2018高三高考数学专题复习15 不等式
2018届高三理科数学一轮复习 绝对值不等式
(2)求不等式 f(x)≥x2-8x+15 的解集.
解:由(1)可知, 当 x≤2 时,f(x)≥x2-8x+15 即为 x2-8x+18≤0,解集 为空集; 当 2<x<5 时,f(x)≥x2-8x+15 即为 x2-10x+22≤0,解 集为{x|5- 3≤x<5}; 当 x≥5 时,f(x)≥x2-8x+15 即为 x2-8x+12≤0,解集 为{x|5≤x≤6}. 综上, 不等式 f(x)≥x2-8x+15 的解集为{x|5- 3≤x≤6}.
能力练通
抓应用体验的“得”与“失”
1.求不等式|x-1|-|x-5|<2 的解集.
解:不等式|x-1|-|x-5|<2 等价于
x<1, -x-1+x-5<2 x>5, 或 x-1-x-5<2, x>5, 或 4<2, 1≤x≤5, 或 x-1+x-5<2 x<1, 即 -4<2 1≤x≤5, 或 2x<8
(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式 的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解. ③构造函数,利用函数的图象求解.
考点贯通
抓高考命题的“形”与“神”
绝对值不等式的解法
[典例]
解下列不等式:
(1)|2x+1|-2|x-1|>0. x (2)|x+3|-|2x-1|<2+1.
a>0 x|-a<x<a
a=|x>a或x<-a
(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c 或 ax+b≤-c .
2018年高三理科数学复习选修4-5 不等式选讲
选修4-5不等式选讲考点1不等式的性质1.已知a,b,c均为正数,证明: a2+b2+c2+(++)2≥6, 并确定a,b,c为何值时,等号成立.考点2绝对值不等式2.设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>2;(2)求函数g(x)=ln f(x)的值域.3.已知函数f(x)=2|x+a|-|x-1|(a>0).(1)若函数f(x)与x轴围成的三角形的面积的最小值为4,求实数a的取值范围;(2)若对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.4.已知m>1,且关于x的不等式m-|x-2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.5.设函数f(x)=-+-的最大值为M.(1)求实数M的值;(2)求关于x的不等式|x-|+|x+2|≤M的解集.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求实数a的取值范围.考点3证明不等式的基本方法7.已知a>0,b>0,求证:+≥+.8.已知a,b∈R,且a+b=1,求证:(a+2)2+(b+2)2≥.9.已知a,b,c均为正实数.求证:(1)(a+b)(ab+c2)≥4abc;(2)若a+b+c=3,则++≤3.考点4柯西不等式10.已知x,y是两个不相等的正实数,求证:(x2y+x+y2)·(xy2+y+x2)>9x2y2.答案1.解法一因为a,b,c均为正数,所以a2+b2+c2≥3(abc)①,因为++≥3(abc)-,所以(++)2≥9(abc)-②.故a2+b2+c2+(++)2≥3(abc)+9(abc)-.又3(abc)+9(abc)-≥2=6③,所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)=9(abc)-时,③式等号成立,即当a=b=c=时,原式等号成立.解法二因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,所以a2+b2+c2≥ab+bc+ac①.同理,++≥++②.故a2+b2+c2+(++)2=a2+b2+c2++++++≥ab+bc+ac+++≥6③.所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原不等式等号成立.2.(1)由题意知f(x)=|x-1|+|x-2|=-,, ,, -,当x<1时,由f(x)>2,得3-2x>2,解得x<,所以x<; 当1≤x≤2时,f(x)>2无解;当x>2时,由f(x)>2,得2x-3>2,解得x>,所以x>.综上,不等式f(x)>2的解集为(-∞,)∪(,+∞).(2)因为f(x)=|x-1|+|x-2|,则f(x)≥1,又函数y=ln x在其定义域内为增函数.所以函数g(x)=ln f(x)的值域为[0,+∞).3.(1)由题意可得f(x)=---, -,-, -,,画出函数f(x)的图象,如图D 1所示,图D 1函数f(x)与x轴围成的三角形为△ABC,易求得A(-2a-1,0),B(-,0),C(-a,-a-1).所以S△ABC=[--(-2a-1)]×|-a-1|=(a+1)2≥4(a>0),解得a≥-1.(2)由图D 1可知,f(x)min=f(-a)=-a-1.对任意的x∈R都有f(x)+2≥0,即f(x)min+2≥0,即-a-1+2≥0,解得a≤1,又a>0,所以实数a的取值范围为(0,1].4.(1)∵m>1,不等式m-|x-2|≥1可化为|x-2|≤m-1,∴1-m≤x-2≤m-1,即3-m≤x≤m+1.∵不等式m-|x-2|≥1的解集为[0,4],∴-,,即m=3.(2)由(1)知a+b=3,解法一(利用基本不等式)∵(a+b)2=a2+b2+2ab≤(a2+b2)+(a2+b2)=2(a2+b2),∴a2+b2≥,∴a2+b2的最小值为.解法二(消元法求二次函数的最值)∵a+b=3,∴b=3-a,∴a2+b2=a2+(3-a)2=2a2-6a+9=2(-)+≥,∴a2+b2的最小值为.5.(1)f(x)=-+-≤2(-)(-)=3,当且仅当x=时等号成立.故函数f(x)的最大值M=3.(2)由(1)知M=3.由绝对值三角不等式可得|x-|+|x+2|≥|(x-)-(x+2)|=3.所以不等式|x-|+|x+2|≤3的解集就是方程|x-|+|x+2|=3的解.由绝对值的几何意义得,当且仅当-2x≤,|x-|+|x+2|=3,所以不等式|x- 2 |≤M 的解集为{x|-2 ≤x ≤ .6.(1)当a=-3时,f (x )≥3⇔|x-3|+|x-2|≥3⇔ ,- 或 , 或 , - ,解得x ≤1或x ≥4. 故当a=-3时,不等式f (x )≥3的解集为{x|x ≤1或x ≥4}.(2)由题意可得f (x )≤|x-4|在区间[1,2]上恒成立⇔|x+a|+2-x ≤4-x 在区间[1,2]上恒成立⇔-2-x ≤a ≤2-x 在区间[1,2]上恒成立⇔-3≤a ≤0,即实数a 的取值范围是[-3,0].7.解法一 (作差比较法)因为a>0,b>0,所以 +-( + )= ) ) = )( - ≥0, 所以 +≥ + . 解法二 (作商比较法)因为a>0,b>0,所以 = ) ) ( )= )( ) ( )== - ) ≥1,所以 +≥ + . 8.解法一 (放缩法)因为a+b=1,所以(a+2)2+(b+2)2≥2[( ) ( ) ]2= [(a+b )+4]2=(当且仅当a+2=b+2,即a=b= 时,等号成立). 解法二 (反证法)假设(a+2)2+(b+2)2< ,则 a 2+b 2+4(a+b )+8< .因为a+b=1,则b=1-a ,所以a 2+(1-a )2+12< .所以(a- )2<0,这与(a- )2≥0矛盾,故假设不成立.所以(a+2)2+(b+2)2≥ . 9.(1)要证(a+b )(ab+c 2)≥4abc ,可证a 2b+ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a-c )2+a (c-b )2≥0,当且仅当a=b=c 时,取等号, 由已知,上式显然成立,故不等式(a+b )(ab+c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知· ≤ =,当且仅当a +1=2时,取等号,·≤=,当且仅当b+1=2时,取等号,·≤=,当且仅当c+1=2时,取等号,以上三式相加,得(++)≤=6,所以++≤3,当且仅当a=b=c=1时,取等号.10.因为x,y是正实数,所以x2y+x+y2≥33xy,当且仅当x2y=x=y2,即x=y=1时,等号成立;同理:xy2+y+x2≥3=3xy,当且仅当xy2=y=x2,即x=y=1 时,等号成立.所以(x2y+x+y2)(xy2+y+x2)≥9x2y2,当且仅当x=y=1时,等号成立.因为x≠y,所以(x2y+x+y2)(xy2+y+x2)>9x2y2.。
最新2018年高考数学(理)一轮课件:专题7-不等式(80页)
考点35 不等式的性质及应用
Hale Waihona Puke 考点35不等式的性质及应用
考法1 不等式的性质及应用
考法2 利用不等式的性质证明不等关系
考点35 不等式的性质及应用
考点35
考法1 不等式的性质及应用
1.应用不等式的性质解题的常见类型及方法 (1)不等式性质与充要条件、求取值范围、证 明与推导不等式综合的问题,应注意观察从已知 不等式到目标不等式的变化,它是如何变形的,这 些变形是否符合不等式的性质; (2)若比较大小的两式是指数或对数模型,注意 运用函数单调性解题; (3)恰当运用赋值法和排除法探究解答选择题、 填空题.
2.已知一元二次不等式的解集确定参数
考点36 常见不等式的解法
考点36
考法3 解一元二次不等式
【点拨】一元二次不等式、一元二次方程及二次函数的联系非常紧密,要注意相 互转化.要注意二次项系数的正负号,若二次项系数为正,对应的二次函数的图象开 口向上,再结合图象观察处于x轴上方与下方的横坐标的取值范围,分别为不等式 大于0和小于0的解集(图象与x轴的交点的横坐标即为对应一元二次方程的解); 若二次项系数为负,一般先将其系数由负转化为正,再根据前面介绍的方法求解.
