利用三角函数图像确定方程解的个数
由三角函数图象求解析式
已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) (A )23-(B) 23 (C)- 12 (D) 12w.w.w.k.s.5.u.c.o.m 2π3,于是【解析】选B.由图象可得最小正周期为f(0)=f(2π3),注意到2π3与π2关于7π12对称,所以f(2π3)=-f(π2)=23.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值 为( )(A )6π(B )4π (C )3π (D) 2πw.w.w.k.s.5.u.c.o.m 【解析】选A.函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称4232k ππφπ∴⋅+=+13()6k k Z πφπ∴=-∈由此易得min ||6πφ=. 已知函数y=sin (ωx+ϕ)(ω>0, -π≤ϕ<π)的图像如图所示,则 ϕ=________________【解析】由图可知,()544,,2,1255T x πωπϕ⎛⎫=∴=+ ⎪⎝⎭把代入y=sin 有: 89,510ππϕϕ⎛⎫+∴= ⎪⎝⎭1=sin已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
【解析】由图象知最小正周期T =32(445ππ-)=32π=ωπ2,故ω=3,又x =4π时,f (x )=0,即2φπ+⨯43sin()=0,可得4πφ=,所以,712f π⎛⎫=⎪⎝⎭2)41273sin(ππ+⨯=0。
)已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式; (Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】(1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上得242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4π)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( )A.向右平移4π B.向左平移4π C.向右平移12π D.向左平移12π分析:三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,此题是已知变换前后的函数,求变换方式的逆向型题目,解题的思路是将异名函数化为同名函数,且须x 的系数相同.解:∵y =cos(3x +4π)=sin(4π-3x )=sin [-3(x -12π)] ∴由y =sin [-3(x -12π)]向左平移12π才能得到y =sin(-3x )的图象.答案:D4.将函数y =f (x )的图象沿x 轴向右平移3π,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )A.y =sin(2x +3π) B.y =sin(2x -3π) C.y =sin(2x +32π) D.y =sin(2x -32π)分析:这是三角图象变换问题的又一类逆向型题,解题的思路是逆推法.解:y =f (x )可由y =sin x ,纵坐标不变,横坐标压缩为原来的1/2,得y =sin2x ;再沿x 轴向左平移3π得y =sin2(x +3π),即f (x )=sin(2x +32π).若函数f (x )=sin2x +a cos2x 的图象关于直线x =-8π对称,则a =–1. 分析:这是已知函数图象的对称轴方程,求函数解析式中参数值的一类逆向型题,解题的关键是如何巧用对称性.解:∵x 1=0,x 2=-4π是定义域中关于x =-8π对称的两点 ∴f (0)=f (-4π) 即0+a =sin(-2π)+a cos(-2π)∴a =-1若对任意实数a ,函数y =5sin(312+k πx -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )A.2B.4C.3或4D.2或3分析:这也是求函数解析式中参数值的逆向型题,解题的思路是:先求出与k 相关的周期T 的取值围,再求k .解:∵T =3)3(,1263122=-++=+a a k k ππ又因每一周期出现45值时有2次,出现4次取2个周期,出现45值8次应有4个周期. ∴有4T ≥3且2T ≤3即得43≤T ≤23,∴43≤126+k ≤23解得23≤k ≤27,∵k ∈N,∴k =2或3.巧求初相角求初相角是高中数学学习中的一个难点,怎样求初相角?初相角有几个?下面通过错解剖析,介绍四种方法.如图,它是函数y =A sin(ωx +ϕ)(A >0,ω>0),|ϕ|<π的图象,由图中条件,写出该函数解析式. 错解:由图知:A =5由23252πππ=-=T 得T =3π,∴ω=T π2=32∴y =5sin(32x +ϕ)将(π,0)代入该式得:5sin(32π+ϕ)=0 由sin(32π+ϕ)=0,得32π+ϕ=k π ϕ=k π-32π(k ∈Z )∵|ϕ|<π,∴ϕ=-32π或ϕ=3π∴y =5sin(32x -32π)或y =5sin(32x +3π)分析:由题意可知,点(4π,5)在此函数的图象上,但在y =5sin(32x -32π)中,令x=4π,则y =5sin(6π-32π)=5sin(-2π)=-5,由此可知:y =5sin(32x -32π)不合题意.那么,问题出在哪里呢?我们知道,已知三角函数值求角,在一个周期一般总有两个解,只有在限定的围才能得出惟一解.正解一:(单调性法)∵点(π,0)在递减的那段曲线上∴32π+ϕ∈[2π+2k π,32π+2k π](k ∈Z )由sin(32π+ϕ)=0得32π+ϕ=2k π+π∴ϕ=2k π+3π(k ∈Z )∵|ϕ|<π,∴ϕ=3π正解二:(最值点法)将最高点坐标(4π,5)代入y =5sin(32x +ϕ)得5sin(6π+ϕ)=5 ∴6π+ϕ=2k π+2π ∴ϕ=2k π+3π (k ∈Z )取ϕ=3π正解三:(起始点法)函数y =A sin(ωx +ϕ)的图象一般由“五点法”作出,而起始点的横坐标x 正是由ωx +ϕ=0解得的,故只要找出起始点横坐标x 0,就可以迅速求得角ϕ.由图象求得x 0=-2x ,∴ϕ=-ωx 0=-32 (-2π)=3π.正解四:(平移法)由图象知,将y =5sin(32x )的图象沿x 轴向左平移2π个单位,就得到本题图象,故所求函数为y =5sin 32(x +2π),即y =5sin(32x +3π).【基础知识精讲】1.用五点法作y=Asin(ωx+φ)(ω>0)的图像时,我们采用换元法,将ωx+φ看成y=sinx 中的x ,模仿y=sinx 的五点法来作.ωx 1+φ=0⇒x 1=-ωΦ,ωx 2+φ=2π⇒x 2=ωπΦ-2ωx 3=π⇒x 3=ωπΦ-,ωx 4+φ=23π⇒x 4=ωπΦ-23,ωx 5+φ=2π⇒x 5=ωπΦ-2.即五点(-ωΦ,0),( ωπΦ-2,A),( ωπΦ-,0).( ωπΦ-23,-A).( ωπΦ-2,0)2.函数y=Asin(ωx+φ)的图像与y=sinx 的图像关系.(1)振幅变换函数y=Asinx(A >0,且A ≠1)的图像,可以看作是y=sinx 图像上所有点的纵坐标伸长(A >1)或缩短(0<A <1)到原来的A 倍(横坐标不变)而得到的.这种变换叫振幅变换,它实质上是纵向的伸缩.(2)周期变换函数y=sin ωx(ω>0,且ω≠1)的图像,可以看作是把y=sinx 的图像上各点的横坐标都缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)而得到的,由y=sinx 的图像变换为y=sin ωx 的图像,其周期由2π变ωπ2.这种变换叫做周期变换.它实质上是横向的伸缩.(3)相位变换函数y=sin(x+φ)(φ≠0)的图像,可以看作是把y=sinx 的图像上各点向左(φ>0)或向右(φ<0)平移|φ|个单位而得到的.这种由y=sinx 的图像变换为y=sin(x+φ)的图像的变换,使相位x 变为x+φ,我们称它为相位变换.它实质上是一种左右平移变换.应用振幅变换、周期变换、相位变换(左右平移变移)和上下平移变换可由y=sinx 的图像得到y=Asin(ωx+φ)+k 的图像.事实上,设f 、t 、h 分别表示相位变换,周期变换,振幅变换,则变换作图法共有以下不同的程序.(1)f →t →h;(2)f →g →t(3)t →h →f;(4)t →f →h;(5)h →f →t;(6)h →t →f3.y=Asin(ωx+φ)(A >0,ω>0)与振动在物理学中,y=Asin(ωt+φ)(A >0,ω>0),其中t ∈[0,+∞),表示简谐振动的运动方程.这时参数A ,ω,φ有如下物理意义.A 称为振幅,它表示振动时物体离开平衡位置的最大距离.T=ωπ2称为周期,它表示振动一次所需的时间(亦即函数y 的最小正周期).f=T 1= πω2称为振动的频率,它表示单位时间往复振动的次数,ωt+φ叫做相位,当t=0时的相位,即φ称为初相.4.函数图像的对称变换一个函数的图像经过适当的变换(例如对称、平移、伸缩等)得到与其图像有关函数的图像,叫做函数的初等变换.前面的平移、伸缩变换均属初等变换. 对称变换主要指下面几种:(1)函数y=-f(x)的图像与y=f(x)的图像关于x 轴对称. (2)函数y=f(-x)的图像与y=f(x)的图像关于y 轴对称. (3)函数y=f(-x)的图像与y=-f(x)的图像关于原点对称.(4)函数y=f -1(x)(或x=f(y))的图像与y=f(x)的图像关于直线y=x 对称. 【重点难点解析】重点:用“五点法”画函数y=Asin(ωx+φ)的简图及三角函数的图像变换. 难点:三角函数的图像变换.即由y=sinx 的图像变换到y=Asin(ωx+φ)的过程. 关键:理解A 、ω、φ的对图像变化所起的作用.例1 函数y=3cos(2x -4π)的图像可以由y=sinx 的图像经过怎样的变换得到?解:y=3cos(2x -4π)=3sin [2π+( 2x -4π)]=3sin(2x +4π).先将y=sinx 的图像向右平移4π个单位,得到y 1=sin(x+4π)的图像.再将y 1的图像上各点的横坐标伸长到原来的2倍,得到y 2=sin(2x +4π)的图像.再将y 2的图像上各点的纵坐标伸长到原来的3倍,就得到所求函数的图像.评析:这种图像变换的顺序通常是先作相位变换,再作周期变换,最后作振幅变换.本题中若将相位变换与周期变换的顺序交换,得到的结果将是y=3sin(2x +8π)而不是y=3sin(2x +4π).例2 用五点法作出函数y=4sin(2x +3π)在一个周期的简图.解:函数y=4sin(2x +3π)的振幅A=4,周期T=4π,令2x +3π=0,得初始值x 0=-32π(初始值指图像由x 轴下方向上经过x 轴时的横截距).列表:2x +3π0 2ππ 23π2πx-32π3π34π37π310πy4-4评注:注意到五点的横坐标是从x 0开始,每次增加周期的41,即x i =x i-1+4T(i=1,2,3,4)可简化x 的五个值的运算.例3 设三角函数f(x)=sin(5k x+3π)(k ≠0).(1)写出f(x)的最大值M ,最小值m 和最小正周期T ;(2)试求最小正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M ,一个值是m.解:(1)M=1,m=-1,T=52k π=kπ10.(2)f(x)在它的每一个周期中都恰好有一个值是M 与一个值是m ,而任意两个整数间的距离都≥1,因此要使任意两个整数间函数f(x)至少有一个值是M 与一个值m ,必须且只须f(x)的周期≤1,即kπ10≤1,|k |≥10π=31.4,可见,k=32就是这样的最小整数.例4 已知正弦数y=Asin(ωx+φ)(其中A >0,ω>0)的一个周期的图像如图所示,试求函数的解析式.分析:求函数的解析式,就是确定解析式中A ,ω,φ的值.由图像中三个已知点的坐标列出A ,ω,φ的方程组求解.若令X=ωx+φ,要注意x 0=-25π是初始值,对应于X=0,x=-π时对应于X=π.∴函数解析式为y=2sin(32x+35π).【难题巧解点拔】例1 指出将y=sinx 的图像变换为y=sin(2x+3π)的图像的两种方法.思路1 x →2x →2(x+6π)=2x+3π.解法 1 y=sinx 纵坐标不变横坐标缩短为原来的−−−−−−−−−−→−21y=sin2x −−−−−−−→−π单位向左平移6y=sin[2(x+6π)]=sin(2x+3π).思路2 x →x+3π→2x+3π.解法2y=sinx −−−−−−−→−π单位向左平移3y=sin(x+3π)纵坐标不变横坐标缩短为原来的−−−−−−−−−−→−21y=sin(2x+3π).说明:在解法1中,先伸缩,后平移.在解法2中,先平移,后伸缩.表面上看来,两种变换方法中的平移是不同的(即6π和3π),但由于伸缩变换的影响,所以实质上都是一致的.例2 函数f(x)的横坐标伸长到原来的两倍,再向左平移2π个单位,所得到的曲线是y=21sinx 的图像,试求函数y=f(x)的解析式.分析:这个问题有两种解法,一是考虑以上变换的“逆变换”(所谓“逆变换”,即将以上变换倒过来,由y=21sinx 变换到y=f(x);二是代换法,即设y=Asin(ωx+φ),然后按题设中的变换分两步得:y=Asin [2ω(x+2π)+φ],它就是y=21sinx ,即可求得A 、ω、φ的值.