逻辑式与真值表1
167;11.4逻辑式与真值表 (1)
![167;11.4逻辑式与真值表 (1)](https://img.taocdn.com/s3/m/c96bac7d1a37f111f1855bc9.png)
南通工贸技师学院教案首页授课日期班级15对口2课题:§11.4 逻辑式与真值表教学目的要求:了解逻辑式的定义及其对应的真值表的概念,能够进行逻辑式与真值表的互化.教学重点、难点: 逻辑式的运算及逻辑式对应的真值表、逻辑式与真值表的互化授课方法:任务驱动法小组合作学习法教学参考及教具(含多媒体教学设备):《单招教学大纲》授课执行情况及分析:板书设计或授课提纲§11.4逻辑式与真值表1、逻辑非的定义2、例题2、逻辑非的真值表3、“或”、“与”、“非”的复合运算规则教 学 内 容 、方 法 和 过 程附 记 一、复习引入1、复习“与运算”、“或运算”、“非运算”的真值表和运算法则2、引入新课 二、讲授新知1、逻辑代数式:是由常量1,0以及逻辑变量经逻辑运算构成的式子,逻辑代数式简称逻辑式;2、逻辑式真值表:是用表格的形式列出逻辑变量的一切可能值与相应的逻辑式的值的表.由于逻辑变量只能取0或1,所以逻辑式的值也只有0或1;3、逻辑运算的次序:依次为先“非运算”,再“与运算”,最后是“或运算”,如果逻辑式有括号,则要先进行括号内的运算.三、例题分析【例1】 写出下列各式的运算结果.(1)011⋅+ ;(2)001++ ;(3)0101⋅+⋅ ;(4)0111++⋅ . 解:(1)0101011==+=⋅+ ; (2)11001001=+=+=++ ; (3)1100100101=+=+⋅=⋅+⋅ ; (4)11100110111=++=++=++⋅ .做好逻辑运算主要包括:(1)了解运算次序,依次为“非运算”“与运算”“或运算”,有括号的逻辑式,先进行括号内的运算;(2)熟悉运算规律.举 一 反 三写出下列各式的运算结果.(1)101⋅+ ;(2)()101⋅+ ; (3)()0100+⋅+ ; (4)0100⋅++ .教 学 内 容 、方 法 和 过 程附 记 【例2】 列出逻辑式C A B A +的真值表. 解:表11-20ABCBCB AC AC A B A +1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 011列出逻辑式对应的真值表的步骤:(1) 明确逻辑变量的个数n ; (2) 列出逻辑变量可取的n2组值;(3) 按照先“非”再“与”后“或”,括号先行的次序逐一代入运算.举 一 反 三列出逻辑式AB B A ++的真值表.教 学 内 容 、方 法 和 过 程附 记 四.课堂练习1.写出下列各式的运算结果. (1)1111+⋅+ ;(2)()01011+⋅+⋅ ; (3)()11000⋅+⋅+;(4)()()11101+++.6.列出下列逻辑式的真值表. (1)C B A ;(2)BC A C AB +五.课堂总结本节课,我们学习了逻辑式、逻辑式对应的真值表及它们相互转换的方法.由常量1和0以及逻辑变量经过逻辑运算构成的式子叫 ;逻辑式对应的真值表就是将 的各种可能的取值和相对应的 排列在一起而组成的表格;一般地,有n 个输入变量的逻辑函数,就应该有 种不同的输入变量的取值组合.六.课外作业《教与学新方案》P36页5、6。
命题、联结词、命题公式与真值表
![命题、联结词、命题公式与真值表](https://img.taocdn.com/s3/m/8743890ceefdc8d376ee329a.png)
1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
问题?
一、命题的定义
命题P——不关心其具体涵义,只关心其值的 真值
命题变元——定义域:真、假 命题常元——T和F 命题公式(也称命题,合式公式)——含命题变元
的断言,由以下规则生成: (1)单个原子公式是命题。 (2)若A、B是命题公式,┐A、A∧B、A∨B、
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
Hale Waihona Puke 111回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
A→B、AB也是命题公式。 (3) 有限步应用条款(1)(2)生成的公式。
例:下列符号串都是命题公式
下列符号串是否为命题公式?
