[精品]2019学年高中数学第一章集合与函数概念1.1_1.1.3综合应用练习新人教版必修(1)

合集下载

高中数学第一章集合与函数概念1.1集合1.1.2集合间的基本关系练习新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.2集合间的基本关系练习新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.2集合间的基本关系练习新人教A版必修1课时过关·能力提升基础巩固1.已知集合P={1},Q={0,1,4},下列式子不正确的是()A.P⫋QB.P⊆QC.1∈PD.1⊆Q解析:∵P={1},Q={0,1,4},∴P⊆Q,P⫋Q,1∈P均正确.答案:D2.如果集合A={x|x>-1},那么()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A解析:“∈”表示元素与集合的关系,“⊆”表示集合与集合的关系,从而可知D正确.答案:D3.集合A={0,1,2}的子集的个数是()A.16B.8C.7D.4解析:由于A中含有3个元素,则它有23=8个子集.答案:B4.设a,b∈R,集合{1,a+b,a}=,则b-a等于()A.1B.-1C.2D.-2答案:C5.已知集合A=,B=,则()A.A⊇BB.A⫌BC.A=BD.A⫋B解析:x=∈B,但∈B,∉A,故A⫋B.答案:D6.若集合A={-1,0},B={0,1,x+2},集合A,B的关系如图所示,则实数x的值为.解析:由题图知A⫋B,故-1=x+2,解得x=-3.答案:-37.已知集合A⫋{1,2,3},且A中至少含有一个奇数,则这样的集合A有个.解析:∵A⫋{1,2,3},∴A中至多含有2个元素.又A中至少有一个奇数,∴A可能为{1},{1,2},{1,3},{3},{2,3},共5个.答案:58.已知集合A={2,-1},B={m2-m,-1},且A=B,记由实数m的值构成的集合为C,则集合C的真子集个数为.解析:∵A=B,∴m2-m=2,解得m=-1或m=2.∴C={-1,2},∴集合C的真子集为⌀,{-1},{2},共3个.答案:39.已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.解:(1)若A是B的真子集,即A⫋B,则a>2.(2)若B是A的子集,即B⊆A,则a≤2.(3)若A=B,则必有a=2.10.如图所示的Venn图中表示的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,E分别是哪种图形的集合?解:观察Venn图,得B,C,D,E均是A的子集,且有E⊆D,D⊆C.梯形、平行四边形、菱形、正方形都是四边形,故A={四边形};梯形不是平行四边形,而菱形、正方形是平行四边形,故B={梯形},C={平行四边形};又正方形是菱形,故D={菱形},E={正方形}.能力提升1.已知集合A⊆{1,2,3},且A中至少有两个元素,则满足条件的集合A共有()A.3个B.4个C.5个D.8个解析:满足条件的集合A有{1,2},{1,3},{2,3},{1,2,3},共4个.答案:B2.已知集合A={x|x≤-1,或x≥1},B={x|a<x<a+1},且B⊆A,则实数a的取值范围是()A.a≤-2B.a≥1C.-2≤a≤1D.a≤-2或a≥1解析:由题意知,B≠⌀.作出如图所示的数轴,由B⊆A可得a+1≤-1或a≥1,即实数a的取值范围是a≤-2或a≥1.答案:D3.已知集合A=,B={a2,a+b,0},若A=B,则a2 016+b2 017的值为()A.0B.2C.1D.-1解析:由题意知a≠0,否则无意义,故=0,b=0.此时集合A={a,0,1},B={a2,a,0}.由A=B,得a2=1,则a=±1(舍去正值).∴a2016+b2017=1.答案:C★4.已知集合M=,N=,则集合M,N的关系是() A.M=N B.M⫋NC.N⊆MD.N⫋M解析:明确集合M,N中的元素,依据有关概念来判断.(方法1)用列举法分别表示集合M,N.集合M=,集合N=,-,-,则有M⫋N.(方法2)设n=2m或2m+1,m∈Z,则有N==,故M⫋N.答案:B5.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()解析:∵N={x|x2+x=0},∴N={-1,0}.又M={-1,0,1},∴N⫋M.故选B.答案:B6.已知集合A={x|x2-2x+a=0,a∈R},若集合A有且仅有2个子集,则a的值是.解析:因为集合A有且仅有2个子集,所以A仅含有一个元素,即关于x的方程x2-2x+a=0有两个相等的实数根.所以Δ=4-4a=0,解得a=1.答案:17.若集合A={x∈R|x2-5x+m=0},B={x∈R|x-3=0},且B⊆A,则实数m=,集合A=.解析:易得B={3}.∵B⊆A,∴3∈A,即9-15+m=0.∴m=6.解方程x2-5x+6=0,得x1=2,x2=3,∴A={2,3}.答案:6{2,3}★8.已知集合A={2,4,6,8,9},B={1,2,3,5,8},是否存在集合C,使C中每一个元素都加上2变成A 的一个子集,且C中每个元素都减去2就变成了B的一个子集?若存在,求出集合C;若不存在,请说明理由.解:假设存在满足条件的集合C.A中元素都减去2,得集合E={0,2,4,6,7}.B中元素都加上2,得集合F={3,4,5,7,10}.则集合C中的元素均在E,F中,因此满足条件的C为{4}或{7}或{4,7}.。