解法1:问题即是将y=21sinx 的图像先向右平移2π个单位,得y=21sin(x-2π);再将横坐标压缩到原来的21,得y=21sin(2x-2π),即y=-21cos2x.这就是所求函数f(x)的解析式.例2 已知正弦函数y=Asin(ωx+φ)的一段曲线(如下图),试求解析式.解:(1)因为A=3,T=π,ω=2,φ=-ωx 0=-2(-52π)=54π,所以y=3sin(2x+54π).(2)A=2,当x=0时,y=1,所以2sin φ=1,又|φ|<2π,所以φ=4π,当x=1211π时,y=0,即2sin(ω·1211π+4π)=0,所以ω=1121,所以y=2sin(1121x+4π).评析:若已知曲线与x 轴的交点的坐标,先确定ω=T π2;若已知曲线与y 轴的交点的坐标,先确定φ;若先确定ω则有φ=-ωx 0,其中x 0是离y 轴最近的递增区间的中心点的横坐标.1.如图,是正弦函数f(x)=Asin(ωx+φ)(A >0,ω>0)的一个周期的图像. (1)写出f(x)的解析式;(2)若g(x)与f(x)的图像关于直线x=2对称,写出g(x)的解析式.2.试说明y=cosx 的图像经怎样的变换可得到y=3cos(3x+2π)+1的图像?3.已知y=Asin(ωx+φ)(A >0,ω>0,0<φ<π)的最小正周期为32π,最小值为-2,且过点(95π,0),求它的表达式.1.已知f(x)=Asin(ωx+φ)(A >0,ω>0,|φ|<2π)的图像在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(Ⅰ)求f(x)的解析式;(Ⅱ)y=f(x)的图像上所有点的横坐标缩短到原来的31(纵坐标不变),然后再将所得图像向x 轴正方向平移3π个单位,得到函数y=g(x)的图像.写出函数y=g(x)的解析式并用列表作图的方法画出y=g(x)在长度为一个周期的闭区间上的图像. 例2 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)型函数表示其解析式; (2)求这个函数关于直线x=2π对称的函数解析式.解:(1)T= 13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知所给曲线是由y=3sin x 2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6)关于直线x=2π对称的图像上的任意一点,则该点xy 13π3ππ33-3 O关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12 x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6). 点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.例1 求函数f(x)=sin 2x+2sinxcosx+3cos 2x 的最大值,并求出此时x 的值.分析 由于f (x )的表达式较复杂,需进行化简.解 y=sin 2x+cos 2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4)+2 当2x+π4=2k π+π2, 即x=k π+π8(k ∈Z)时,y max = 2 +2 . 点评 要熟练掌握y=asinx+bcosx 类型的三角函数最值的求法,asinx+bcosx=a 2+b 2sin (x+φ).例2 若θ∈[-π12, π12],求函数y=cos(π4+θ)+sin2θ的最小值. 分析 在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一个三角函数名称的式子,则问题可得到简化.解 y=cos(π4+θ)-cos [2(θ+π4)]=cos(π4+θ)-[2cos 2(θ+π4)-1] =-2cos 2(θ+π4)+cos(π4+θ)+1 =-2[cos 2(θ+π4)-12cos(θ+π4)]+1 =-2[cos(θ+π4)-14]2+98. ∵θ∈[-π12, π12], ∴θ+π4∈[π6,π3]. ∴12≤cos(θ+π4)≤ 3 2, ∴y 最小值 = 3 -12. 点评 (1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx ,cosx的有界性,通过换元转化成y=at 2+bt+c 在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ωx+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint 和y=Acost 的单调性求出最值.例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.分析 由于sinx+cosx 与sinxcosx 可以相互表示,所以令sinx+cosx=t ,则原三角函数的最值问题转化成y=at 2+bt+c 在某区间上的最值问题.解 令t=sinx+cosx ,则y=t+t 2+1=(t+12)2+34,且t ∈[- 2 , 2 ], ∴y min =34,y max =3+ 2 . 点评 注意sinx+cosx 与sinxcosx 的关系,运用换元法将原三角函数的最值问题转化成y=at 2+bt+c 在某个区间上的最值问题.【知能集成】较复杂的三角函数的最值问题,往往通过需要恒等变形,转化成形如y=f(sinx)或y=g(cosx)型或y= Asin(ωx+φ)+k 型的三角函数的最值问题,运用三角函数的有界性、单调性求三角函数的最值.用换元法解题,特别要注意sinx+tcosx 与sinxcosx 的关系,令sinx+cosx=t ,则sinxcosx=t 2-12. y=sinxcosx+sinx+cosx ,求x ∈[0, π3]时函数y 的最大值。
由三角函数图像求解析式(适合讲课使用)
图像的变换与对称性
01
平移变换
三角函数图像可以在x轴或y轴方向上平移,而不改变其形状和性质。
例如,正弦函数向右平移a个单位后变为$y=sin(x-a)$。
02
伸缩变换
三角函数图像可以在x轴或y轴方向上伸缩,从而改变其周期和振幅。
例如,正弦函数在x轴方向上伸缩a倍后变为$y=sin(frac{1}{a}x)$。
余弦函数
定义域
全体实数,即$R$。
值域
$[-1,1]$。
周期性
余弦函数具有周期性,最小正 周期为$2pi$。
单调性
在每个周期内,余弦函数在$[0, pi]$上单调递减,在$[pi, 2pi]$
上单调递增。
正切函数
定义域
01
不连续,无周期性。
值域
02
全体实数,即$R$。
单调性
03
正切函数在每一个开区间$(kpi-frac{pi}{2}, kpi+frac{pi}{2})$内
01
1. 绘制直角坐标系
根据解析式的定义域,绘制直角 坐标系。
02
03
2. 确定关键点
3. 绘制图像
根据解析式的值,确定直角坐标 系中的关键点。
根据关键点,绘制三角函数的图 像。
例题三:综合应用题
1. 分析题目
仔细阅读题目,理解题目的要求和条件。
2. 确定解题步骤
根据题目要求,确定解题步骤,包括已知条件的分析、未知条件的推导等。
由三角函数图像求解析式
contents
目录
• 引言 • 三角函数的基本性质 • 三角函数图像的绘制 • 由三角函数图像求解析式的方法 • 实例分析 • 总结与思考
高考数学:三角函数的图像和性质问题(解析版)
【高考地位】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。
要充分运用数形结合的思想,把图象与性质结合起来,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.【方法点评】类型一求三角函数的单调区间使用情景:一般三角函数类型解题模板:第一步先将函数式化为基本三角函数的标准式,要特别注意参数A, 的正负;第二步利用三角函数的辅助角公式一般将其化为同名函数,且在同一单调区间;第三步运用三角函数的图像与性质确定其单调区间.例1 函数cos( 2 )y x 的单调递增区间是()4A.[k π+,kπ+8 58π] B .[k π-38π,kπ+8]C.[2k π+,2kπ+8 58π] D .[2k π-38π,2kπ+8] (以上k∈Z)【答案】 B.考点:三角函数单调性.【点评】本题解题的关键是将 2x作为一个整体,利用余弦函数的图像将函数y cos( 2x)的单调44递增区间转化为2x 在区间2k ,2k 上递减的.4【变式演练1】已知函数 f (x) sin( 2 x )( 0), 直线x x1,x x2 是y f (x) 图像的任意两条对称6轴,且x1 x 的最小值为2 2.求函数 f (x) 的单调增区间;【答案】[ k , k ], k Z .3 6【解析】试题分析:根据两条对称轴之间的最小距离求周期,根据周期求,根据公式求此函数的单调递增区间.试题解析:由题意得T , 则1, f (x) sin(2 x ). 由2k 2x 2k , 解得6 2 6 23 k , Z. 故 f ( x) 的单调增区间是k k ], k Z x k k [ .,6 3 6考点:1.y A sin x 的单调性;【变式演练2】已知函数sin( )+ ( 0 0 )f x A x B A ,,的一系列对应值如下表:2x6 3 5643116 [73176y 2 4 2 4 (1)根据表格提供的数据求函数 f x 的解析式;(2)求函数 f x 的单调递增区间和对称中心;【答案】(1) f x 3sin x 1(2)352k ,2k (k Z)(k + ,1)(k Z).6 6 3(2)当2 2 ( )k x k k Z,即2 3 25x k ,k k Z时,函数f x 单调递2 2 ( )6 6增.令= ( x k k Z),所以函数 f x 的对称中心为+ 1 ( x k k Z),得= + ( k k Z)(,).3 33考点:1.三角函数解析式及基本性质;2.数形结合法[ 来源:Z*xx*]类型二由y A sin( x ) 的图象求其函数式使用情景:一般函数y A s in( x ) 求其函数式解题模板:第一步观察所给的图像及其图像特征如振幅、周期、与x轴交点坐标等;第二步利用特殊点代入函数解析式计算得出参数A, , 中一个或两个或三个;第三步要从图象的升降情况找准第一个零点的位置,并进一步地确定参数;第四步得出结论.例2 已知函数y A sin( x ) y A s in( x )( 0, , x R) 的图象如图所示,则该函数的2解析式是()(A)y 4 sin( x ) (B)y 4 s in( x )8 4 8 4(C)y 4 s in( x ) (D)y 4 sin( x )8 4 8 4【答案】 D考点:y Asin x 的图像【点评】本题的解题步骤是:首先根据已知图像与x轴的交点坐标可得其周期为T ,进而可得的大小;然后观察图像知其振幅 A 的大小;最后将图像与x 轴的交点坐标代入函数的解析式即可得到的大小.【变式演练3】已知函数 f x A sin x (其中 A 0, 0, )的部分图象如图所示,则f x2的解析式为()6A.2sinf x x B.f x2sin2x36C.2sin2f x x D.f x2sin4x6【答案】B【解析】考点:由y A s in(x)的部分图像确定解析式。
三角函数方程组求解
三角函数方程组求解三角函数方程组是由一系列三角函数表达式组成的方程组。
在数学中,解决三角函数方程组可以帮助我们找到满足一定条件的变量值。
本文将介绍三角函数方程组的求解方法,以及通过实例演示如何应用这些方法。
1. 方程组的基本形式三角函数方程组一般可表示为:f₁(x) = 0f₂(x) = 0...fₙ(x) = 0其中,f₁(x)、f₂(x)、...、fₙ(x)为不同的三角函数表达式。
2. 解的存在性与唯一性在解决三角函数方程组之前,我们首先需要确定方程组的解是否存在以及是否唯一。
这可以通过观察方程组的性质来确定。
若方程组满足以下条件之一,则解存在但不唯一:- 方程组中的每个方程都有无穷多个解;- 方程组的方程个数多于未知数个数。
若方程组满足以下条件之一,则解不存在:- 方程组中至少有一个方程无解;- 方程组的方程个数少于未知数个数。
3. 解的求解方法针对三角函数方程组的求解,我们可以使用代数方法和几何方法,具体取决于方程组的特点和求解的需要。
3.1 代数方法:等式替换与变量消除代数方法主要通过等式替换和变量消除来求解三角函数方程组。
以下是一些常见的代数方法:3.1.1 等式替换等式替换是指将方程组中的某些方程转化为其他方程,以便简化求解的步骤。
常用的等式替换方法有:- 三角函数恒等变换:例如,将sin²x替换为1-cos²x,以简化方程组;- 三角函数和差公式:例如,将sin(α+β)或cos(α+β)替换为sinαcosβ±cosαsinβ,以便将复杂的方程转化为简单的方程。
3.1.2 变量消除变量消除是指通过代数运算将方程组中的某些变量消除,以获得较简单的方程组。
常用的变量消除方法有:- 方程相加、相减:将方程组中的两个方程相加或相减,以消除一个变量;- 方程相乘、相除:将方程组中的两个方程相乘或相除,以消除一个变量。
3.2 几何方法:图像分析与几何关系利用几何方法主要通过分析函数的图像和利用几何关系来求解三角函数方程组。
