高二数学选修2-2、2-3综合测试题
人教a版(数学选修2-2)测试题及参考答案
人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5 答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1eB.1e - C.2e D.2e -答案:A 3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) 答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i -- 答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000 答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11 答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①②B.②④C.①③D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( ) A.12cm/s B.13cm/sC.14 cm/s D.15cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[的函数共有( ) (1)(sin )(cos )y x x ''=+(2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( )A.23 B.43 C.83D.123答案:C 二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 . 答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 . 答案:72m 三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数. 证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+,由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±,故123z z -为实数.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<, 即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 31.8m .19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线. 证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾.所以AB C ,,三点不共线. 20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围. 解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明. 解:满足的不等式为21212111()(2)n nx x x n n x x x ⎛⎫++++++ ⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++ ⎪⎝⎭2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()S a 的最小值. 解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β=,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S aax a dx x a xββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a⎡=-=⎢⎣· (2)()S a =3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x '<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( )(A )1 (B (C (D )54.若函数3()y a x x =-的递减区间为(,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=(B)26.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( ) (A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数 9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
高中数学选修2-2综合测试试题及答案解析
高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
数学选修2-2 2-3复习题(一)
2-2 2-3综合试题(一)一.选择题(10小题,每小题5分,共50分)1.一个物体的位移s (米)和与时间t (秒)的关系为242s t t =-+,则该物体在4秒末的瞬时速度是 ( )A .12米/秒B .8米/秒C .6米/秒D .8米/秒2.用反证法证明命题 “自然数a 、b 、c 中恰有一个偶数”时,需假设原命题不成立,下列正确的是( )A 、a 、b 、c 都是奇数B 、a 、b 、c 都是偶数C 、a 、b 、c 中或都是奇数或至少有两个偶数D 、a 、b 、c 中至少有两个偶数 3. 测得四组),(y x 的值)2,1()3,2()4,3()5,4(则y 与x 之间的回归直线方程为( ) (A )1+=x y (B )2+=x y (C ) 12+=x y (D ) 1-=x y4.将一个各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,从这些小正方体中任取一个,其中恰好有2面涂有颜色的概率是 ( ) A .916B .2764 C .38 D .11325.下列两个变量之间的关系哪个不是函数关系( )A .角度和它的正弦值B .正方形边长和面积C .正n 边形边数和顶点角度之和D .人的年龄和身高 6.下面几种推理中是演绎推理....的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈;C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=7.从6名学生中,选出4人分别从事A 、B 、C 、D 四项不同的工作,若其中,甲、乙两人不能从事工作A ,则不同的选派方案共有 ( )A .96种B .180种C .240种D .280种8.若X 是离散型随机变量,()()1221,33P X x P X x ====,且12x x <,又已知49EX =,2DX =,则12x x +=( )(A )53 或1 (B )59 (C )179 (D )1399.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y =围成一个叶形图(阴影部分), 向正方形AOBC 内随机投一点(该点落在正方 形AOBC 内任何一点是等可能的),则所投的点 落在叶形图内部的概率是( ) (A )12 (B )13 (C )14 (D )1610.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A.在1t 时刻,甲车在乙车前面 B.1t 时刻后,甲车在乙车后面 C.在0t 时刻,两车的位置相同 D.0t 时刻后,乙车在甲车前面二.填空题(5小题,每小题5分,共25分) 11. 复数ii i )1)(1(+-在复平面中所对应的点到原点的距离是_______;____________________12.设随机变量X~N (2,4),则D (21X )的值等于 。
高二数学选修2-2与2-3综合试卷含答案
一选择题1:若()()22132i x x x -+++是纯虚数,则实数x 的值是 。
A. 1- B.1 C. 1± D. 以上都不对2:复数z =i1+i在复平面上对应的点位于 。
A .第一象限B .第二象限C .第三象限D .第四象限 3:若220(3)10,x k dx k +==⎰则 。
A.1B.2C.3D.4 4:函数f(x)=(x -3)e x 的单调递增区间是 。
A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 。
A.280种 B.240种 C.180种 D.96种6:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有 。
A.88A 种 B.48A 种C.44A ·44A 种D.44A 种7:从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于 。
A. 2个球都不是红球的概率B.2个球都是红球的概率 C. 至少有1个红球的概率 D.2个球中恰有1个红球的概率 8:已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 。
A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+ 9:正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为 。
A.0,8 B .0,4 C.0,2 D.0,210:已知f(x)=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c 。
A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152二:填空题11:由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是 。
高二下学期理科数学综合测试题选修2-2,2-3(带详细答案)
第16题答案
或 (其他化简式不扣分)
第16题解析
由题意, 时,左边为 ; 时,左边为 ;从而增加两项为 ,且减少一项为 ,故填写
第17题答案
(I) ;(II) .
