大学物理-质点和质点系的动量定理

合集下载

04 3-1 质点和质点系的动量定理

04 3-1  质点和质点系的动量定理

t2
F1+F2 dt (m1v1 m2v2 ) (m1v10 m2v20 )
t1
作用在两质点组成的系统的合外力的冲量等于系统内两质 点动量之和的增量,即系统动量的增量。
2、多个质点的情况
t2 t2 n n n Fi外 dt+ Fi内 dt m i v i m i v i 0 i 1 i 1 t1 i 1 t1 i 1 n
3-4 动能定理
一、功与功率
1、功
•恒力的功 力对质点所作的功等于该力在位移 方向上的分量与位移大小的乘积
F m
F

S
m
说明 •功是标量,没有方向,只有大小,但有正负 p/2,功W为正值,力对物体作正功; p /2,功W=0, 力对物体不作功; p /2,功W为负值,力对物体作负功,或 物体克服该力作功。 •单位:焦耳(J) 1J=1N· m
i i i
ex ex 若质点系所受的合外力为零 F Fi 0
则系统的总动量守恒,即
讨论
ex dp ex i F , F 0, P C dt
p pi
保持不变 .
i
1)系统的动量守恒是指系统的总动量不变,系 统内任一物体的动量是可变的, 各物体的动量必相 对于同一惯性参考系 .
W=F S dW=F dS
•变力的功 分成许多微小的位移元,在每一个 位移元内,力所作的功为
Z
dr
b
F
dW F dr F cos dr
总功
a O
Y
W
•合力的功
B
A
B X F dr F cosdr

大学物理-动量定理

大学物理-动量定理
碰撞过程可分为完全弹性碰撞、弹性碰撞、完全非弹性碰撞。
poy m 2gh py 0
由: F yt py
即: N mg t m 2gh
N mg m 2gh t
t 1s, N 600N 600N 1200N t 0.1s, N 600N 6000N 6600N
y r N
o
mgr
可以看出当物体状态变化相同量,力的作用时间越短,物体受到的冲 击力就越大。当作用时间很短时,重力可忽略不计。
P0 P
动量守恒定律:当系统所受的合外力为0时, 系统的动量守恒。
明确几点:
1、质点系受合外力为 0,每个质点的动量可能 变化,系统内的动量可以相互转移,但它们的总 和保持不变。各质点的动量必相对于同一惯性参 考系。
2、若合外力不为 0,但在某个方向上合外力分 量为 0,则在该方向上动量守恒。
注意
内力不改变质点系的动量
初始速度 vg0 vb0 0 mb 2mg 则
推开后速度 vg 2vb
推开前后系统动量不变
且方向p相反p0则
pp0
0 0
二、动量守恒定理
由质点系的动量定理:
t
( Fi )dt P P0 ΔP
t0
其中P
mi vi
Pi

Fi 0 时 P P0 0
静止状态,已知力 F 的大小与时间的关系为
2.5 104 t,0 t 0.02 F(t) 2.0 105 (t 0.07)2 ,0.02 t 0.07
式中 F 的单位是 N ,t 的单位是s 。
求:(1)上述时间内的冲量、平均冲力大小; (2)物体末速度的大小。
4)平均冲力
在冲击和碰撞等问题中,
③小球所受绳子拉力的冲量大小。

大学物理——第2章-质点和质点系动力学

大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1

大学物理质点和质点系的动量定理

大学物理质点和质点系的动量定理
t1
I
O
F t2 t
O
I
t1 t2 t
t1
动量定理常应用于碰撞问题
F
t1 mv2 mv1 t2 t1 t2 t1
在△p一定时, △t 越小,则F越大
t2
Fdt
mv
mv1
F
mv2
注意
第三章 动量守恒和能量守恒
9/14
物理学
第五版
3-1 质点和质点系的动量定理 例 1 一质量为0.05kg、速率为10m/s的刚球,以与钢 板法线呈45º 角的方向撞击在钢板上,并以相同的速率和 角度弹回来.设碰撞时间为0.05s.求在此时间内钢板所受 到的平均冲力 F 解:由动量定理得 F t mv mv mv1 2 1 建立如图坐标系 x
t2
物体由于运动具有的机械效果 Objects with the mechanical effect because of moving 冲量(Impluse) (矢量Vector)
I

t1
Fdt
力对时间的累积效应
The time accumulation effects of forces
作用于质点系的合外力等于质点系动量随 时间的变化率. The combined external force acting on the mass point system is equal to the momentum variation rate of the mass point system with respect to time.