命题、联结词、命题公式与真值表
真值表推理规则证明方法
![真值表推理规则证明方法](https://img.taocdn.com/s3/m/cdb9bab4e009581b6ad9eb58.png)
第四章数学命题的数学设计一、真值表1、否定(非):, 设P为一个命题,称P为P的否定式,记作p,其真值表如2、合取:设p,q表示两个命题,用逻辑联结词“与”把它们连接起来成为一个新命题“p与q”,记作qp∧。
真值表如下:3、析取:设p,q表示两个命题,用逻辑联结词“或”把它们连接起来成为一个新命题“p或q”,记作qp∨。
真值表如下:4、蕴涵(如果、、、那么、、、):设p,q表示两个命题,用“如果、、、那么、、、”把它们连接起来成为一个新命题“如果p,那么q”,记作qp→。
真值表如下:5、当且仅当(等价式):设p,q 表示两个命题,把q p ↔称为p,q 的等价式,其真值表如下真值表的作用证明重言式、两个命题等价,解决逻辑推理问题 例1 q p q p ∨≡∧例2 q p q p ∨≡→其真值表如下:三、推理规则1、合取规则:p 为真q 为真, q p ∧也为真。
2、分离规则:q p →为真,p 为真,q 也为真(充分条件假言规则)。
3、全称命题为真,则特称命题也为真。
4、r p ,,→→→则r q q p 。
5、是恒真命题r p r q q p ↔→↔∧↔)()(。
6、q(T) (T) p q(T)p ↔7、qp p q q p ↔→→8、(T)p (T) )(q T q p →(否定规则)9、pq q p →→10、(T)q (T) )(p T q p ∨(选言规则)11、qqp p q p ∧∧或(联言规则)12、三段论:推理形式为如果M 是P,S 是M,那么S 是P 。
它的逻辑式为:)()()(P S M S P M →→→∧→。
由真值表可知:)()()(P S M S P M →→→∧→1≡是恒真命题。
凡是恒真命题(重言式)都可作为推理规则。
前面提到的分离规则1)(≡→∧→q p q p ,选言规则1)(≡→∧∨q p q p ,联言规则1)(≡→∧p q p ,也都是恒真命题。
分别证明如下:11)()(31)()()()(21)()()()()(1≡∨≡∨∨≡∨∧≡→∧≡∨∨∨≡∨∧∨≡→∧∨≡∨∨∨≡∨∧∨≡∧∨≡→∧→q p q p p q p p q p q p q p q p q p q p q p q p q p q p q p p q p q q p 、、、四、证明方法1、直接证明:直接从所给论题入手,以公理、定义、定理等为论据,运用逻辑推理规则来论证论题为真的证明方法。
逻辑式与真值表 (1)
![逻辑式与真值表 (1)](https://img.taocdn.com/s3/m/ca0816ce59eef8c75ebfb338.png)
江阴中等专业学校教案授课日期授课班级授课课时 2 授课形式新授授课章节名称§11.4 逻辑式与真值表使用教具无教学目的知识目标:了解逻辑式的定义。
能力目标:1、能根据给定的逻辑式,写出其对应的真值表;2、能根据真值表判断两个逻辑式是否等值;3、进一步理解三种基本逻辑运算;情感目标:进一步培养学生用逻辑运算表示简单电路的能力。
教学重点根据给定的逻辑式写出对应的真值表和根据真值表判断两个逻辑式是否等值。
教学难点用逻辑式的运算与真值表表示简单的电路。
更新、补充、删节内容无课外作业P20 习题教学后记一、引入复习 :“与、或、非”运算; 二、新课讲授: (一)逻辑运算1、定义:逻辑式:由常量1,0以及逻辑变量经逻辑运算构成的式子记作逻辑代数式,简称逻辑式。
逻辑运算的规律: 逻辑运算的次序依次为“非运算”“与运算”“或运算”,如果有添加括号的逻辑式,首先要进行括号内的运算。
2、逻辑式B A B A ⋅+⋅真值表A B B A B A ⋅+⋅.1111 0 0 0 1 0 013、例题讲解:(15分)例1:写出下列各式的运算结果: (1)01⋅; (2)01⋅+1; (3)101+⋅例2:完成下面的真值表:A B AB A +B A ⋅1 1 1 0 0 1 04、完成练习1、2 (二)等值逻辑式1、定义:如果对于逻辑变量的任何一组取值,两个逻辑式的值都相等,这两个逻辑式叫做等值逻辑式。