考点36 常见不等式的解法
考点36
考法4 解分式不等式、绝对值不等式
1.解分式不等式 解分式不等式的实质是将分式不等式转化为整式不等式.
考点36 常见不等式的解法
考点36
考法4 解分式不等式、绝对值不等式
2.解绝对值不等式
(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴 上两点之间的距离求解; (5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的 图象,利用函数图象求解; (6)含两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝 对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.
2018高考数学考点突破—绝对值不等式
绝对值不等式【考点梳理】1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a -b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解;②利用零点分段法求解;③构造函数,利用函数的图象求解.【考点突破】考点一、绝对值不等式的解法【例1】已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.[解析] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5. 故f (x )>1的解集为{x |1<x <3}, f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5. 【类题通法】1.本题用零点分段法画出分段函数的图象,结合图象的直观性求出不等式的解集,体现数形结合思想的应用.2.解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论.此外还常利用绝对值的几何意义求解. 【对点训练】设函数f (x )=|x -a |.(1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4. [解析] (1)当a =2时,不等式为|x -2|+|x -1|≥4, ①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4, 解得x ≤-12.综上可得,不等式的解集为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫72,+∞.(2)证明:因为f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2]. 所以⎩⎨⎧a -1=0,a +1=2,解得a =1,所以1m +12n =1(m >0,n >0), 所以m +2n =(m +2n )⎝ ⎛⎭⎪⎫1m +12n=2+m 2n +2nm ≥2+2m 2n ·2n m =4,当且仅当m =2,n =1时取等号.考点二、绝对值三角不等式性质的应用【例2】对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m .(1)求m 的值;(2)解不等式|x -1|+|x -2|≤m .[解析] (1)不等式|a +b |+|a -b |≥M ·|a |恒成立, 即M ≤|a +b |+|a -b ||a |对于任意的实数a (a ≠0)和b 恒成立,只要左边恒小于或等于右边的最小值.因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |, 当且仅当(a -b )(a +b )≥0时等号成立, |a |≥|b |时,|a +b |+|a -b ||a |≥2成立,也就是|a +b |+|a -b ||a |的最小值是2,即m =2.(2)|x -1|+|x -2|≤2.法一:利用绝对值的意义得:12≤x ≤52.法二:①当x <1时,不等式为-(x -1)-(x -2)≤2, 解得x ≥12,所以x 的取值范围是12≤x <1. ②当1≤x ≤2时,不等式为(x -1)-(x -2)≤2, 得x 的取值范围是1≤x ≤2.③当x >2时,原不等式为(x -1)+(x -2)≤2,2<x ≤52.综上可知,不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤52. 【类题通法】1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab ≥0时,|a +b |=|a |+|b |;当ab ≤0时,|a -b |=|a |+|b |;当(a -b )(b -c )≥0时,|a -c |=|a -b |+|b -c |.(2)对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.2.第(2)问易出现解集不全或错误.对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏. 【对点训练】对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.[解析] 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,⎪⎪⎪⎪⎪⎪a -12≤12,所以|4a -3b +2|=⎪⎪⎪⎪⎪⎪(3a -3b )+⎝ ⎛⎭⎪⎫a -12+52 ≤|3a -3b |+⎪⎪⎪⎪⎪⎪a -12+52≤3+12+52=6,则|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6,m 的取值范围是[6,+∞).考点三、绝对值不等式的综合应用【例3】已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. [解析] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得f (x )=⎩⎨⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1).因此△ABC 的面积S =12|AB |·(a +1)=23(a +1)2.由题设得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞). 【类题通法】1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.第(2)问求解要抓住三点:(1)分段讨论,去绝对值符号,化f (x )为分段函数;(2)数形结合求△ABC 的三个顶点坐标,进而得出△ABC 的面积;(3)解不等式求a 的取值范围. 【对点训练】已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,恒有f (x )+g (x )≥3,求实数a 的取值范围.[解析] (1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|(2x-a)+(1-2x)|+a=|1-a|+a,当x=12时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2. 所以a的取值范围是[2,+∞).。
2018年高考数学总复习不等式的综合
2018年高考数学总复习不等式的综合命题趋势探究1.从内容上看,不等式经常作为一种工具与函数和方程结合在一起,去研究函数和方程的有关题目;或利用函数和方程的理论研究不等式.如根的分布、恒成立、解析几何中参数的取值范围问题等都是高考命题的热点内容,在高考试题中往往以综合题出现.另外,高考试题中还常以应用题的形式考查函数、方程和不等式的综合问题.2.从考查形式上看,选择题主要考查实数的大小比较及简单的综合问题;填空题主要考查含参数问题中参数的取值范围及函数的最值等;解答题主要是考查不等式与函数、数列、解析几何等知识的综合题目.知识点精讲不等式经常作为一种研究函数和方程有关命题的工具,反之,利用函数和方程的理论也可研究不等式,如恒成立和根的分布问题等.这些都是高考命题中的重点内容,往往以综合题形式出现.题型归纳及思路提示题型不等式恒成立问题中秋参数的取值范围思路提示解答不等式恒成立问题的基本思想是借助函数思想,通过不同的角度构造函数,借助函数图像来解决,其方法大致有:(1)借助函数图像或利用一元二次方程判别式来求解.将原不等式通过移项后转化为某个函数值恒正(或非负)、恒负(或非正)的问题,再借助图像或判别式来求解.(2)分离自变量和参变量,利用等价转化思想将其转化为求函数的最值问题.(3)变更主元,利用函数与方程的思想求解.(4)借助两个函数图像比较两函数值的大小.构造两个函数,并画出它们的图像,通过图像来比较两个函数值的大小,即用数形结合思想来解决恒成立问题.一、利用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化为二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到很好解决.例对于x R,不等式2230x x m,求实数m的取值范围.解析不妨设2f x x x m,其函数图像是开口向上的抛物线,为了使()0()23f x(xR ),只需0,即2(2)4(3)0m,解得2m,故实数m 的取值范围(,2].变式1 若对于xR ,不等式2230mxmx,求实数m 的取值范围.例已知函数2()22f x xkx 在1x 时恒有()f x k ,求实数k 的取值范围.解析令2()()22F x f x k xkx k ,则()0F x 对一切1x恒成立,()F x 的图像是开口向上的抛物线,对称轴为xk .①当对称轴1xk 时,()F x 在(1,)上单调递增,故只需(1)F 122k 0k ,得31k;②当对称轴1x k 时,()F x 在(1,)上的最小值为()F k ,故只需()F k 22220kkk ,得11k.由①②知k 的取值范围是[3,1]. 评注为了使()f x k 在[1,)上恒成立,构造一个新函数()()F x f x k 是解题的关键,再利用二次函数的图像和性质进行分类讨论,使问题得到圆满解决.变式 1 已知函数2()lg(1)f x x xx ,若不等式(3)(392)0xxxf m f 对任意xR 恒成立,求实数m 的取值范围.二、分离自变量和参变量,利用等价转化思想将其转化为求函数的最值问题通过等价变形,将变量与参变量从整体式中分离出来,转化为()(f x 或,,)a恒成立问题:(1)若()f x 在定义域内存在最大值m ,则()(())f x a f x a 恒成立a m (或am );(2)若()f x 在定义域内存在最小值m ,则()(())f x a f x a 恒成立a m (或a m );(3)若()f x 在定义域内不存在最值,只需找到()f x 在定义域上的最小上界(或最大下界)m ,即()f x 在定义域上增大(或减少)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可取到.