y
两边同乘以ydy, 则
2
y
1 3 1 d yv 2 y gdy ydy yv d yv gy yv 3 2 dt y yv 1 2 2 g y d y yv d yv v ( gy ) 2 0 0 3

3-1 质点和质点系的动量定理

3-1 质点和质点系的动量定理

在直角坐标系中, 在直角坐标系中,动量定理分量形式
v v v v I = Ixi + I y j + Izk
I x = ∫ Fx dt = mv x − mv0 x
t0 t t
I y = ∫ Fy dt = mv y − mv0 y
t0 t
I z = ∫ Fz dt = mvz − mv0 z
t0
t2
参考系
t2 时刻
动量定理
v v mv1 mv2 S系 系 v v v v S’系 m( v1 − u ) m( v2 − u ) 系
∫t
t2
1
v v v F (t )dt = mv 2 − mv1
动量定理常应用于碰撞问题
v v v ∫t1 mv2 − mv1 F= = t 2 − t1 t 2 − t1
例 1 一质量为 0.05kg、速率为 、速率为10m·s-1 的刚球 , 以 角的方向撞击在钢板上, 与钢板法线呈 45º 角的方向撞击在钢板上 并以相同的 速率和角度弹回来. 速率和角度弹回来 设碰撞时间为 0.05s . 求在此时间 内钢板所受到的平均冲力 F . 建立如图坐标系, 解 建立如图坐标系 由动量定理得
答:冲量的方向是动量增量的方向。 冲量的方向是动量增量的方向。
问题二:冲量大小或动量增量与哪两个因素有关? 问题二:冲量大小或动量增量与哪两个因素有关? 与哪两个因素有关
答:力与时间的增量;要产生同样的动量的增量, 力与时间的增量;要产生同样的动量的增量, 力大力小都可以:力大则时间短些; 力大力小都可以:力大则时间短些;力小则时间 长些。只要力的时间累积即冲量一样, 长些。只要力的时间累积即冲量一样,就产生同 样的动量增量。 样的动量增量。

大学物理-第三章三大守恒定律

大学物理-第三章三大守恒定律

i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某

b v2


d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a

v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv

质点和质点系的动量矩和动量矩定理

质点和质点系的动量矩和动量矩定理

质点和质点系的动量矩和动量矩定理今天我们进入第十一章的学习这篇文章先学习《11-1 质点和质点系的动量矩》《11-2 动量矩定理》一、质点和质点系的动量矩1、质点的动量矩M O(mv)=r×mv 质点的动量对点O的矩[M O(mv)]z=M z(mv) 质点对点O的动量矩矢在某轴上的投影,等于质点对该轴的动量矩。

2、质点系的动量矩L O=∑M O(m i v i) 质点系的动量对点O的矩L z=∑M z(m i v i) 质点系的动量对z轴的矩[L O]z=L z 质点系对点O的动量矩矢在某轴上的投影,等于质点系对该轴的动量矩刚体平移时:可将质量集中于质心,作为一个质点计算其动量矩。

定轴转动刚体:L z=∑M z(m i v i)=∑m i v i r i=∑m i(ωr i)r i=ω∑m i r i2令:J z=∑m i r i2——刚体对z轴的转动惯量,则:L z=J zω二、动量矩定理1、质点的动量矩定理设O为定点,有称为质点的动量矩定理:质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩.投影式:2、质点系的动量矩定理——质点系动量矩定理,即:质点系对于某定点O的动量矩对时间的导数,等于作用于质点系的外力对于同一点的矩的矢量和。

投影式:内力不能改变质点系的动量矩.例高炉运送矿石用的卷扬机如图,已知鼓轮半径为R,质量为m1,鼓轮对转轴的转动惯量为J,作用在鼓轮上的力偶矩为M。

小车和矿石总质量为m2,轨道倾角为θ。

设绳的质量和各处摩擦不计,求小车的加速度a。

守恒定律质点动量矩守恒定律若M O(F)≡0 ,则M O(mv)=恒量;若M z(F)≡0,则M z(mv)=恒量例小球A、B 以细绳相联,质量均为m ,其余构件质量不计。