等值逻辑式可用“=”连接,并称为等式,需要注意的是,这种相等是状态的相同。
2、例题讲解:例3:用真值表验证下列等式是否成立: (1)B A B A ⋅=+(2)C A B A C B A ⋅+⋅=+⋅)( 解(1)列出真值表: A BB A ⋅ B A +ABB A ⋅1 1 1 0 0 1 0从而得出 :B A B A ⋅=+(1) 列出真值表 A B C B+C )(C B A +⋅ B A ⋅ C A ⋅ C A B A ⋅+⋅1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0由真值表得:C A B A C B A ⋅+⋅=+⋅)(3、问题解决:如图:开关电路中的灯L的状态能否用开关A,B,C的逻辑运算来表示?若能,试给出该逻辑运算的结果。
基本的逻辑运算表示式-基本逻辑门电路符号
![基本的逻辑运算表示式-基本逻辑门电路符号](https://img.taocdn.com/s3/m/2c6acdd276eeaeaad1f3309d.png)
基本的逻辑运算表示式-基本逻辑门电路符号1、与逻辑(AND Logic)与逻辑又叫做逻辑乘,通过开关的工作加以说明与逻辑的运算。
从上图看出,当开关有一个断开时,灯泡处于灭的,仅当两个开关合上时,灯泡才会亮。
于是将与逻辑的关系速记为:“有0出0,全1出1”。
图(b)列出了两个开关的组合,以及与灯泡的,用0表示开关处于断开,1表示开关处于合上的;灯泡的用0表示灭,用1表示亮。
图(c)给出了与逻辑门电路符号,该符号表示了两个输入的逻辑关系,&在英文中是AND的速写,开关有三个则符号的左边再加上一道线就行了。
逻辑与的关系还用表达式的形式表示为:F=A·B上式在不造成误解的下可简写为:F=AB。
2、或逻辑(OR Logic)上图(a)为一并联直流电路,当两只开关都处于断开时,其灯泡不会亮;当A,B两个开关中有一个或两个一起合上时,其灯泡就会亮。
如开关合上的用1表示,开关断开的用0表示;灯泡的亮时用1表示,不亮时用0表示,则可列出图(b)的真值表。
这种逻辑关系通常讲的“或逻辑”,从表中可看出,只要输入A,B两个中有一个为1,则输出为1,否则为0。
或逻辑可速记为:“有1出1,全0出0”。
上图(c)为或逻辑门电路符号,通常用该符号来表示或逻辑,其方块中的“≥1”表示输入中有一个及一个的1,输出就为1。
逻辑或的表示式为:F=A+B3、非逻辑(NOT Logic)非逻辑又常称为反相运算(Inverters)。
下图(a)的电路实现的逻辑功能非运算的功能,从图上看出当开关A 合上时,灯泡反而灭;当开关断开时,灯泡才会亮,故其输出F的与输入A的相反。
非运算的逻辑表达式为图(c)给出了非逻辑门电路符号。
复合逻辑运算在数字系统中,除了与运算、或运算、非运算之外,使用的逻辑运算还有是通过这三种运算派生出来的运算,这种运算通常称为复合运算,的复合运算有:与非、或非、与或非、同或及异或等。
4、与非逻辑(NAND Logic)与非逻辑是由与、非逻辑复合而成的。
逻辑式与真值表
![逻辑式与真值表](https://img.taocdn.com/s3/m/fe61508684868762caaed522.png)
等值逻辑式
如果对于逻辑变量的任何一组取值,两个逻辑式 的值都相等,这样的两个逻辑式叫做等值逻辑式。 等值逻辑式可用“=”连接,并称为等式,需要 注意的是,这种相等是状态的相同。
三、例题与练习
例4 如图所示,开关电路中的灯D的状态,能否用 开关A,B,C的逻辑运算来表示?试给出结果. 分析 这个电路
用真值表验证下列等式是否成立:
A (B C) ( A B) ( A C)
A 0 0 0 0 1 1 1 1
A (B C) ( A B) ( A C)
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1
BC
A (B C)
A B A C ( A B) ( A C)
可以看出对于逻辑变量的任何一组值, A B与 AB的值都相等 所以 A B AB .
