复数代数形式的乘除运算教案
高中数学_复数代数形式的乘除运算教学设计学情分析教材分析课后反思

3. 2. 2 复数代数形式的乘除运算教学设计主备人:学习目标1.理解并掌握复数代数形式的乘法与除法运算法则,理解除法是乘法运算的逆运算.2.理解并掌握复数的乘法实质就是多项式展开,除法运算实质是分母实数化类问题.重点:复数的乘除运算法则及其应用.难点:复数的代数形式的化简.学习过程一.认知预习阅读教材P109-P111页的内容,并解答问题:1、类比两个多项式相乘,()()a b c d ac ad bc bd ++=+++。
你能总结出复数相乘的运算规则吗?设1z a bi =+,2z c di =+(,,,)a b c d R ∈是任意两个复数二、探究新知探究一、乘法运算律:①交换律:1221z z z z =,②结合律:()()123123z z z z z z =,③分配律:()1231213z z z z z z z +=+.这些运算律对复数成立吗?你能推导①吗?小试牛刀(1)(2+i)(2-i) (2)1-2i 3+4i -2+i ⋅⋅()()()(3)3+4i 3-4i ()() 241+i ()()思考:观察(1)(3)计算结果,它们的实部与虚部有什么特点?探究二、共轭复数共轭复数有什么特点?1、实部虚部特点:2、模有什么关系:3、乘积有什么特点:总结共轭复数的概念:探究三、复数除法、运算规则类比实数的除法如:(1)34342-3=2-3a a a a ++÷()()22÷==(2)(( 两个实数相除可以写成分数的形式,在进行复数运算的时候我们也将复数相除写成分数的形式如:12(12)(34)34ii i i ++÷-=-接下来我们应该怎样去计算?(实数运算分母为无理数时是怎样处理的——分母有理化)你能总结出复数除法的运算规则吗?三、达标检测1.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( )A .-iB .iC .-1D .12、i 是虚数单位,复数-1+3i 1+2i等于 ( ) A .1+i B .5+5i C .-5-5i D .-1-i3.复数z =2-i 2+i(i 为虚数单位)在复平面内对应的点所在象限为 ( )A .第一象限B .第二象限C .第三象限D .第四象限4、已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .四、归纳与小结(1)掌握复数的乘法运算法则,两个复数的乘法,实质上是按多项式的展开法则进行的,没有必要记住公式;(2)两个复数的除法,将分子和分母同乘以分母的共轭复数,将分母化为实数,分子再按照复数乘法进行运算.复数代数形式的乘除运算学情分析1、学生以了解复数的概念与定义,以及复数在数域内的地位。
3.2.2复数代数形式的乘除运算优秀教案

3.2.2复数代数形式的乘除运算●三维目标1.知识与技能理解并掌握复数的代数形式的乘法与除法运算法则,了解共轭复数的概念.2.过程与方法理解并掌握复数的除法运算实质是分母实数化问题,通过运算过程体会这一变形本质意图.3.情感、态度与价值观利用多项式除法和复数除法类比,知道事物之间是普遍联系的.通过复数除法运算,培养学生探索问题、分析问题、解决问题的能力.●重点难点重点:复数代数形式的乘除法运算.难点:复数除法法则的运用.●教学建议建议本节教学采用自学指导法,在学生自主学习的基础上可利用一下教学方法及手段完成本节教学:(1)类比分析法,通过对比多项式的乘法法则推出复数乘法法则.(2)归纳推理法,运用已有的多项式乘法法则和分母有理化及复数加减法的知识,通过归纳类比,推导复数除法法则.(3)合理、恰当地运用多媒体教学手段,将静态事物动态化,将抽象事物直观化,以突破教学难点.●教学流程创设问题情境,引出问题,引导学生思考两个复数如何进行代数形式的乘法与除法运算.让学生自主完成填一填,使学生进一步熟悉复数代数形式的乘法、除法运算的法则,及其满足的运算律.引导学生分析例题1的运算方法并求解,教师只需指导完善,解答疑惑并要求学生独立完成变式训练.由学生分组探究例题2解法,引导学生去发现i n运算的周期性,及其应用方法.完成互动探究.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导.通过易错辨析纠正运算中出现的错误.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示,引导学生总结解题规律.课标解读1.掌握复数代数形式的乘、除运算.(重点) 2.理解复数乘法的交换律、结合律和乘法对加法的分配律.(难点)3.理解共轭复数的概念.(易错点)复数的乘法1.如何规定两个复数相乘?【提示】两个复数相乘类似于多项式相乘,只要在所得结果中把i2换成-1,并且把实部与虚部分别合并即可.2.复数乘法满足交换律、结合律以及乘法对加法的分配律吗?