第17题解析
(I) 由已知,则 在 上恒成立,
即 在 上恒成立,设 ,则 ,
由 得 ,∴ 当 时 , 单调递减,
当 时 , 单调递增,则 最小值为 ,从而 ;
∴实数k的取值范围是(-1,1).
第11题答案
A
第11题解析
可分为两类,第一类:甲、乙两个盒子恰有一个被选中,有 种;第二类:甲、乙两个盒子都被选中,有 种,所以共有12+4=16种不同的情况.
第12题答案
D
第12题解析
因为 所以 故 在 上为单调递减函数,又 所以 解得 .
第13题答案
24
第13题解析
第7题答案
C
第7题解析
即 由 对任意的 恒成立,知 对任意的 恒成立,令 ,只需 即可.由 得 或 (不符合题意舍去), 在 上单调递增,在 上单调递减, 在 上的最大值为 .故应选C.
第8题答案
C
第8题解析
令 ,可得 ,所以 ,所以 ,则展开式中常数项为 .
第9题答案
D
第9题解析
因为随机变量 ,所以正态曲线关于 对称,又 ,则 ,所以 ,所以 正确;随机变量 ,且 所以 解得 ,所以 也正确.
B.在犯错误的概率不超过 的前提下,认为“爱好游泳运动与性别无关”
C.有 以上的把握认为“爱好游泳运动与性别有关”
D.有 以上的把握认为“爱好游泳运动与性别无关”
7、已知函数 若 的最小值为 ,且 对任意的 恒成立,则实数 的取值范围是( )
高二数学选修2-2,2-3综合检测习题解析
选修2-2,2-3综合检测一、选择题(共12小题,每小题5分,共60分) 1.设复数z =1+2i ,则z 2-2z 等于( )A .-3B .3C .-3iD .3i 答案.A z2-2z =z(z -2) =(1+2i)(2i -1) =-2-1=-3.2.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)答案解析 B∵f ′(x)=2x +2=0,∴x =-1. f(-1)=(-1)2+2×(-1)-2=-3. ∴M(-1,-3).3.从1,2,3,4,5中任取2个不同的数,事件A=“取到的两个数之和为偶数”,事件B=“取到的两个数均为偶数”,则 P(B|A)等于( ) (A)18 (B)14(C)25 (D)12解析:P(B|A)=n(AB)n(A)=14,故选B.4.满足条件|z -1|=|5+12i|的复数z 在复平面上对应Z 点的轨迹是( ) A .一条直线 B .两条直线 C .圆 D .椭圆答案.C 本题中|z -1|表示点Z 到点(1,0)的距离,|5+12i|表示复数5+12i 的模长,所以|z -1|=13,表示以(1,0)为圆心,13为半径的圆.注意复数的模的定义及常见曲线的定义.5.函数f(x)=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 答案 D解析 f ′(x)=3x 2+2ax +3.∵f(x)在x =-3时取得极值, 即f ′(-3)=0,∴27-6a +3=0,∴a =5.6.函数y=ln1|x+1|的大致图象为( )答案 D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.7.甲、乙、丙3位志愿者安排在周一至周五5天中参加某项志愿活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,则不同的安排方法共有()A.20种B.30种C.40种D.60种解析分类解决.甲排周一,乙、丙只能在周二至周五这4天中选两天进行安排,有A24=12(种)方法;甲排周二,乙、丙只能在周三至周五这3天中选两天安排,有A23=6(种)方法;甲排周三,乙、丙只能安排在周四和周五,有A22=2(种)方法.由分类加法计数原理,得共有12+6+2=20(种)方法.答案 A8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名学生至少一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为()A.360B.520C.600D.720解析根据题意,分两种情况讨论:若只有甲、乙其中一人参加,有C12·C35·A44=480(种)情况;若甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙相邻的有C22·C25·A33·A22=120(种)情况.故不同的发言顺序种数为480+240-120=600.答案 C9.已知(1+x )10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 8等于( ) A.-180B.180C.45D.-45解析 本题是关于二项展开式的系数问题,注意到展开式右边的特点,可将1+x 写成x -1+2,再展开(1+x )10=(2+x -1)10=C 010210+C 11029(x -1)+C 21028(x -1)2+…+C 81022(x -1)8+C 9102(x -1)9+C 1010(x -1)10,可得a 8=22C 810=180. 答案 B10.若(1-2x )2 020=a 0+a 1x +…+a 2 020x 2 020(x ∈R ),则a 12+a 222+…+a 2 02022 020的值为( ) A.2B.0C.-1D.-2解析 令x =0,则a 0=1,令x =12,则a 0+a 12+a 222+…+a 2 02022 020=0,∴a 12+a 222+…+a 2 02022 020=-1. 故选C.11.