用真值表验证下列等式是否成立:
AB AB ( A B)( A B)
三、例题与练习
A 0 0 1 1 B 0 1 0 1
AB
0 0 1 0
AB
0 1 0 0
A B
1 1 1 0
AB AB
A A 0
A A
A 0 1
A
1 0
A A
1 1
A A 1
用真值表验证下列等式是否成立:
AB BA
A 0 0 1 1
B 0 1 0 1
A B B A
A B B A
0 0 0 1
0 0 0 1
用真值表验证下列等式是否成立:
AB B A
A 0 0 1 1
A 1 1 0 0
B 1 0 1 0
1-4真值表与等价公式
![1-4真值表与等价公式](https://img.taocdn.com/s3/m/7461522ced630b1c59eeb589.png)
第一章 数理逻辑 1-4 真值表与等价公式
10
2、等价公式-证明(真值表法)
例题 5 证明 PQ(PQ)(QP)
第一章 数理逻辑 1-4 真值表与等价公式
11
2、等价公式-汇总
下面的命题定理(表1-4.8)都可以用真值表 予以验证:
对合律 等幂律 结合律 交换律 分配律 吸收律 德·摩根律 同一律 零律 否定律
从真值表可见,上述两个命题公式在分量的不同 指派下,其对应的真值与另一命题公式完全相同。
同理如: (PQ)(PQ)与PQ。
第一章 数理逻辑 1-4 真值表与等价公式
9
2、等价公式-概念
定义:1-4.2 给定两个命题公式A和B,设P1, P2,…,Pn为所有出现于A和B中的原子变元, 若给P1,P2,…,Pn任一组真值指派, A和B的 真值都相同,则称A和B是等价的或逻辑相等。 记作AB。
PQ F F F T
(PQ) (PQ) T F F T
6
第一章 数理逻辑 1-4 真值表与等价公式
1、真值表
例题4 给出(PQ)(PQ)的真值表 公式不论命题变元做何种指派,其真值永为真, 我们把这类公式记为T。
P Q PQ (PQ) P Q PQ T T T F F T F F T F F F F T T T F F T T F T F T F T T T (PQ)( PQ) T T T T
第一章 数理逻辑 1-4 真值表与等价公式
18
第一章 数理逻辑 1-4 真值表与等价公式
16
小结
真值表
完整性
等价公式
等价公式表1-4.8 等价置换
命题公式(合式公式)证明方法
列真值表法 利用等价公式
离散数学-1-4真值表与等价公式
![离散数学-1-4真值表与等价公式](https://img.taocdn.com/s3/m/9b6ad4126bec0975f465e2b5.png)
表1 (┐P∧Q)→┐R的真值表
从表1可知,公式(1)的成假赋值为011,其余7个赋值都是 成真赋值。
9
三、真值表
公式(2)是含2个命题变项的3层合式公式,它的真值表如表2 所示。
表2 (P∧┐P) (Q∧┐Q)的真值表
从表2可以看出,该公式的4个赋值全是成真赋值,即无成
假赋值。
10
(┐P∨Q)→R ┐(┐P∨Q)∨R
23
六、等值演算
如果再用德摩根律及置换规则,又会得到 ┐(┐P∨Q)∨R (P∧┐Q)∨R
再用分配律及置换规则,又会得到 (P∧┐Q)∨R (P∨R)∧(┐Q∨R)
将以上过程连在一起,可得到 (P→Q)→R (┐P∨Q) → R ┐(┐P∨Q)∨R (P∧┐Q)∨R (P∨R)∧(┐Q∨R) *上述演算中得到的5个公式彼此之间都是等值的, 在演算的每一步都用到了等价置换规则
28
15
五、公式置换
在一命题公式中,如果用公式置换命题的 某个部分,一般地会产生某种新的公式, 例如Q→(P∨(P∧Q))中以( ┐P →Q)取代 (P∧Q),则Q→(P∨ ( ┐P →Q))就与原 式不同。为了保证取代后的公式与原式等 价(即真值相同),需要对置换作出一些 规定。
16
五、公式置换
定义 1-4.3 如果X是合式公式A的一部分, 且X本身也是一个合式公式,则称X为公式A 的子公式。 定理 1-4.1 设X是合式公式A的子公式,若 X Y,如果将A中的X用Y来置换,所得到 公式B与公式A等价,即A B。 证明 书P16 *满足定理1-4.1条件的置换称为等价置换(等 价代换)
7
三、真值表
(2) 按从低到高的顺序写出公式的各个层次。