【提示】满足.(1)设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i.(2)对于任意z1,z2,z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·(z2·z3)乘法对加法的分配律z1(z2+z3)=z1z2+z1z3复数的除法与共轭复数如何规定两个复数z1=a+b i,z2=c+d i(a,b,c,d∈R,c+d i≠0)相除?【提示】 z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )ic 2+d2. (1)z 1=a +b i ,z 2=c +d i(a ,b ,c ,d 为实数,c +d i ≠0),z 1,z 2进行除法运算时,通常先把(a +b i)÷(c +d i)写成a +b i c +d i 的形式再把分子与分母都乘以c -d i化简后可得结果:ac +bd c 2+d 2+bc -adc 2+d 2i.(2)共轭复数如果两个复数满足实部相等,虚部互为相反数时,称这两个复数为共轭复数,z 的共轭复数用z 表示.即z =a +b i ,则z =a -b i.虚部不等于0的两个共轭复数也叫共轭虚数.复数代数形式的乘除法运算) A .-1+i B .-1-i C .1+i D .1-i (2)(2013·大纲全国卷)(1+3i)3=( ) A .-8 B .8 C .-8iD .8i(3)计算(1+i 1-i )6+2+3i3-2i=________. 【思路探究】 (1)先设出复数z =a +b i ,然后运用复数相等的充要条件求出a ,b 的值.(2)直接利用复数的乘法运算法则计算. (3)先计算1+i1-i 再乘方,且将2+3i3-2i的分母实数化后再合并.【自主解答】 (1)设z =a +b i ,则(1-i)(a +b i)=2i ,即(a +b )+(b -a )i =2i. 根据复数相等的充要条件得⎩⎪⎨⎪⎧ a +b =0,b -a =2,解得⎩⎪⎨⎪⎧a =-1,b =1,∴z =-1+i.故选A.(2)原式=(1+3i)(1+3i)2=(1+3i)(-2+23i)=-2+6i 2=-8. (3)法一 原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )5=i 6+6+2i +3i -65=-1+i.法二 原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )i(3-2i )i =i 6+(2+3i )i2+3i=-1+i.【答案】 (1)A (2)A (3)-1+i1.复数的乘法类比多项式相乘进行运算,复数除法要先写成分式形式后,再将分母实数化,注意最后结果要写成a +b i(a ,b ∈R )的形式.2.记住以下结论可以提高运算速度 (1)(1+i)2=2i ,(1-i)2=-2i ; (2)1-i1+i =-i ,1+i1-i =i ; (3)1i =-i.计算:(1)(1-i)2;(2)(-12+32i)(32+12i)(1+i);(3)2i 2+i.【解】(1)(1-i)2=1-2i+i2=-2i.(2)(-12+32i)(32+12i)(1+i)=(-34-14i+34i+34i2)(1+i)=(-34+12i-34)(1+i)=(-32+12i)(1+i)=-32-32i+12i-12=-1+32+1-32i.(3)2i2+i=2i(2-i)(2+i)(2-i)=2+4i5=25+45i.虚数单位i的幂的周期性及其应用(1)计算:-23+i1+23i+(21-i)2 013;(2)若复数z=1+i1-i,求1+z+z2+…+z2 013的值.【思路探究】将式子进行适当的化简、变形,使之出现i n的形式,然后再根据i n的值的特点计算求解.【自主解答】(1)原式=i(1+23i)1+23i+[(21-i)2]1 006·(21-i)=i +(2-2i )1 006·2(1+i )2=i +i 1 006·2(1+i )2=-22+2-22i(2)1+z +z 2+…+z 2 013=1-z 2 0141-z ,而z =1+i 1-i=(1+i )2(1-i )(1+i )=2i2=i ,所以1+z +z 2+…+z 2 013=1-i 2 0141-i =1-i 21-i =1+i.1.要熟记i n 的取值的周期性,要注意根据式子的特点创造条件使之与i n 联系起来以便计算求值.2.如果涉及数列求和问题,应先利用数列方法求和后再求解.在本例(2)中若z =i ,求1+z +z 2+…+z 2 013的值. 【解】 由题意知1+z +z 2+…+z 2 013=1+i +i 2+…+i 2 013 =1·(1-i 2 014)1-i =1-i 4×503+21-i =1-i 21-i =1+i.