【高中数学】三角函数中根据图象求解析式的几种方法
【高中数学】三角函数中根据图象求解析式的几种方法已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下.一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半.二、 ω值的确定方法:方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=Tπ2求得ω的值. 方法2:“特殊点坐标法”。
特殊点包括曲线与坐标轴的交点、最高点和最低点等。
在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值.三、 φ值的确定方法:方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2π、π、23π、2π,若设所给图象与曲线y=sinx 上对应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1+φ=0、 ωx 2+φ=2π、ωx 3+φ=π、ωx 4+φ=23π、ωx 5+φ=2π,由此可求出φ的值。
方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值.方法3:“特殊点坐标法”.(与2中的方法2类同).四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值.另外A 、ω、φ的值还可以通过“解方程(组)法”来求得. 例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2π)的图象,那么正确的是( )A.ω=1110, φ=6π B.ω=1110, φ=-6π C.ω=2,φ=6π D.ω=2,φ=-6π, 解:可用“筛选选项法”.题设图象可看作由y =2sin ωx 的图象向左平移而得到,所以φ>0排除B 和D ,由A,C 知φ=6π;ω值的确定可用“关键点对等法”, 图1因点(1211π,0)是“五点法”中的第五个点,∴ω·1211π+6π=2π 解得ω=2, 故选C .例2.图2是函数y =Asin(ωx+φ)图象上的一段,(A >0,ω>0,φ∈(0,2π)),求该函数的解析式.解法一:观察图象易得A =2,∴T =2×(87π-83π)=π,∴ω=ππ2=2. ∴y =2sin(2x+φ).下面用“关键点对等法”来求出 图2φ的值,由2×83π+φ=π(用“第三点”) 得φ=4π∴所求函数解析式为y =2sin(2x+4π).说明:若用“第二点”,可由2×8π +φ=2π求得φ的值;若用“第五点”,可由2×87π+φ=2π求得φ的值.解法二:由解法一得到T= π,ω=2后,可用“解方程组法”求得φ与A 的值,∵点(0,2)及点(83π,0)在图象上, ∴ Asin φ=2 (1)1211π1211πxy0 2-XY 2Asin(2×83π+φ)=0 (2) 由(2)得 φ=k π-43π(k ∈Z), 又φ∈(0,2π), ∴只有K =1,得φ=4π, 代人(1)得A =2.∴所求函数解析式为 y =2sin(2x+4π).例3.已知函数y =Asin(ωx+φ) (A >0,ω>0, φ<2π)图象上的一部分如图3所示,则必定有( )(A) A=-2 (B )ω=1 (C )φ=3π(D )K =-2解:观察图象可知 A =2,k =2. ∴y =2sin(ωx+φ)+2 下面用“解方程组法”求φ与ω的值.∵ 图象过点(0,2+3)、(-6π,2) ∴ 2+3=2sin φ+2 图32=2sin(-6πω+φ)+2解得ω=2,φ=3π故选C.例4.如图4给出了函数y =Asin(ωx+φ)(A >0,ω>0, φ <2π)图象的一段,求这个函数的解析式.解:由图象可知 T=2×(4-1)=6,∴ω=62π=3π,∴y =2sin (3πx +φ)下面用“特殊点坐标法”求φ,∵ 图象过点(1,2)∴2=2sin(3π×1+φ), 又 φ <2π图4x2+3y0 4 6π-20 1 4 2xy∴只有φ=6π∴所求函数解析式为y =2sin(3πx +6π).说明:本题φ的值也可由“关键点对等法”来求得,如令3π×1+φ=2π 或3π×4+φ=23π等均可求得φ的值.。
三角函数方程求解
三角函数方程求解三角函数方程是指含有三角函数的方程,通常形式为:f(x) = g(x)其中,f(x)和g(x)可以是三角函数,如sin(x)、cos(x)、tan(x)等。
求解三角函数方程的目标是找到方程的解集,即满足方程的所有x值。
三角函数方程的求解方法有很多种,下面将介绍其中几种常用的方法。
一、换元法当三角函数方程中某些角的函数关系较为复杂时,可以尝试通过换元的方法将其转化为简单的三角函数方程。
常见的换元方法有如下几种:1. 代换法:将复杂的角度用一个新的变量代替,使得原方程转化为一个简单的三角函数方程。
2. 半角公式:将复杂角度的函数关系转化为较简单的角度的函数关系,求解后再通过反函数进行还原。
3. 三角恒等变形:利用三角函数的恒等变形关系,将方程转化为简单的三角函数方程。
二、几何法几何法是通过利用三角函数的几何性质,将方程转化为几何问题,进而求解方程的方法。
1. 单位圆法:利用单位圆上角度的几何含义,将方程转化为单位圆上点的坐标关系,通过求解坐标方程得出解集。
2. 三角函数图像法:根据三角函数图像的性质,通过观察图像确定函数的周期、最值、零点等信息,从而找出方程的解。
三、化简等式法化简等式法是通过将复杂的三角函数方程逐步化简为简单的等式,通过等式的性质求解方程。
常用的化简方法有如下几种:1. 减角公式:将方程中的角度通过减角公式化简为较简单的角度,从而求解方程。
2. 消元法:利用三角函数的定义关系,将方程化简为只含有一个未知数的等式,然后利用代数的运算法则求解。
四、迭代法迭代法是通过逐步逼近解的方法求解三角函数方程。
常用的迭代方法有如下几种:1. 牛顿迭代法:通过设定初始值,并不断利用牛顿迭代公式进行迭代,最终逼近解。
2. 二分法:通过确定函数在一个区间内的正负性,不断缩小区间范围,通过二分法逼近解。
以上是几种常用的求解三角函数方程的方法,根据具体问题的特点和形式,可以灵活运用其中的方法来求解。
高中数学 第一章 三角函数 5.1正弦函数的图像 新人教A版必修4-新人教A版高一必修4数学试题
§5 正弦函数的性质与图像 5.1 正弦函数的图像1.问题导航(1)用“五点法”作正弦函数图像的关键是什么?(2)利用“五点法”作y =sin x 的图像时,x 依次取-π,-π2,0,π2,π可以吗?(3)作正弦函数图像时应注意哪些问题? 2.例题导读P 27例1.通过本例学习,学会用五点法画函数y =a sin x +b 在[0,2π]上的简图. 试一试:教材P 28练习题你会吗?1.正弦函数的图像与五点法(1)图像:正弦函数y =sin x 的图像叫作正弦曲线,如图所示.(2)五点法:在平面直角坐标系中常常描出五个关键点(它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点):(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),用光滑的曲线顺次将它们连接起来,得到函数y =sin x 在[0,2π]上的简图,这种画正弦曲线的方法为“五点法”.(3)利用五点法作函数y =A sin x (A >0)的图像时,选取的五个关键点依次是:(0,0),⎝ ⎛⎭⎪⎫π2,A ,(π,0),⎝ ⎛⎭⎪⎫32π,-A ,(2π,0). 2.正弦曲线的简单变换函数y =sin x 与y =sin x +k 图像间的关系.当k >0时,把y =sin x 的图像向上平移k 个单位长度得到函数y =sin x +k 的图像; 当k <0时,把y =sin x 的图像向下平移|k |个单位长度得到函数y =sin x +k 的图像.1.判断正误.(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图像与y 轴只有一个交点.( )(2)函数y =sin x 的图像介于直线y =1与y =-1之间.( )(3)用五点法作函数y =-2sin x 在[0,2π]上的图像时,应选取的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0).( ) (4)将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像沿x 轴翻折到x 轴上方即可得到函数y =|sin x |,x ∈[-π,π]的图像.( )解析:(1)正确.观察正弦函数的图像知y =sin x 的图像与y 轴只有一个交点.(2)正确.观察正弦曲线可知正弦函数的图像介于直线y =1与y =-1之间.(3)正确.在函数y =-2sin x ,x ∈[0,2π]的图像上起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0). (4)正确.当x ∈[-π,π]时,y =|sin x |=⎩⎪⎨⎪⎧sin x ,sin x ≥0,-sin x ,sin x <0,于是,将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像翻折到x 轴上方即可得函数y =|sin x |,x ∈[-π,π]的图像.答案:(1)√ (2)√ (3)√ (4)√2.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列点不是关键点的是( ) A.⎝ ⎛⎭⎪⎫π6,12 B.⎝ ⎛⎭⎪⎫π2,1 C .(π,0) D .(2π,0)解析:选A.用五点法画y =sin x ,x ∈[0,2π]的图像,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0). 3.用五点法画y =sin x ,x ∈[0,2π]的简图时,所描的五个点的横坐标的和是________.解析:0+π2+π+3π2+2π=5π.答案:5π4.(1)正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________. (2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像形状________,位置________.(填“相同”或“不同”)解析:(1)由正弦曲线知,正弦曲线在(0,2π]内最高点为⎝ ⎛⎭⎪⎫π2,1,最低点为⎝ ⎛⎭⎪⎫3π2,-1.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像,形状相同,位置不同.答案:(1)⎝ ⎛⎭⎪⎫π2,1⎝ ⎛⎭⎪⎫3π2,-1 (2)相同 不同1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分. (2)因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠0的图像与函数y =sin x ,x ∈[0,2π]的图像形状完全一致,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x ∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”的实质是利用正弦线进行的尺规作图,这样作图较精确,但较为烦琐. (2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的形状.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的情况下常用此法,要切实掌握好.另外与“五点法”作图有关的问题经常出现在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必须是确定的五点.(3)用光滑的曲线顺次连接时,要注意线的走向,一般在最高(低)点的附近要平滑,不要出现“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.用五点法作正弦型函数的图像用五点法画函数y =2sin x -1,x ∈[0,2π]的简图. (教材P 27例1)[解] 步骤:①列表:x 0 π2 π 3π22π sin x 0 1 0 -1 0 y -1 1 -1 -3 -1②描点:在平面直角坐标系中描出下列五个点:(0,-1),⎝ ⎛⎭⎪⎫π2,1,(π,-1),⎝ ⎛⎭⎪⎫3π2,-3,(2π,-1). ③连线:用光滑曲线将描出的五个点连接起来,得函数y =2sin x -1,x ∈[0,2π]的简图,如图所示.方法归纳作形如函数y =a sin x +b ,x ∈[0,2π]的图像的步骤1.(1)函数f (x )=a sin x +b ,(x ∈[0,2π])的图像如图所示,则f (x )的解析式为( )A .f (x )=12sin x +1,x ∈[0,2π]B .f (x )=sin x +12,x ∈[0,2π]C .f (x )=32sin x +1,x ∈[0,2π]D .f (x )=32sin x +12,x ∈[0,2π](2)用五点法作出下列函数的简图. ①y =2sin x ,x ∈[0,2π]; ②y =2-sin x ,x ∈[0,2π].