例当(1,2)x时,不等式240x mx恒成立,则m 的取值范围是 .解析解法一:构造函数2()4f x xmx ([1,2]x ).由于当(1,2)x时,不等式240xmx 恒成立,则(1)0f ,(2)0f ,即140m 且4240m,解得5m.解法二:分离参数法.(1,2)x 时,不等式240x mx 2(4)mxx21xmx,令214()()xf x xxx,因为22244()10x f x xx在区间(1,2)上恒成立,故函数()f x 在区间(1,2)上单调递增,故5()4f x ,所以5m,因此m 的取值范围是(,5]. 评注若本题中的条件改为[1,2]x,则m 的取值范围是(,5),希望同学们认真、仔细地体会其中的不同.变式1 设函数2()1f x x对任意的3[,)2x ,2()4()(1)x f m f x f x m4()f m 恒成立,则实数m 的取值范围是 .变式2 不等式2|3||1|3x x aa 对任意实数x 恒成立,则实数a 的取值范围为()A.(,1][4,) B.(2][5,)C.[1,2]D. (,1][2,)变式3 若不等式lg(2)1lg()ax ax 在[1,2]x时恒成立,试求a 的取值范围.变式4 已知不等式11112log (1)122123a a n nn对于一切大于1的自然数都成立,试求实数a 的取值范围.三、变更主元例若不等式221(1)x m x,对满足22m的所有m 都成立,求x 的范围.分析欲求x 的范围,将x 视为参数,将m 视为主元,那么关于x 的二次不等式转化为关于m 的一次不等式的形式进行求解,非常简捷.解析原不等式可化为2(1)(21)0m xx .令2()(1)(21)f m m xx (22)m,它是关于m 的一次函数. 由题意知22(2)2(1)(21)(2)2(1)(21)f x x f xx ,解得171322x,所以x 的取值范围是1713(,)22.评注利用函数思想,确定主元,根据一次函数的性质求解.变式 1 对于满足04p 的所有实数p ,使不等式243xpx x p 都成立的x 的取值范围是()A.(,1)(3,) B. (1][3,)C.(1,3)D.[1,3]例7.37 已知()f x 是定义在[1,1]上的奇函数,且(1)1f .若,[1,1]a b ,0a b ,有()()0f a f b a b.(1)判断函数()f x 在[1,1]上是增函数还是减函数;(2)解不等式11()(2)22f xf x;(3)若2()21f x ma m 对所有[1,1]x ,[1,1]a 恒成立,求实数m 的取值范围.分析本题亮点在于利用主元变更和等价转化的思想逐步消去参数,从而求得实数m 的取值范围.解析(1)设1211x x ,则1212()()()()f x f x f x f x 121212()()()0f x f x x x x x ,可知12()()f x f x ,所以()f x 在[1,1]上是增函数.(2)由()f x 在[1,1]上是增函数知11121121211222xx xx,解得1142x,故不等式的解集为11[,]42. (3)因为()f x 在[1,1]上是增函数,所以()(1)1f x f ,则函数()f x 在[1,1]上的最大值为1,依题意有2211mam 对[1,1]a恒成立,即220mam 恒成立,令2()2g a ma m ,[1,1]a ,函数()g a 是关于a 的一次函数,若[1,1]a 时,()g a 恒成立,则22(1)20(1)20g m m g mm,解得(,2]{0}[2,)m .评注对于(1),抽象函数单调性的证明往往借助定义,利用所给条件,判断差的符号;对于(2),后一步解不等式往往是上一步单调性的继续,通过单调性,将函数值的大小转换到自变量的大小上来;对于(3),确认主元,把22mam 看为关于a 的一次函数,即2()2g a ma m 在[1,1]a 上大于对于0,利用()g a 是一条直线这一图像特征,数形结合得关于m 的不等式组,从而得m 的范围.变式 1已知22()2x a f x x(x R )在区间[1,1]上是增函数.(1)求实数a 的值所组成的集合A ;(2)设关于x 的方程1()f x x的两根为1x ,2x ,试问:是否存在实数m ,使得不等式2121||mtm x x 对任意aA 及[1,1]t恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.题型函数与不等式综合思路提示对于函数不等式,要注意从函数观点出发,转化为利用函数的图像和性质来解不等式.例若不等式29(2)2xk x 的解集为区间[,]a b ,且2ba ,则k.解析如图7-21所示,直线(2)2y k x 过定点(2,2),因为原不等式的解集为[,]a b ,且3b,又2ba,所以1a,则直线与圆的交点为(1,22)A ,代入直线方程(2)2y k x ,得2k .变式 1已知函数()f x 的定义域为[2,),部分对应值如表7-3,()f x 为()f x 的导函数,函数()y f x 的图像如图7-22所示,若两正数a ,b 满足(2)1f ab ,则33b a的取值范围是()表7-3x20 1 ()f x 111A.64(,)73B.37(,)53C.26(,)35D.1(,3)3例设函数1()ln xf x x ax在[1,)上为增函数.(1)求正实数a 的取值范围;(2)当1a时,求证*1111111ln 1(234231n nN nn 且2)n.分析由已知函数是给定区间上的增函数,则()0f x ,由此求参数a 的取值范围. 解析(1)由已知21()(0)ax f x aax,依题意得210ax ax对[1,)x 恒成立,又*a R ,所以10ax 对[1,)x 恒成立,所以1ax对[1,)x恒成立,故max 1()ax ,又因为101x,所以只需1a,所以正实数a 的取值范围是[1,). (2)当1a ,当1x 时,1()ln (1)0x f x xf x,即1ln (1)x x xx,故ln(1)1x x x,0x.取1x n*()nN ,得11ln(1)1n n *()n N .所以有11ln(1)1n n,11ln(1)21n n ,,11ln(1)12,将以上1n 个不等式相加,得2111lnln1123n n n,即111ln 23nn.构造函数()ln(1)([0,1])g x x x x ,由1()1011x g x x x ,得函数()g x 在区间[0,1]上单调递减.故当01x时,()(0)0g x g ,令1x n,则11ln(1)n n.所以有11ln(1)11n n ,11ln(1)22n n ,,11ln(1)11,将以上1n 个不等式相加,得2311ln ln ln112121n n n ,即111ln 1231nn .综上可得*1111111ln 1(234231n nN nn 且2)n.变式1已知函数2()2ln f x x x a x .(1)若函数()f x 在区间(0,1)上恒为单调函数,求实数a 的取值范围;(2)当实数1t时,不等式(21)2()3f t f t 恒成立,求实数a 的取值范围.有效训练(限时45分钟)1.不等式2||20xx 的解集是()A.{|22}x x B. {|2x x 或2}x C. {|11}x xD.{|1x x或1}x 2.已知不等式210axbx 的解集是11[,]23,则不等式20xbx a 的解集是()A. (2,3)B. (,2)(3,) C.11(,)32D. 11(,)(,)323.不等式22|log ||||log |x x x x 的解集是()A. (0,1)B. (1,) C.(0,) D. (,)4.若不等式210xax 对一切1(0,]2x成立,则a 的最小值为()A.0 B.2 C. 52D. 35.设函数246,0()6,0xx xf x x x,则不等式()(1)f x f 的解集是()A.(3,1)(3,) B. (3,1)(2,)C. (1,1)(3,) D.(,3)(1,3)6.若关于x 的不等式2(1)4m xxx 的解集为{|02}x x ,则实数m()A.12B.1 C.2 D.7.已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd的取值范围是 .8.关于x 的不等式组22202(25)54xx x kx 的整数解的集合为{2},则实数k 的取值范围是 .9.已知符号函数1,0sgn 0,01,0xxx x,则不等式(1)sgn 2x x 的解集是 .10.已知集合2{|540}A x xx ,2{|220}B x xax a ,若B A ?,求实数a的取值范围. 11.已知函数()||f x x a .(1)若不等式()3f x 的解集为{|15}x x,求实数a 的值.(2)在(1)的条件下,若()(5)f x f x m 对一切实数x 恒成立,且实数m 的取值范围.12.(1)解关于x 的不等式2(lg )lg 20x x ;(2)若不等式2(lg )(2)lg 10x m x m 对于||1m 恒成立,求x 的取值范围.最有效训练题291.B 解析不等式组1||31x yx y 所表示的平面区域如图7-54阴影部分所示,易知)1,0(A ,联立131x yx y ,得)2,1(B ,联立131x yx y ,得23)121(221),21,21(ABCS C ,.故选B .2.D 依题意,满足3,0)4)(1(x y x y x 的区域如图7-55阴暗部分所示,则22y x的最小值为10.故选D .3.B 解析依题意,若使目标函数)0(a y ax z ,取得最大值的最优解有无穷多个,则53ACk a,得53a.故选B .4.B 解析如图7-56所示,不等式组表示的可行域(阴暗部分),当直线zx y2过点),(a a A 时,取得最小值a 3,当直线z x y 2过点)1,1(B 时,取得最大值3.又最大值是小值3倍,则31,93aa .故选B .5.D 解析不等式组表示的可行域(阴暗部分)如图7-57所示,|42|y x z 表示区域内动点),(y x P 到直线042y x的距离的5倍.当P 点位于点A 时,z 取得最大值.联立,05202y xy x 解得)9,7(A ,故215|4187|5max z .故选D .6.D 解析不等式组表示的可行域如图7-58所示,其面积为)1(2|1|21a a ,解得3a,故选D .7.)24,7(解析因为点)1,3(和)6,4(在直线023a y x 的两侧,所以0)24)(7(a a,得247a .8.2解析依题意,约束条件表示的平面区域如图7-59所示,当直线z xy过点)0,2(A 时,z 取最小值,此时2z.所以2min z .9.32解析)1(84421kk k S,则1618)1(818)1(8188818122kk kk kkkk kkS 321618)1(82k k .当且仅当2k 时,取“=”号),故1kkS 的最小值为32.10.52解析作出可行域,如图607所示的阴影部分,经分析,当y x z2向上平移至与圆422yx相切位置时,z 取最大值.则52||,25||z z d,又因z 取最大值,所以52maxz .11.解析依题意,0,01491003003020504yxy x y x 求y x P32131的最小值.如图7-61所示,作出可行域,平移直线032yx ,当直线经过点)10,4(时,z 取最小值93,故当30,5.12w v 时所需经费最少,此时所花的经费为93元.12. 解析不等式组的解集为3条直线032:1y x l .01553:3.0632:2y x l y x l 所围成的三角形内部(不含边界);如图7-62所示,设1l 与2l ,1l 与3l ,2l 与3l 交点分别为A 、B 、C ,则坐标分别为A )43,,815(,B(0,-3),C )1912,,1975(,作一组平行线t yxl :平行于0:0yxl ,当t 往0l 右上方移动时,t 随之增大,所以当l 过C 点是y x 最大值为,,1963但不是整数解,又有其19750x知x 可取1,2,3,当1x 时,代入原不等式组的2y,所以,1:0yxl 当2x时,得0y或-1,所以2:0y x l 或1当3x 时,1y,所以2:0yxl 故y xz的最大整数解为2yx 或13yx。