忽略摩擦,系统绕z轴自由转动,初始时系统角速度为ω0,当细绳拉断后,各杆与铅垂线成θ角,求这时的角速度ω。

解:1、取整体研究,受力分析知,系统受重力和约束力作用,外力对转轴的矩都等于0,因此系统对转轴的动量矩守恒2、列方程L z1=L z2L z1=2maω0a=2ma2ω0,L z2=2m(a+l sinθ)2ω今天的知识点你都掌握了吗?。

大学物理质点和质点系的动量定理

大学物理质点和质点系的动量定理

01
03
详细描述:冲量被定义为力和力的作用时间的乘积, 是改变物体动量的量。在直线运动中,冲量等于物体
动量的变化量。
04
总结词:冲量概念
质点在曲线运动中的动量定理应用
总结词:复杂应用 总结词:刚体运动
详细描述:质点在曲线运动中,动量定理的应用 需要考虑力的方向和大小随时间的变化。通过分 析力和速度的变化,可以深入理解物体运动的规 律。
质点
在物理学中,质点是一个理想化的模 型,用于描述具有质量的点在空间中 的运动。质点不考虑形状、大小和旋 转,只考虑其位置和质量。
质点系
质点系是由两个或多个质点组成的系 统。这些质点之间可以相互作用,如 万有引力、弹性力等。
动量的定义和计算方法
• 动量:物体的动量定义为质量与 速度的乘积,用符号p表示。计 算公式为p=mv,其中m为物体 的质量,v为物体的速度。
详细描述:刚体运动是质点在曲线运动中的一种 特殊情况,其特点是物体形状和质量分布不随时 间改变。动量定理在刚体运动中可以用来分析旋 转和角速度的变化。
质点系在碰撞中的动量定理应用
总结词:碰撞分析
详细描述:质点系在碰撞过 程中,动量定理是重要的分 析工具。通过分析碰撞前后 的动量和力的关系,可以确 定碰撞的性质(弹性、非弹 性)和能量损失情况。
总结词:动量守恒定律
详细描述:在理想情况下, 没有外力作用时,质点系内 的动量是守恒的。动量守恒 定律是动量定理的一种特殊 情况,广泛应用于物理和工 程领域。
03 质点和质点系的动量定理 的推导和证明
动量定理的推导过程
初始状态 假设一个质点在某个时刻的速度 为 (v),质量为 (m),则该质点的 动量为 (p = mv)。

大学物理动量守恒

大学物理动量守恒

t 0.01s v1 10m/s v2 20m/s m 2.5g
2
2
Fx 6.1N Fy 0.7N F F x F y 6.14N
I x 0.061Ns I y 0.007Ns
I
I
2 x
I
2 y
6.14102 Ns
tg I y I x 0.1148
6.54
为 I 与x方向的夹角。
(2)动量守恒定律是关于自然界一切过程的最基本的 定律之一。
它适用于: 宏观粒子系统;电磁场;微观粒子系统 , 更普遍的动量守恒定律并不依赖牛顿定律。
(3)有时系统所受的合外力虽不为零,但与系统的内 力相比较,外力远小于内力,这时可以略去外力对系统 的作用,近似认为系统的动量是守恒的。像碰撞、打击、 爆炸等这类问题,一般都可以这样来处理。 (4)分动量守恒 若(F )x = 0,则 p末x = p初x,即动量的x方向分量守恒
过程量 状态量
(3)动能、动量都是表征物体运动状态的重要物 理量。

动能定理
反映力的空间累计
冲量 动量定理
反映力的时间累计
•冲量
小结
I=
t2
Fdt
t1
•动量定理 •质点系的动量定理 •动量守恒定律
I Fdt= P
I=P-P0
n
P=
mivi
恒矢量
i 1
作业
习题册: 32-42
F1 m1• f1
m2 • f2 F2
·两式相加有