解:(1)选A.将图像中的特殊点代入f (x )=a sin x +b ,x ∈[0,2π],不妨将(0,1)与⎝ ⎛⎭⎪⎫π2,1.5代入得⎩⎪⎨⎪⎧a sin 0+b =1,a sin π2+b =1.5,解得b =1,a =0.5,故f (x )=12sin x +1,x ∈[0,2π].(2)①列表:x 0 π2 π 3π22π y =sin x 0 1 0 -1 0 y =2sin x 0 2 0 -2 0描点并将它们用光滑的曲线连接起来,如图所示.②列表:x 0 π2π 3π2 2π y =sin x 0 1 0 -1 0 y =2-sin x 2 1232描点并将它们用光滑的曲线连接,如图:利用正弦函数的图像求函数的定义域求函数f (x )=lg (sin x )+16-x 2的定义域. (教材P 30习题1-5 A 组T 4)[解] 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0, 即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图像,如图所示.结合图像可得:该函数的定义域为[-4,-π)∪(0,π).方法归纳一些三角函数的定义域可以借助函数图像直观地观察得到,同时要注意区间端点的取舍.有时利用图像先写出在一个周期区间上的解集,再推广到一般情况.2.求函数y =log 21sin x-1的定义域.解:为使函数有意义,需⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0⇔0<sin x ≤12.根据正弦曲线得,函数定义域为⎝ ⎛⎦⎥⎤2k π,2k π+π6∪⎣⎢⎡⎭⎪⎫2k π+5π6,2k π+π,k ∈Z .利用正弦函数的图像确定方程解的个数在同一坐标系中,作函数y =sin x 和y =lg x 的图像,根据图像判断出方程sinx =lg x 的解的个数.(教材P 30习题1-5 A 组T 1(1))[解] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图像,再依次向右连续平移2π个单位,得到y =sin x 的图像.作出y =lg x 的图像,如图所示.由图像可知方程sin x =lg x 的解有3个.若本例中的函数y =lg x 换为y =x 2,则结果如何?解:在同一直角坐标系中画出函数y =x 2和y =sin x 的图像,如图所示.由图知函数y =x 2和y =sin x 和图像有两个交点,则方程x 2-sin x =0有两个根.方法归纳方程根(或个数)的两种判断方法(1)代数法:直接求出方程的根,得到根的个数.(2)几何法:①方程两边直接作差构造一个函数,作出函数的图像,利用对应函数的图像,观察与x 轴的交点个数,有几个交点原方程就有几个根.②转化为两个函数,分别作这两个函数的图像,观察交点个数,有几个交点原方程就有几个根.3.(1)函数y =2sin x 与函数y =x 的图像的交点有( ) A .2个 B .3个 C .4个 D .5个 (2)研究方程10sin x =x (x ∈R )根的个数.解:(1)选B.在同一直角坐标系中作出函数y =2sin x 与y =x 的图像,由图像可以看出有3个交点.(2)如图所示,当x ≥4π时,x 10≥4π10>1≥sin x ;当x =52π时,sin x =sin 52π=1,x10=5π20,1>5π20,从而x >0时,有3个交点,由对称性知x <0时,有3个交点,加上x =0时的交点为原点,共有7个交点.即方程有7个根.思想方法数形结合思想的应用求满足下列条件的角的X 围.(1)sin x ≥12;(2)sin x ≤-22.[解] (1)利用“五点法”作出y =sin x 的简图,过点⎝ ⎛⎭⎪⎫0,12作x 轴的平行线,在[0,2π]上,直线y =12与正弦曲线交于⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫5π6,12两点.结合图形可知,在[0,2π]内,满足y ≥12时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6≤x ≤5π6.因此,当x ∈R 时,若y ≥12,则x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+56π,k ∈Z .(2)同理,满足sin x ≤-22的角的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪5π4+2k π≤x ≤74π+2k π,k ∈Z .[感悟提高] 形如sin x >a (<a )的不等式,求角x 的X 围,一般采用数形结合的思想来解题,具体步骤:(1)画出y =sin x 的图像,画直线y =a . (2)若解sin x >a ,则观察y =sin x 在直线y =a 上方的图像.这部分图像对应的x 的X围,就是所求的X 围.若解sin x <a ,则观察y =sin x 在直线y =a 下方的图像.这部分图像对应的x 的X 围,就是所求的X 围.1.函数y =1-sin x ,x ∈[0,2π]的大致图像是( )解析:选B.利用五点法画图,函数y =1-sin x ,x ∈[0,2π]的图像一定过点(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,1),⎝ ⎛⎭⎪⎫32π,2,(2π,1),故B 项正确. 2.已知点M ⎝ ⎛⎭⎪⎫π4,b 在函数f (x )=2sin x +1的图像上,则b =________. 解析:b =f ⎝ ⎛⎭⎪⎫π4=2sin π4+1=2. 答案:23.若函数f (x )=2sin x -1-a 在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,则实数a 的取值X 围是________.解析:令f (x )=0得2sin x =1+a .作出y =2sin x 在x ∈⎣⎢⎡⎦⎥⎤π3,π上的图像,如图所示. 要使函数f (x )在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,需满足3≤1+a <2,所以3-1≤a <1. 答案:[3-1,1),[学生用书单独成册])[A.基础达标]1.关于正弦函数y =sin x 的图像,下列说法错误的是( ) A .关于原点对称 B .有最大值1C .与y 轴有一个交点D .关于y 轴对称解析:选D.正弦函数y =sin x 的图像如图所示.根据y =sin x ,x ∈R 的图像可知A ,B ,C 均正确,D 错误. 2.函数y =sin x 的图像与函数y =-sin x 的图像关于( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称解析:选A.在同一直角坐标系中画出函数y =sin x 与函数y =-sin x 在[0,2π]上的图像,可知两函数的图像关于x 轴对称.3.下列函数图像相同的是( ) A .y =sin x 与y =sin(x +π)B .y =sin ⎝ ⎛⎭⎪⎫x -π2与y =sin ⎝ ⎛⎭⎪⎫π2-xC .y =sin x 与y =sin(-x )D .y =sin(2π+x )与y =sin x解析:选D.对A ,由于y =sin(x +π)=-sin x ,故排除A ;对B ,由于y =sin ⎝⎛⎭⎪⎫π2-x =-sin ⎝⎛⎭⎪⎫x -π2,故排除B ;对C ,由于y =sin(-x )=-sin x ,故排除C ;对D ,由于y=sin(2π+x )=sin x ,故选D.4.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:选D .当x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,故排除A 、B 、C ,选D . 5.函数y =x sin x 的部分图像是( )解析:选A .函数y =x sin x 的定义域为R ,令f (x )=x sin x ,则f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )为偶函数,排除B 、D ;当x ∈⎝⎛⎭⎪⎫0,π2时,f (x )>0,故排除C ,故选A.6.在[0,2π]上,满足sin x ≥22的x 的取值X 围为________.解析:在同一直角坐标系内作出y =sin x 和y =22的图像如图,观察图像并求出交点横坐标,可得到x 的取值X 围为⎣⎢⎡⎦⎥⎤π4,34π.答案:⎣⎢⎡⎦⎥⎤π4,34π7.函数y =sin x 的图像和y =x2π的图像交点个数是________. 解析:在同一直角坐标系内作出两个函数的图像如图所示:由图可知交点个数是3. 答案:38.已知sin x =m -1且x ∈R ,则m 的取值X 围是________. 解析:由y =sin x ,x ∈R 的图像知,-1≤sin x ≤1, 即-1≤m -1≤1,所以0≤m ≤2. 答案:0≤m ≤29.用“五点法”画出函数y =3-sin x (x ∈[0,2π])的图像. 解:(1)x 0 π2 π 32π2π y =sin x 0 1 0 -1 0 y =3-sin x 3 2 3 4 3(2)10.若函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点,求k 的取值X 围.解:f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π,作出函数的图像如图:由图可知当1<k <3时函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点.[B.能力提升]1.若y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3,则函数的值域为( )A.⎝⎛⎭⎪⎫22,1 B.⎣⎢⎡⎦⎥⎤22,1 C .(1,2]D .[1,2]解析:选B.画出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3的图像如图所示,可知y ∈⎣⎢⎡⎦⎥⎤22,1.2.设a >0,对于函数f (x )=sin x +asin x(0<x <π),下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值也无最小值解析:选B.f (x )=sin x +a sin x =1+asin x.因为0<x <π,所以0<sin x ≤1.所以1sin x≥1.所以1+asin x≥a +1.所以f (x )有最小值而无最大值. 故选B.3.已知f (sin x )=x 且x ∈⎣⎢⎡⎦⎥⎤0,π2,则f ⎝ ⎛⎭⎪⎫12=________.解析:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x =12时,x =π6, 所以f ⎝ ⎛⎭⎪⎫12=f ⎝⎛⎭⎪⎫sin π6=π6. 答案:π64.若x 是三角形的最小角,则y =sin x 的值域是________.解析:不妨设△ABC 中,0<A ≤B ≤C ,得0<A ≤B ,且0<A ≤C ,所以0<3A ≤A +B +C ,而A +B +C =π,所以0<3A ≤π,即0<A ≤π3. 若x 为三角形中的最小角,则0<x ≤π3, 由y =sin x 图像知y ∈⎝ ⎛⎦⎥⎤0,32. 答案:⎝⎛⎦⎥⎤0,32 5.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题:(1)观察函数图像,写出满足下列条件的x 的区间.①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值X 围. 解:列表如下:x -π -π2 0 π2π sin x 0 -1 0 1 01-2sin x 1 3 1 -1 1描点连线得:(1)由图像可知图像在y =1上方部分时y >1,在y =1下方部分时y <1,所以当x ∈(-π,0)时,y >1;当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1. 所以a 的取值X 围是{a |1<a <3或-1<a <1}.6.(选做题)已知函数y =f (x )为奇函数,且是⎝ ⎛⎭⎪⎫-12,12上的减函数,f (1-sin α)+f (1-sin 2α)<0,求α的取值X 围.解:由题意可知f (1-sin α)<-f (1-sin 2α).因为f (x )是奇函数,所以-f (1-sin 2α)=f (sin 2α-1),所以f (1-sin α)<f (sin 2α-1).又由f (x )是⎝ ⎛⎭⎪⎫-12,12上的减函数, 所以⎩⎪⎨⎪⎧-12<1-sin α<12,-12<sin 2α-1<12,1-sin α>sin 2α-1,所以⎩⎪⎨⎪⎧12<sin α<32,12<sin 2α<32,sin 2α+sin α-2<0, 解得22<sin α<1, 所以2k π+π4<α<2k π+π2(k ∈Z )或2k π+π2<α<2k π+3π4(k ∈Z ), 所以α的取值X 围为⎝⎛⎭⎪⎫2k π+π4,2k π+π2∪⎝ ⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z ).。
