 强度理论

三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力1 ,2 ,3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力1 ,2 ,3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 1 ,2 ,3 中只有一个不等于零
1.截面法(Section method) 假想地沿斜截面 e-f 将单元体截开,留下左边部分的单体元 eaf 作为研究对象
y n
e
yx x
f
e
x
x
x
xy
α
α
n α
xy
α
f
a
a
yx
y
(Analysis of stress-state and strain-state)
y n
e
1. 单元体(Element body) 2. 单元体特征 (Element characteristic) (1)单元体的尺寸无限小,每个面上应力均匀分布 (2)任意一对平行平面上的应力相等 3.主单元体(Principal body) 各侧面上切应力均为零的单元体
2
3 1
1
3 2
(Analysis of stress-state and strain-state) 4.主平面(Principal plane)
3.重要结论(Important conclusions)
13应力应变分析及强度理论

15 . 5 90 105 . 5 0
x y
15 . 5 主应力 1 方向: 0
主应力
3
105 .5 方向: 0
18
(3)主单元体:
y
xy
3
1
15.5
x
19
13-5空间应力状态
代表单元体任意斜截面上应力 的点,必定在三个应力圆 圆周上或圆内。
纯剪切应力状态下: u=τ 2/2G
复杂应力状态下:
u= σ1ε1/2+ σ2ε2/ 2 + σ3ε3/ 2
= [σ12+ σ22+ σ32-2μ(σ1σ2+σ2σ3 +σ3σ1)] /2E
三、体积改变比能和形状改变比能
单元体的变形表现为 体积的改变和形状的改变,其变形 能和比能也由以下这两部分组成:
σ
3
σ1
σ2
σ2
σ
σ1
3
8
13-2 平面应力状态分析-解析法
一个微分六面体可以简化为平面单元体
9
1.斜截面上的应力
y
x
yx
a
xy
x
α
a
n
dA
x
y
a
xy
yx
F 0
n
t
y
F 0
t
10
1 1 ( ) ( ) cos 2 sin 2 x y x y xy 2 2
33
(2)最大伸长线应变理论(第二强度理论)脆性断裂 最大伸长线应变是引起材料断裂破坏的主要因 观点: 素,即认为无论是单向或复杂应力状态, 1 是
材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
第三强度理论.

第七章 应力和应变分析 强度理论§7.1应力状态概述过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态§7.2二向和三向应力状态的实例§7.3二向应力状态分析—解析法1.任意斜截面上的应力在基本单元体上取任一截面位置,截面的法线n 。
在外法线n 和切线t 上列平衡方程αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yxαασααττsin )cos (cos )cos (dA dA dA x xya --0sin )sin (cos )sin (=++ααταασdA dA yx y根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22αααα-=+=,ααα2sin cos sin 2=简化两个平衡方程,得ατασσσσσα2sin 2cos 22xy yx yx --++=xyτyxτnαtατασστα2cos 2sin 2xy yx +-=2.极值应力将正应力公式对α取导数,得⎥⎦⎤⎢⎣⎡+--=ατασσασα2cos 2sin 22xy y x d d 若0αα=时,能使导数0=ασαd d ,则 02cos 2sin 200=+-ατασσxy yxyx xytg σστα--=220上式有两个解:即0α和 900±α。
在它们所确定的两个互相垂直的平面上,正应力取得极值。
且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。
求得最大或最小正应力为22min max )2(2xy y x yx τσσσσσσ+-±+=⎭⎬⎫ 0α代入剪力公式,0ατ为零。
这就是说,正应力为最大或最小所在的平面,就是主平面。
第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
应力应变分析与强度理论

ax in
m
ax
2
m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax in
x
2
y
2
2 xy
m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零
应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。
应力分析和强度理论

要点二
详细描述
在机械工程领域,应力分析用于研究 机械零件和结构在各种工况下的受力 情况,以及由此产生的内部应力分布 。强度理论则用于评估这些应力是否 在材料的承受范围内,以确定结构是 否安全可靠。
要点三
应用举例
在机械设计中,通过对发动机、传动 系统、轴承等关键部件进行应力分析 ,可以优化设计,提高其承载能力和 可靠性。
该理论认为最大拉应力是导致材料破坏的 主要因素,当最大拉应力达到材料的极限 抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大剪应力理论
详细描述
该理论认为最大剪应力是导致材料破坏的主 要因素,当最大剪应力达到材料的极限抗剪 强度时,材料发生断裂。
第三强度理论
总结词
最大应变能密度理论
详细描述
该理论认为最大应变能密度是导致材料破坏 的主要因素,当最大应变能密度达到材料的
应力分析
目录
• 应力分析概述 • 应力分析方法 • 材料力学中的应力分析 • 强度理论 • 实际应用中的应力分析与强度理
论
01
应力分析概述
定义与目的
定义
应力分析是研究物体在受力状态下应 力分布、大小和方向的一种方法。
目的
评估物体的强度、刚度、稳定性以及 预测可能的破坏模式,为结构设计提 供依据。
平衡方程
根据力的平衡原理,物体内部的应力分布满足平衡方程。
应变与应力的关系
通过材料的力学性能试验,可以得到应变与应力的关系,即应力-应变曲线。
弹性力学基本方程
根据弹性力学的基本原理,建立物体内部的应力、应变和位移之间的关系。
02
应力分析方法
有限元法
总结词
有限元法是一种广泛应用于解决复杂工程问题的数值分析方法。
应力和应变分析和强度