初(F1+F2)dt = p末- p初

I = P末- P初
系统所受的合外力的冲量等于系统动量的增量!
推广到n个质点有:
t2

3_1质点和质点系的动量定理

3_1质点和质点系的动量定理

质点系动量定理:作用于系统的合外力冲量等于 质点系动量定理:作用于系统的合外力冲量等于 系统的动量增量。 系统的动量增量。 将上式推广到n个质点的系统, 将上式推广到 个质点的系统,质点系动量定理为 系统
3–1 质点和质点系的动量定理 第三章动量守恒定律和能量守恒定律 1 n n → → t2 v v v ∫ F 合外力 d t = ∑ m i v i − ∑ m i v i 0 = P − P 0

t2
t1
v v v v v v v v (F1 + F2 +F12 + F21)dt = (m1v1 + m2 v2 ) − (m1v10 + m2 v20 )
v v 由牛III, 由牛 ,一对内力抵消 F12 + F21 = 0 ,故

t2
t1
v v v v v v ( F1 + F2 )dt = ( m1 v1 + m2 v 2 ) − ( m1 v10 + m2 v 20 )
0 0
F合
O′ ′
r → → T → v T0 mg 0 I G = ∫ m g dt = − m g ∫ dt = − mg j T0
r v
3. 合力给物体的冲量 给物体的冲量
3–1 质点和质点系的动量定理 1
第三章动量守恒定律和能量守恒定律
合力给物体的冲量为 力给物体的冲量为
→ → → → → v T0 → T0 → I合 = ∫ F合 dt = ∫ (T + m g)dt =m v2 − m v1 = m v − m v = 0 0 0
3–1 质点和质点系的动量定理 1
第三章动量守恒定律和能量守恒定律

大学物理-第三章-动量守恒定律和能量守恒定律

大学物理-第三章-动量守恒定律和能量守恒定律

20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri

f ij

rij

rj
0


dW
jidWij

f
ji
dri
fij drj
f ji fij


fji f ji
(dd(rriidrrjj))

f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt

mv2

mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2


m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1

F

dr
F

dr

1 2
mv22

大学物理质点和质点系的动量定理 动量守恒定律

大学物理质点和质点系的动量定理 动量守恒定律
I z Fz dt mv2 z mv1z
t1 t2
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量.
F2 t1 ( F1 F12 )dt m1v1 m1v10 F21 F12 t2 F1 m2 ( F2 F21 )dt m2 v2 m2 v20 m1 t1 因为内力 F12 F21 0 ,故 t2 ( F1 F2 )dt (m1v1 m2 v2 ) (m1v10 m2 v20 )
注意:
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 . ex dp i ex 力的瞬时作用规律 F , F 0, P C dt
1)系统的动量守恒是指系统的总动量不变,系统 内任一物体的动量是可变的, 各物体的动量必相对于同 一惯性参考系 .
t0 i i i
可知
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 .
ex 力的瞬时作用规律 F ex dp , F 0, P C dt
i
2– 1 质点和质点系的动量定理 动量守恒定 律 动量守恒定律
I E
p mv
Fdt dp d (mv)
dp d (mv) F dt dt
t2 冲量 力对时间的积分(矢量) I Fdt
t1

t2
t1
Fdt p2 p1 mv2 mv1
2– 1 质点和质点系的动量定理 动量守恒定 律
mv1
F

大学物理动量定理

大学物理动量定理

子弹穿过两木块所用的时间分别为t1和t2,木块对子 弹的阻力为恒力F,则子弹穿出后,木块A的速度大小

,木块B的速度大小为
.
解:
F t1 m1vA m2vA
vA
F m1
t1 m2
F t2 m2vB m2vA
vB
F t2 m2
vA
F t2 m2
F m1
t1 m2
2-8. 一质量为m的质点在xoy平面上运动,其位置矢量
机械能守恒:
1 2
m2 v02
1 2
(m1
m2 )v2
1 2
kxm2 ax
1 xmax 2 x0
下次课内容:
§3-1 刚体运动的描述 §3-2-1 力矩 §3-2-2 刚体绕定轴转动定律
j
t
i
v bs
a in t
sin j]
t
i
b cost Fx m 2 x
j
dt
m2[x i y j ]
Fy m2 y
A(a,0) B(0, b)
Wx
0
a Fxdx m2
0 xdx 1 ma22
a
2
Wy
b
0 Fydy m 2
bydy 1 mb2 2
0
2
质点动能定理
W

r
a
cos
t
i b sin t j
(SI).
式中a,b, 是正值常
数, 且a > b.
(1)求质点在A点(a,0)和B 点(0,b)的动能; (2)求质点所 受的作用力 F 以及质点从A点运动到B点 的过程中 F 的分力Fx和Fy分别做的功.
解:

大学物理--动量定理

大学物理--动量定理
m(v1
u)
u)
mv2

mv1
二.质点系动量定理 质点系:由有相互作用的若干个质点组成
的系统。 内 力:系统内各物体间的相互作用力。
外 力:系统外物体对系统内物体的作用 力。
1.两个质点的质点系
F1
F根相1据加牛fF1顿21 定Fd律d2pt1 f1F22f2f121ddpdtd1pt2
人相对于车的速度为
v'

v

V
M

m
v
M
设人在时间 t 内走到另一端
l t v'dt M m t vdt M m x
0
M0
x M l
v M m
pB mvB 2 kg m

方向如图

It1t2 mvB mvA
s
mvA I t1t2
mvB
It1t2 mvA2 mvB2
6 N s 方向 tg mvB 2
mvA 2
54o44'

mv
It1 t2
A
mvB
dp p1

fij

0
或 F
dp总动量
p2

p1
dt
合外力
即系统所受合外力的冲量等于质点系总动量
的增量。
----质点系的动量定理
三.系统动量守恒

当合p外i 力mFivii
0 时:
=常矢量
d dt pi 0
即质点系所受合外力为零时,质点系的总动
量保持不变。 ----系统的动量守恒定律
2

2(2 t)dtj

大学物理动量守恒定律和能量守恒定律

大学物理动量守恒定律和能量守恒定律
比 外力做正功等于相应动能的增加; 较 外力做负功等于相应动能的减少。
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)

大学物理(上)课件-第02章质点动力学3-2

大学物理(上)课件-第02章质点动力学3-2

(
)
50
� � � dL � 质点系角动量定理: M = ∑ ri × Fi = dt
质点系对某一参考点的角动量随时间的变化率等 于系统所受各个外力对同一参考点力矩之矢量和。 质点系角动量定理的积分式:

t2
t1
� � � Mdt = L2 − L1
作用于质点系的冲量矩等于质点系在作用时 间内的角动量的增量 。
例6 宇宙飞船在宇宙尘埃中飞行,尘埃密度为ρ。如 果质量为mo的飞船以初速vo穿过尘埃,由于尘埃粘在 飞船上,致使飞船速度发生变化。求飞船的速度与其 在尘埃中飞行的时间的关系。(设飞船为横截面面积 为S的圆柱体) 解: 某时刻飞船速度: v,质量:m 动量守恒: 质量增量:
m0v0 = mv
dm = ρ Sv dt
2.质点系的动量定理:

t
t0
� � � � ∑ Fi dt = p − p0 = ∆p
� � dp ∑ Fi = dt
质点系统所受合外力的冲量等于系统总动量的增量。 微分式:
注意:系统的内力不能改变整个系统的总动量。
31
设 有n个质点构成一个系统 第i个质点: 质量
� � 内力 F 外力 Fi 内i
O
y
48
3. 质点的角动量定理
� � dL MO = dt
质点对某一参考点的角动量随时间的变化率等于 质点所受的合外力对同一参考点的力矩。 角动量定理的积分式:

t2
t1
� � � M O dt = L2 − L1

t2
t1
� M O dt
称为“冲量矩”
49
n � n � � � 质点系的角动量: L = ∑ Li = ∑ ( ri × pi ) i =1 i =1

【大学物理】第四章 动量 动量守恒定律

【大学物理】第四章 动量 动量守恒定律
15
o f
dv mg F k Av m dt v t mdv mg F k Av dt 0 0
m mg-F-k Av ln t kA mg F mg F k Av e mg F
kA t m
v
vm
t
kA t mg F m 1 e v kA
质心的运动 ~ 质点 质量 M 受力 F外
位于 rc
其运动与系统 内质点相互作 用无关
11
小结
质点
质点系
p mv dp F dt p pi Mvc dp F外 dt
i
v c F ma F外 Mac
基本方法:用质心作为物体(质点系)的代表, 描述质点系整体的平动。
f kmv
求: 轨道方程
解: 先建立 x,y 方向的运动微分方程, 受力情况如图:
y
dv x k mvx m dt k mvy mg m dv y dt
v0 f m
o

mg
17
x
dv x k mvx m dt k mvy mg m
用积分法求解
19
以地面为参考系, 列 M 的运动方程:
受力情况如图:
M

y Q
aM
x

Mg
N N
Fx N sin MaM Fy Q Mg N cos 0
(1) (2)
aM 0 , M不是惯性系。
20
以地面为参考系, 列 m 的运动方程: 由相对运动加速度关系, y
r2
rc
C
质心位矢是各质点 位矢的加权平均