(3) 对应各个赋值计算出各层次的真值,直到最后计 算出公式的真值。 例 求下列公式的真值表,并求成真赋值和成假赋 值。
基本逻辑门电路符号和口诀
![基本逻辑门电路符号和口诀](https://img.taocdn.com/s3/m/db04f16cb8f67c1cfbd6b871.png)
无论多么复杂的单片机电路,都是由若干基本电路单元组成的。
常用的逻辑门电路最基本的门电路是与、或、非门,把它们适当连接可以实现任意复杂的逻辑功能。
用小规模集成电路构成复杂逻辑电路时,最常用的门电路是与(AND)、或(OR)、非(INV BUFF)、恒等(BUFF)、与非(NAND)、或非(NOR)、异或(XOR)。
主要是因为这7种电路既可以完成基本逻辑功能,又具有较强的负载驱动能力,便于完成复杂而又实用的逻辑电路设计。
1.与门与门是一个能够实现逻辑乘运算的、多端输入、单端输出的逻辑电路,逻辑函数式:F=A·B 其记忆口诀为:有0出0,全1才1。
2.或门或门是一个能够实现逻辑加运算的多端输入、单端输出的逻辑电路,逻辑函数式:F=A+B 其记忆口诀为:有1出1,全0才0。
3.非门实现非逻辑功能的电路称为非门,有时又叫反相缓冲器。
非门只有一个输入端和一个输出端,逻辑函数式是:F =A非非门逻辑符号4.恒等门实现恒等逻辑功能的电路称为恒等门,又叫同相缓冲器。
恒等门只有一个输入端和一个输出端,逻辑函数式是:F = A同相缓冲器和反相缓冲器在数字系统中用于增强信号的驱动能力。
5.与非门与和非的复合运算称为与非运算,逻辑函数式是:F = 非其记忆口诀为:有0出1,全1才0。
6.或非门或与非的复合运算称为或非运算,逻辑函数式是:F = A+B非其记忆口诀为:有1出0,全0才1。
7.异或门异或逻辑也是一种广泛应用的复合逻辑,其记忆口诀为:相同出0,不同出1。
逻辑门电路是单片机外围电路运算、控制功能所必需的电路。
在单片机系统中我们经常使用集成逻辑电路(常称为集成电路)。
一片集成逻辑门电路中通常含有若干个逻辑门电路,如7400为4重二输入与非门,即7400内部有4个二输入的与非门。
高速CMOS74HC逻辑系列集成电路具有低功耗、宽工作电压、强抗干扰的特性,是单片机外围通用集成电路的首选系列。
随着单片机内部功能的不断增强和硬件软件化,外部所用的逻辑门电路将越来越少。
逻辑式与真值表
![逻辑式与真值表](https://img.taocdn.com/s3/m/3f43ea9d370cba1aa8114431b90d6c85ec3a882a.png)
05 实际应用案例分 析
数字电路设计与分析中应用
逻辑门电路的设计
利用逻辑式描述门电路输入与输出之间的关系,进而实现门电路 的设计。
电路分析与故障检测
通过真值表验证电路逻辑功能的正确性,帮助分析电路故障。
组合逻辑电路优化
利用逻辑式化简方法,简化组合逻辑电路的结构,提高电路性能 。
计算机程序设计中应用
THANKS
感谢观看
配项法
在逻辑式中添加冗余项,使得逻辑式 更加规整,便于化简。
不同化简方法比较与选择
卡诺图化简法与代数法比较
卡诺图化简法直观易懂,适用于变量较少的情况;代数法适 用于变量较多的情况,可以灵活运用各种公式进行化简。
选择依据
根据逻辑式的复杂程度和化简需求选择合适的化简方法。对 于简单的逻辑式,可以直接观察并手动化简;对于复杂的逻 辑式,可以采用卡诺图或代数法进行化简。同时,也可以结 合两种方法的优点进行综合化简。
语言学与自然语言处理
在语言学和自然语言处理中,利用逻辑式描述语句的语义关系,实 现自然语言的理解和生成。
06 总结与展望
课程重点内容回顾
逻辑式基本概念
逻辑式是描述事物之间逻辑关系的一种数学表达式,包括命题逻辑和 谓词逻辑两种形式。
真值表及其作用
真值表是用来表示逻辑式真值情况的一种表格,可以直观地展示逻辑 式的真假情况,方便进行逻辑分析和推理。
04
根据真值表画出卡诺图。
05
将相邻的1或0圈起来,并尽量使圈内的元素最多。
06
根据圈的组合写出最简逻辑表达式。
代数法化简复杂逻辑式方法
并项法
利用公式AB+AB’=A将两项合并为 一项,消去其中的B与B’。
命题公式真值表
![命题公式真值表](https://img.taocdn.com/s3/m/1589a52d1ed9ad51f11df20e.png)
(4) (P Q) (P Q);
(5) (P Q) (P Q).