∴原式=1+i.共轭复数的应用设z 1,z 2∈C ,A =z 1·z 2+z 2·z 1,B =z 1·z 1+z 2·z 2,问A 与B 是否可以比较大小?为什么?【思路探究】 设出z 1,z 2的代数形式→化简A ,B →判断A ,B 是否同为实数→结论【自主解答】设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1=a-b i,z2=c-d i,∴A=z1·z2+z2·z1=(a+b i)(c-d i)+(c+d i)(a-b i)=ac-ad i+bc i-bd i2+ac-bc i+ad i-bd i2=2ac+2bd∈R,B=z1·z1+z2·z2=|z1|2+|z2|2=a2+b2+c2+d2∈R,∴A与B可以比较大小.1.z·z=|z|2=|z|2是共轭复数的常用性质.2.实数的共轭复数是它本身,即z∈R⇔z=z,利用此性质可以证明一个复数是实数.3.若z≠0且z+z=0,则z为纯虚数,利用此性质可证明一个复数是纯虚数.已知z∈C,z为z的共轭复数,若z·z-3i z=1+3i,求z.【解】设z=a+b i(a,b∈R),则z=a-b i(a,b∈R),由题意得(a+b i)(a-b i)-3i(a-b i)=1+3i,即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧a 2+b 2-3b =1-3a =3,解得⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧a =-1b =3,所以z=-1或z=-1+3i.记错i 2值而致误设复数z 满足1+2iz =i ,则z =( ) A .-2+i B .-2-i C .2-iD .2+i【错解】 设复数z =a +b i(a ,b ∈R )满足1+2iz =i , 所以1+2i =a i +b . 解得⎩⎪⎨⎪⎧a =2,b =1,所以z =2+i ,故选D 项. 【答案】 D【错因分析】 将i 2=-1当成i 2=1来运算漏掉负号.【防范措施】 在进行乘除法运算时,灵活运用i 的性质,并注意一些重要结论的灵活应用.【正解】 设复数z =a +b i(a ,b ∈R )满足1+2iz =i ,所以1+2i =a i -b . 解得⎩⎪⎨⎪⎧a =2,b =-1,所以z =2-i ,故选C 项. 【答案】 C1.复数代数形式的乘除运算(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.2.共轭复数的性质可以用来解决一些复数问题. 3.复数问题实数化思想.复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z =a +b i(a ,b ∈R ),利用复数相等的充要条件转化.1.(2012·北京高考)在复平面内,复数10i3+i对应的点的坐标为( ) A .(1,3) B .(3,1) C .(-1,3)D .(3,-1)【解析】 10i 3+i =10i (3-i )32+12=10i (3-i )10=1+3i , ∴其对应点的坐标为(1,3),选A. 【答案】 A2.(2013·安徽高考)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3【解析】 因为a -103-i =a -10(3+i )(3-i )(3+i )=a -10(3+i )10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.【答案】 D3.若x -2+y i 和3x -i 互为共轭复数,则实数x =________,y =________. 【解析】 由题意得:⎩⎪⎨⎪⎧x -2=3x ,y =1,∴⎩⎪⎨⎪⎧x =-1,y =1.【答案】 -1 14.计算:(1)(1-i)(-12+32i)(1+i);(2)2+3i 3-2i;(3)(2-i)2.【解】(1)法一(1-i)(-12+32i)(1+i)=(-12+32i+12i-32i2)(1+i)=(3-12+3+12i)(1+i)=3-12+3+12i+3-12i+3+12i2=-1+3i.法二原式=(1-i)(1+i)(-12+32i)=(1-i2)(-12+32i)=2(-12+32i)=-1+3i.(2)2+3i3-2i=(2+3i)(3+2i)(3-2i)(3+2i)=(2+3i)(3+2i)(3)2+(2)2=6+2i+3i-65=5i5=i.(3)(2-i)2=(2-i)(2-i)=4-4i+i2=3-4i.。
复数的乘、除运算(教学设计)

复数的乘除运算教学设计教学目标1.掌握复数代数形式的乘法和除法运算,培养数学运算的核心素养;2.理解复数乘法的交换律、结合律和乘法对加法的分配律,提升数学运算的核心素养。