高中数学第一章集合与函数概念1.1集合1.1.3第1课时并集、交集练习新人教A版必修1(2021年

高中数学第一章集合与函数概念1.1集合1.1.3第1课时并集、交集练习新人教A版必修1(2021年

2018-2019学年高中数学第一章集合与函数概念1.1 集合1.1.3 第1课时并集、交集练习新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章集合与函数概念1.1 集合1.1.3 第1课时并集、交集练习新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章集合与函数概念1.1 集合1.1.3 第1课时并集、交集练习新人教A版必修1的全部内容。

第一章 1.1 1。

1。

3 第1课时并集、交集1.下列关系:Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是()A.1 B.2C.3 D.4解析:只有Z∪N=N是错误的,应是Z∪N=Z.答案:C2.已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2}C.{1,3} D.{1,2,3}解析:∵1∈A,1∈B,3∈A,3∈B,∴A∩B={1,3}.答案:C3.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∪B=()A.{x|-1<x<1} B.{x|-2<x<2}C.{x|-2<x<1}D.{x|0<x<1}解析:因为A={x|-2<x<1},B={x|0<x<2},所以A∪B={x|-2<x<2}.答案:B4.已知集合A={1,2,4},B={2,4,6},则A∪B=________。

解析:由条件得A∪B={1,2,4,6}.答案:{1,2,4,6}5.已知集合A={(x,y)|y=x+3},B={(x,y)|y=3x-1},则A∩B=________。

高一数学练习册答案:第一章集合与函数概念

高一数学练习册答案:第一章集合与函数概念

2019高一数学练习册答案:第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-221 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩ 綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂UB={2},∴-6 綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂UB,而2∈綂UB,满足条件A∩ 綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂UB,与条件A∩ 綂UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(02.4(203.6(404.8(601.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1. 11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(011.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x12.且日均销售量应为440-(x-13)·400,即x23,总利润y=(x-12)[440-(x-13)·40]-600(121 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)3,∴4(2b-1)+12b3 2b-32b0 0单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f1217.T(h)=19-6h(0≤h≤11),-47(h11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(56.5x-28.6(622.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x20,只要a-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a-2,即a的取值范围是(-∞,-2). 要练说,得练看。

高中数学 第一章 集合与函数概念1.1集合课后习题(A组.B组)

高中数学 第一章 集合与函数概念1.1集合课后习题(A组.B组)

第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==; (3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B I U .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==I I ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==U U .2.设22{|450},{|1}A x x x B x x =--===,求,A B A B I U .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-I U .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B I U .3.解:{|}A B x x =I 是等腰直角三角形,{|}A B x x =U 是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B I I 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U A B =I ð,()(){6}U U A B =I 痧.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N . 1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x =的自变量的值组成的集合; (3)不等式342x x ≥-的解集. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B U I .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥U ,{|34}A B x x =≤<I .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B I ,A C I ,()ABC I U ,()A B C U I .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =I ,{3,4,5,6}A C =I ,而{1,2,3,4,5,6}B C =U ,{3}B C =I ,则(){1,2,3,4,5,6}A B C =I U ,(){1,2,3,4,5,6,7,8}A B C =U I .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B U ;(2)A C I .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅I I .(1){|}A B x x =U 是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =I 是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C I ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =I 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð,{|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B U ð,()R A B I ð,()R A B I ð,()R A B U ð.10.解:{|210}A B x x =<<U ,{|37}A B x x =≤<I ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð,得(){|2,10}R A B x x x =≤≥U 或ð,(){|3,7}R A B x x x =<≥I 或ð,(){|23,710}R A B x x x =<<≤<I 或ð,(){|2,3710}R A B x x x x =≤≤<≥U 或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =U ,则集合B 有 个.1.4 集合B 满足A B A =U ,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B U I .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅U I ;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==U I ;当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==U I ;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅U I .4.已知全集{|010}U A B x N x ==∈≤≤U ,(){1,3,5,7}U A B =I ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B =U ,得U B A ⊆ð,即()U U A B B =I 痧,而(){1,3,5,7}U A B =I ð, 得{1,3,5,7}U B =ð,而()U U B B =痧,即{0,2,4,6,8.9,10}B =. 第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象. O 离开家的距离 时间 (A ) O 离开家的距离 时间 (B ) O 离开家的距离 时间 (C ) O 离开家的距离 时间(D )3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60o相对应 与A B 中的元素是什么?与B 中的元素22相对应的A 中元素是什的么? 4.解:因为3sin 60=o ,所以与A 中元素60o 相对应的B 中的元素是3; 因为2sin 452=o,所以与B 中的元素22相对应的A 中元素是45o . 1.2函数及其表示习题1.2(第23页) 1.求下列函数的定义域:(1)3()4x f x x =-; (2)2()f x x =; (3)26()32f x x x =-+; (4)4()x f x -=. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x =-=-; (2)24(),()()f x x g x x ==; (3)326(),()f x x g x x ==.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x =; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞U ,值域是(,0)(0,)-∞+∞U ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x =>,10(0)x y y =>, 由对角线为d ,即22d x y =+,得22100(0)d x x x =+>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得22222()22220(0)l x y x y xy d d =+=++=+>,即2220(0)l d d =+>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-U ;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -, 得222125x x t +-=+,(012)x ≤≤, 即24125x x t +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00):天气越来越暖,中午时分(12:0013:00):一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00:期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 . 5.最小值. 1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)5(,)2-∞上递减;函数在5[,)2+∞上递增; 函数在 (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==I 的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B I ,A C I ,()()A B B C I U I .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I ,即A C =∅I ; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I ; 则39()(){(0,0),(,)}55A B B C =-I U I .6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.已知函数1()1x f x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x +=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤. 10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =U ð,(){2,4}U A B =I ð,求集合B . 3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U , 集合A B U 里除去()U A B I ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明: (1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. (1)已知奇函数()f x 在[,]a b 上是减函数,试问:6.[,]b a --上是增函数还是减函数?它在(2)已知偶函数()g x 在[,]a b 上是增函数,试问:[,]b a --上是增函数还是减函数?它在6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分 不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.。