泊松比
总结词
泊松比是描述材料横向变形与纵向变形之间关系的物理量。
详细描述
当材料受到外力作用时,会发生形变。泊松比是表示材料在受到外力作用时,横向变形与纵向变形之间的比例关 系。其值通常在-0.5到0.5之间,但不同材料的泊松比可能会有所不同。
屈服强度
总结词
屈服强度是描述材料在受到外力作用时开始发生屈服现象的应力极限。
应力和应变分析和强度
目录
• 应力分析 • 应变分析 • 强度分析 • 材料性能 • 应力和应变的关系 • 工程应用
01
应力分析
定义与概念
01
02
03
应力
物体受到外力作用时,单 位面积上的内力。
应变
物体在外力作用下发生的 形状和尺寸的改变。
应力分析
通过数学模型和实验手段, 研究物体在受力状态下的 应力分布、大小和方向的 过程。
应力分类
正弯曲应力
由于弯曲产生的应力。
扭曲应力
由于扭曲产生的应力。
应力计算方法
解析法
通过数学公式和物理定律,计算应力 的方法。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的应力,再组合得到 整体的应力分布。
实验法
通过实验手段测量物体的应力分布。
应变计算方法
有限元分析法
有限元分析是一种数值计算方法,通过将物体离散化为有限个小的单元,对每个 单元进行受力分析和形变计算,再通过单元的集合来模拟整个物体的形变。这种 方法可以处理复杂的几何形状和边界条件,广泛应用于工程领域。
实验测量法
通过在物体上粘贴应变片或使用激光干涉仪等设备来测量物体的形变,这种方法 可以直接获得物体的应变值,但需要专业的设备和操作技能。
本章应力和应变分析与强度理论的知识结构框图

本章应力和应变分析与强度理论的知识结构框图本章应力和应变分析与强度理论重点、难点、考点本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。
能够用广义胡克定律求解应力和应变关系。
理解强度理论的概念,能够按材料可能发生的破坏形式,选择适当的强度理论。
难点主要有 ① 主平面方位的判断。
当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。
还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。
② 最大切应力。
无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =ατα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。
面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。
本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。
② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。
会计算任意斜截面上的应力分量。
③ 计算单元体的最大切应力。
④ 广义胡克定律的应用。
⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。
本章应力和应变分析与强度理论的习题分类及解题要点:本章习题大致可分为四类:( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。
特别是当单元体包括构件表面(自由面)时,其上应力分量为零。
( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。
材料力学刘鸿文第六版最新课件第七章 应力和应变分析 强度理论

5
7-1 应力状态的概述
直杆拉伸斜截面上的应力
k
F
{ F
p cos cos2
k
F
k p
k
p sin cos sin sin 2
2
直杆拉伸应力分析结果表明:即 使同一点不同方向面上的应力也是各
不相同的,此即应力的面的概念。
6
7-1 应力状态的概述
点的应力状态:
虚线:主压应力迹线 实线:主拉应力迹线
思考:在钢筋混泥土梁中,钢筋怎么放置最佳。 30
内容小结:
(1)根据已知点的应力状态求任意截面的应力。 (2)根据已知点的应力状态求主应力、主平面。 (3)结合前五章内容,掌握梁在拉、压、剪、扭、弯 等状态下,求某点的应力,并计算主应力和主平面。
31
第七章 应力和应变分析
58.3MPa 22
7-3 二向应力状态分析-解析法
(2)主应力、主平面
y xy
max
x
y
2
(
x
y
)2
2 xy
2
68.3MPa
x
min
x
y
2
(
x
y
)2
2 xy
2
48.3MPa
1 68.3MPa, 2 0, 3 48.3MPa
23
7-3 二向应力状态分析-解析法
y
主平面的方位:
2
2sin cos sin2
并注意到 yx xy (切应力互等)
化简得出:
1 2
( x
y)
1 2
(
x
y ) cos 2
xy
sin
2
材料力学第七章知识点总结