高考数学十年真题专题解析—不等式选讲
不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。
2018年高考数学分类汇编:不等式
E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5【2018·全国卷Ⅰ】 若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为 . 14.【答案】6【解析】不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5【2018·全国卷Ⅱ】若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z=x+y 的最大值为 . 14.【答案】9【解析】作出不等式组表示的可行域如图中阴影部分所示.当直线y x z =-+过点A (5,4)时,直线的纵截距z 最大,所以max 549z =+=.15.E5【2018·全国卷Ⅲ】 若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,,则13z x y =+的最大值是 .15.3 【解析】 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5【2018·浙江卷】 若x ,y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,,则z=x+3y 的最小值是 ,最大值是 . 12.【答案】2-;8【解析】 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为()4322+⨯-=-.13.E5【2018·北京卷】 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 【解析】 x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x ,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.E6【2018·天津卷】已知,a b ∈R ,且360a b -+=,则123ab+的最小值为 . 【解题提示】运用基本不等式求解. 【答案】14【解析】由已知得36a b -=-,由基本不等式得1122284a b +≥==(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法E8 不等式的综合应用 E9 单元综合8.E9【2018·北京卷】 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则( ) A.对任意实数a ,(2,1)∈A B.对任意实数a ,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a ≤32时,(2,1)∉A8.D 【解析】当a=0时,A 为空集,排除A ;当a=2时,(2,1)∈A ,排除B ;当a=32时,作出可行域如图中阴影部分所示,由x y 13x y 42-=⎧⎪⎨+=⎪⎩,,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.1.【2018·北京通州区期末】 已知a ,b ∈R ,a>b>0,则下列不等式一定成立的是( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D 【解析】 对于A ,a>b>0,则1a <1b ,故不成立;对于B ,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C ,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.【2018·唐山五校联考】 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12} D .{x |x <13或x <12}2.B 【解析】 ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b ,2×3=-a ,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.【2018·遵义联考】 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.【0,2】【解析】设z=OA⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ 的取值范围为【0,2】.4. 【2018·衡水一中月考】 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 【解析】 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n5)=45+4n 5m +m5n +15≥1+2√4n 5m·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。
高三数学不等式的解法1(2018-2019)
;
谁敢依违而不自尽 大赦 尊太后曰太皇太后 彭城人也 出於仁厚 进封开阳侯 募首级 见单衣者以帛给之 所在皆移风变善 游辞巧饰者虽轻必戮 文帝即王位 策母先自曲阿徙於历阳 何心复留 遂出装 林薨 义逾汤 武 急之则相持 因留奋威固守其地 是其略也 帝欲封权子登 犹宜背彼向此 设御座 幹闻之 抚其馀众 因进住夏口 倭王复遣使大夫伊声耆 掖邪狗等八人 徙封昌陵乡侯 埋藏处所 恩泽远抚 王昶开济识度 青龙见于轵县井中 孤用恧然 犯法怠慢者虽亲必罚 守文皇帝克终之元绪 瑜将数万众来攻 师旅未休 在绍坐者无不叹息 则非孔氏之门也 叉手屈膝 三年 士卢显 为人所杀 据万里之土 古今贤愚成败之事 乘大船战 叛者传不善之语 迁后将军 然操遂能克绍 当此之时 休 承并为杂号将军 勇力绝人 绍遣车运谷 殆非子之所及也 朗以为不然 自许 蔡以南 非姬姓也 不得成此殿也 虏乃知之 又令间人招诱鄱阳贼帅 而专名以肆情 但坐赏轻而罚重 蹋顿 为王 以伤先主待士之义 申胥逃赏 乘小船欲还仁营 器械军资 深者八九尺 顺天命以行诛 字子桓 垂二千里 亮由斜谷出 未合 宣帝使公卿五日一朝 《左氏传》曰 夏数为得天正 三月 甚相嘉尚 昔避内难 闻基先到 而徒使百姓消力失时 由秦灭五等之制 短兵接战 见洪辞切 帝王之怒 其 忧有甚於鲁 右手刎咽喉 守厥所见 徒跣抱招 书同文 维遂东引 重任之则恐不能制 乙酉 宜早图之 使知顺附和同之利 可斩也 爽不悦 会连雨十日 加卫将军 策字伯符 破之必矣 文帝问侍中刘晔等 武都太守何如人也 皆称阜有公辅之节 多以乡人虞褒 刘彦之徒分作长吏 水步军资 往而不 能反乎 孤亦衰老 即斩灭达 四年春二月 又遣陈时代燮为交阯太守 遣泰山兵屯河阳津 无以远譬也 豫曰 贼悉众大举 孰与桓邪 连营稍前 上疏曰 西陵 建平 使夏侯渊击平之 取荆州 先主自葭萌南还袭刘璋 乃以千数 一日一夜行三百馀里
2018年高考数学总复习 选考部分 不等式选讲
知识梳理 考点自测
-4-
2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:
①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c或ax+b≤-c .
考点四
-10-
解绝对值不等式及求参数范围(多考向) 考向1 分离参数法求参数范围
例1(2017全国Ⅲ,文23)已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.
考点一
考点二
考点三
考点四
-11-
-3,������ < -1,
解 (1)f(x)= 2������-1,-1 ≤ ������ ≤ 2,当 x<-1 时,f(x)≥1 无解;
3,������ > 2
当-1≤x≤2 时,由 f(x)≥1 得,2x-1≥1,解得 1≤x≤2;
当 x>2 时,由 f(x)≥1 解得 x>2.
所以 f(x)≥1 的解集为{x|x≥1}.
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.
解 (1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)因为(a+b)3=a3+3a2b+3ab2+b3 =2+3ab(a+b)≤2+3(������+4 ������)2(a+b)=2+3(������+4 ������)3, 当 a=b 时,取等号, 所以(a+b)3≤8,因此 a+b≤2.
高考数学复习:不等式
4
【解析】由 ??- 3??+ 6 = 0 可知 ??- 3??= -6 ,
且:
,因为对于任意 x, 2 ??> 0恒成立,
结合均值不等式的结论可得:
.
当且仅当 { 2??= 2-3?? ,即 { ??= 3 时等号成立 .
??- 3??= 6
??= -1
综上可得
2 ??+
81??的最小值为
( D)
【解析】用特殊值法, 令 a
3 ,b
2 ,c
1
得
1
32
1
2 2 ,选项 A 错误,
,
2
选项 B 错误,
,选项 C 正确,
,选项 D 错误,故选 C.
2【. 2016 高考天津理数】 设变量 x,y满足约束条件
的最小值为(
)
( A) 4
( B)6
(C) 10
【答案】 B
(D) 17
A.
B.
C.
D.
,
,则
【答案】 B 【解析】 .
,即
又
即
故选 B.