A
6
1-4 真值表与等价公式
解 (1) P Q 的真值表为:
P
Q
T
T
T
F
F
T
F
F
P Q
T F T T
(2) P Q 的真值表为:
P
Q
PQ
T
T
T
T
F
F
F
T
T
F
F
T
A
7
1-4 真值表与等价公式
(3) (P Q) P 的真值表为:
(1)单个命题变元本身是一个合式公式;
(2)如果 A 是合式公式,那么 A是合式公式;
(3)如果 A 和 B 是合式公式,那么
A B , A B , A B, A B 是合式公式;
(4)当且仅当能够有限次地应用(1)、(2)、(3)
所得到的包含命题变元,联结词和括号的字符串
是合式公式.
A
3
1-3 命题公式与翻译
A 中的 X 用Y 置换,所得公式 B 与公式 A 等价,即 A B .
例 4 证明: Q (P (P Q)) Q P
例 5 证明下列等价式
(1) (P Q) (P Q) P ;
(2) P (Q R) Q (P R) .
练习 证明 P (Q R) (P Q) R
A
14
1-4 真值表与等价公式
例 6 化简下列命题公式: (1) P (P (Q P)) (2) (P Q) (Q P)
说明:
(1)命题变元是没有真假值的,只有当命题变元用 确定的命题代入时,才得到一个命题,命题的真值 依赖于代换变元的那些命题的真值;
三种基本的逻辑运算
![三种基本的逻辑运算](https://img.taocdn.com/s3/m/4cae6f43102de2bd9705884f.png)
11
也可以用图2.2.2表示与 逻辑,称为逻辑门或逻 辑符号,实现与逻辑运 算的门电路称为与门。
A B
&
Y
A B
Y
图2.2.2 与门逻辑符号
若有n个逻辑变量做与运算,其逻辑式可表示为
Y A1A2An
2.2.2 或运算
或运算也叫逻辑加或逻辑或,即当其中一个条 件满足时,事件就会发生,即“有一即可
如图2.2.3所示电路,两个 并联的开关控制一盏灯就是或 逻辑事例,只要开关A、B有 一个闭合时灯就会亮。
6.与或非运算 与或非运算是“先与后或再非”三种运算的组合。
以四变量为例,逻辑表达式为:
Y ( AB CD)
上式说明:当输入变量A、B A
同时为1或C、D同时为1时, B
Y
输出Y才等于0。与或非运算 C 是先或运算后非运算的组合。 D
在工程应用中,与或非运算 由与或非门电路来实现,其
A B C
& 1 Y
真值表见书P22表2.2.6所示, D
逻辑符号如图2.2.9所示
图 2.2.9 与 或 非 门 逻 辑 符 号
7. 异或运算 其布尔表达式(逻辑函数式)为
Y A B AB AB
符号“⊕”表示异或运算,即两个输入逻辑变量取值
不同时Y=1,即不同为“1”相同为“0”,异或运算
用异或门电路来实现
其真值表如表2.2.6所示 其门电路的逻辑符号如图2.2.10
表2.2.6 异或逻辑真值
表
输入
输出
A
BY
所示
0
00
A B
=1 YA B
Y
0
11
1
01
1
10
图2.2.10 异或门逻辑符号
逻辑函数表示方法之间的转换
![逻辑函数表示方法之间的转换](https://img.taocdn.com/s3/m/04bc86941eb91a37f0115cf2.png)
A
AB
B
AB
AB
0
0
0
1
1
0
1
1
L
L AB AB
L 0 1 1 0
小结
用0和1可以组成二进制数表示是数量的大小,也可以表示对 立的两种逻辑状态。数字系统中常用二进制数来表示数值。 在微处理器、计算机和数据通信中,采用十六进制。任意一 种格式的数可以在十六进制、二进制和十进制之间相互转换。 二进制数有加、减、乘、除四种运算,加法是各种运算的基 础。特殊二进制码常用来表示十进制数。如8421码、2421码、 5421码、余三码、余三码循环码、格雷码等。 与、或、非是逻辑运算中的三种基本运算。数字逻辑是计算 机的基础。逻辑函数的描述方法有真值表、逻辑函数表达式、 逻辑图、波形图和卡诺图等。
逻辑函数表示方法之间的转换
逻辑函数的真值表、逻辑函数表达式、逻辑图、波形图、 卡诺图及HDL描述之间可以相互转换。这里介绍两种转换。
1.真值表到逻辑图的转换 真值表如右表。