教学重难点1.重点:掌握复数的乘法和除法运算;2.难点:复数的除法运算教学过程(一)新知导入1.创设情境,生成问题两个实数的积、商是一个实数,那么两个复数的积、商是怎样的?怎样规定两个复数的乘除运算,才能使在复数集中的乘法、除法与原实数集中的有关规定相容?2.探索交流,解决问题【问题1】设z1=a+b i,z2=c+d i(a,b,c,d∈R)类比两个多项式相乘,应如何规定两个复数相乘?[提示]z1z2=(a+b i)(c+d i)=ac+bc i+ad i+bd i2=(ac-bd)+(bc+ad)i.(实部相乘减去虚部相乘的差为实部,实部与另一复数虚部相乘的和为虚部)【问题2】复数的乘法满足交换律和结合律吗?[提示]满足.【问题3】设z=a+b i(a,b∈R),则z z的共轭复数等于什么?z z是一个怎样的数?[提示]z=a-b i,z z=a2+b2是一个实数.(二)复数的乘除运算1.复数的乘法运算复数的乘法可以应用实数运算中的乘法公式,如平方差公式、完全平方公式等(1)复数的乘法法则设z 1=a +b i,z 2=c +d i(a ,b ,c ,d ∈R ),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.(2)复数乘法的运算律对任意复数z 1,z 2,z 3∈C ,有交换律z 1·z 2=z 2·z 1结合律(z 1·z 2)·z 3=z 1·(z 2·z 3)乘法对加法的分配律z 1(z 2+z 3)=z 1z 2+z 1z 3(3)例题讲解【例1】计算(3−4i)【例2】计算(1−2i)(3+4i)(−2+i)解:(3−4i)(3+4i)解:(1−2i)(3+4i)(−2+i)=3×3+3×4i −4×3i −4i×4i;=(11−2i)(−2+i);=−20+15i.=25.【变式】计算(12−5i)(12+5i)=22512+=213(三)、复数的除法运算猜想:实数的除法是乘法的逆运算,那么该如何定义复数的除法呢?试试自己猜测,复数的除法法则:(1+2i)÷(3+4i)=(1+2i)×4i +31=4i +32i 1+=4i)-4i)(3+(34i)-2i)(3+(1=22434i)-2i)(3+(1=+注:分母是虚数,怎样变成实数呢?类比“分母有理化”,分子分母同时乘以分母的共轭复数。
复数代数形式的乘除运算优秀教学设计

复数代数形式的乘除运算【教学要求】掌握复数的代数形式的乘、除运算。
【教学重点】复数的代数形式的乘除运算及共轭复数的概念。
【教学难点】乘除运算【教学过程】一、复习准备1.复数的加减法的几何意义是什么?2.计算:(1)(2) (3)(14)(72)i i +-+(52)(14)(23)i i i --+--+(32)(43)(5)]i i i --+-+-[3.计算:(1)(2)(1(2+⨯()()a b c d +⨯+二、讲授新课1.复数代数形式的乘法运算2.复数的乘法法则:。
2()()()()a bi c di ac bci adi bdi ac bd ad bc i ++=+++=-++例1.计算、、、(14)(72)i i +⨯-(72)(14)i i -⨯+[(32)(43)](5)i i i -⨯-+⨯+(32)(43)(5)]i i i -⨯-+⨯+[探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律?例2.计算、、(14)(14)i i +⨯-(14)(72)(14)i i i -⨯-⨯+2(32)i +2.已知复数,若,试求的值。
变:若,试求的值。
Z Z (23)8i Z +≥Z 3.共轭复数:两复数叫做互为共轭复数,当时,它们叫做共轭虚数。
a bi a bi +-与0b ≠注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数。
32,43,5,52,7,2i i i i i --++--4,试写出复数的除法法则。
=2.复数的除法法则:,其中2222()()()()()()a bi a bi c di ac bd bc ad a bi c di i c di c di c di c d c d ++-+-+÷+===+++-++c di-叫做实数化因子例3.计算,(师生共同板演一道,再学生练习)(32)(23)i i -÷+(12)(32)i i +÷-+练习:计算,232(12)i i -+23(1)1ii -+-2.小结:两复数的乘除法,共轭复数,共轭虚数。
复数代数形式的乘除运算教案