由三角函数图象求解析式
已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) (A )23-(B) 23 (C)- 12 (D) 12【解析】选B.由图象可得最小正周期为2π3,于是f(0)=f(2π3),注意到2π3与π2关于7π12对称,所以f(2π3)=-f(π2)=23.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值 为( ) (A )6π (B )4π (C )3π (D) 2π【解析】选A. Q 函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 4232k ππφπ∴⋅+=+13()6k k Z πφπ∴=-∈由此易得min ||6πφ=. 已知函数y=sin (ωx+ϕ)(ω>0, -π≤ϕ<π)的图像如图所示,则 ϕ=________________【解析】由图可知,()544,,2,1255T x πωπϕ⎛⎫=∴=+ ⎪⎝⎭把代入y=sin 有: 89,510ππϕϕ⎛⎫+∴= ⎪⎝⎭1=sin已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
【解析】由图象知最小正周期T =32(445ππ-)=32π=ωπ2,故ω=3,又x =4π时,f (x )=0,即2φπ+⨯43sin()=0,可得4πφ=,所以,712f π⎛⎫=⎪⎝⎭2)41273sin(ππ+⨯=0。
)已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式; (Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】(1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上得242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈Q 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4π)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( )A.向右平移4π B.向左平移4π C.向右平移12π D.向左平移12π分析:三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,此题是已知变换前后的函数,求变换方式的逆向型题目,解题的思路是将异名函数化为同名函数,且须x 的系数相同.解:∵y =cos(3x +4π)=sin(4π-3x )=sin [-3(x -12π)]∴由y =sin [-3(x -12π)]向左平移12π才能得到y =sin(-3x )的图象.答案:D4.将函数y =f (x )的图象沿x 轴向右平移3π,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )=sin(2x +3π) =sin(2x -3π) =sin(2x +32π) =sin(2x -32π)分析:这是三角图象变换问题的又一类逆向型题,解题的思路是逆推法.解:y =f (x )可由y =sin x ,纵坐标不变,横坐标压缩为原来的1/2,得y =sin2x ;再沿x 轴向左平移3π得y =sin2(x +3π),即f (x )=sin(2x +32π).若函数f (x )=sin2x +a cos2x 的图象关于直线x =-8π对称,则a =–1. 分析:这是已知函数图象的对称轴方程,求函数解析式中参数值的一类逆向型题,解题的关键是如何巧用对称性.解:∵x 1=0,x 2=-4π是定义域中关于x =-8π对称的两点 ∴f (0)=f (-4π) 即0+a =sin(-2π)+a cos(-2π)∴a =-1若对任意实数a ,函数y =5sin(312+k πx -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )或4 或3分析:这也是求函数解析式中参数值的逆向型题,解题的思路是:先求出与k 相关的周期T 的取值范围,再求k .解:∵T =3)3(,1263122=-++=+a a k k ππ又因每一周期内出现45值时有2次,出现4次取2个周期,出现45值8次应有4个周期.∴有4T ≥3且2T ≤3即得43≤T ≤23,∴43≤126+k ≤23 解得23≤k ≤27,∵k ∈N,∴k =2或3.巧求初相角求初相角是高中数学学习中的一个难点,怎样求初相角初相角有几个下面通过错解剖析,介绍四种方法.如图,它是函数y =A sin(ωx +ϕ)(A >0,ω>0),|ϕ|<π的图象,由图中条件,写出该函数解析式. 错解: 由图知:A =5由23252πππ=-=T 得T =3π,∴ω=T π2=32∴y =5sin(32x +ϕ)将(π,0)代入该式得:5sin(32π+ϕ)=0由sin(32π+ϕ)=0,得32π+ϕ=k πϕ=k π-32π(k ∈Z )∵|ϕ|<π,∴ϕ=-32π或ϕ=3π∴y =5sin(32x -32π)或y =5sin(32x +3π)分析:由题意可知,点(4π,5)在此函数的图象上,但在y =5sin(32x -32π)中,令x =4π,则y =5sin(6π-32π)=5sin(-2π)=-5,由此可知:y =5sin(32x -32π)不合题意.那么,问题出在哪里呢我们知道,已知三角函数值求角,在一个周期内一般总有两个解,只有在限定的范围内才能得出惟一解.正解一:(单调性法)∵点(π,0)在递减的那段曲线上∴32π+ϕ∈[2π+2k π,32π+2k π](k ∈Z ) 由sin(32π+ϕ)=0得32π+ϕ=2k π+π∴ϕ=2k π+3π(k ∈Z )∵|ϕ|<π,∴ϕ=3π正解二:(最值点法)将最高点坐标(4π,5)代入y =5sin(32x +ϕ)得5sin(6π+ϕ)=5∴6π+ϕ=2k π+2π ∴ϕ=2k π+3π (k ∈Z )取ϕ=3π正解三:(起始点法)函数y =A sin(ωx +ϕ)的图象一般由“五点法”作出,而起始点的横坐标x 正是由ωx +ϕ=0解得的,故只要找出起始点横坐标x 0,就可以迅速求得角ϕ.由图象求得x 0=-2x,∴ϕ=-ωx 0=-32 (-2π)=3π. 正解四:(平移法)由图象知,将y =5sin(32x )的图象沿x 轴向左平移2π个单位,就得到本题图象,故所求函数为y =5sin 32(x +2π),即y =5sin(32x +3π).【基础知识精讲】1.用五点法作y=Asin(ωx+φ)(ω>0)的图像时,我们采用换元法,将ωx+φ看成y=sinx 中的x ,模仿y=sinx 的五点法来作.ωx 1+φ=0⇒x 1=-ωΦ,ωx 2+φ=2π⇒x 2=ωπΦ-2ωx 3=π⇒x 3=ωπΦ-,ωx 4+φ=23π⇒x 4=ωπΦ-23,ωx 5+φ=2π⇒x 5=ωπΦ-2.即五点(-ωΦ,0),(ωπΦ-2,A),( ωπΦ-,0).(ωπΦ-23,-A).(ωπΦ-2,0)2.函数y=Asin(ωx+φ)的图像与y=sinx 的图像关系.(1)振幅变换函数y=Asinx(A >0,且A ≠1)的图像,可以看作是y=sinx 图像上所有点的纵坐标伸长(A >1)或缩短(0<A <1)到原来的A 倍(横坐标不变)而得到的.这种变换叫振幅变换,它实质上是纵向的伸缩.(2)周期变换函数y=sin ωx(ω>0,且ω≠1)的图像,可以看作是把y=sinx 的图像上各点的横坐标都缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)而得到的,由y=sinx 的图像变换为y=sin ωx 的图像,其周期由2π变ωπ2.这种变换叫做周期变换.它实质上是横向的伸缩.(3)相位变换函数y=sin(x+φ)(φ≠0)的图像,可以看作是把y=sinx 的图像上各点向左(φ>0)或向右(φ<0)平移|φ|个单位而得到的.这种由y=sinx 的图像变换为y=sin(x+φ)的图像的变换,使相位x 变为x+φ,我们称它为相位变换.它实质上是一种左右平移变换.应用振幅变换、周期变换、相位变换(左右平移变移)和上下平移变换可由y=sinx 的图像得到y=Asin(ωx+φ)+k 的图像.事实上,设f 、t 、h 分别表示相位变换,周期变换,振幅变换,则变换作图法共有以下不同的程序.(1)f →t →h;(2)f →g →t(3)t →h →f;(4)t →f →h;(5)h →f →t;(6)h →t →f=Asin(ωx+φ)(A >0,ω>0)与振动在物理学中,y=Asin(ωt+φ)(A >0,ω>0),其中t ∈[0,+∞),表示简谐振动的运动方程.这时参数A ,ω,φ有如下物理意义.A 称为振幅,它表示振动时物体离开平衡位置的最大距离.T=ωπ2称为周期,它表示振动一次所需的时间(亦即函数y 的最小正周期).f=T = π2称为振动的频率,它表示单位时间内往复振动的次数,ωt+φ叫做相位,当t=0时的相位,即φ称为初相.4.函数图像的对称变换一个函数的图像经过适当的变换(例如对称、平移、伸缩等)得到与其图像有关函数的图像,叫做函数的初等变换.前面的平移、伸缩变换均属初等变换. 对称变换主要指下面几种:(1)函数y=-f(x)的图像与y=f(x)的图像关于x 轴对称. (2)函数y=f(-x)的图像与y=f(x)的图像关于y 轴对称. (3)函数y=f(-x)的图像与y=-f(x)的图像关于原点对称.(4)函数y=f -1(x)(或x=f(y))的图像与y=f(x)的图像关于直线y=x 对称. 【重点难点解析】重点:用“五点法”画函数y=Asin(ωx+φ)的简图及三角函数的图像变换. 难点:三角函数的图像变换.即由y=sinx 的图像变换到y=Asin(ωx+φ)的过程. 关键:理解A 、ω、φ的对图像变化所起的作用.例1 函数y=3cos(2x -4π)的图像可以由y=sinx 的图像经过怎样的变换得到 解:y=3cos(2x -4π)=3sin [2π+( 2x -4π)]=3sin(2x +4π).先将y=sinx 的图像向右平移4π个单位,得到y 1=sin(x+4π)的图像.再将y 1的图像上各点的横坐标伸长到原来的2倍,得到y 2=sin(2x +4π)的图像.再将y 2的图像上各点的纵坐标伸长到原来的3倍,就得到所求函数的图像.评析:这种图像变换的顺序通常是先作相位变换,再作周期变换,最后作振幅变换.本题中若将相位变换与周期变换的顺序交换,得到的结果将是y=3sin(2x +8π)而不是y=3sin(2+4).例2用五点法作出函数y=4sin(2x+3π)在一个周期内的简图.解:函数y=4sin(2x+3π)的振幅A=4,周期T=4π,令2x+3π=0,得初始值x0=-32π(初始值指图像由x轴下方向上经过x轴时的横截距).列表:2x+3π02ππ23π2πx-32π3π34π37π310πy040-40评注:注意到五点的横坐标是从x0开始,每次增加周期的4,即x i=x i-1+4(i=1,2,3,4)可简化x的五个值的运算.例3设三角函数f(x)=sin(5kx+3π)(k≠0).(1)写出f(x)的最大值M,最小值m和最小正周期T;(2)试求最小正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M,一个值是m.解:(1)M=1,m=-1,T=52kπ=kπ10.(2)f(x)在它的每一个周期中都恰好有一个值是M 与一个值是m ,而任意两个整数间的距离都≥1,因此要使任意两个整数间函数f(x)至少有一个值是M 与一个值m ,必须且只须f(x)的周期≤1,即kπ10≤1,|k |≥10π=,可见,k=32就是这样的最小整数.例4 已知正弦数y=Asin(ωx+φ)(其中A >0,ω>0)的一个周期的图像如图所示,试求函数的解析式.分析:求函数的解析式,就是确定解析式中A ,ω,φ的值.由图像中三个已知点的坐标列出A ,ω,φ的方程组求解.若令X=ωx+φ,要注意x 0=-25π是初始值,对应于X=0,x=-π时对应于X=π.∴函数解析式为y=2sin(32x+35π).【难题巧解点拔】例1 指出将y=sinx 的图像变换为y=sin(2x+3π)的图像的两种方法.思路1 x →2x →2(x+6π)=2x+3π.解法 1 y=sinx 纵坐标不变横坐标缩短为原来的−−−−−−−−−−→−21y=sin2x −−−−−−−→−π单位向左平移6y=sin[2(x+6π)]=sin(2x+3π).思路2 x →x+3π→2x+3π.解法2y=sinx−−−−−−−→−π单位向左平移3y=sin(x+3π)纵坐标不变横坐标缩短为原来的−−−−−−−−−−→−21y=sin(2x+3π).说明:在解法1中,先伸缩,后平移.在解法2中,先平移,后伸缩.表面上看来,两种变换方法中的平移是不同的(即6π和3π),但由于伸缩变换的影响,所以实质上都是一致的.例2 函数f(x)的横坐标伸长到原来的两倍,再向左平移2π个单位,所得到的曲线是y=21sinx 的图像,试求函数y=f(x)的解析式.分析:这个问题有两种解法,一是考虑以上变换的“逆变换”(所谓“逆变换”,即将以上变换倒过来,由y=21sinx 变换到y=f(x);二是代换法,即设y=Asin(ωx+φ),然后按题设中的变换分两步得:y=Asin [2ω(x+2π)+φ],它就是y=21sinx ,即可求得A 、ω、φ的值.