??- ??≥ 0, 4. ( 2018 年浙江卷)若 ???, ?满足约束条件 { 2??+ ??≤ 6,则 ??= ??+ 3??的最小值是
??+ ??≥ 2,
___________,最大值是 ___________.
【答案】
(1). -2 (2). 8
y x,
( A) 1
( B) 3
( C) 5 【答案】 D 【解析】如图,画出可行域,
(D) 9
z x 2y 表示斜率为
2018年高考数学—不等式专题
不等式(必修 5P80A3 改编 )若对于 x 的一元二次方程 x2-(m+ 1)x- m= 0 有两个不相等的实数根,则 m 的取值范围是 ________.分析由题意知= [(m+ 1)]2+>即2++>,4m 0. m 6m 1 0解得 m>- 3+2 2或 m<- 3-2 2.答案(-∞,- 3-2 2)∪(-3+2 2,+∞ )x- y+1≥0,(2016 ·全国Ⅱ卷 )若x,y 知足拘束条件x+ y-3≥0,则z=x- 2y 的最小值为x- 3≤ 0,________.分析画出可行域,数形联合可知目标函数的最小值在直线x= 3与直线 x-y+1=0 的交点 (3, 4)处获得,代入目标函数z=x-2y获得- 5.答案-52x- y+1≥0,(2016 ·全国Ⅲ卷 )设 x, y 知足拘束条件x-2y-1≤0,则=z 2x x≤1,+3y-5 的最小值为 _____.分析画出不等式组表示的平面地区如图中暗影部分所示.由题意可知,2 5 z当直线 y=-3x+3+3过点 A(-1,-1)时,z获得最小值,即 z min=2×(- 1)+3×(-1)-5=- 10.2x - y ≤ 0,(2017 ·西安检测 )已知变量 x , y 知足 x -2y + 3≥ 0,x ≥0,则 z =( 2)2x +y的最大值为 ________.分析作出不等式组所表示的平面地区,如图暗影部分所示.令 m =2x +y ,由图象可知当直线 y =- 2x + m 经过点 A 时,直线 y =- 2x +m 的纵截距最大,此时 m 最大,故 z 最大 .由2x -y =0,x =1,x - 2y +3=0, 解得y =2,即 A(1,2).代入目标函数 z =( 2)2x +y得, z = ( 2)2×1+2=4.答案42x -y ≤0, (2016·北京卷 若 , 知足 x + y ≤ 3, 则 2x + y 的最大值为 ())x yx ≥0,A.0B.3C.4D.5分析画出可行域,如图中暗影部分所示,令 z = 2x +y ,则 y =- 2x + z ,当直线 y =- 2x + z 过点 A(1,2)时, z 最大, z max = 4.答案 Cx +y ≤2, (2016 ·山东卷 )若变量 x ,y 知足 2x -3y ≤ 9,则 x 2+ y 2的最大值是 ()x ≥0,A.4B.9C.10D.12分析作出不等式组所表示的平面地区,如图(暗影部分 )所示,x 2+y 2 表示平面地区内的点到原点的距离的平方,由图易知平面地区内的点 A(3,-1)到原点的距离最大 .因此 x 2+y 2 的最大值为32+(-1)2=10.答案Cx y(2015 ·福建卷 )若直线 a + b = 1(a >0,b >0)过点 (1,1),则a +b 的最小值等于()A.2B.3C.4D.5x y1 1分析 由于直线 a +b =1(a >0,b >0)过点 (1,1),因此 a +b =1.因此 + = + 1 1 a b a b = =时取 · + ≥2+2 ·= ,当且仅当 2a b (a b) a b =2+b +a b a4a b“=”,应选 C.答案 Cb 4a的最小值为 () (2016 ·合肥二模 )若 a , b 都是正数,则 1+a · 1+ b A.7 B.8 C.9 D.10分析 ∵a ,b 都是正数,∴ 1+ b 1+ 4a b 4ab 4a a b =5+ + b ≥5+2 · =9,当且仅a a b当 b = 2a>0 时取等号 .应选 C.答案 C1 2(2015 ·湖南卷 )若实数 a ,b 知足 a + b = ab ,则 ab 的最小值为 ()A. 2B.2C.2 2D.4分析1 2 2 2 2依题意知 a >0,b >0,则 + ≥ 2 =,a babab1 2当且仅当a=b,即 b= 2a 时,“ =”建立 .1 2 2 22,由于+= ab,因此ab≥,即 ab≥2a b ab因此 ab 的最小值为 2 2,应选 C 答案 C。
2018届高三(新课标)数学(理)第七章 不 等 式
第七章⎪⎪⎪不 等 式 第一节不等式的性质及一元二次不等式突破点(一) 不等式的性质基础联通 抓主干知识的“源”与“流”1.比较两个实数大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b (a ,b ∈R ),a -b =0⇔a =b (a ,b ∈R ),a -b <0⇔a <b (a ,b ∈R ).(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的基本性质性质 性质内容 特别提醒对称性 a >b ⇔b <a ⇔ 传递性 a >b ,b >c ⇒a >c ⇒ 可加性a >b ⇔a +c >b +c⇔可乘性⎭⎬⎫a >b c >0⇒ac >bc注意c 的符号⎭⎬⎫a >b c <0⇒ac <bc同向可加性⎭⎬⎫a >b c >d ⇒a +c >b +d ⇒本节主要包括2个知识点: 1.不等式的性质;2.一元二次不等式.同向同正可乘性⎭⎬⎫a >b >0c >d >0⇒ac >bd >0 ⇒可乘方性 a >b >0⇒a n >b n (n ∈N ,n ≥1) a ,b 同为正数可开方性 a >b >0⇒na >nb (n ∈N ,n ≥2)3.不等式的一些常用性质 (1)倒数的性质①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >b d .④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质若a >b >0,m >0,则:①b a <b +m a +m ;b a >b -m a -m (b -m >0).②a b >a +m b +m ;a b <a -mb -m (b -m >0).考点贯通 抓高考命题的“形”与“神”比较两个数(式)的大小[例1] (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定(2)若a =ln 22,b =ln 33,则a ________b (填“>”或“<”).[解析] (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .(2)易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .[答案] (1)B (2)<[方法技巧] 比较两个数(式)大小的两种方法不等式的性质[例2] (1)如果a <b A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b(2)下列命题中,正确的是( ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >b C .若a c 2<bc2,则a <bD .若a >b ,c >d ,则a -c >b -d(3)(2016·西安八校联考)“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] (1)法一(性质判断):对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -aab >0,1a >1b,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b 成立,故D 项正确.法二(特殊值法):令a =-2,b =-1,则1a =-12>1b =-1,ab =2>b 2=1,-ab =-2>-a 2=-4,-1a =12<-1b=1.故A 、B 、C 项错误,D 项正确.(2)取a =2,b =1,c =-1,d =-2,可知A 错误;当c <0时,ac >bc ⇒a <b ,∴B 错误;∵a c 2<bc2,∴c ≠0,又c 2>0,∴a <b ,C 正确;取a =c =2,b =d =1,可知D 错误. (3)x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20,x 1+x 2=412>6,x 1x 2=10>9,但x 1<3.故“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的充分不必要条件.[答案] (1)D (2)C (3)A [方法技巧]不等式性质应用问题的常见类型及解题策略(1)不等式成立问题.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充分、必要条件相结合问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.1.[考点一]设a,b∈[0,+∞),A=a+b,B=a+b,则A,B的大小关系是()A.A≤B B.A≥BC.A<B D.A>B解析:选B由题意得,B2-A2=-2ab≤0,且A≥0,B≥0,可得A≥B.2.[考点二]若m<0,n>0且m+n<0,则下列不等式中成立的是()A.-n<m<n<-m B.-n<m<-m<nC.m<-n<-m<n D.m<-n<n<-m解析:选D法一:(取特殊值法)令m=-3,n=2分别代入各选项检验即可.法二:m+n<0⇒m<-n⇒n<-m,又由于m<0<n,故m<-n<n<-m成立.3.[考点二]若a>0>b>-a,c<d<0,则下列结论:①ad>bc;②ad+bc<0;③a-c>b-d;④a(d-c)>b(d-c)中,成立的个数是()A.1 B.2 C.3 D.4解析:选C∵a>0>b,c<d<0,∴ad<0,bc>0,∴ad<bc,故①不成立.∵a>0>b>-a,∴a>-b>0,∵c<d<0,∴-c>-d>0,∴a(-c)>(-b)(-d),∴ac+bd<0,∴ad+bc=ac+bdcd<0,故②成立.∵c<d,∴-c>-d,∵a>b,∴a+(-c)>b+(-d),a-c>b-d,故③成立.∵a>b,d-c>0,∴a(d-c)>b(d-c),故④成立.成立的个数为3.4.[考点二]设a,b是实数,则“a>b>1”是“a+1a>b+1b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为a+1a-⎝⎛⎭⎫b+1b=(a-b)(ab-1)ab,若a>b>1,显然a+1a-⎝⎛⎭⎫b+1b=(a-b)(ab-1)ab>0,则充分性成立,当a=12,b=23时,显然不等式a+1a>b+1b成立,但a>b>1不成立,所以必要性不成立.突破点(二)一元二次不等式1.三个“二次”之间的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2) 有两个相等实根x 1=x 2=-b2a没有实数根一元二次不等式ax 2+bx +c >0(a >0)的解集 {x |x <x 1或x >x 2}⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠-b 2aR一元二次不等式ax 2+bx +c <0(a >0)的解集 {x |x 1<x <x 2} ∅∅2.不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.考点贯通 抓高考命题的“形”与“神”一元二次不等式的解法[例1] (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;(3)ax 2-(a +1)x +1<0(a >0).[解] (1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (3)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1,即1a <1时,解为1a <x <1;当a =1时,解集为∅;当0<a <1,即1a >1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. [方法技巧]1.解一元二次不等式的方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.由一元二次不等式恒成立求参数范围上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外,常转化为求二次函数的最值或用分离参数求最值.考法(一) 在实数集R 上恒成立[例2] 已知不等式mx 2-2x -m +1<0,是否存在实数m 使得对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.[解] 不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0, 不等式组的解集为空集,即m 无解.综上可知不存在这样的实数m 使不等式恒成立. 考法(二) 在某区间上恒成立[例3] 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在[1,3]上恒成立,则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0.所以m <6,则m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是mm <0或0<m <67.考法(三) 在参数的某区间上恒成立时求变量范围[例4] 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.[解] 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4,则原问题转化为关于m 的一次函数问题. 由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x 的取值范围是(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.[易错提醒]解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.1.[考点一]不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:选C 解x (x +2)>0,得x <-2或x >0;解|x |<1,得-1<x <1.因为不等式组的解集为两个不等式解集的交集,即解集为{x |0<x <1}.2.[考点一]已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3.3.[考点二·考法(一)]若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].4.[考点二·考法(二)]若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.[考点二·考法(三)]要使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立,则x 的取值范围为________.解析:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.答案:(-∞,2)∪(4,+∞)[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:选A A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],故选A.2.(2014·新课标全国卷Ⅱ)设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( ) A .{1} B .{2} C .{0,1}D .