等差数列前n项和的性质ppt课件
合集下载
等差数列前n项和公式课件
6
例1 如图,一个堆放铅笔的 V形
架的最下面一层放一支铅笔,往 上每一层都比它下面一层多一支, 最上面一层放120支。这个V形架 上共放着多少支铅笔?
解:由题意可知,这个V形架上共放着120层铅
笔,且自下而上各层的铅笔数成等差数列,记
为{an},其中 a1=1 , a120=120.根据等差数列前n项 和的公式,得
120 (1120)
S120
2
7 260
答:V形架上共放着 7 260支铅笔。
7
例2 等差数列 10,6,2,2,…前多少项的和是54?
解:设题中的等差数列为{an},前n项和是 Sn,
则a1= 10,d= 6(10) 4,设 Sn=54, 根据等差数列前 n项和公式,得
10n n(n 1) 4 54 n2 6n 27 0
100个101
所以 2x 101100, x=5050.
这个问题,可看成是求等差数列 1,2,3,…, n,…的前100项的和。
3
下面将对等差数列的前n项和公式进行推导
设等差数列a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2sn=(a1+an)+(a1+an)+(a1+an)+..
(m,n,p,q∈N),那么: an+am=ap+aq
2
问题1:1+2+3+…+100=?
等差数列前n项和的公式 PPT
(2)当m+n=p+q时, am+an=ap+aq
1+2+3+…+98+99+100=?
高斯10岁时曾很快算出 这一结果,如何算的呢?
高斯, (1777— 1855) 德国 著名数学家。
我们先看下面的问题。
怎样才能快速 计算出一堆钢管有 多少根呢?
一 二
4+10=14 5+9=14
三 四
6+8=14 7+7=14
1( 2
?首项 + ?尾项 )
?项数
Sn
n(a1 an) 2
以下证明 {an}是等差数列,Sn是前n项和,则
Sn
n(a1 an) 2
证:
Sn= 即Sn=
aa1+n+aa2n-+1+a3an+-2+…+a+a1…ana+-n21+a++na-32++aan-21++aan11
把+得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)
n(n-1)
2
×4 =54
整理得: n 2-6n-27=0
解得: n1=9, n2=-3(舍去)
答: 等差数列-10,-6,-2,2,···前9项的和 是54。
.
例3 一个堆放铅笔的V形架的最下面一层放1支铅笔,往上 每一层都比它下面一层多放一支,最上面一层放120支. 这个V 形架上共放着多少支铅笔?
多媒体教学课件
4.2.2等差数列的前n项和公式的性质课件-高二上学期数学人教A版选择性必修第二册
12
3
4
S9 6 S12 10
探究新知
三、等差数列前n项和的性质
Sn ,Tn分别为等差数列{an},{bn}的前n项和.
性质2 : ① a1 an Sn ; b1 bn Tn
析 : Sn
n(a1 an ) , 2
Tn
n(b1 bn ) 2
② ak S2k 1 . bk T2k 1
析 : ak 2ak a1 a2k1 S2k1 . bk 2bk b1 b2k 1 T2k 1
解 :当n 2时,an Sn Sn1 4n2 n 3 [4(n 1)2 (n 1) 3] 8n 3
当n 1时, a1 S1 4 1 3 8 81 3,
数列{an}的通项公式为an
8, n 1 8n 3, n
2
探究新知
三、等差数列前n项和的性质
Sn为等差数列{an }的前n项和. 性质1: Sk , S2k Sk , S3k S2k ,成等差数列(k Z ) a1 ak , ak1 a2k , a2k1 a3k ,
②
联立①②解得a1 4,d 6.
前n项和Sn
4n
n(n
1) 6 2
3n 2
nቤተ መጻሕፍቲ ባይዱ
例题讲授
[例1]若等差数列{an }的前10项和为310, 前20项和为1220,
求该数列的前n项和Sn .