解法1:问题即是将y=21sinx 的图像先向右平移2π个单位,得y=21sin(x-2π);再将横坐标压缩到原来的21,得y=21sin(2x-2π),即y=-21cos2x.这就是所求函数f(x)的解析式.例2 已知正弦函数y=Asin(ωx+φ)的一段曲线(如下图),试求解析式.解:(1)因为A=3,T=π,ω=2,φ=-ωx 0=-2(-52π)=54π,所以y=3sin(2x+54π).(2)A=2,当x=0时,y=1,所以2sin φ=1,又|φ|<2π,所以φ=4π,当x=1211π时,y=0,即2sin(ω·1211π+4π)=0,所以ω=1121,所以y=2sin(1121x+4π).评析:若已知曲线与x 轴的交点的坐标,先确定ω=T π2;若已知曲线与y 轴的交点的坐标,先确定φ;若先确定ω则有φ=-ωx 0,其中x 0是离y 轴最近的递增区间的中心点的横坐标.1.如图,是正弦函数f(x)=Asin(ωx+φ)(A >0,ω>0)的一个周期的图像.(1)写出f(x)的解析式;(2)若g(x)与f(x)的图像关于直线x=2对称,写出g(x)的解析式.2.试说明y=cosx 的图像经怎样的变换可得到y=3cos(3x+2π)+1的图像3.已知y=Asin(ωx+φ)(A >0,ω>0,0<φ<π)的最小正周期为32π,最小值为-2,且过点(95π,0),求它的表达式.1.已知f(x)=Asin(ωx+φ)(A >0,ω>0,|φ|<2π)的图像在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(Ⅰ)求f(x)的解析式;(Ⅱ)y=f(x)的图像上所有点的横坐标缩短到原来的31(纵坐标不变),然后再将所得图像向x 轴正方向平移3个单位,得到函数y=g(x)的图像.写出函数y=g(x)的解析式并用列表作图的方法画出y=g(x)在长度为一个周期的闭区间上的图像.例2 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)型函数表示其解析式;(2)求这个函数关于直线x=2π对称的函数解析式. 解:(1)T= 13π3- π3 =4π. ∴ω=2πT = 12 .又A=3,由图象可知所给曲线是由y=3sin x 2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12 x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.例1 求函数f(x)=sin 2x+2sinxcosx+3cos 2x 的最大值,并求出此时x 的值. 分析 由于f (x )的表达式较复杂,需进行化简.解 y=sin 2x+cos 2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4)+2当2x+π4=2k π+π2, 即x=k π+π8 (k ∈Z)时,y max =2 +2 . 点评 要熟练掌握y=asinx+bcosx 类型的三角函数最值的求法,asinx+bcosx= a 2+b 2 sin (x+φ).例2 若θ∈[-π12, π12],求函数y=cos(π4+θ)+sin2θ的最小值.分析 在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一个三角函数名称的式子,则问题可得到简化.解 y=cos(π4+θ)-cos [2(θ+π4)]=cos(π4+θ)-[2cos 2(θ+π4)-1]=-2cos 2(θ+π4)+cos(π4+θ)+1 =-2[cos 2(θ+π4)-12cos(θ+π4)]+1=-2[cos(θ+π4)-14]2+98 .∵θ∈[-π12, π12], ∴θ+π4∈[π6,π3].∴12≤cos(θ+π4)≤ 3 2, ∴y 最小值 = 3 -12 .点评 (1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx ,cosx 的有界性,通过换元转化成y=at 2+bt+c 在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ωx+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint 和y=Acost 的单调性求出最值.例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.分析 由于sinx+cosx 与sinxcosx 可以相互表示,所以令sinx+cosx=t ,则原三角函数的最值问题转化成y=at 2+bt+c 在某区间上的最值问题.解 令t=sinx+cosx ,则y=t+t 2+1=(t+12)2+34,且t ∈[- 2 , 2 ],∴y min =34 ,y max =3+ 2 .点评 注意sinx+cosx 与sinxcosx 的关系,运用换元法将原三角函数的最值问题转化成y=at 2+bt+c 在某个区间上的最值问题.【知能集成】较复杂的三角函数的最值问题,往往通过需要恒等变形,转化成形如y=f(sinx)或y=g(cosx)型或y= Asin(ωx+φ)+k 型的三角函数的最值问题,运用三角函数的有界性、单调性求三角函数的最值.用换元法解题,特别要注意sinx+tcosx 与sinxcosx 的关系,令sinx+cosx=t ,则sinxcosx=t 2-12 .y=sinxcosx+sinx+cosx ,求x ∈[0, π3]时函数y 的最大值。
高中数学必修一 (学案)三角函数的图象与性质
三角函数的图象与性质——正弦函数、余弦函数的图象【知识梳理】1.正弦曲线、余弦曲线(1)定义:正弦函数=sin )(y x x ∈R )和余弦函数()cos y x x =∈R 的图像分别叫做_____曲线和_____曲线。
(2)图像:如图所示。
2.“五点法”画图 步骤: (1)列表:(2)描点:画正弦函数y =sin x ,x ∈[0,2π]的图像,五个关键点是_____;画余弦函数y =cos x ,x ∈[0,2π]的图像,五个关键点是_____。
(3)用光滑曲线顺次连接这五个点,得到正、余弦曲线的简图。
3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝ ⎛⎭⎪⎫x +π2,要得到y =cos x 的图像,只需把y =sin x 的图像向_____平移π2个单位长度即可。
【自主探究】已知0≤x≤2π,结合正、余弦曲线试探究sin x与cos x的大小关系。
【对点讲练】知识点一:利用“五点法”作正、余弦函数的图像例1:利用“五点法”画函数y=-sin x+1(0≤x≤2π)的简图。
回顾归纳:作正弦、余弦曲线要理解几何法作图,掌握五点法作图。
“五点”即y=sin x或y=cos x的图像在一个最小正周期内的最高点、最低点和与x轴的交点。
“五点法”是作简图的常用方法。
变式训练1:利用“五点法”画函数y=-1-cos x,x∈[0,2π]的简图。
知识点二:利用三角函数图像求定义域例2:求函数f(x)=lgsin x+16-x2的定义域。
回顾归纳一些三角函数的定义域可以借助函数图像直观地观察得到,同时要注意区间端点的取舍。
变式训练2:求函数f(x)=cos x+lg(8x-x2)的定义域。
知识点三:利用三角函数的图像判断方程解的个数例3:在同一坐标系中,作函数y=sin x和y=lg x的图像,根据图像判断出方程sin x=lg x的解的个数。
回顾归纳:三角函数的图像是研究函数的重要工具,通过图像可较简便的解决问题,这正是数形结合思想方法的应用。
高考数学冲刺复习三角函数图像考点解析
高考数学冲刺复习三角函数图像考点解析在高考数学中,三角函数图像是一个重要的考点,它不仅要求我们掌握基本的概念和性质,还需要我们能够灵活运用这些知识解决各种问题。
在冲刺复习阶段,对三角函数图像考点进行系统的梳理和深入的理解,能够帮助我们在考试中更加得心应手。
一、三角函数的基本类型我们先来了解一下常见的三角函数,包括正弦函数(y = sin x)、余弦函数(y = cos x)和正切函数(y = tan x)。
正弦函数的图像是一个以2π 为周期,在-1 到1 之间波动的曲线。
它在 x = 0 时,函数值为 0;在 x =π/2 时,函数值为 1;在 x =3π/2 时,函数值为-1。
余弦函数的图像同样是以2π 为周期,在-1 到 1 之间波动。
它在 x = 0 时,函数值为 1;在 x =π 时,函数值为-1。
正切函数的图像则有所不同,它的周期是π,定义域为x ≠ (π/2)+kπ(k 为整数),值域为R。
其图像在每个周期内都是单调递增的,且有垂直渐近线 x =(π/2) +kπ。
二、三角函数图像的性质1、周期性正弦函数和余弦函数的周期都是2π,正切函数的周期是π。
周期性是三角函数的重要特征之一,利用周期性可以将函数在一个周期内的性质推广到整个定义域。
2、对称性正弦函数是关于直线 x =π/2 +kπ(k 为整数)对称的奇函数;余弦函数是关于直线 x =kπ(k 为整数)对称的偶函数。
3、单调性正弦函数在π/2 +2kπ, π/2 +2kπ(k 为整数)上单调递增,在π/2 +2kπ, 3π/2 +2kπ上单调递减。
余弦函数在2kπ π, 2kπ上单调递增,在2kπ, 2kπ +π上单调递减。
4、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R。
三、三角函数图像的变换1、平移变换对于函数 y = sin(x +φ),当φ > 0 时,图像向左平移φ 个单位;当φ < 0 时,图像向右平移|φ|个单位。
三角函数的三角方程与解法
三角函数的三角方程与解法三角方程是指含有三角函数的方程,其中未知数是角度。
解决三角方程的过程需要利用三角函数的性质和恒等式,以及代数的运算规则。
以下是一些常见的三角方程及其解法。
一、正弦方程正弦方程的一般形式为sin(x) = k,其中k为实数。
解决正弦方程的关键是根据sin函数的周期性和对称性,以及正弦函数的值域[-1,1]来确定解集。
1. 当k在闭区间[-1,1]内时,解集为{x | x = arcsin(k) + 2nπ, n为整数}。
2. 当k超出闭区间[-1,1]时,解集为空集。
例如,解方程sin(x) = 0.5,首先观察0.5在闭区间[-1,1]内,因此解集为{x | x = arcsin(0.5) + 2nπ, n为整数}。
二、余弦方程余弦方程的一般形式为cos(x) = k,其中k为实数。
解决余弦方程的方法与正弦方程类似,根据cos函数的周期性和对称性,以及余弦函数的值域[-1,1]来确定解集。
1. 当k在闭区间[-1,1]内时,解集为{x | x = arccos(k) + 2nπ, n为整数}。
2. 当k超出闭区间[-1,1]时,解集为空集。
例如,解方程cos(x) = -0.8,观察-0.8在闭区间[-1,1]内,因此解集为{x | x = arccos(-0.8) + 2nπ, n为整数}。
三、正切方程正切方程的一般形式为tan(x) = k,其中k为实数。
解决正切方程的方法也是根据正切函数的周期性来确定解集。
1. 解集为{x | x = arctan(k) + nπ, n为整数}。
例如,解方程tan(x) = 1,解集为{x | x = arctan(1) + nπ, n为整数}。
四、其他三角方程除了上述的常见三角函数方程,还有其他一些三角函数方程,例如割函数、余割函数、正割函数等。
解决这些方程的方法也是根据各个三角函数的性质和恒等式,以及代数运算规则。
综上所述,解决三角函数的三角方程需要根据不同的三角函数以及方程的形式来确定解集。
三角函数的函数图像与方程解析解的几何解释
三角函数的函数图像与方程解析解的几何解释三角函数是数学中常见且重要的一类函数。
它们以单位圆上的点坐标为基础,描述了角度与三角比之间的关系。
在三角函数的研究中,函数图像和方程解析解的几何解释有着重要的意义。
本文将从三角函数的图像和方程的角度,探讨它们在几何上的解释。
一、正弦函数的图像与解析解的几何解释正弦函数是最基本的三角函数之一,通常用sin(x)表示。
它描述了角度与y轴上的点的纵坐标之间的关系。
我们首先来看正弦函数的函数图像。
正弦函数的图像是一条连续的波浪线,在单位圆上,它对应于角度的变化。
当角度为0度时,正弦函数的值为0,当角度为90度时,正弦函数的值达到最大值1;当角度为180度时,正弦函数的值再次为0,当角度为270度时,正弦函数的值达到最小值-1。
正弦函数可以周期性地重复这一规律。
在几何上,正弦函数的图像可以通过单位圆上的点的纵坐标来解释。
当角度为θ时,单位圆上与该角度相对应的点的纵坐标就是正弦函数的值sin(θ)。
这意味着,正弦函数的图像可以看作是单位圆上某一点纵坐标的变化过程。
二、余弦函数的图像与解析解的几何解释余弦函数是另一类常见的三角函数,通常用cos(x)表示。
它描述了角度与x轴上的点的横坐标之间的关系。
我们接下来来看余弦函数的函数图像。
余弦函数的图像也是一条连续的波浪线,同样在单位圆上对应于角度的变化。
当角度为0度时,余弦函数的值达到最大值1;当角度为90度时,余弦函数的值为0;当角度为180度时,余弦函数的值达到最小值-1;当角度为270度时,余弦函数的值再次为0。
余弦函数同样可以周期性地重复这一规律。