某次数学考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的方差为( ). (A )48 (B )9.6 (C )1.92 (D )24 解析:设小王选对个数为X,得分为η=5X, 则X ~B(12,0.8),D(X)=np(1-p)=12×0.8×0.2=1.92, D(η)=D(5X)=25D(X)=25×1.92=48. 答案:4812.若函数f(x)=x 2+ax +1x 在(12,+∞)是增函数,则a 的取值范围是 ( )A .(-1,0]B .[-1,+∞)C .(0,3]D .答案 D解析 把函数在某一区间上的单调递增转化为其导函数在该区间上大于或等于零恒成立,分离参数后求新函数的最值. 由题意知f ′(x)≥0对任意的x ∈[21,+∞)恒成立,又f ′(x)=2x +a -21x , 所以2x +a -21x ≥0对任意的x ∈[21,+∞)恒成立, 分离参数得a ≥21x -2x , 若满足题意,需a ≥(21x-2x)max. 令h(x)=21x -2x ,x ∈[21,+∞) 因为h ′(x)=-31x-2, 所以当x ∈[21,+∞)时,h ′(x)<0, 即h(x)在[21,+∞)上单调递减, 所以h(x)<h(21)=3,故a ≥3. 二、填空题(每小题5分,共20分)13.现有语文、数学、英语书各1本,把它们随机发给甲、乙、丙三个人,且每人都得到1本书,则甲得不到语文书的概率为________ .解析:语文、数学、英语书各1本,随机发给甲、乙、丙三个人,每人都得到1本书,共有A 33=6种分法,甲得不到语文书的分法有C 21A 22=4种,根据古典概型概率公式可得,甲得不到语文书的概率为46=23. 答案:2314.在平面直角坐标系xoy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________ 答案 (-2,15)解析 y ′=3x 2-10=2⇒x =±2,又点P 在第二象限内,∴x =-2,得点P 的坐标为(-2,15)15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________. 【答案】0.18 ;【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63⨯0.5⨯0.5⨯2=0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4⨯0.62⨯0.52⨯2=0.072综上所述,甲队以4:1获胜的概率是q=0.108+0.072=0.1816.函数f(x)=x 3+ax 2+bx +a 2,在x =1时有极值10,那么a ,b 的值分别为________. 答案 4,-11解析 f ′(x)=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f(1)=a 2+a +b +1=10, 联立方程组,解得⎩⎨⎧a =-3b =3,或⎩⎨⎧a =4b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11.三、解答题(本大题共70分)17(10分).某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X 的分布列和期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A, 则P(A)=56×45×34=12. (2)X 的可能取值是1,2,3,则P(X=1)=16, P(X=2)=56×15=16, P(X=3)=56×45=23, 所以X 的分布列为E (X )=16 +26 +2=5218(12分).已知函数d cx bx x x f +++=23)(的图象过点P (0,2),且在点M))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.19.(本小题满分12分)为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此种元素的含量不小于18毫克时,该产品为优等品.(1)试用样品数据估计甲、乙两种产品的优等品率;(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件C,求事件C 的概率.解:(1)从甲产品抽取的10件样品中优等品有4件,优等品率为410 = 25, 从乙产品抽取的10件样品中优等品有5件,优等品率为510 = 12,故甲、乙两种产品的优等品率分别为25,12. (2)ξ的所有可能取值为0,1,2,3. P(ξ=0)=C 53C 103 = 112, P(ξ=1)=C 51C 52C 103 = 512,P(ξ=2)=C 52C 51C 103 = 512, P(ξ=3)=C 53C 103 = 112.E(ξ)=0×112+1×512+2×512+3×112= 32.(3)抽到的优等品中,甲产品恰比乙产品多2件包括两种情况:“抽到的优等品数甲产品2件且乙产品0件”“抽到的优等品数甲产品3件且乙产品1件”,分别记为事件A,B,P(A)=C 32(25)2(1-25)×C 30(12)0(1-12)3=9250, P(B)=C 33(25)3×C 31×12×(1-12)2=3125,故抽到的优等品中,甲产品恰比乙产品多2件的概率为P(C)=P(A)+ P(B)=9250+3125 =350.20、(12分)已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;(2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. 