规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
第七章 应力与应变分析 强度理论4

2 x
29.8MPa 3.72 MPa
(单位 MPa)
1 29.28MPa, 2 3.72MPa, 3 0
1 29.28MPa < 30MPa
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试校核此结构是否安全。
3)强度理论:
材料的破坏与上述因素有关(某一方面),在长期的实践 中,对材料失效的原因提出各种不同的假设,形成各种不 同的判断准则,统称为强度理论(关于构件失效的假说) 4)意义: 找出失效原因 解决实际问题 提出强度理论
用简单的试验模拟
四、介绍四种强度理论
1、关于断裂失效的强度理论 ------适用于脆性材料 1)最大拉应力理论 十七世纪(1638年)由伽利略提出来的关于强度判断 的理论,亦称第一强度理论 认为: 材料失效的原因是由于材料内部的最大拉应力引 起的,无论应力状态如何,只要拉应力达到某一 限值,材料断裂。 模拟: 用简单的试验模拟,如单向拉伸。
2 50MPa
max 1 3
2
3 50MPa
65MPa
例2 已知如图所示过一点两个平
面上的应力。试求:
(1)该点的主应力及主平面;
(2)两平面的夹角。
1.四个常用的古典强度理论的相当表达式分 为 、 、 、 。 2.当矩形截面钢拉伸试样的轴向拉力F = 20 kN时,
三向拉应力, 1 2 3>0且相差不大时,发生脆 性破坏,尽管材料可能是塑性的。选择第一、二强度 理论。 三向压应力, 1 2 3<0 且相差不大时,发生 塑性破坏,尽管材料可能是脆性的。选择第三、四强 度理论。
材料力学应力和应变分析强度理论

y
S平面
SF
a
1
T
4
z
x
2
T
Fa
M
Fl
1
T
Wt
σ
Mz Wz
3 Mz 3
T
Wt
σ
Mz Wz
目录
7—1 应力状态的概念
一、单元体的取法
S平面
F
S平面
F
5
2
4
l/2
l/2
3
Mz
Fl 4
2 1
1 1
2
2
2
3 3
10
二、单元体的特征
2 3
1、单元体特征 单元体的尺寸无限小,
1
1
每个面上应力均匀分布
3
任意一对平行平面上的应力相等
x = -40MPa
大小
y =60 MPa
max min
x
2
y
(
x
2
y
)2
2 x
80.7MPa 60.7MPa
x = -50MPa =-30°
1 80.7MPa 2 0 3 60.7MPa
方位
tan 20
2 xy x
y
2 (50) 40 60
1
20
45 135
0
22.5 67.5
三个主应力1 、2 、3 均不等于零
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
7-2 二向应力状态分析-解析法
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)

OA1
= OC + CA1
= x
+ y 2
+
(
x
− y )2 2
+
2 xy
= max = 1
OB1
= OC − CB1
=
x
+ 2
y
−
(
x
− 2
y
)2
+
2 xy
= min
=2
b.确定主平面方位的方法
如图 7-3(b)(c)所示,将半径 CD 旋转 20 到 CA1 处,单元体 x 轴沿 20 旋转方向
图 7-2 应力圆 (2)应力圆的应用 ①应力圆与单元体应力间的关系 点面之间的对应关系:单元体某一面上的应力,必对应于应力圆上某一点的坐标; 夹角关系:圆周上任意两点所引半径的夹角等于单元体上对应两截面夹角的两倍,且两 者的转向一致。 ②求单元体上任一截面上的应力 从应力圆的半径 CD 按方位角 α 的转向转动 2α 得到半径 CE,圆周上 E 点的坐标就是
任意两个互相垂直的截面上的正应力之和为常数,即 + +90 = x + y 。
③最大切应力和最小切应力 切应力的大小
max min
=
x
− y 2
2
+ 2xy
=
1 2
(max
− min )
切应力极值所在截面方位角
tan
21
=
x − y 2 xy
最大和最小切应力所在平面与主平面的夹角为 45°,即1 = 0 + 45。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 7 章 应力和应变分析强度理论
应力和应变分析和强度理论