在几何上,余弦函数的图像可以通过单位圆上的点的横坐标来解释。
当角度为θ时,单位圆上与该角度相对应的点的横坐标就是余弦函数的值cos(θ)。
这意味着,余弦函数的图像可以看作是单位圆上某一点横坐标的变化过程。
三、正切函数的图像与解析解的几何解释正切函数是三角函数中的另一个重要函数,通常用tan(x)表示。
三角形解的个数问题
05
三角形解的个数问题的扩 展和深化
三角形解的个数问题的推广
要点一
推广到多边形
要点二
推广到组合优化
将三角形解的个数问题推广到多边形,研究多边形的可解 性、解的个数和最优解等问题。
将三角形解的个数问题看作是组合优化问题的一种,研究 其他组合优化问题的解法,如旅行商问题、排班问题等。
三角形解的个数问题的变种
详细描述
在几何问题中,三角形解的个数问题通常涉及到三角形边长和角度的条件约束。根据三角形的性质, 任意两边之和大于第三边,任意两边之差小于第三边。同时,角度的条件也会影响三角形解的个数。 通过分析这些条件,可以判断三角形解的个数。
三角函数中的三角形解的个数问题
总结词
三角函数中的三角形解的个数问题主要 涉及到三角函数的性质和图象,通过分 析三角函数的性质和图象,判断三角形 解的个数。
考虑三角形边的长度
在三角形解的个数问题中,可以考虑 三角形的边长限制,研究不同边长条 件下三角形的可解性。
考虑三角形角度
在三角形解的个数问题中,可以考虑 三角形的角度限制,研究不同角度条 件下三角形的可解性。
三角形解的个数问题与其他数学知识的结合
与几何学结合
将三角形解的个数问题与几何学知识相结合,研究几 何图形中的可解性问题,如多边形、曲面等。
与图论结合
将三角形解的个数问题与图论知识相结合,研究图论 中的可解性问题,如子图、路径、连通性等。
感谢您的观看
THANKS
三角形解的个数问题
目 录
• 三角形解的个数问题的定义和分类 • 三角形解的个数问题的基本定理和公式 • 三角形解的个数问题的应用实例 • 三角形解的个数问题的解题技巧和方法 • 三角形解的个数问题的扩展和深化
三角函数求根公式
三角函数求根公式三角函数是数学中常见的一类函数,包括正弦函数、余弦函数和正切函数等。
在解决三角形问题、波动问题、周期问题等方面有着广泛的应用。
而求根公式则是指通过使用三角函数来求解某些方程的根的方法。
下面我们将详细介绍三角函数求根公式的原理和应用。
一、正弦函数求根公式正弦函数是一个周期性函数,其周期为2π。
对于一个一般的正弦函数sin(x)=a,其中a为已知的常数,我们希望求解该方程的解x。
根据正弦函数的性质,我们知道正弦函数的取值范围在[-1, 1]之间。
因此,我们可以通过观察正弦函数的图像确定其根的存在范围。
在求解正弦函数的根时,我们可以利用正弦函数的周期性质,即sin(x+2kπ)=sin(x),其中k为整数。
这意味着如果x是正弦函数的一个根,那么x+2kπ也是该根。
因此,我们可以通过不断地增加或减少2π的整数倍来获得正弦函数的所有根。
二、余弦函数求根公式余弦函数也是一个周期性函数,其周期同样为2π。
对于一个一般的余弦函数cos(x)=b,其中b为已知的常数,我们希望求解该方程的解x。
和正弦函数类似,我们可以通过观察余弦函数的图像确定其根的存在范围。
在求解余弦函数的根时,同样可以利用余弦函数的周期性质,即cos(x+2kπ)=cos(x)。
根据这一性质,我们可以得到余弦函数的所有根。
三、正切函数求根公式正切函数是一个周期性函数,其周期为π。
对于一个一般的正切函数tan(x)=c,其中c为已知的常数,我们希望求解该方程的解x。
和前面两个函数类似,我们可以通过观察正切函数的图像确定其根的存在范围。
在求解正切函数的根时,我们需要注意正切函数在π/2和3π/2等点处有不可定义的情况。
因此,在求解正切函数的根时,我们需要将其转化为求解余切函数的根。
余切函数cot(x)是正切函数的倒数,即cot(x)=1/tan(x)。
通过求解余切函数的根,我们可以得到正切函数的根。
三角函数求根公式是通过观察三角函数的图像,利用其周期性质来确定根的存在范围,并通过适当的变换和转化来求解方程的根。
三角函数的函数图像与方程解析解的实际应用
三角函数的函数图像与方程解析解的实际应用三角函数是数学中的重要概念,在数学和物理等学科中有着广泛的应用。
它们的函数图像和方程解析解也在解决实际问题中发挥着重要的作用。
本文将探讨三角函数的函数图像和方程解析解在实际应用中的具体用途和意义。
一、三角函数的函数图像在物理学中的应用在物理学中,许多物理量的变化都可以用三角函数的函数图像来描述。
例如,振动是物理学中常见的现象之一,而正弦函数的函数图像可以很好地描述振动的变化规律。
在机械振动中,弹簧的伸缩、摆锤的摆动以及波动传播等都可以通过正弦函数的函数图像来解释和表示。
通过研究三角函数的函数图像,可以更好地理解和分析振动和波动现象,从而在实际应用中设计和控制振动系统以及进行波动传播的相关计算。
二、三角函数的方程解析解在几何学中的应用几何学中有大量的问题需要求解方程的解析解,而三角函数的方程解析解在几何学中的应用十分广泛。
例如,三角函数的方程解析解可以用来计算三角形的面积、高度、边长以及角度等。
在解决几何问题时,我们可以通过建立三角函数的方程来推导出相应的解析解,从而准确地计算出所需要的几何量。
这在建筑工程、航空航天等领域中有着重要的应用,能够帮助我们进行准确的测量和设计。
三、三角函数的函数图像与方程解析解在电路分析中的应用在电路分析中,我们经常需要研究电流、电压和功率等的变化规律。
而三角函数的函数图像可以很好地描述电流和电压的周期性变化。
例如,交流电路中的电流和电压往往可以用正弦函数或余弦函数的函数图像来表示。
通过观察和分析三角函数的函数图像,我们可以研究电流和电压的幅值、频率和相位差等重要参数,并进一步理解电路的性能和特性。
此外,三角函数的方程解析解也可以应用于电路分析中的求解过程,帮助我们计算电路中各个元件的数值。
四、三角函数的函数图像和方程解析解在信号处理中的应用在信号处理中,我们往往需要对信号进行变换、滤波和分析等操作。
而三角函数的函数图像和方程解析解在信号处理中具有重要的意义。
高中数学中的三角函数应用之解三角方程不等式
高中数学中的三角函数应用之解三角方程不等式解三角方程不等式是高中数学中三角函数应用的一部分。
在解三角方程不等式时,需要运用一些基本的三角函数概念和性质,以及一些解方程和不等式的技巧。
本文将从解三角方程不等式的基本思路、常见问题类型以及解题方法等方面进行介绍。
解三角方程不等式的基本思路如下:1. 确定三角函数的定义域:在解三角方程不等式时,首先需要确定三角函数的定义域。
例如,在解sin x > 0的不等式时,首先需要确定sin x的定义域为[-1, 1],然后再根据sin x > 0的条件进行求解。
2. 转化为方程求解:将不等式转化为等式,然后求解方程。
例如,将sin x > 0转化为sin x = 0的方程,然后求解sin x = 0的解集。
3. 综合解集:根据原不等式的条件,综合解集。
例如,对于sin x > 0的不等式,解集为x ∈ (0, π) ∪ (2π, 3π),这是因为sin x在这些区间内是正数。
下面将介绍一些常见的三角方程不等式问题类型及解题方法:1. sin x > a的不等式:对于这种类型的不等式,首先需要确定sin x的定义域。
然后,根据不等式中的a的值,结合sin x的图像,确定解集的范围。
例如,对于sin x > 1/2的不等式,解集为x ∈ (0, π/6) ∪ (5π/6, π)。
2. cos x < a的不等式:对于这种类型的不等式,首先需要确定cos x的定义域。
然后,根据不等式中的a的值,结合cos x的图像,确定解集的范围。
例如,对于cos x < 0的不等式,解集为x ∈ (π/2, 3π/2)。
3. tan x > a的不等式:对于这种类型的不等式,首先需要确定tan x的定义域。
然后,根据不等式中的a的值,结合tan x的图像,确定解集的范围。
例如,对于tan x > √3的不等式,解集为x ∈ (π/3, 2π/3) ∪ (4π/3, 5π/3)。
三角函数的微分方程解析解
三角函数的微分方程解析解微分方程是数学中十分重要的一个分支,它描述了变量之间的关系以及它们的变化规律。
在微分方程中,三角函数也扮演着重要的角色。
本文将介绍三角函数的微分方程及其解析解。
一、三角函数的定义及性质首先,我们先来回顾一下三角函数的定义及其一些基本性质。
1. 正弦函数(sin(x)):正弦函数是一个周期函数,其周期为2π,定义域为实数集合R。
正弦函数的图像在[-π/2, π/2]区间内单调递增,在[π/2, 3π/2]区间内单调递减。
2. 余弦函数(cos(x)):余弦函数是一个周期函数,其周期也为2π,定义域为实数集合R。
余弦函数的图像在[0, π]区间内单调递减,在[π,2π]区间内单调递增。
3. 正切函数(tan(x)):正切函数是一个奇函数,其定义域为实数集合R中所有不是π/2+kπ(k为整数)的点。
正切函数具有周期π,且在每个周期内有一个垂直渐近线,即x=(k+1/2)π(k为整数)。
二、三角函数的微分方程在微分方程中,三角函数的微分方程可以分为以下几类:1. sin(x)的微分方程:几乎所有包含sin(x)的微分方程都可以通过Euler公式e^(ix) = cos(x) + isin(x)来解决。
通过求解e^(ix)的微分方程,然后提取出实部即可得到sin(x)的解析解。
2. cos(x)的微分方程:与sin(x)类似,通过Euler公式可以将包含cos(x)的微分方程转化为复数形式进行求解,最终得到cos(x)的解析解。
3. tan(x)的微分方程:tan(x)的微分方程较为复杂,它涉及到高阶导数,并且一般难以求得解析解。
三、三角函数微分方程解析解的例子下面我们来看几个具体的例子,展示三角函数微分方程的解析解。
1. 示例一:y'' + y = 0这是一个非常经典的微分方程,也称为简谐运动的微分方程。
通过求解特征方程λ^2 + 1 = 0,我们可以得到特征根λ = ±i。
高三数学三角函数图象变换试题答案及解析
高三数学三角函数图象变换试题答案及解析1.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.【答案】.【解析】将函数的图象上的所有点向右平移个单位,得到函数的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,故所得的图象的函数解析式为.【考点】三角函数图象变换.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3. (2014·大同模拟)为了得到函数y=3sin的图象,只要把函数y=3sin的图象上所有的点()A.向右平行移动个单位长度B.向左平行移动个单位长度C.向右平行移动个单位长度D.向左平行移动个单位长度【答案】C【解析】因为y=3sin=3sin,所以要得到函数y=3sin的图象,应把函数y=3sin的图象上所有点向右平行移动π个单位长度.4.将函数的图像向左平移个单位,再向上平移个单位后得到的函数对应的表达式为,则函数的表达式可以是()A.B.C.D.【答案】C【解析】由可化为.依题意等价于将函数向下平移一个单位得到,再向右平移个单位即可得到.【考点】1.三角函数的平移.2.三角函数诱导公式.5.要得到函数的图象,只需将函数的图象上所有的点()A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度【答案】C【解析】将函数的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到,然后向左平移个单位得到函数,选C.6.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】C【解析】依题意,把函数左右平移各单位长得函数的图象,即函数的图象,∴,解得,故选C.7.如图是函数y=Asin(x+)(x∈R)在区间[-,]上的图象,为了得到这个函数图象,只要将y=sinx(x∈R)的图象上所有点( )A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图像可得: -+=0且+=="2," =∵函数的最大值为1,∴y=sin(2x+)8.设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是()A.B.C.D.3【答案】C【解析】由题意可得最小正周期T=,所以===.故选C9.已知函数向左平移个单位后,得到函数,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于轴对称C.在区间单调递增D.在单调递减【答案】C【解析】函数向左平移个单位后,得到函数即令,得,不正确;令,得,不正确;由,得即函数的增区间为减区间为故选.【考点】三角函数图象的平移,三角函数的图象和性质.10.已知函数的图象经过点.(1)求实数的值;(2)设,求函数的最小正周期与单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为.【解析】(1)将点代入函数的解析式即可求出实数的值;(2)根据(1)中的结果,先将函数的解析式进行化简,化简为或,再根据周期公式计算函数的最小正周期,再利用整体法对施加相应的限制条件,解出的取值范围,即可求出函数的单调递增区间.试题解析:(1)由于函数的图象经过点,因此,解得,所以;(2),因此函数的最小正周期,由,解得,故函数的单调递增区间为.