则,(),()x g x g x '的变化情况如下表当0,()x g x =有极大值3;1,()m x g x +=有极小值2m +. ………………………10分由()g x 的简图知,当且仅当(0)0,(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,m 的范围是(3,2)--.21(12分).近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是23和13.每人限抽一次,100%中奖.小张、小王、小李、小赵四个金冠买家约定零点整抽奖.(1)试求这4人中恰有1人抽到500元代金券的概率;(2)这4人中抽到200元,500元代金券的人数分别用X,Y 表示,记ξ=XY,求随机变量ξ的分布列与数学期望.解:(1)设“这4人中恰有i 人抽到500元代金券”为事件Ai,P(A1)=C 41(13)1(23)3=3281.(2)易知ξ可取0,3,4.P(ξ=0)=P(A0)+P(A4)=C 40(13)0(23)4+C 44(13)4(23)0=1681+181=1781, P(ξ=3)=P(A1)+P(A3)=C 41(13)1(23)3+C 43(13)3(23)1=3281+881=4081, P(ξ=4)=P(A2)=C 42(13)2(23)2=2481=827.E(ξ)=0×1781+3×4081+4×827=83. 22(12分).设,.(1)令,求在内的极值;(2)求证:当时,恒有.(1)解:根据求导法则有,故,于是,列表如下:极小值所以,在处取得极小值.(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调增加.所以当时,,即.故当时,恒有.。
(完整版)高中数学选修(2-3)综合测试题(3)附答案
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
人教A版高二数学选修2-3综合测试题(含答案)
高二数学选修2-3综合测试题一、选择题1.已知随机变量X的分布列为1()122kP X k k n===,,,,,则(24)P X<≤为()A.316 B.14 C.116 D.5162.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100 B.90 C.81 D.723.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()A.24种B.60种C.90种D.120种4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人&5.工人工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,下列判断中正确的是()A.劳动生产率为1000元时,工资为130元B.劳动生产率平均提高1000元时,工资平均提高80元C.劳动生产率平均提高1000元时,工资平均提高130元D.当工资为250元时,劳动生产率为2000元6.设1nx⎛⎫⎪⎝⎭的展开式的各项系数的和为P,所有二项式系数的和为S,若P+S=272,则n为()A.4 B.5 C.6 D.87.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170”.根据这位负责人的话可以推断出参加面试的人数为()A.21 B.35 C.42 D.708.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为(){A.B.0.54 C.D.9.设一随机试验的结果只有A和A,()P A p=,令随机变量1AXA=⎧⎨⎩,出现,,不出现,,则X的方差为()A.pB.2(1)p p-C.(1)p p--D.(1)p p-10.310(1)(1)x x-+的展开式中,5x的系数是()A.297-B.252-C.297 D.20711.某厂生产的零件外直径ξ~N(10,),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm和9.3cm,则可认为()A.上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常 :12.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( )A.2027 B.49 C.827 D.1627二、填空题13.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法 种. 14.设随机变量ξ的概率分布列为()1cP k k ξ==+,0123k =,,,,则(2)P ξ== . 15.已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >= .16.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为 ,方差为 . 三、解答题17试判断数学成绩与物理成绩之间是否线性相关,判断出错的概率有多大 }$18.假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料: 若由资料知,y 对x 呈线性相关关系,试求:(1)回归直线方程; (2)估计使用年限为10年时,维修费用约是多少@》19.用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数(2)能组成多少个无重复数字且为5的倍数的五位数 (3)能组成多少个无重复数字且比1325大的四位数)|20.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.$-21.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.;%22.奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望&。