质点和质点系的动量定理

质点和质点系的动量定理

质点和质点系的动量定理
质点和质点系的动量定理是物理学中的一个重要定理,可以用来描述质点和质点系的动量变化。

对于一个质点来说,动量定理可以表示为:质点的动量变化等于作用在质点上的力的时间积分。

具体表达式为:Δp = ∫ F dt
其中,Δp表示质点的动量变化,F表示作用在质点上的力,t 表示时间。

对于一个质点系来说,动量定理可以表示为:质点系的总动量变化等于作用在质点系上的外力的时间积分。

具体表达式为:ΔP = ∫ Fext dt
其中,ΔP表示质点系的总动量变化,Fext表示作用在质点系上的外力,t表示时间。

动量定理可以用来分析和解释质点或质点系在受到外力作用时的动量变化情况。

根据动量定理,当作用在质点或质点系上的力不为0时,质点或质点系的动量会发生变化,变化的大小与力持续的时间和力的大小有关。

质点系的动量定理

质点系的动量定理

i
Fi
d dt
i
Pi
以 F 和 P 表F示系d统P的合外力和总动量,上式可写为:
dt
由此可得F“dt质点d系P的动微量分定形理式”:
t2
Fdt

P2
dP
P
积分形式
t1
P1
内力不改变系统的总动量,但会使系统内部动量重新分配。 只有外力才能改变系统的总动量。
的速度,动量和应是同一时刻的===动量之和。
2、系统动量守恒,但每个质点的动量可能变化。
3、在碰撞、打击、爆炸等相互作用时间极短的过程 ===中,往往可忽略外力(外力与内力相比小很多)— ======——近似守恒条件。
4、动量守恒可在某一方向上成立(合外力沿某一方 ===向为零。)——部分守恒条件
5、动量守恒定律在微观高速范围仍适用。是比牛顿 ===定律更普遍的最基本的定律
离S1=100米,问另一块落地点与发射点的距离是多少? (空气阻力不计,g=9.8m/s2)
解:已知第一块方向竖直向下

h

v1t
'
1 2
gt
'2
t ' 1s 为第一块落地时间
v1 v1y 14 7m / s
y v2
h
v1 h S1
x
炮弹在最高点,vy

0, 到最高点用时为t
好触到水平桌面上,如果把绳
的上端放开,绳将落在桌面上。
试证明:在绳下落的过程中,
任意时刻作用于桌面的压力,
等于已落到桌面上的绳重力的
x
三倍。
证明:取如图坐标,设t 时刻已有x
o
长的柔绳落至桌面,随后的dt时间

大学物理 动量守恒定律 质心运动定理

大学物理 动量守恒定律  质心运动定理

mi vi 2 mi vi1
i 1 i 1
质点间的作用力是相互的,满足牛顿第三定律
f ji 0
n n 1 i 1 j 1
第2章 运动定律与力学中的守恒定律
2–3 动量 动量守恒定律 *质心运动定理
8

t2
t1
n n ( Fi外 )dt mi vi 2 mi v i1 n i 1 i 1 i 1
1 n zc m i z i m i 1
对质量连续分布的物体:
xdm xc m
说明
ydm yc m
zdm zc m
对密度均匀、形状对称的物体,其质心在 其几何中心.
第2章 运动定律与力学中的守恒定律
2–3 动量 动量守恒定律 *质心运动定理
1
力的累积效应 一、质点的动量定理 动量
F (t ) 对 t 积累 p , I F 对 r 积累 W , E
p mv
动量为矢量,方向与速度的方向相同。 单位:
kg m / s
第2章 运动定律与力学中的守恒定律
F ma d(mv) dp dv F a dt dt dt Fdt dp d (mv)
n 1 t2 t1 ( Fi外 f ji )dt i 1 j 1 n mi vi 2 mi vi1 n i 1
第2章 运动定律与力学中的守恒定律
2–3 动量 动量守恒定律 *质心运动定理
7