(法2)解 :
S10
(a1
a10 ) 10 2
310,
a1
a10
62,
①
S20
(a1
a20 ) 20 2
②等差中项法:an1 an1 2an (n 2) {an}为等差数列
③通项法:an pn q( p, q为常数) {an}为等差数列
等差数列前n项求和ppt
公式理解
01
公式意义
等差数列的前n项和公式表示等 差数列前n项的和,其中首项为 a1,公差为d,项数为n。
公式结构
02
03
公式参数
公式由首项、公差、项数和求和 符号组成,反映了等差数列的特 性。
首项a1表示等差数列的第一项, 公差d表示相邻两项的差,项数n 表示等差数列的项数。
公式应用
应用场景一
等差数列前n项求和
目录
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列求和的常见方法 • 等差数列求和的实际应用 • 等差数列求和的注意事项
01
等差数列的定义与性质
定义
总结词
等差数列是一种常见的数列,其特点是任意两个相邻项的差是一个常数。
详细描述
等差数列是一种有序的整数集合,其中任意两个相邻项的差都等于一个常数,这个常数被称为公差。等差数列的 一般形式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是第一项,d 是公差。
02
等差数列的前n项和公式
公式推导
公式推导方法一
利用等差数列的性质,将前n项和表示为n/2乘以首项与末项的平均值,再利用等差数列的通项公式, 推导出前n项和公式。
公式推导方法二
利用等差数列的求和公式,将前n项和表示为首项与末项的和乘以项数再除以2,同样利用等差数列的通 项公式,推导出前n项和公式。
日常生活中的应用
购物清单
在购物时,等差数列求和公式可用于计算购 物清单中商品的总价,以便快速计算出总花 费。
工资计算
在工资计算中,等差数列求和公式可用于计算工资 总额,以便计算税款和扣除项。
日常理财
在理财中,等差数列求和公式可用于计算定 期存款、基金定投等理财产品的收益。
等差数列前n项和(公开课)PPT课件
数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列前n项和PPT优秀课件
n 个 2 S ( a a ) ( a a ) ( a a ) n 1 n 1 n 1 n
n ( a a ) 1 n
n ( a 1 a n) S n 2
等差数列的前n项和公式的其它形式
n ( a 1 a n) S n 2 n ( n 1 ) S na d n 1 2
解: 由题意 , m 是 7 的倍数 , 且 0 m 100 .
练习1.
课 堂 小 练
1. 根据下列条件,求相应的等差数列
a n 的 S
( 1 ) a 5 , a 95 , n 10 ; 1 n
( 2 ) a 100 , d 2 , n 50 ; 1
n
练习2.
解得: n = 4 或 n = 6 a1=6 或 a1= -2
M m |m 7 n ,n N , 且 m 100 例3. 求集合
的元素个数 , 并求这些元素的和 .
将它们从小到大排列得 : ,7 7 0,7 1, 7 2, 7 , 14 , 21 , , 98 . 14 .即 共有 15 个元素 , 构成一个等差数列 ,记为 a , n 15 ( 0 98 ) a 0 , a 98 S 1 15 735 15 2 答 : 集合 M 共有 15 个元素 , 和等于 735 .
= 7260 120 = (1 + 120 ) · 2
120 (a1 a120) · 2
(三)构建数学:猜测
问题 1: 问题 2: S120=1+2+ · · · · · ·+12 0 120
(a1 a120 )· 2
等差数列的前n项和PPT优秀课件1
(2)100元“零存整取”的月利息为 100×1.725‰=0.1725(元), 存3年的利息是
0.1725×(1+2+3+……+36)=114.885(元), 因此李先生多收益
179.82-114.885×(1-20%)=87.912元.
答:李先生办理“教育储蓄”比“零存整 取”多收益87.912元
解:(1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元), 第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ………… 第36个100元存1个月,得利息0.27×1(元),
此时李先生获得利息
0.27×(1+2+3+……+36)=179.82(元), 本息和为3600+179.82=3779.82元;
解 得 30AB2
S 3 0 9 0 0 A 3 0 B 3 0 ( 3 0 A B ) 6 0
解法三: 设a1+a2+……+a10=A, a11+a12+……+a20=B,
a21+a22+……+a30=C, 则A,B,C成等差数列, 且A=10,A+B=30, 解得B=20,
2.2.2等差数列的前n项和
如图堆放一堆钢管,最上一层放了4根, 下面每一层比上一层多放一根,共8层,这 堆钢管共有多少根?
这堆钢管从上到下的数 量组成一个等差数列。
其中a1=4,公差d=1. 最下一层中a8=11。
即求4+5+6+……+11=?
我们设想,在这堆钢管旁,如图所示堆放同 样数量的钢管,这时每层都有钢管(4+11)根.
等差数列的前n项求和公式ppt课件
则 2Sn nn 1
Sn
nn 1
2
4
推导
下面对等差数列前n项公式进行推导
设等差数列 a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是 Sn=an+an-1+…+a2+a1 (2) 由(1)+(2) 得 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+.. 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2Sn=(a1+an)+(a1+an)+(a1+an)+..