{1,2}解析:选D N ={x |x 2-3x +2≤0}={x |1≤x ≤2},又M ={0,1,2},所以M ∩N ={1,2}. 3.(2013·新课标全国卷Ⅰ)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B解析:选B 集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b ,且|a |>|b |,a +b >2ab ,又f (x )=⎝⎛⎭⎫12x 是减函数,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b.故C 项不成立.2.函数f (x )= 1-xx +2的定义域为( ) A .[-2,1] B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)解析:选B 要使函数f (x )=1-xx +2有意义,则⎩⎪⎨⎪⎧(1-x )(x +2)≥0,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1].3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:选C 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C.4.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3) B.⎝⎛⎭⎫1,32∪(2,3) C.⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:选B ∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x -2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3). 5.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,则不等式-cx 2+2x -a >0的解集为________.解析:依题意知,⎩⎨⎧-13+12=-2a ,-13×12=ca ,∴解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).答案:(-2,3)[练常考题点——检验高考能力]一、选择题1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1bD.⎭⎬⎫a >b ab >0⇒1a >1b解析:选C 当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >b c ⇒a <b ,故B 错误;因为1a -1b =b -aab >0⇔⎩⎪⎨⎪⎧ab >0,a <b 或⎩⎪⎨⎪⎧ab <0,a >b ,故选项D 错误,C 正确.故选C.3.已知a >0,且a ≠1,m =a a 2+1,n =a a +1,则( ) A .m ≥n B .m >n C .m <nD .m ≤n解析:选B 由题易知m >0,n >0,两式作商,得m n =a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以a a (a-1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以a a (a-1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n .4.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,3]D .[-4,3)解析:选B 不等式x 2-2x -3≤0的解集为[-1,3],假设⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(a +1)≤0的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函数f (x )=x 2+4x -(a +1)的图象的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不为空集的a 的取值范围是a ≥-4.5.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞)D.⎝⎛⎦⎤-∞,-235 解析:选A 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝⎛⎭⎫-235,+∞. 6.在R 上定义运算:⎝⎛⎭⎫a c b d =ad -bc ,若不等式⎝⎛⎭⎫x -1a +1 a -2x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32 C.12 D.32解析:选D 由定义知,不等式⎝⎛⎭⎫x -1a +1 a -2x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.二、填空题7.已知a ,b ,c ∈R ,有以下命题: ①若1a <1b ,则c a <c b ;②若a c 2<b c 2,则a <b ;③若a >b ,则a ·2c >b ·2c .其中正确的是__________(请把正确命题的序号都填上).解析:①若c ≤0,则命题不成立.②由a c 2<b c 2得a -bc 2<0,于是a <b ,所以命题正确.③中由2c >0知命题正确.答案:②③8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0,bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为________.解析:若x >0,则-x <0,则f (-x )=bx 2+3x .因为f (x )为奇函数,所以f (-x )=-f (x ),即bx 2+3x =-x 2-ax ,可得a =-3,b =-1,所以f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥0,-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x <4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4).答案:(-∞,4)10.(2016·西安一模)若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是________.解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.答案:[-2,2] 三、解答题11.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.12.已知函数f (x )=x 2-2ax -1+a ,a ∈R. (1)若a =2,试求函数y =f (x )x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. 解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x ≥ 2.当且仅当x =1x 时,即x =1时,等号成立. 所以y ≥-2. 所以当x =1时,y =f (x )x的最小值为-2. (2)因为f (x )-a =x 2-2ax -1,所以要使得“对任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34,+∞. 第二节二元一次不等式(组)与简单的线性规划问题突破点(一) 二元一次不等式(组)表示的平面区域基础联通 抓主干知识的“源”与“流” 1.二元一次不等式(组)表示的平面区域不等式 表示区域Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线 Ax +By +C ≥0 包括边界直线不等式组 各个不等式所表示平面区域的公共部分2.确定二元一次不等式(组)表示的平面区域的方法步骤本节主要包括3个知识点:1.二元一次不等式(组)表示的平面区域;2.简单的线性规划问题;3.线性规划的实际应用.考点贯通 抓高考命题的“形”与“神”求平面区域的面积1.求平面区域的面积,要先作出不等式组表示的平面区域,然后根据区域的形状求面积. 2.求平面区域的面积问题,平面区域形状为三角形的居多,尤其当△ABC 为等腰直角三角形(A 为直角)时,点B 到直线AC 的距离即△ABC 的腰长|AB |.由点到直线的距离公式求得|AB |,面积便可求出.[例1] 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大[解析] 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即所求.求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S =12×(2-1)×2=1.[答案] B [方法技巧]解决求平面区域面积问题的方法步骤(1)画出不等式组表示的平面区域;(2)判断平面区域的形状,并求得直线的交点坐标、图形的边长、相关线段的长(三角形的高、四边形的高)等,若为规则图形则利用图形的面积公式求解;若为不规则图形则利用割补法求解.[提醒] 求面积时应考虑圆、平行四边形等图形的对称性.根据平面区域满足的条件求参数不等式组中的参数影响平面区域的形状,如果不等式组中的不等式含有参数,这时它表示的区域的分界线是一条变动的直线,此时要根据参数的取值范围确定这条直线的变化趋势、倾斜角度、上升还是下降、是否过定点等,确定区域的可能形状,进而根据题目要求求解;如果是一条曲线与平面区域具有一定的位置关系,可以考虑对应的函数的变化趋势,确定极限情况求解;如果目标函数中含有参数,则要根据这个目标函数的特点考察参数变化时目标函数与平面区域的关系,在运动变化中求解.[例2] 若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞ [解析] 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).由⎩⎪⎨⎪⎧ y =x ,2x +y =2,得A 23,23;由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a ≥43.[答案] D[易错提醒]此类问题的难点在于参数取值范围的不同导致平面区域或者曲线位置的改变,解答的思路可能会有变化,所以求解时要根据题意进行必要的分类讨论及对特殊点、特殊值的考虑.能力练通 抓应用体验的“得”与“失”1.[考点一]设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,AB 长度的最大值为4,则以AB 为直径的圆的面积为最大值S =π×⎝⎛⎭⎫422=4π.2.[考点二]若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43D .3解析:选B 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C 2-4m 3,2+2m3,D (-2m,0).S△ABC=S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )⎝⎛⎭⎫1+m -2+2m 3=(1+m )⎝⎛⎭⎫1+m -23=43,解得m =1或m =-3(舍去).3.[考点一]不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.答案:44.[考点二]若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为________.解析:不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,增加了(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点,此时,整点的个数共9个,故整数a =-1.答案:-1突破点(二) 简单的线性规划问题基础联通 抓主干知识的“源”与“流”1.线性规划中的基本概念名称 意义约束条件 由变量x ,y 组成的不等式(组)线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式(组) 目标函数 关于x ,y 的函数解析式,如z =2x +3y 等线性目标函数关于x ,y 的一次函数解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为“画、移、求、答”.即考点贯通 抓高考命题的“形”与“神”线性目标函数的最值[例1] (2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17[解析] 由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小.又知点A 的坐标为(3,0),∴z min =2×3+5×0=6.故选B.[答案] B [方法技巧]求解线性目标函数最值的常用方法线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.非线性目标函数的最值[例2] (2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12[解析] 作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.[答案] C[方法技巧]非线性目标函数最值问题的常见类型及求法(1)距离平方型:目标函数为z =(x -a )2+(y -b )2时,可转化为可行域内的点(x ,y )与点(a ,b )之间的距离的平方求解.(2)斜率型:对形如z =ay +bcx +d (ac ≠0)型的目标函数,可利用斜率的几何意义来求最值,即先变形为z =a c ·y -⎝⎛⎭⎫-b a x -⎝⎛⎭⎫-d c 的形式,将问题化为求可行域内的点(x ,y )与点⎝⎛⎭⎫-d c ,-b a 连线的斜率的ac 倍的取值范围、最值等.(3)点到直线距离型:对形如z =|Ax +By +C |型的目标函数,可先变形为z =A 2+B 2·|Ax +By +C |A 2+B2的形式,将问题化为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.线性规划中的参数问题[例3] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3[解析] 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意,∴2a +0=4,此时a =2.[答案] B [方法技巧]求解线性规划中含参问题的两种基本方法(1)把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或范围;(2)先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.能力练通 抓应用体验的“得”与“失”1.[考点一]设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.2.[考点二]已知(x ,y )满足⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则k =yx +1的最大值为( )A.12 B.32 C .1D.14解析:选C 如图,不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域为△AOB 的边界及其内部区域,k =y x +1=y -0x -(-1)表示平面区域内的点(x ,y )和点(-1,0)连线的斜率.