t2
t1
n n 1 t2 ( Fi 外 )dt ( f ji )dt n i 1 t1 i 1 j 1 n n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fx
2mv cos
t
14.1 N
方向与Ox 轴正向相同.
F' F
12
例2 一柔软链条长为l,
单位长度的质量为,链条放
在有一小孔的桌上,链条一 端由小孔稍伸下,其余部分 堆在小孔周围.由于某种扰 动,链条因自身重量开始下落.
m2
O
m1
y
y
求链条下落速度v与y之间的关系.设各处摩 擦均不计,且认为链条软得可以自由伸开.
dp
d(mv)
dt dt
I
t2 t1
Fdt
mv2
mv1
动量定理 在给定的时间间隔内,外力 作用在质点上的冲量,等于质点在此时间内 动量的增量.
3
分量表示 说明
Ix
t2 t1
Fxdt
mv2x
mv1x
I y
t2 t1
Fydt
mv2 y
mv1y
I z
t2 t1
Fzdt
mv2z
mv1z
n i 1
mi vi0
p
p0
作用于系统的合外力的冲量等于系统
动量的增量——质点系动量定理
F
ex
F1
F2
FN
I p p0
7
注意
➢区分外力和内力 ➢内力仅能改变系统内某个物体的 动量,但不能改变系统的总动量.
8
讨论
F
(1)
F
为恒力
I Ft
O t1
(2) F 为变力
I
t2 t1
Fdt F
(t2
t1)
F F
O t1
t2 t
t2 t
9
动量定F理常t1t应2 F用dt于碰m撞v问2 题mv1
t2 t1
t2 t1
注意 在 p 一定时
t越小,则 F 越大
mv
mv1
mv2
F
10
例1 一质量为0.05 kg、
速率为10 m·s-1的刚球,以与
x
mv1
钢板法线呈45º角的方向撞击
O
某方向受到冲量,该方向上动量就改变.
4
二 质点系的动量定理 质点系
对两质点分别应用 质点动量定理:
F1
F12
m1
F2
F21
m2
t2
t1
t2
t1
(F1
(F2
F12 )dt F21)dt
m1v1 m1v10
m2v2 m2v20
5
t2
t1
t2
t1
(F1 (F2
F12 )dt F21)dt
力的累积效应
F
对时间积累
I, p
F 对空间积累 W,E
动量、冲量 、动量定理、动量守恒 动能、功、动能定理、机械能守恒
1
一 冲量 质点的动量定理
➢ 动量 Fpdmp v d(mv)
dt dt

冲量(Ft1t矢2dFt量dt)dpIp2d(pmt21 vF) dmtv2
mv1
dyv
0
0
m2
O
m1
y
y
1 gy3 1 yv2
32
v
2
gy
1 2
3
15
本章目录
选择进入下一节:
3-0 教学基本要求
3-1 3-2 *3-3
质点和质点系的动量定理 动量守恒定律 系统内质量移动问题
3-4 动能定理
3-5 保守力与非保守力 势能
16
13
解 以竖直悬挂的链条 和桌面上的链条为一系统, 建立坐标系
则 F ex m1g yg
由质点系动量定理得
F exdt dp
因 dp d(yv) d(yv)
ygdt d( yv)
m2
O
m1
y
y
yg dyv
dt
14
yg dyv
dt
两边同乘以 yd y 则
y2gdy ydy dyv yv dyv
m1v1 m1v10
m2v2 m2v20
因内力F12 F21 0,故将两式相加后得:
t2
t1
(F1
F2
)dt
(m1v1
m2 v 2
)
(m1v10
m2 v 20
)
t2
t1
F exdt
n i 1
mi vi
n i 1
mi vi0
6
t2
t1
F exdt
n i 1
mi vi
在钢板上,并以相同的速率
mv2
和角度弹回来.设碰撞时间
为0.05 s.求在此时间内钢板
y
所受到的平均冲力.
11
解 由动量定理得:
Fxt mv2x mv1x
x
mv cos (mv cos)
2mvcos
mv1
O mv2
Fyt mv2y mv1y
y
mvsin mvsin 0
F
相关文档
最新文档