3.2.2 复数代数形式的乘除运算一、教学目标:1、知识与技能:掌握复数代数形式的乘除运算的法则,熟练进行复数的乘法和除法运算; 理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质. 过程与方法:2、过程与方法:运用类比方法,经历由实数系中的乘除法到复数系中乘除法的过程;培养学生发散思维和集中思维的能力,以及问题理解的深刻性、全面性.3、情感、态度与价值观:通过实数的乘、除法运算法则及运算律,推广到复数的乘、除法,使同学们对运算的发展历史和规律,以及连续性有一个比较清晰完整的认识,同时培养学生的科学思维方法.二、重点难点:重点: 掌握复数代数形式的乘除运算的法则,熟练进行复数的乘法和除法运算.难点: 复数除法的运算法则.三、教学过程【知识链接】1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21;2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21;3.复数的加法运算满足交换律:1221z z z z +=+;4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++;5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=.【问题探究】探究一、复数的乘法运算引导1:乘法运算规则设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行:=⋅21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.引导2:试验证复数乘法运算律(1)1221z z z z ⋅=⋅(2)()()321321z z z z z z ⋅⋅=⋅⋅(3)()3121321z z z z z z z ⋅+⋅=+⋅点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.探究二、复数的除法运算引导1:复数除法定义:满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者di c bi a ++()0≠+di c . 引导2:除法运算规则:利用()()22d c di c di c +=-+.于是将dic bi a ++的分母有理化得:原式=22()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+⋅-+-==++-+ 222222()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()22d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法【典例分析】例1计算()()()i i i +-+-24321引导:可先将前两个复数相乘,再与第三个复数相乘.点拨:在复数的乘法运算过程中注意将2i 换成-1.例2计算:(1)()()i i 4343-+ ; (2)()21i +.引导:按照复数乘法运算展开即可.点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.例3计算(12)(34)i i +÷-引导:可按照复数除法运算方法,先将除式写成分式,再将分母实数化,然后化简即可.点拨:本题可将除法运算转化为乘法运算,但是相对麻烦,易于采用先将除式写成分式,再将分母实数化,然后化简的办法,学习时注意体会总结,寻求最佳方法.例4计算i i i 42)1)(41(+++- 引导:可先将分子化简,再按照除法运算方法计算,注意计算的准确性.点拨:对于混合运算,注意运算顺序,计算准确.【目标检测】1.复数22i 1+i ⎛⎫ ⎪⎝⎭等于( ) A .4i B .4i - C .2i D .2i - 2.设复数z 满足12i i z +=,则z =( ) A .2i -+B .2i --C .2i -D .2i + 3.复数32321⎪⎪⎭⎫ ⎝⎛+i 的值是( )A.i -B.iC.1-4.已知复数z 与()i z 822-+都是纯虚数,求z . 提示:复数z 为纯虚数,故可设()0z bi b =≠,再代入求解即可.5.(1)试求87654321,,,,,,,i i i i i i i i 的值.(2)由(1)推测()*N n i n ∈的值有什么规律并把这个规律用式子表示出来.提示:通过计算,观察计算结果,发现规律.【总结提升】 复数的乘法和除法运算是复数的基本运算,在学习时注意运算法则和方法,在乘法运算中注意把2i 换成-1,在除法运算中注意方法的本质依据,计算时注意准确性.。
复数代数形式的乘除运算教案

复数代数形式的乘除运算教案一、教学目标:1.了解复数的定义和性质;2.掌握复数的加减乘除运算;3.能够应用复数进行实际问题求解。
二、教学重点:1.复数的加减乘除运算;2.复数的相关性质。
三、教学难点:1.复数乘除运算的步骤;2.复数运算过程中的常见问题。
四、教学过程:第一步:了解复数的定义和性质(10分钟)1. 复数的定义:复数由实数和虚数相加得到,形式为a + bi,其中a为实部,bi为虚部,i为虚数单位。