【考点】1.二倍角公式;2.三角函数的周期性与单调性11.将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于( )A.B.C.D.-【答案】D【解析】因为将函数的图像上所有的点向右平行移动个单位长度,得到的函数解析式为.再把函数各点的横坐标伸长到原来的2倍(纵坐标不变)得到.所以.【考点】1.三角函数的左右平移.2.三角函数的伸缩变换.12.要得到函数y=cos(2x+1)的图像,只要将函数y=cos 2x的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】把函数y=cos 2x的图像向左平移个单位,得y=cos 2的图像,即y=cos(2x +1)的图像,因此选C.13.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移个单位后,与函数y=sin的图象重合,则φ=________.【答案】π【解析】y=cos(2x+φ)的图象向右平移个单位,得函数y=cos(2x+φ-π)的图象.又y=sin=cos=cos,依题意,φ-π=2kπ-,k∈Z.由于-π≤φ≤π,因此φ=π.14.为了得到函数y=sin 的图象,只需把函数y=sin 的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】注意到把y=sin 的图象向右平移个单位长度得到y=sin [2(x-)+]=sin 的图象,故选B.15.函数f(x)=A sin (ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象().A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图象可知A=1,,即T==,所以ω=3,所以f(x)=sin (3x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,又|φ|<所以φ=,即f(x)=sin,又g(x)=sin 3x=sin=sin ,所以只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象.16.把函数的图象按向量=(-,0)平移,所得曲线的一部分如图所示,则,的值分别是()A.1,B.2,-C.2,D.1,-【答案】B【解析】把函数的图象按向量=(-,0)平移,得.由图得函数的周期.又.选B.【考点】三角函数图象的变换.17.下列函数中,图像的一部分如右图所示的是()A.B.C.D.【答案】C.【解析】由函数图像知函数的周期为,则,排除A、D,当时,函数值为1,则C正确.【考点】三角函数的图像及其性质.18.函数的部分图像如图,其中,且,则f(x)在下列哪个区间中是单调的()A.B.C.D.【答案】B【解析】当图像过原点时,即时,,在上为减函数,上为增函数当图像的最高点在轴上时,,在上是减函数,上为增函数,所以在上是单调的.【考点】1.三角函数的单调区间;2.三角函数图像.19.为了得到函数的图像,只需将函数的图像()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】D【解析】由于,所以,为了得到函数的图像,只需将函数的图像,向左平移个单位,选D.【考点】三角函数图像的平移20.已知向量,设函数的图象关于直线对称,其中常数(Ⅰ)求的最小正周期;(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由向量的数量积的坐标表示将表示出来,并利用正弦和余弦的二倍角公式将其表示为的形式,再由对称轴为,所以在处函数值取到最大值或最小值,从而得,代入并结合求的值,再利用和的关系,求;(Ⅱ)用代换得,先由,确定,从中取特殊点,,,,,再计算相应的自变量和函数值,列表,描点连线,即得在给定区间的图象.试题解析:(Ⅰ),;(Ⅱ)0-2020【考点】1、向量数量积的坐标表示;2、正弦和余弦的二倍角公式;3、五点作图法.21.已知函数(其中)的部分图象如图所示,为了得到的图象,则只需将的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】A【解析】由图可知,则,,所以,而,所以,因而,要想得到,只需将向右平移个单位,故选择A.【考点】1.根据函数图像确定函数解析式;2.三角函数图像的平移.22.若函数的图象上每一点的纵坐标保持不变,横坐标缩小到原来的,再将整个图象向右平移个单位,沿轴向下平移个单位,得到函数的图象,则函数是()A.B.C.D.【答案】A【解析】将的图象向上平移1个单位得,再将整个图象向左平移个单位,得,然后将横坐标扩大到原来的2倍得,,选A.【考点】三角函数图象平移变换.23.将函数图象上所有点的横坐标伸长到原来的2倍,再向右平移个单位长度,得到函数的图象,则图象的解析式是()A.B.C.D.【答案】C【解析】将函数图象上所有点的横坐标伸长到原来的2倍得到函数的图像,将函数图象上所有点再向右平移个单位长度得到函数的图像.【考点】三角函数的周期变换和平移变换.24.将函数的图像上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是 ( )A.B.C.D.【答案】A【解析】将函数的图像上各点的横坐标伸长到原来的3倍,得函数的图象;再向右平移个单位,得到的函数为.由得:.结合选项知,它的一个对称中心是,选 A.【考点】1、三角函数图象的变换;2、三角函数的对称中心.25.将函数的图像平移后所得的图像对应的函数为,则进行的平移是()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】B【解析】,因此需将函数的图像向左平移个单位.【考点】三角函数的图像变换.26.将函数图像上所有的点向左平行移动个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图像的解析式为()A.B.C.D.【答案】B【解析】将函数的图像向左平移个单位长度,得到,横坐标扩大为原来的2倍,得,故选B.【考点】三角函数图像的平移.27.已知的图象与的图象的两相邻交点间的距离为,要得到的图象,只须把的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】,,由于函数的图象与的图象的两相邻交点的距离为,即函数的最小正周期为,,,故得到函数的图象,只需将函数的图象向左平移个单位.【考点】辅助角变换、三角函数周期、三角函数图象变换28.将函数的图像向左平移个单位,得到的图像,则的解析式为 () A.B.C.D.【答案】A【解析】将图像向左平移个单位,得到.【考点】三角函数图像的平移.29.设把的图象按向量 (>0)平移后,恰好得到函数=()的图象,则的值可以为()A.B.C.πD.【答案】D【解析】利用三角函数图象变换规律,以及利用函数求导得出 y=- sin(x-φ-)与f′(x)=-sinx-cosx=-sin(x+)为同一函数.再利用诱导公式求解.解:f(x)=cosx-sinx=-sin(x-),f′(x)=-sinx-cosx=-sin(x+),把y=f(x)的图象按向量(φ>0)平移,即是把f(x)=cosx-sinx的图象向右平移φ 个单位,得到图象的解析式为y=-sin(x-φ-),由已知,与f′(x)=-sinx-cosx=-sin(x+)为同一函数,所以-φ-=2kπ+,取k=-1,可得φ=故选D.【考点】三角函数图象变换点评:本题考查了三角函数图象变换,函数求导,三角函数的图象及性质.30.函数(其中A>0,)的图象如图所示,为了得到的图象,则只需将g(x)=sin2x的图象A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【答案】B【解析】由已知中函数f(x)=Asin(ωx+φ)的图象,我们易分析出函数的周期、最值,进而求出函数f(x)=Asin(ωx+φ)的解析式,设出平移量a后,根据平移法则,我们可以构造一个关于平移量a的方程,解方程即可得到结论。
高中数学中的三角函数的变换与应用
高中数学中的三角函数的变换与应用在高中数学学习中,三角函数是一个非常重要的概念。
三角函数的变换与应用是数学中的一个重要分支,它涉及到三角函数的图像变换、解三角方程、三角函数的应用等内容。
本文将从不同角度来探讨三角函数的变换与应用。
一、三角函数的图像变换三角函数的图像变换是指通过改变函数的参数来改变函数的图像。
常见的三角函数有正弦函数、余弦函数和正切函数。
我们可以通过改变这些函数的参数来改变它们的图像特征。
首先来看正弦函数。
正弦函数的图像是一条波浪线,它的周期是2π。
我们可以通过改变正弦函数的振幅、周期和相位来改变它的图像。
振幅表示波浪线的高度,可以通过改变参数a来改变振幅。
周期表示波浪线的宽度,可以通过改变参数b来改变周期。
相位表示波浪线的起始位置,可以通过改变参数c来改变相位。
通过改变这些参数,我们可以得到不同形状的正弦函数图像。
接下来是余弦函数。
余弦函数的图像也是一条波浪线,它的周期也是2π。
余弦函数与正弦函数的主要区别在于相位不同。
余弦函数的相位是0,而正弦函数的相位是π/2。
通过改变相位,我们可以得到不同的余弦函数图像。
最后是正切函数。
正切函数的图像是一条无穷大的曲线,它的周期是π。
正切函数的图像有很多特殊点,比如正切函数的图像在π/2和3π/2处有垂直渐近线。
通过改变正切函数的参数,我们可以得到不同的正切函数图像。
二、解三角方程解三角方程是三角函数的一个重要应用。
三角方程是指含有三角函数的方程。
解三角方程的关键是找到方程中的解集。
解三角方程的方法有很多种,比如利用三角函数的性质、利用三角函数的图像等。
其中,利用三角函数的性质是最常用的方法之一。
通过运用三角函数的周期性、对称性、奇偶性等性质,我们可以简化方程的求解过程。
另外,利用三角函数的图像也是解三角方程的一种有效方法。
通过观察三角函数的图像,我们可以找到方程的解集。
三、三角函数的应用三角函数在现实生活中有着广泛的应用。
它在物理学、工程学、天文学等领域中都有重要的作用。
三角函数解析式求解题技巧
三角函数解析式求解题技巧解析式是指通过公式的方式将一个数学问题的解表示出来。
在三角函数的求解中,解析式是非常常用和重要的工具。
下面将介绍一些解三角函数问题时常用的技巧和方法。
1. 利用基本三角函数的性质:三角函数有一些基本的性质,比如正弦函数的值在[-1, 1]之间,余弦函数的值也在[-1, 1]之间。
利用这些性质可以对一些特殊的三角函数方程进行求解。
例如,对于sin(x) = 1/2这样的方程,我们可以利用sin的周期性,找出所有满足条件的x的范围,并将其写成解析式。
2. 利用三角函数的角和差公式:三角函数的角和差公式是非常有用的工具。
通过利用这些公式,可以将复杂的三角函数方程转化为简单的方程,从而更容易求解。
例如sin(x+y) = sin(x)cos(y) + cos(x)sin(y),通过利用这个公式,可以将一些复杂的三角函数方程转化为简单的方程。
3. 利用三角函数的倍角公式:三角函数的倍角公式也是非常有用的工具。
通过利用这些公式,可以将一个角的三角函数表示转化为另一个角的三角函数表示,从而更容易求解。
例如sin(2x) = 2sin(x)cos(x),通过利用这个公式,可以将一个包含sin(2x)的方程转化为一个只包含sin(x)和cos(x)的方程。
4. 利用三角函数的倒数关系:三角函数之间有一些倒数关系。
例如sin(x)的倒数是cosec(x),cos(x)的倒数是sec(x),tan(x)的倒数是cot(x)。
通过利用这些倒数关系,可以将一个三角函数方程转化为一个简单的方程。
例如,对于sin(x) = 1/2这样的方程,我们可以利用sin(x)和cosec(x)的倒数关系,将方程转化为cosec(x) = 2,然后再求解cosec(x) = 2的解析式。
5. 利用三角函数的周期性:三角函数的周期性也是一个重要的特性。
例如sin(x)的周期是2π,cos(x)的周期是2π,tan(x)的周期是π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=lg x
的图象,如图所示.
由图象可知方程 sin x=lg x 的解有 3 个.
【例2】 方程x2-cos x=0的实数解的个数是________.
解析 作函数 y=cos x 与 y=x2 的图象, 如图所示,由图象,可知原方程有两个 实数解.
利用三角函数图像确定方程解的个数
[思路探索] 把方程的解的问题转化为两函数图象交点的个数问题解决.
【例 1】方程 sin x=lg x 的解的个数是________. 解:用五点法画出函数 y=sin x,x∈[0,2π]的图象,再依次向左、 右连续平移 2π 个单位,得到 方法] 利用三角函数图象能解决求方程解的个数问题, 也可利用方程解的个数(或两函数图象的交点个数)求字母参数 的范围问题.
【活学活用】 函数 f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线 y =k 有且仅有两个不同的交点,求 k 的取值范围.
解 f(x) = sin x + 2|sin x| =
3sin x,x∈[0,π], -sin x,x∈π,2π].
图象如图, 若使 f(x)的图象与直线 y=k 有且仅有 两个不同的交点,根据上图可得 k 的取值范围是(1,3).