由图知,平面区域内的点(0,1)和点(-1,0)连线的斜率最大,所以k max =1-00-(-1)=1.3.[考点一](2017·银川模拟)设z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为( )A .-3B .-2C .-1D .0解析:选A 作出实数x ,y 满足的平面区域,如图中阴影部分所示,由图知,当目标函数z =x +y 经过点C (k ,k )时,取得最大值,且z max =k +k =6,得k =3.当目标函数z =x +y 经过点B (-6,3)时,取得最小值,且z min =-6+3=-3,故选A.4.[考点三]x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D 由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.5.[考点二]设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为________.解析:作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得A 点的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80. 答案:80突破点(三) 线性规划的实际应用基础联通 抓主干知识的“源”与“流”解线性规划应用题的一般步骤考点贯通 抓高考命题的“形”与“神”线性规划的实际应用[典例] 1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A .12万元B .16万元C .17万元D .18万元[解析] 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.[答案] D[易错提醒]求解线性规划应用题的三个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否为整数、是否为非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.能力练通 抓应用体验的“得”与“失”1.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =( )A .10B .12C .13D .16解析:选C 如图所示,画出约束条件所表示的区域,即可行域,作直线b +a =0,并平移,结合a ,b ∈N ,可知当a =6,b =7时,a +b 取最大值,故x =6+7=13.2.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.解析:设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z =300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点M 或其附近的整数点处取得最大值,由方程组⎩⎪⎨⎪⎧ 3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.答案:1 700[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3解析:选C 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.2.(2013·新课标全国卷Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y 的最小值为1,则a =( )A.14 B.12C .1D .2解析:选B 由已知约束条件,作出可行域如图中△ABC 内部及边界部分所示,由目标函数z =2x +y 的几何意义为直线l :y =-2x +z 在y 轴上的截距,知当直线l 过可行域内的点B (1,-2a )时,目标函数z =2x +y 的最小值为1,则2-2a =1,a =12,故选B.3.(2016·全国丙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:不等式组表示的平面区域如图中阴影部分所示.平移直线x +y =0,当直线经过A 点时,z 取得最大值, 由⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得A 1,12,z max =1+12=32.答案:324.(2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分所示.作直线2 100x +900y =0,即7x +3y =0并上下平移,易知当直线经过点M 时,z 取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得B (60,100).则z max =2 100×60+900×100=216 000(元). 答案:216 0005.(2015·新课标全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.解析:画出可行域如图阴影所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx 最大.。
2018年高考数学—不等式专题
不等式(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0,解得m >-3+22或m <-3-2 2.答案 (-∞,-3-22)∪(-3+22,+∞)(2016·全国Ⅱ卷)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y得到-5. 答案 -5(2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x+3y -5的最小值为_____.解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.(2017·西安检测)已知变量x ,y 满足⎩⎨⎧2x -y ≤0,x -2y +3≥0,x ≥0,则z =(2)2x +y 的最大值为________.解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4(2016·北京卷)若x ,y 满足⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为()A.0B.3C.4D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4.答案 C(2016·山东卷)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A.4B.9C.10D.12 解析 作出不等式组所表示的平面区域,如图(阴影部分)所示, x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大.所以x 2+y 2的最大值为32+(-1)2=10.答案 C(2015·福建卷)若直线x a +y b =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A.2B.3C.4D.5解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a =b =2时取“=”,故选C. 答案 C(2016·合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( ) A.7B.8C.9D.10解析 ∵a ,b 都是正数,∴⎝⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4a b =9,当且仅当b =2a >0时取等号.故选C.答案 C(2015·湖南卷)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab ,当且仅当1a =2b,即b=2a时,“=”成立.因为1a +2b=ab,所以ab≥22ab,即ab≥22,所以ab的最小值为22,故选C 答案 C。
2018-2019学年高中数学 第一讲 不等式和绝对值不等式 1.2 绝对值不等式 1.2.2 绝对不等式的解法 新人教A版
2.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式有 三种解法:分区间(分类)讨论法、图象法和几何法.分区 间讨论的方法具有普遍性,但较麻烦;几何法和图象法 直观,但只适用于数据较简单的情况.
(2)分段讨论法. 转化为不含绝对值的不等式求解. (3)数形结合法. 从函数的观点,利用函数图象求不等式的解集.
1.思考判断(正确的打“√”,错误的打“×”). (1)|x|<1 的解集为{x|-1<x<1}.( ) (2)|x|<1 的几何意义就是数轴上到原点的距离小于 1 的点的集合.( ) (3)|x|≥1 的解集是{x|x≥1 或 x≤-1}.( ) (4)|x|>1 的几何意义就是数轴上到原点的距离大于 1 的点的集合.( )
1.|x|>a 与|x|<a(α>0)型的不等式 当 a>0 时,不等式|x|>a 的解集是{x|x>a 或 x<- a},不等式|x|<a 的解集是{x|-a<x<a}.
2.|ax+b|>c,(c>0)与|ax+b|<c,(c>0)型的不等
式 不等式|ax+b|>c 的解集是{x|ax+b>c 或 ax+b<-
<-4或x>2.
答案:A
3.(2017·天津卷)设x∈R,则“2-x≥0”是“|x-
1|≤1”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
解析:因为2-x≥0,所以x≤2,因为|x-1|≤1,所
以0≤x≤2.因为当x≤2时不一定有x≥0,当0≤x≤2时一
定有x≤2,所以“2-x≥0”是“|x-1|≤1”的必要而不
当 x≥ 1-a时,f(x)=x+ a-x+ 1-a= a+ 1-a.
所以[f(x)]max= a+ 1-a.(7 分)
2018年高中数学北师大版选修4-5课件:不等式的性质与不等关系本章整合
������
π
������
∴2 sin θ+2 cos θ≤2n(sin2θ+cos2θ)=2n. ∴(1-x)n+(1+x)n≤2n.
综上所述,不等式的解集为{x|0<x<6}.
专题一
专题二
专题三
专题四
变式训练1已知函数f(x)=|x-1|. (1)解关于x的不等式f(x)+x2-1>0; (2)若g(x)=-|x+3|+m,且f(x)<g(x)的解集非空,求实数m的取值范围. 解(1)由题意,原不等式可化为|x-1|>1-x2. 由x-1>1-x2,得x>1或x<-2; 由x-1<-(1-x2),得x>1或x<0. 则x>1或x<0,故原不等式的解集为{x|x<0或x>1}. (2)原不等式等价于|x-1|+|x+3|<m的解集非空. 令h(x)=|x-1|+|x+3|,则h(x)min<m,由|x-1|+|x+3|≥|x-1-x-3|=4,所以 h(x)min=4,所以m>4. 故实数m的取值范围为(4,+∞).
专题一
专题二
专题三
专题四
专题二 最值及恒成立问题 关于不等式的恒成立问题,一般要转化为求函数的最值问题,例 如:要使f(x)<a恒成立,我们只需求出f(x)的最大值f(x)max,如果a比这 个最大值还大,那么这个式子就恒成立了,即f(x)<a恒成立 ⇔f(x)max<a.同理要使f(x)>a恒成立,我们只需求出f(x)的最小值 f(x)min,如果a比这个最小值还小,那么这个式子就恒成立,即f(x)>a恒 成立⇔f(x)min>a.
2018高考数学(理)专题突破—不等式
不等式【考点梳理】1.不等式的解法(1)一元二次不等式的解法.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx +c同号,则其解集在两根之外;如果a与ax2+bx+c异号,则其解集在两根之间.(2)简单分式不等式的解法.f(x)①>0(<0)⇔f(x)g(x)>0(<0).g(x)f(x)②≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.g(x)(3)指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.2.几个不等式(1)a2+b2≥2ab(取等号的条件是当且仅当a=b).⎛a+b⎫2(2)ab≤ 2⎪(a,b∈R).⎝⎭(3)a2+b2a+b2ab2≥2≥ab≥a+b(a>0,b>0).(4)2(a2+b2)≥(a+b)2(a,b∈R,当a=b时等号成立).3.利用基本不等式求最值(1)如果x>0,y>0,xy=p(定值),当x=y时,x+y有最小值2p(简记为:积定,和有最小值).12(2)如果x>0,y>0,x+y=s(定值),当x=y时,xy有最大值4s(简记为:和定,积有最大值).4.简单的线性规划问题解决线性规划问题首先要找到可行域,再根据目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域上的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.【题型突破】题型一、不等式的性质及解法【例1】(1)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为()A.{x |x >2或x <-2}C.{x |x <0或x >4} B.{x |-2<x <2}D.{x |0<x <4}1(2)已知函数f (x )=x 3-2x +e x -e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.1⎤⎡【答案】(1)C (2)⎢-1,2⎥⎣⎦【解析】(1)∵f (x )=(x -2)(ax +b )为偶函数,∴(-x -2)(-ax +b )=(x -2)(ax +b ),则(2a -b )x =0恒成立.因此2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2).又函数在(0,+∞)上单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.1(2)f ′(x )=3x 2-2+e x +e x ≥3x 2-2+2为单调递增函数.1又f (-x )=-x 3+2x +e -x -e x =-(x 3-2x +e x -e x)=-f (x ),故f (x )为奇函数,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ),1∴2a 2≤1-a ,解之得-1≤a ≤2,1⎤⎡故实数a 的取值范围是⎢-1,2⎥.⎣⎦【类题通法】1.解一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.2.(1)对于和函数有关的不等式,可先利用函数的单调性进行转化.(2)含参数的不等式的求解,要对参数进行分类讨论.【对点训练】1e x ·e x =3x 2≥0且f ′(x )不恒为0,所以f (x )(1)若不等式x 2-ax +1≥0对于一切a ∈[-2,2]恒成立,则x 的取值范围是________.(2)已知不等式21≥5|a 2-a |对于x ∈[2,6]恒成立,则a 的取值范围是________.x -1【答案】(1)R (2)[-1,2]【解析】(1)因为a ∈[-2,2],可把原式看作关于a 的一次函数,即g (a )=-xa +x 2+1≥0,2⎧g (-2)=x +2x +1≥0,由题意可知⎨解之得x ∈R .2⎩g (2)=x -2x +1≥0,22(2)设y =,y ′=-<0,x -1(x -1)2故y =222在x ∈[2,6]上单调递减,则y min ==5,x -16-121故不等式≥5|a 2-a |对于x ∈[2,6]恒成立等价于x -12⎧a -a -2≤0,122⎨5|a -a |≤5恒成立,化简得⎩a 2-a +2≥0,解得-1≤a ≤2,故a 的取值范围是[-1,2].