2.复数的性质:复数的加法、减法、乘法、除法满足相应运算规则;- 加法性质:(a + bi) + (c + di) = (a + c) + (b + d)i- 减法性质:(a + bi) - (c + di) = (a - c) + (b - d)i- 乘法性质:(a + bi)(c + di) = (ac - bd) + (ad + bc)i- 除法性质:(a + bi) / (c + di) = (ac + bd) / (c^2 + d^2) + (bc - ad) / (c^2 + d^2)i第二步:复数的加法和减法运算(15分钟)1.讲解复数的加法和减法运算规则,并进行示例演练。
2.学生们自己动手进行练习,解决一些简单的加法和减法题目。
3.学生互相检查答案,解析错误的题目。
第三步:复数的乘法运算(25分钟)1.讲解复数的乘法运算规则,并进行示例演练。
2.学生们自己动手进行练习,解决一些简单的乘法题目。
3.学生互相检查答案,解析错误的题目。
第四步:复数的除法运算(25分钟)1.讲解复数的除法运算规则,并进行示例演练。
2.学生们自己动手进行练习,解决一些简单的除法题目。
3.学生互相检查答案,解析错误的题目。
第五步:实例分析和拓展应用(20分钟)1.提供一些实际问题,要求学生用复数进行求解。
2.学生们自己动手解决实际问题,并展示解题过程和结果。
3.学生之间进行交流和讨论,明确解题思路和答案的合理性。
高中数学选修1-2教学设计-复数代数形式的乘除运算教案

3.2.2 复数的代数形式的乘除运算教学要求:掌握复数的代数形式的乘、除运算。
教学重点:复数的代数形式的乘除运算及共轭复数的概念 教学难点:乘除运算教学过程:一、复习准备:1. 复数的加减法的几何意义是什么?2. 计算(1)(14)(72)i i +-+ (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[3. 计算:(1)(1(2+⨯ (2)()()a b c d +⨯+ (类比多项式的乘法引入复数的乘法)二、讲授新课:1.复数代数形式的乘法运算①.复数的乘法法则:2()()()()a bi c di ac bci adi bdi ac bd ad bc i ++=+++=-++。
例1.计算(1)(14)(72)i i +⨯- (2)(72)(14)i i -⨯+ (3)[(32)(43)](5)i i i -⨯-+⨯+(4)(32)(43)(5)]i i i -⨯-+⨯+[探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律?例2.1、计算(1)(14)(14)i i +⨯- (2)(14)(72)(14)i i i -⨯-⨯+(3)2(32)i +2、已知复数Z ,若,试求Z 的值。
变:若(23)8i Z +≥,试求Z 的值。
②共轭复数:两复数a bi a bi +-与叫做互为共轭复数,当0b ≠时,它们叫做共轭虚数。
注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数32,43,5,52,7,2i i i i i --++--。
=,试写出复数的除法法则。
22222()()()()()()a bi a bi c di ac bd bc ad a bi c di i c di c di c di c d c d ++-+-+÷+===+++-++ 其中c di -叫做实数化因子例3.计算(32)(23)i i -÷+,(12)(32)i i +÷-+(师生共同板演一道,再学生练习) 练习:计算232(12)ii -+,23(1)1i i -+- 2.小结:两复数的乘除法,共轭复数,共轭虚数。
322 复数代数形式的乘除运算 教学设计

3.2.2复数代数形式的乘除运算教学设计一、教材分析复数四则运算是本章的重点,也是高考的重点,每年必考。
复数代数形式的乘法与多项式法类似,不同的是将所得结果中把i?换成一1,再把部、虚部分别合并;复数的除法运算法则是将分母实数化转化为乘法运算。
通过复数的乘、除运算,使学生体会数学类比、转化的思想。
二、教学目标:1 .理解并掌握复数代数形式的乘法与除法运算法则及胡复数的概念;2 .理解并掌握复数的除法运算实质是分母实数化类问题;3 .通过对复数乘除法运算的学习,使学生渗透数学转化的数学思想方法。
三、教学重难点:重点:复数代数形式的乘除运算及共挽复数的概念。
难点:复数除法法则的应用。
四、学情分析授课班级是高二(2)・(4)班学生,学生的数学基础相对比较弱。
学生已经学习了数系的扩充、复数的概念、几何意义、力口、减运算。
类比实数四则运算,学生很容易想到复数也有乘、除运算。
从而探究复数乘法、除法法则。