机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
20MPa
1 44.14MPa 2 15.86MPa 3 0
40MPa
1
arctan
x 1 xy
10MPa
arctan 40 44.14 22.5o 10
x 40MPa y 20MPa xy 10MPa
max
1
3
2
22.07MPa
1
i, j
x
y
2
x
2
y
2
yz zx 0
x
x
xy
x
三、复杂状态下的应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
x
E
z
x
E
y
x
E
z
x
x
E
y
E
z
E
1 E
x
y
z
三、复杂状态下的应力 --- 应变关系
y
z
z
y
x
xy
x
x
1 E
x
y
z
y
1 E
y
z
x
z
1 E
z
x
y
xy
xy
量,则两个面上的切应力一定等值、方向相对或相离。
y
z
z
y
证明: 单元体平衡 Mz 0
xy x
x
( xydydz)dx ( yxdzdx)dy 0
xy yx
五、取单元体 例1 画出下列图中各点的单元体图。
F A
F
x
x
A
x
F A
五、取单元体 例1 画出下列图中各点的单元体图。
T
T
B
yx CB xy
n
y 1
Fx 0
0
1S cos0 x S coso
x O y
x
xy
xy S sin 0
tan0
x 1 xy
y
y
3
主 单元体
x
xy10
tan20
2 xy x
y
Ox
四、最大切应力
令 : d
0
d 1
tan21
x 2 xy
y
m ax m in
x
2
y
2
2 xy
y
3
主 单元体
x
平面应力状态(Plane State of Stress): 一个主应力为零的应力状态。
单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
2 3
1
x B x
zx
xz
x
x
A
§7–2 平面应力状态分析——解析法
y
y
y
xy x
等价 y
x
xy
x z
3
z
x
3
2
1
y
1
3
z
2
x
12
1
2
2
1
3
2
12
2
1
y
1
3
z
2
x
23
2
2
3
3
2
23
2
1
3
y
1
2
13
1
2
3
3
x
z
1
13
3
2
1
3
y
1
max
最大正
应力
2
3
z
x
3
2
图a 最小正
应力
1
图b
弹性理论证明,图a单元体内任意一点任意截面上的应
力都对应着图b的应力圆上或阴影区内的一点。
整个单元体内的最大切应力为:
例3 用解析法求斜截面上的应力。
解:
x 20MPa y 30MPa xy 0 120o
300
20MPa
30MPa
x
y
2
x
y
2
cos 2
xy sin2
17.5MPa
x
y
2
sin2
xy cos 2
21.65MPa
23
例4 用解析法确定图示应力状态的主应力大小、主平面方位、最大切应力。
六、主单元体、主平面、主应力
y
y
主单元体(Principal bidy):
x
各侧面上切应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
切应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
空间应力状态( Space State of Stress): 三个主应力都不为零的应力状态。
解:由梁弯曲应力公式:
q
x
My Iz
xy
FS
S
z
b Iz
1 3
x
2
2 0
x
2
2
2 xy
x yx xy
1
3 3
2
0 1
3
33 –45°
13
4
0
1
5 1
A
B
3 C O
A
3
20
C O 1
A
B
3
CO
20= –90°
1
B
A
20
3
O C
1
B
B
A
O C 1
§7–4 空间应力状态简介
y
1
2
y
考虑切应力互等和三角变xy
x
图1
y
xy
x
2
y
x
2
y
cos 2
xy
s in 2
同理: F 0
x
2
y
s in 2
xy
cos 2
n
Ox
图2
二、极值应力
令 : d d
0
x y
sin20 2 xy cos 20
0
tan20
2 xy x
y
y
由此得两个驻点:
0、 0
21
x
A(x
,xy)
i j
OC
R
OC
3 2
20 1
x y
2
B(y ,yx)
x
2
y
2
2 xy
m in
max min
R
1
3
2
例5 求图示单元体的主应力及主平面的位置。(单位:MPa)
解:主应力坐标系如图
在坐标系内画出点
A(95,25 3 )
25 3
2
45 B 95
A
150° 0 25 3
max
1
2
3
平面应力状态有几个应力圆?
y
1
2
x
3
2
z
最大切应力为:
max
1
2
3
1
例1 求图示单元体的主应力和最大切应力。(MPa) y
B AC
40 50 30
x z
解:由单元体图
知C为主平面
k 50MPa
30 40
i j
z
2
y
z
2
y
2
2 zy
i j
57.72MPa 27.72MPa
x 95MPa
i j
x
2
y
x
2
y
2
2 xy
i j
120MPa 20MPa
1 120MPa
2 20MPa
3 0
tan0
x 1 xy
0 30
例6 如图,已知梁发生剪切弯曲(横力弯曲),某截面上M、
FS>0,试确定此截面上各点主应力大小及主平面位置。
F1
F2
1
2 3 4
5
y
xy 1
Ox
' max
' min
i
j
2
空间应力状态:
max min
1
3
2
max
1
3
2
0
1
4
极值切应力面与主平面成45角。
20
例2 分析受扭构件的破坏规律。
C
y Ox
Me
xy yx
解:确定危险点并画单元体
yx
C xy
x y 0
xy
T Wt
求主应力及最大切应力
i j
x
2
y
x
25 3
y 45MPa
yx 25 3MPa xy
x ?
x
2
y
s in 2
xy
cos 2
25 3 x 45 sin120o 25 3 cos120o
2
x 95MPa
45 95
25 3
60°
2
150° 25 3
y Ox
0
1
95
25 3
y 45MPa
xy 25 3MPa
1
E
2
y x
xy G xy
五、体积应变与应力分量间的关系
V a1a2a3
V1 a1(1 1 )a2 (1 2 )a3 (1 3 )
体积应变:
V1 V V
1 2
3