(完整版)高中数学选修2-2综合测试题(附答案)
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。
【高二数学】选修2-2综合测试含答案解析
选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。
高中数学选修2-3综合测试题及答案
高中数学选修2-3综合测试题一、选择题(本题共12小题,每题5分,共60分.只有一项是符合题目要求)1、在一次试验中,测得(x ,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y 与x 间的线性回归方程为( )A. y ^=x +1 B. y ^=x +2 C. y ^=2x +1 D. y ^=x -12、某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( )A .36种B .42种C .48种D .54种3、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A .24B .18C .12D .64、两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A .10种B .15种C .20种D .30种5、现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一.每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 ( ) A .152 B .126 C .90 D .54 6、在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ) A .10B .-10C .40D .-407、(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .408、若随机变量X 的分布列如下表,则E(X)等于( )9、随机变量ξ服从正态分布N(0,1),如果P(ξ<1)= 3,则P(-1<ξ<0)=( )A. 3B.C. 3D. 310、五一节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )11、 如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ).A. 3112、已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=bx +a ,则“(x 0,y 0)满足线性回归方程y ^=bx +a”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本题共4小题,每题5分,共20分)13、 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________. 14、已知X 的分布列为:X -1 0 1 P1216a设Y =2X +1,则Y15、1()n x x +的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为______.16、若将函数f(x)=x 5表示为f(x)=0a +1a ()1x ++…+()551a x +,其中012,,a a a ,…,5a 为实数,则0a =________。
最新人教版高中数学选修2-2综合测试题及答案2套
最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。
第一象限B。
第二象限C。
第三象限D。
第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。
答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。
10B。
5/3C。
-1D。
-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。
A。
①②③B。
①③C。
①D。
②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。
答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。
极大值5,极小值-27B。
极大值5,极小值-11C。
极大值5,无极小值D。
极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。
答案:C5.函数y=4x^2+1/x的单调递增区间是()A。
(0,+∞)B。
(-∞,1)C。
(1,2)D。
(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。
高二数学选修2-2、2-3综合测试题