五、教学过程(一)知识回顾:1 .已知两复数z1=a+bi,z2=c+di(a,b,c,d是实数),那么(1)、力口法法贝U:z1+z2=(a+c)+(b+d)i(2)、减法法则:z1-z2=(a-c)+(b-d)i即:两个复数相加(减)就是:实部与实部,虚部与虚部分别相加(减).(3)、复数加法运算的几何意义--向量加法的平行四边形法则(4)、复数减法运算的几何意义一---向量减法的三角形法则(二)探求新知探究一:复数乘法1 .复数代数形式的乘法法则已知zι=α+bi,Z2=c+"i,a,b,c>d£R,则zι∙Z2=(α+6i)(c+M)=(αc-∕√)+Q∕+bc)i.[提示]复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i?换成一1,再把实部、虚部分别合并.解题技巧(复数乘法运算技巧)2 .两个复数代数形式乘法的一般方法(1)首先按多项式的乘法展开.⑵再将i?换成一1.(3)然后再进行复数的加、减运算,化简为复数的代数形式.3 .常用公式(1)(α+bi)2=a 2~b 2+2ab ∖(a ,beR).(2)(a+b ∖)(a~bi)=a 2+b 2(a i b ∈R).(3)(1±i)2=±2i.4n+2=-1,i 4n+3=-i,i 4w ≈1(n∈N*)(2)i f1+i f1+1+i rt+2+i w+3=0(neN).特别提醒5也可以推广到整数集.2.记住以下结果,可提高运算速度.(1)(1+i)2=2i,(1-i)2=-2i. (3)4-=-i.14.例题解析1【例1】(1)复数i(2-i)=A.1+2iC.-1+2iD.-1-2i(2)(2018全国卷niχi+i)(2T)=A.—3~iB.-3÷i C3-i D3+i设计意图:学生同顾、类比多项式乘法写出两复数的展开形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数代数形式的乘除运算教案
教学目标:
1 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算
2 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题
3 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。
教学重点:复数代数形式的除法运算。
教学难点:对复数除法法则的运用。
课型:新知课
教具准备:多媒体
教学过程:
复习提问:
已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数)
加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
减法法则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
即:两个复数相加(减)就是
实部与实部,虚部与虚部分别相加(减)
(a+bi )±(c+di) = (a±c) + (b±d)i
复数的加法运算满足交换律: z1+z2=z2+z1.
复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
讲解新课:
一.复数的乘法运算规则:
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
探究:
复数的乘法是否满足交换律、结合律?
乘法对加法满足分配律吗?
二.乘法运算律:
(1)z1(z2z3)=(z1z2)z3
证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i,
z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i.
又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1.
∴z1z2=z2z1.
(2)z1(z2+z3)=z1z2+z1z3
证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵(z1z2)z3=[(a1+b1i)(a2+b2i)](a3+b3i)=[(a1a2-b1b2)+(b1b2+a1b2)i](a3+b3i)
=[(a1a2-b1b2)a3-(b1a2+a1b2)b3]+[(b1a2+a1b2)a3+(a1a2-b1b2)b3]i
=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2b3+a1a2b3-b1b2b3)i,
同理可证:
z1(z2z3)=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2a3+a1a2b3 -b1b2b3)i,
∴(z1z2)z3=z1(z2z3).