AB C L 00 0 0
转换步骤: (1)根据真值表写出逻辑表达式
00 1 0 01 0 0 01 1 1
L ABC ABC
(2)化简逻辑表达式(第2章介绍)
1 0 00 1 0 10 1 1 01
上式不需要简化
1 1 10
A
(3)根据与或逻辑表达式画逻辑图 B
L ABC ABC C
用与、或、非符号代替相 应的逻辑符号,注意运算到真值表的转换
转换步骤:
B
(1)根据逻辑图逐级写出表达式
(2)化简变换求最简与或式 (3)将输入变量的所有取值逐一代入 表达式得真值表
真值表推理规则证明方法
![真值表推理规则证明方法](https://img.taocdn.com/s3/m/cdb9bab4e009581b6ad9eb58.png)
第四章数学命题的数学设计一、真值表1、否定(非):, 设P为一个命题,称P为P的否定式,记作p,其真值表如2、合取:设p,q表示两个命题,用逻辑联结词“与”把它们连接起来成为一个新命题“p与q”,记作qp∧。
真值表如下:3、析取:设p,q表示两个命题,用逻辑联结词“或”把它们连接起来成为一个新命题“p或q”,记作qp∨。
真值表如下:4、蕴涵(如果、、、那么、、、):设p,q表示两个命题,用“如果、、、那么、、、”把它们连接起来成为一个新命题“如果p,那么q”,记作qp→。
真值表如下:5、当且仅当(等价式):设p,q 表示两个命题,把q p ↔称为p,q 的等价式,其真值表如下真值表的作用证明重言式、两个命题等价,解决逻辑推理问题 例1 q p q p ∨≡∧例2 q p q p ∨≡→其真值表如下:三、推理规则1、合取规则:p 为真q 为真, q p ∧也为真。
2、分离规则:q p →为真,p 为真,q 也为真(充分条件假言规则)。
3、全称命题为真,则特称命题也为真。
4、r p ,,→→→则r q q p 。
5、是恒真命题r p r q q p ↔→↔∧↔)()(。
6、q(T) (T) p q(T)p ↔7、qp p q q p ↔→→8、(T)p (T) )(q T q p →(否定规则)9、pq q p →→10、(T)q (T) )(p T q p ∨(选言规则)11、qqp p q p ∧∧或(联言规则)12、三段论:推理形式为如果M 是P,S 是M,那么S 是P 。
它的逻辑式为:)()()(P S M S P M →→→∧→。
由真值表可知:)()()(P S M S P M →→→∧→1≡是恒真命题。
凡是恒真命题(重言式)都可作为推理规则。
前面提到的分离规则1)(≡→∧→q p q p ,选言规则1)(≡→∧∨q p q p ,联言规则1)(≡→∧p q p ,也都是恒真命题。
分别证明如下:11)()(31)()()()(21)()()()()(1≡∨≡∨∨≡∨∧≡→∧≡∨∨∨≡∨∧∨≡→∧∨≡∨∨∨≡∨∧∨≡∧∨≡→∧→q p q p p q p p q p q p q p q p q p q p q p q p q p q p q p p q p q q p 、、、四、证明方法1、直接证明:直接从所给论题入手,以公理、定义、定理等为论据,运用逻辑推理规则来论证论题为真的证明方法。
离散数学,逻辑学,命题公式求真值表
![离散数学,逻辑学,命题公式求真值表](https://img.taocdn.com/s3/m/d74e72ac2b160b4e767fcff6.png)
离散数学,逻辑学,命题公式求真值表(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散逻辑学实验班级:10电信实验班学号:Q 姓名:王彬彬一、实验目的熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。
二、实验内容1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。
(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))三、实验环境C或C++语言编程环境实现。