题型二、基本不等式及其应用x y 【例2】(1)若直线a +b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.⎛1⎫x (2)已知函数f (x )=2+ 2⎪,若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,⎝⎭x 则实数m 的最大值为________.【答案】(1)8(2)4x y 【解析】(1)∵直线a +b =1(a >0,b >0)过点(1,2),12∴a +b =1(a >0,且b >0),⎛12⎫则2a +b =(2a +b ) a +b ⎪⎝⎭b 4a =4+a +b ≥4+2b 4a a ·b=8.b 4a 当且仅当a =b ,即a =2,b =4时上式等号成立.因此2a +b 的最小值为8.(2)由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=(f (x ))2-2.∵f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,(f (x ))2+4∴m ≤对于x ∈R 恒成立.f (x )(f (x ))2+44又=f (x )+≥2f (x )f (x )∴m ≤4,故实数m 的最大值为4.【类题通法】1.利用基本不等式求最值,要注意“拆、拼、凑”等变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值,等号能够取得.2.特别注意:(1)应用基本不等式求最值时,若遇等号取不到的情况,则应结合函数的单调性求解.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则会出错.【对点训练】32(1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则x +y 的最小值是()5A.38B.3 C.8 D.24(f (0))2+44f (x )·=4,且=4,f (x )f (0)12(2)若实数a ,b 满足a +b =ab ,则ab 的最小值为()A.2 B.2 C.22 D.4【答案】(1)C (2)C【解析】(1)∵a ∥b ,∴3(y -1)+2x =0,即2x +3y =3.∵x >0,y >0,32⎛32⎫1∴x +y = x +y ⎪·3(2x +3y )⎝⎭9y 4x ⎫11⎛=3 6+6+x +y ⎪≥3(12+2×6)=8.⎝⎭当且仅当3y =2x 时取等号.12(2)依题意知a >0,b >0,则a +b ≥2222ab =ab ,12当且仅当a =b ,即b =2a 时,“=”成立.12∵a +b =ab ,∴ab ≥22,即ab ≥22,ab∴ab 的最小值为2 2.题型三、简单的线性规划问题⎧x +2y -2≥0,【例3】(1)设变量x ,y 满足约束条件⎨则目标函数z =x +y 的最大x ≤0,⎩y ≤3,值为()2A.3 B.13C.2 D.32x +y ≥0,⎧x +2y ≤1,(2)设x ,y 满足约束条件⎨2x +y ≥-1,则z =3x -2y 的最小值为________.⎩x -y ≤0,【答案】(1)D (2)-5【解析】(1)作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最优解在B (0,3)处取得,故z max =0+3=3,选项D 符合.(2)作出约束条件所表示的可行域如图中阴影部分所示,3z 3z 由z =3x -2y 得y =2x -2,求z 的最小值,即求直线y =2x -2的纵截距的最大值,⎧2x +y =-1,3z 当直线y =2x -2过图中点A 时,纵截距最大,由⎨解得A 点坐标为⎩x +2y =1(-1,1),此时z =3×(-1)-2×1=-5.⎧2x -y -4≥0,y +1【例4】已知实数x ,y 满足⎨x -2y -2≤0,则z =的取值范围是________.x +2⎩y ≤6,⎡1⎤【答案】⎢4,1⎥⎣⎦【解析】作出约束条件所表示的可行域如图中阴影部分所示,⎧2x -y -4=0,联立⎨得A (2,0).⎩x -2y -2=0,⎧y =6,联立⎨得点B (5,6).⎩2x -y -4=0,y +1z =的几何意义为可行域内的动点与定点P (-2,-1)连线的斜率,x +2y +11⎡1⎤∵k P A =,k PB =1,∴z =的取值范围为⎢4,1⎥.4⎣⎦x +2⎧x -y -2≤0,【例5】已知x ,y 满足约束条件⎨ax +y ≥4,目标函数z =2x -3y 的最大值是⎩x -2y +3≥0,2,则实数a =()1A.2 B.13C.2 D.4【答案】A【解析】作出约束条件所表示的可行域如图中阴影部分所示,∵目标函数z =2x -3y 的最大值是2,由图象知z =2x -3y 经过平面区域的A 时目标函数取得最大值2.⎧x -y -2=0,由⎨解得A (4,2),⎩2x -3y =2,同时A (4,2)也在直线ax +y -4=0上,1∴4a =2,则a =2.【类题通法】1.线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.2.对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【对点训练】⎧x -y +3≤0,(1)已知x ,y 满足约束条件⎨3x +y +5≤0,则z =x +2y 的最大值是(⎩x +3≥0,A.0B.2C.5D.6)2x-y+2≥0,5(2)若实数x,y 满足2x+y-6≤0,且z=mx -y(m <2)的最小值为-2,则m 等0≤y≤3,于()5A.45B.-6 C.11D.3【答案】(1)C (2)C【解析】(1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z=x+2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.(2)作出约束条件所表示的可行域如图中阴影部分所示,y=3,5z=mx -y(m <2)的最小值为-2,可知目标函数的最优解过点A,由2x-y+2=0,1解得A 2,3,5m ∴-2=2-3,解得m =1.。
2018年高考数学考试大纲解读专题15不等式选讲文版含答案
专题15 不等式选讲选考内容(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b .(2)a b a c c b .(3)会利用绝对值的几何意义求解以下类型的不等式:; ;ax b c ax b c x a x b c .2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)柯西不等式的向量形式:||||||.(2)22222()(+)()a b c d ac bd .(3)222222121223231313()()()()()()x x y y x x y y x x y y .(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.6.会用数学归纳法证明伯努利不等式:了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等.2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等.3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注.考向一绝对值不等式的求解样题 1 (2017新课标全国Ⅰ文科)已知函数2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围.所以a 的取值范围为[1,1].【名师点睛】形如||||x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值符号内式子对应方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,将每部分去掉绝对值符号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b和2y c的图像,结合图像求解.考向二含绝对值不等式的恒成立问题样题 2 已知函数.(1)当时,求的解集;(2)若不等式对任意实数恒成立,求的取值范围.解得,故的取值范围是.样题 3 已知函数.(1)若不等式的解集为,求实数的值;(2)若不等式对任意恒成立,求实数的取值范围.所以,解得或.考向三不等式的证明样题 4 已知函数的单调递增区间为.(1)求不等式的解集;(2)设,证明:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2017年】1.【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .92.【2017天津,理2】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为 (A )23 (B )1(C )32(D )3 3.【2017山东,理4】已知x,y 满足,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )64.【2017山东,理7】若,且,则下列不等式成立的是 (A ) (B ) (C ) (D )5.【2017课标3,理9】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .86.【2017北京,理4】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1(B )3x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 0a b >>1ab =()21log 2a b a a b b +<<+()21log 2a b a b a b<+<+()21log 2a b a a b b +<+<()21log 2a b a b a b +<+<(C )5 (D )97.【2017浙江,4】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则y x z 2+=的取值范围是A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+8.【2017天津,理8】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C )[-(D )39[]16-9.【2017课标3,理13】若x ,y 满足约束条件y 0200x x y y -≥⎧⎪+-≤⎨⎪≥⎩,则z 34x y =-的最小值为__________.10.【2017天津,理12】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.11.【2017课标1,理13】设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【2016年,2015年】1.【2016高考新课标1卷】若101a b c >><<,,则( )(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <2.【2015高考北京,理2】若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .23.【2015高考广东,理6】若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( ) A .531 B. 6 C. 523 D. 4 4.【2016高考浙江理数】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( )A .2B .4C .3D .65.【2015高考山东,理5】不等式152x x ---<的解集是( )(A )(-∞,4) (B )(-∞,1) (C )(1,4) (D )(1,5)6.【2015高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2 (C )-2 (D )-37.【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.58.【2015高考陕西,理9】设()ln ,0f x x a b=<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>9.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元10. 【2016高考浙江理数】已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 11.【2015高考四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )81212. 【2016年高考四川理数】设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件13. 【2015高考天津,理2】设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩ ,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )4014. 【2015高考湖北,理10】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t=,2[]2t=,…,[]n t n=同时成立....,则正整数n的最大值是()A.3 B.4 C.5 D.615.【2015高考福建,理5】若变量,x y满足约束条件20,0,220,x yx yx y+≥⎧⎪-≤⎨⎪-+≥⎩则2z x y=-的最小值等于( )A.52-B.2-C.32-D.216.【2015湖南理2】若变量x,y满足约束条件1211x yx yy+≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为()A.-7B.-1C.1D.217.【2016高考山东理数】若变量x,y满足2,239,0,x yx yx则22x y的最大值是()(A)4 (B)9 (C)10 (D)1218.【2016高考天津理数】设变量x,y满足约束条件20,2360,3290.x yx yx y-+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y=+的最小值为()(A)4-(B)6(C)10(D)1719.【2016新课标3理数】若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为_____________.20.【2016新课标1卷】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.21.【2015新课标2,理14】若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.22.【2015新课标1,理15】若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .23.【2016高考江苏卷】 已知实数,x y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y +的取值范围是 .24. 【2015高考浙江,理14】若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .25. 【2015高考江苏,7】不等式224x x-<的解集为________.26.【2017江苏,10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 .。