(3)z1(z2+z3)=z1z2+z1z3.
证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵z1(z2+z3)=(a1+b1i)[(a2+b2i)+(a3+b3i)]=(a1+b1i)[(a2+a3)+(b2+b3)i]
=[a1(a2+a3)-b1(b2+b3)]+[b1(a2+a3)+a1(b2+b3)]i
=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i.
z1z2+z1z3=(a1+b1i)(a2+b2i)+(a1+b1i)(a3+b3i)
=(a1a2-b1b2)+(b1a2+a1b2)i+(a1a3-b1b3)+(b1a3+a1b3
)i
=(a1a2-b1b2+a1a3-b1b3)+(b1a2+a1b2+b1a3+a1b3)i
=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i ∴z1(z2+z3)=z1z2+z1z3.
例1计算(1-2i)(3+4i)(-2+i)
解:(1-2i)(3+4i)(-2+i)=(11-2i) (-2+i)= -20+15i.
复数的乘法与多项式的乘法是类似的我们知道多项式的乘法用乘法公式可迅速展开运算,类似地,复数的乘法也可大胆运用乘法公式来展开运算.
例2计算:
(1)(3+4i) (3-4i) ;(2)(1+ i)2.
解:(1)(3+4i) (3-4i) =32-(4i)2=9-(-16)=25;
(2) (1+ i)2=1+2 i+i2=1+2 i-1=2 i.
练习课后第2题
三.共轭复数:当两个复数的实部相等,虚部互为相反数时,
这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数
通常记复数z的共轭复数为z。
思考:若z1, z2是共轭复数,那么
(1)在复平面内,它们所对应的点有怎样的位置关系?
(2)z1z2是怎样的一个数?
探究:
类比实数的除法是乘法的逆运算,我们规定复数的除法是乘法的逆运算.试探求复数除法法则.
四:除法运算规则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的商,记为:(a+bi)÷(c+di)或者
di
c bi
a ++ ①设复数a +bi (a ,
b ∈R),除以
c +di (c ,
d ∈R),其商为
x +yi (x ,y ∈R),
即(a +bi )÷(c +di )=x +yi
∵(x +yi )(c +di )=(cx -dy )+(dx +cy )i . ∴(cx -dy )+(dx +cy )i =a +bi .
由复数相等定义可知⎩⎨⎧=+=-.,
b cy dx a dy cx
解这个方程组,得⎪⎪⎩
⎪⎪⎨⎧+-=++=.,222
2d c ad bc y d c bd ac x
于是有:(a +bi )÷(c +di )=
2
222d
c ad
bc d c bd ac +-+++ i . ②利用(c +di )(c -di )=c 2
+d 2
.于是将di
c bi
a ++的分母有理化得: 原式=
22
()()[()]()()()a bi a bi c di ac bi di bc ad i
c di c di c di c d
++-+⋅-+-==++-+ 222222
()()ac bd bc ad i ac bd bc ad
i c d c d c d
++-+-=
=++++. ∴(a +bi )÷(c +di )=
i d c ad
bc d c bd ac 2
222+-+++. 点评:①是常规方法,②是利用初中我们学习的化简无理分
式时,都是采用的分母有理化思想方法,而(c +di )·(c -di )=c 2+d
2
是正实数.所以可以分母"实数"化. 把这种方法叫做分母实数化法
例3计算(12)(34)i i +÷- 解:(12)(34)i i +÷-1234i i
+=- 1 先写成分式形式
2 然后分母实数化即可运算.(一般分子分母同时乘以分母的共轭复数)
3 化简成代数形式就得结果 练习:课后第3题(1)(3) 小结: 作业: 教学反思:
复数的乘法法则是:(a +bi )(c +di )=(ac -bd )+(bc +ad )i . 复数的代数式相乘,可按多项式类似的办法进行,不必去记公式.
复数的除法法则是:
2
222d
c ad
bc d c bd ac di c bi a +-+++=++i (c +di ≠0). 两个复数相除较简捷的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简.。