四、实验原理和实现过程(算法描述)1.实验原理(1)合取:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P∧Q, 读作P、Q的合取, 也可读作P与Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = T, Q = T时方可P∧Q =T, 而P、Q只要有一为F则P∧Q = F。
这样看来,P∧Q可用来表示日常用语P与Q, 或P并且Q。
(2)析取:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P∨Q, 读作P、Q的析取, 也可读作P或Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = F, Q = F时方可P∨Q =F, 而P、Q只要有一为T则P∨Q = T。
这样看来,P∨Q可用来表示日常用语P或者Q。
(3)条件:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P→Q, 读作P条件Q, 也可读作如果P,那么Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P = T, Q = F时方可P →Q =F, 其余均为T。
(4)双条件:二元命题联结词。
将两个命题P、Q联结起来,构成一个新的命题P←→Q, 读作P双条件于Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为当两个命题变项P = T, Q =T时方可P←→Q =T, 其余均为F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.4 逻辑式与真值表1
【预习】第三册课本第17至18页内容.
【预习目标】了解逻辑式的定义及真值表的概念.
【导引】
1.逻辑代数式:由常量1,0以及逻辑变量经逻辑运算构成的式子,简称逻辑式.
2.逻辑式真值表:用表格的形式列出逻辑变量的一切可能值与相应的逻辑式的值的表.
3.逻辑变量只能取0或1,所得逻辑式的值也只有0或1.
4.逻辑运算的次序依次为“非运算”“与运算”“或运算”,如果有添加括号的逻辑式,首先要进行括号内的运算.
【试试看】
1.当00AB =时,逻辑式B A AB F +=的值为 .
2.使逻辑式F AB CD =+的值为1的变量组合取值有 ( )
A .1100ABCD =
B .0101ABCD =
C .1010ABC
D = D .0010ABCD =
【本课目标】了解逻辑式的定义及其对应的真值表的概念,能够进行逻辑式与真值表的互化.
【重点】逻辑式的运算及逻辑式对应的真值表.
【难点】逻辑式与真值表的互化.
【导学】
任务1 理解逻辑式的定义,学会求逻辑式的运算结果.
【例1】写出下列各式的运算结果.
(1)011⋅+ ;(2)001++ ;(3)0101⋅+⋅ ;(4)0111++⋅ .
【试金石】写出下列各式的运算结果.
(1)101⋅+ ; (2)()101⋅+ ; (3)()0100+⋅+ ; (4)0100⋅++ .
任务2 会根据给定的逻辑式写出其对应的真值表. 【例2】列出逻辑式C A B A +的真值表.
【试金石】列出逻辑式AB B A ++的真值表.
【检测】
1. 写出下列各式的运算结果. (1)101+⋅ ; (2)001000++⋅+⋅ .
2. 列出逻辑式A B AB ++的真值表.
【导练】
一、选择题
1.下面不可以看作逻辑式的是 ( )
A.0
B.1
C.2
D. CD AB +
2.关于逻辑变量的取值,以下说法正确的是( )
A.只能取0
B.只能取1
C.只能取0或1
D. 作为变量可取一切实数
二、填空题
3.用表格的形式列出逻辑变量的一切可能值与逻辑式的值的表叫逻辑式的 .
4.逻辑运算的次序为“非运算”、 、 ,有括号的,先进行括号内的运算.
三、解答题
5.写出下列各式的运算结果.
(1)1111+⋅+ ; (2)()01011+⋅+⋅ ;
(3)()11000⋅+⋅+; (4)()()11101+++.
6.列出下列逻辑式的真值表.
(1)C B A ; (2)BC A C AB +.。