高二数学选修2-2、2-3综合测试题一、选择题(每小题5分,共50分)1、12y x =-的定义域为集合A ,()ln 21y x =+的定义域为集合B ,则A B =( )A .11,22⎛⎤- ⎥⎝⎦B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞- ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭2.已知i 为虚数单位,ii -+221=( ) A.1 B.i C.-1 D.-i 3.⎰-+22)cos (ππdx x x =( ) A .π B. 4 C. π- D . 24.下列命题中为真命题的是( )A .若21,0≥+≠xx x 则 B .直线b a ,为异面直线的充要条件是直线b a ,不相交 C .若命题"01,:"2>--∈∃x x R x p ,则命题p 的否定为:"01,"2≤--∈∀x x R xD .“1=a 是“直线0=-ay x 与直线0=+ay x 互相垂直”的充要条件5.已知函数f (x )=ln ln a x x +在[1,+∞]上为减函数,则a 的取值范围是( ) A.10a e<< B.0a e <≤ C.a e ≤ D.a e ≥ 6.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.9107.由曲线y=x 与直线x=4,y=0围成的曲边梯形的面积为( ) A. 163 B. 83 C. 323 D. 168.极坐标方程0))(1(=--πθρ(0≥ρ)表示的图形为( )A.两个圆B.两条直线C.一个圆和一条射线D.一条射线和一条直线9.将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案有( )A .18种B .24种C .54种D .60种10.已知可导函数满足(),()f x x R ∈满足'()()f x f x >,则当0a >时,()f a 和(0)a e f 大小关系为( )A . (0)()a e f f a =B .(0)()a e f f a <C .(0)()a e f f a >D .(0)()a e f f a ≥二、填空题:(本大题共5小题,每小题5分,共25分。
完整word版高二理科数学选修22、23综合测试题
高二理科数学(选修2-2 、2-3 )综合测试题一、选择题(本大题共 12 小题,每题 5 分,共60 分)1.复数12i 的共轭复数为34iA.1 2i ,B.1 2i , C.1 2 iD.1 2 i555 55 55 52. 在 100 件产品中,有 3 件是次品,现从中随意抽取 5 件,此中起码有 2 件次品的取法种数为A .232332514C 5 - C 5C 3C 97B. C C97 + CCC. C 100 - C 3C 97D. 100973 3 973.5 个人排成一排,此中甲与乙不相邻,而丙与丁一定相邻,则不一样的排法种数为A.72B.48C.24D.604.若 f (x 0 )2 , 则 limf ( x 0 k) f ( x 0 )2kkA . 2B.1C.1 D.没法确立25.1xx10睁开式中的常数项为(A )第 5 项 (B )第 6 项(C )第 5 项或第 6 项 ( D )不存在 6. 袋中有 5 个红球, 3 个白球,不放回地抽取 2 次,每次抽 1 个.已知第一次抽出的是红球,则第 2 次抽出的是白球的概率为(A )3(B )3(C )4(D )178 7 27. 曲线 ysin x(0 x3) 与两坐标轴所围成图形的面积为25A .1B . 2C .3D.28. 4 名学生被中大、华工、华师录取,若每所大学起码要录取 1 名,则共有不一样的录取方法A .72 种B .24 种C .36 种D .12 种 9.两个实习生每人加工一个部件.加工为一等品的概率分别为2和3,两个部件是34否加工为一等品互相独立,则这两个部件中恰有一个一等品的概率为(A )1(B)5 (C)1 (D)12124610. 已知随机 量 X 听从正态散布 N ( 3,1 ),且 P (2≤ X ≤ 4)=0.6826 ,则 P(X > 4)= 。
1 2 x) dx 等于(11. 定积分( 2x x )A2B1C1 D112. 在曲线 y x2x 0 上某一点 A 处作全部线使之与曲线以及x 轴所围的面积为1,则这个切线方程是 .12A.y=-2x-1B.y=-2x+1C.y=2x-1D.y=2x+1二、填空题(本大题共 4 小题,每题 5 分,共 20 分)13. 同时投掷 5 枚平均的硬币 80 次,设 5 枚硬币正好出现 2 枚正面向上, 3 枚反面向上的次数为ξ,则ξ的数学希望是 __________14. 某班从 6 名班干部中(此中男生 4 人,女生 2 人)选 3 人参加学校的义务劳动,在男 生甲被选中的状况下,女生乙也被选中的概率是___________ 15. 若f (x)1x 2 bln(x 2)在(-1,+) 上是减函数,则 b 的取值范围是216、如图,用 6 种不一样的颜色给图中的 4 个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不一样,且两头的格子的颜色也不一样,则不一样 的涂色方法共有 种(用数字作答).三、解答题:( 17 题 10 分, 18~ 22 每题 12 分)17. 命题 p : m 2i2 i ( i 是虚数单位);命题 q :“函数 f ( x )2x3mx 2( 2m3) x 在(-∞,+∞)上单一递加” .3m2若 p ∧q 是假命题, p ∨ q 是真命题,求的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修2-2、2-3测试题 本试卷分
第I 卷(选择题)和第U 卷(非选择题)两部分,满分 120分钟.