高斯的问题,可以看成是求等差数列 1,2,3,…, n,…的前100项的和,求:1+2+3+4+…+n=?
如果令 Sn=1 + 2 + 3 + ... +(n-2)+(n-1)+ n
颠倒顺序得 Sn=n+(n-1)+(n-2)+ ... + 3 + 2 + 1
将两式相加 2Sn=(1+n)+(2+n-1)+...+(n+1)
例2 已知一个等差数列{an}的前10项的和是310,前
20项的和是1220 .求等差数列的前n项和的公式
例3 求集合M={m|m=7n, n是正整数, 且m<100}的元素
个数, 并求这些元素的和.
7
解:将题中的等差数列记为{an},Sn代表该数列的前n项
等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
等差数列前n项和(公开课)PPT课件
实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$
等差数列的前n项和公式的性质ppt课件
可编辑课件
22
『变式探究』
1.数列{an}中,a1=8,a4=2,且满足 an+2-2an+1+an=0,n∈N*. (1)求数列{an}的通项; (2)设Sn=|a1|+|a2|+…+|an|,求Sn.
解析:(1)由an+2-2an+1+an=0得,2an+1=an+an+2,
所以数列{an}是等差数列,d= a 4 a 1 = -2,
Sna 1a 2a 5(a 6a 7a n) (a 1a 2a 3a n)2 (a 1a 2a 5)
n 9n40 Sn=2-25+9·5+n-52+2 2n-10=n2-9n+40.
由①,②可得
Sn=-n2-n2+9n+9n,40,
1≤n≤5 n≥6
可编辑课件
,n∈N*.
24
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
可编辑课件
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
且
Sn Tn
7n 2 n3
,则
a5 b5
65 12
.
可编辑课件
13
『变式探究』
1.已知两个等差数列{an}和{bn}的前n项和分别为An和
Bn,且
An Bn
7n 45,则使得 n3
a b
n n
为整数的正整数n的
个数是( D )
A.2
B.3
C.4
D.5
可编辑课件
14
【题型分类 深度剖析】
题型1:等差数列前n项和性质的简单应用
一般地若数列abn那么数列a为等差数列那么是什么数列为等差数列即等差数列a项的平均值组成的数列仍然是等差数列且公差是数列aa0b2011201120112009200720092007知识探究二等差数列前n项和的性质思考1
4.2.2等差数列的前n项和公式PPT课件(人教版)
解:由已知可得:a1= -10,d=4
n(n 1)
S n 10n
4
2
2n 12n
2
令 2n 12 n 54
2
解得:n 9 或 n (舍)
3
所以数列前9项的和是54.
课堂小结
等差数列前n项和公式
n(a1 an )
Sn
2
n(n 1)
S n na1
101
算法过程:
由①+②,得
1
( + )
=
=
设 =1+2+3+…+100+101
①,则
=101+100+99+…+2+1 ②
2 = (+)
合作探究
思考2:已知数列{an}是等差数列,如何求
= 1 + 2 + 3 +··· +−1 + 的值?
S n na1
d
2
名师点析:(1)两个公式均为等差数列的求和公式,一共涉及a1,an,Sn,n,d
五个量.通常已知其中三个,可求其余两个,而且方法就是解方程(组),这也
是等差数列的基本问题情势之一.
( + )
(2)当已知首项a1,末项an,项数n时,用公式Sn=
.用此公式时,有时要
A.230
B.420
C.450
D.540
20×19
解:S20=20a1+ 2 d=20×2+20×19=420.
B
)
典型例题
例1 已知数列{an}是等差数列.
(1)若a1=7,a50=101,求S50;
(3)若a1= ,d=- ,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an a n1
S2n-1=(2n- 1)an (an为中间项),
此时有:S奇-S偶= an ,
S奇 S偶
n n1
性质5:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p)
性质6:若Sm=Sp (m≠p),则 Sp+m= 0
.
11
3.等差数列{an}前n项和的性质的应用
例1.设等差数列{an}的前n项和为Sn,若
S3=9,S6=36,则a7+a8+a9=( B)
A.63 B.45 C.36 D.27
例2.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
.
12
等差数列{an}前n项和的性质的应用
7
求等差数列前n项的最大(小)的方法
方法1:由Sn
dn2 2
(a1
d)n利用二次函 2
数的对称轴求得最值及取得最值时的n的值.
方法2:利用an的符号判定
①当a1>0,d<0时, 此时Sn有最大值,其n的 值由an≥0且an+1≤0求得.