第I 卷(选择题,共50分)
一. 选择题(本大题共10小题,每小题5分,共50分)
1.过函数y =sinx 图象上点0 (0, 0),作切线,则切线方程为
()
A . y =x
B . y =0
C . y = x 1
D . y = _x
1
* 2 3 4 2 12 2.设 1 x x x a 0 a 1x a 2x 川…川'a 12x ,则a 0 二()
A . 256
B . 0
C . -1
B . -3
C . i 2 -1 换的:507413 8 =5 85 0 84 7 83 4 82 1 8 3 二 167691 ,十六进制数
(2,3,4,5,6)16 =2 164 3 163 4 162 5 16 6 = 144470,那么将二进制数
1101 2
转换成十进制数,这个十进制数是
() A . 12 B . 13 C . 14 D . 15 5.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为f(n)部分,则
f(n)=1 •也 °。
在证明第二步归纳递推的过程中,用到f(k 1) = f (k) + ______________ 。
2
()
A . k -1
B . k
C . k 1
D .坐耳
2
6•记函数y 二f ⑵(x)表示对函数y 二f(x)连续两次求导,即先对y 二f (x)求导得
y = f '(x),再对y = f '(x)求导得y=f ⑵(x),下列函数中满足
f (2)(x)二f(x)的是
()
A. f(x)=x
B. f(x) =sinx
C. f(x)=e x
D. f(x)=lnx 3.定义运算 c =ad —be , d
2 (i 是虚数单位)为() i 150分.考试用时 4.任何进制数均可转换为十进制数
,如八进制5074138转换成十进制数,是这样转
7.甲、乙速度v与时间t的关系如下图,a(b)是t二b时的加速度,S(b)是从t=0到
t =b 的路程,则a 甲 (b)与a 乙(b) , S 甲(b)与S 乙 (b)的大小关系是 ()
A • a 甲 (b) a 乙 (b) , S 甲 (b) S 乙 (b)
10. 设M 「1,2,3,4,5,6,7,8,9,101由M 到M 上的一一映射中,有 7个数字和自身对 应的映射个数是()
A .120
B .240
C . 107
D .360
第U 卷(非选择题共100分)
二. 填空题(本大题4个小题,每小题5分,共20分)
B . a 甲 (b) :a 乙(b),
C . a 甲 (b) ::: a 乙 (b) , S 甲 (b) ■ S 乙
(b) D . a 甲(b) :: a 乙 (b), S 甲 (b) ::
S (b) )
11. _____________________________ 公式 揭示了微积分学中导数和定积分之间的内在 联系;提供了求定积分的一种有效方法。
12.
若有一组数据的总偏差平方和为 100,相关指数
R 2 =0.75,贝U 其残差平方和
为 ______ 。
13. 已知数列「an?为等差数列,则有
a 1 -2a 2 a 3 =0,
a i _ 3a ? ' 3&3 _ a^ — 0
a^i -4aaa 3 _4 4 a 5 = 0
类似上三行,第四行的结论为 ___________________________ 。
14 .已知长轴长为2a ,短轴长为2b 椭圆的面积为二ab ,则
3 x 2 f 2*1 ———dx= ________ 。
― 9 三. 解答题(本大题6个小题,共80分)
15. (10分)如图,阴影部分区域是由函数 y=cosx 图象,直线y=1,x 「围成,
求这阴影部分区域面积
y=1
fx = cos x
16. (12分)据研究,甲磁盘受到病毒感染,感染的量y (单位:比特数1与时间x (单位:
秒)的函数关系是\y =e ,乙磁盘受到病毒感染,感染的量 y (单位:比特数)与时间 x (单位:秒)的函数关系是y =x 2,显然当x — 1时,甲磁盘受到病毒感染增长率比乙磁 盘受到病毒感染增长率大•试根据上述事实提炼一个不等式,并证明之. 仃.(13分)(1)抛掷一颗骰子两次,定义随机变量
£ _「0,(当第一次向上一面的点 数不等于第二次向上一 面的点数)
_二、、1,(当第一次向上一面的点 数等于第二次向上一面 的点数)
试写出随机变量的分布列(用表格格式);
(2)抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,求第二次掷得向上一面点数也是偶数的概率.
18. (15分)已知函数f (x) =2x3 -3x2-12x
(1) 求f(x) =2x3 _3x2 -12x 的极值;
(2) 请填好下表(在答卷),并画出f(x) =2x3—3x2—12x的图象(不必写出作图步骤);
(3) 设函数g(x) =2x3 -3x2 -12x - a的图象与x轴有两个交点,求a的值。
(2)由(1)猜想a n的通项公式;
(3)用数学归纳法证明你的猜想。
20. (15分)为研究“在n次独立重复试验中,事件A恰好发生k次的概率的和”这个课
题,我们可以分三步进行研究:(I)取特殊事件进行研究;(n)观察分析上述结果得到研究结论;(川)试证明你得到的结论。
现在,请你完成:
(1) 抛掷硬币4次,设P O,P1,F2,P5,P4分别表示正面向上次数为0次,1次,2次,3次,4次
的概率,求F0,F1,F2,F3,F i(用分数表示),并求P。
+R +P2 +P3+P4 ;
(2) 抛掷一颗骰子三次,设P°,P,P2,P3分别表示向上一面点数是3恰好出现0次,1次,2
次,3次的概率,求F0,R,P2,P3(用分数表示),并求F0 +R +F2 +P3;
⑶由(1)、(2)写出结论,并对得到的结论给予解释或给予证明•。