②当a1<0,d>0时, 此时Sn的最小值,其n的 值由an ≤0且an+1 ≥ 0求得.
例3.一个等差数列的前10项的和为100, 前100项的和为10,则它的前110项的和 为 -110 .
例4.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
求a 5 和 a n
b5
bn
.
Tn 4n 27
a 5 6 4 an 14n 6 b 5 6 3 bn 8n 23
.
8
练习:已知数列{an}的通项为an=26-2n, 要使此数列的前n项和最大,则n的值为
( C)
A.12 B.13 C.12或13 D.14
.
9
2.等差数列{an}前n项和的性质
在等差数列{an}中,其前n项的和为Sn,则有
性质1: { S n } 为等差数列. n
性质2:Sn,S2n-Sn,S3n-S2n, …也是等差数列, 公差为 n2d
性质3:若数列{an}与{bn}都是等差数列,且
前n项的和分别为Sn和Tn,则
.
an bn
S 2n1 T 2n1
10
性质4:(1)若项数为偶数2n,则
S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中间项),
S奇 此时有:S偶-S奇= nd , S 偶
(2)若项数为奇数2n-1,则
.
13
等差数列{an}前n项和的性质的应用
例5.一个等差数列的前12项的和为354, 其中项数为偶数项的和与项数为奇数项
的和之比为32:27,则公差为 5 .
例6.(09宁夏)等差数列{an}的前n项的和 为Sn,已知am-1+am+1-am2=0,S2m-1=38,则
m= 10 .
例7.设数列{an}的通项公式为an=2n-7,
等差数列的前n项和 的性质及应用
.
1
复习回顾
等差数列的前n项和公式:
形式1:
Sn
n(a1 an) 2
形式2:
n(n1)
Snn1a 2 d
.
2
1.将等差数列前n项和公式
看作是一Sn个关n于a1n的 函n(数n 2,1这)d个函数
有什么特点?
Sn
dn2 2
(a1
d)n 2
令
A
d 2
,
B
a1
d 2
则
Sn=An2+Bn
n2 14n(n7)2 49
∴当n=7时.,Sn取最大值49.
4
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法2 由S3=S11得 d=-2<0
则Sn的图象如图所示
Sn
又S3=S11
所以图象的对称轴为
3 11
n
n
7
2
3 7 11
∴当n=7时,Sn.取最大值49.
5
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法3 由S3=S11得 d=-2
∴ an=13+(n-1) ×(-2)=-2n+15由源自a ann1
0
0
得
n
n
15 2 13 2
∴当n=7时. ,Sn取最大值49.
练习1
已知等差数列25,21,19, …的前n项和 为Sn,求使得Sn最大的序号n的值.
.
17
练习2:
求集合 M { m m 2 n 1 ,n N ,m 6}0
的元素个数,并求这些元素的和.
.
18
练习3:已知在等差数列{an}中,a10=23, a25=-22 ,Sn为其前n项和.
(1)问该数列从第几项开始为负?
13a1+13×6d<0
24 d 3
7
.
15
(2)
∵
1 Sn na12n(n1)d
1
n(122d) n(n1)d
2
dn2 (125d)n
2
2
∴Sn图象的对称轴为 n
5
12
由(1)知
24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 1 3
2d 2
2
由于n为正整数. ,所以当n=6时Sn有最大值1.6
6
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法4 由S3=S11得
a4+a5+a6+……+a11=0 而 a4+a11=a5+a10=a6+a9=a7+a8
∴a7+a8=0 又d=-2<0,a1=13>0
∴a7>0,a8<0
∴当n=7时.,Sn取最大值49.
(2)求S10 (3)求使 Sn<0的最小的正整数n.
(4) 求|a1|+|a2|+|a3|+…+|an|的值
.
19
1.根据数列前n项和,求通项公式.
an
a1 Sn
Sn1
n1 n2
则|a1|+|a2|+|a3|+……+|a15|= 153 .
.
14
等差数列{an}前n项和的性质
例8.设等差数列的前n项和为Sn,已知
a3=12,S12>0,S13<0. (1)求公差d的取值范围;
(2)指出数列{Sn}中数值最大的项,并说明
理由.
a1+2d=12
解:(1)由已知得 12a1+6×11d>0
当d≠0时,Sn是. 常数项为零的二次函数3
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法1 由S3=S11得
3 1 3 1 3 2 d 1 1 1 3 1 1 1 1 0 d
2
2
∴ d=-2
1 Sn13n2n(n1)(2)