高中数学第一章集合与函数概念1.1.3.2补集及集合运算的综合应用aa高一数学

高中数学第一章集合与函数概念1.1.3.2补集及集合运算的综合应用aa高一数学

2021/12/13
第十六页,共四十四页。
【跟踪训练 1】 (1)设集合 U={1,2,3,4,5,6},M=
{1,3,5},则∁UM=( )
A.{2,4,6}
B.{1,3,5}
C.{1,2,4}
D.U
(2)若全集 U={x∈R|-2≤x≤2},则集合 A={x∈R|-
2≤x≤0}的补集∁UA 为( )
2021/12/13
第十四页,共四十四页。
解法二:借助 Venn 图,如图所示.
由图可知 B={2,3,5,7}.
2021/12/13
第十五页,共四十四页。
拓展提升 求集合补集的基本方法及处理技巧
(1)基本方法:定义法. (2)两种处理技巧 ①当集合用列举法表示时,可借助 Venn 图求解; ②当集合是用描述法表示的连续数集时,可借助数轴, 利用数轴分析求解.
A.{x∈R|0<x<2} B.{x∈R|0≤x<2}
C.{x∈R|0<x≤2} D.{x∈R|0≤x≤2}
2021/12/13
第十七页,共四十四页。
解析 (1)因为集合 U={1,2,3,4,5,6},M={1,3,5},所 以∁UM={2,4,6}.
(2)借助数轴(如图)易得∁UA={x∈R|0<x≤2}.
②若 A≠∅,则需满足2a-2≥1, a≤2,
解得32≤a<2,综上所述 a≥32.
2021/12/13
第二十五页,共四十四页。
拓展提升
利用补集求参数问题的方法
(1)解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进行 分类讨论,转化为等价不等式(组)求解,同时要注意区域端 点的问题.
(2)不等式中的等号在补集中能否取到,要引起重视, 还要注意补集是全集的子集.

高中数学 第一章 集合与函数概念 1.1-1.1.3 集合的基本运算 第2课时 补集及集合运算的综合

高中数学 第一章 集合与函数概念 1.1-1.1.3 集合的基本运算 第2课时 补集及集合运算的综合

集合的基本运算第2课时补集及集合运算的综合应用A级基础巩固一、选择题1.已知全集U=R,集合A={x|1≤2x+1<9},则∁U A=( )A.{x|x<0或x>4} B.{x|x≤0或x>4}C.{x|x≤0或x≥4} D.{x|x<0或x≥4}解析:因为U=R,A={x|0≤x<4},所以∁U A={x|x<0或x≥4}.答案:D2.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则右图中阴影部分所表示的集合为( )A.{1} B.{0,1}C.{1,2} D.{0,1,2}解析:图中阴影部分所表示的集合为A∩(∁R B),因为A={1,2,3,4,5},B={x∈R|x≥2},所以∁R B={x|x<2},所以A∩(∁R B)={1}.答案:A3.已知集合A={x∈R|-2<x<6},B={x∈R|x<2},则A∪(∁R B)=( )A.{x|x<6} B.{x|-2<x<2}C.{x|x>-2} D.{x|2≤x<6}解析:由B={x∈R|x<2},得∁R B={x|x≥2}.又A={x∈R|-2<x<6},所以A∪(∁R B)={x|x>-2}.答案:C4.设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N=( )A.{x|x<-2} B.{x|-2<x<1}C.{x|x<1} D.{x|-2≤x<1}解析:由题可知∁R M={x|x<-2或x>2},故(∁R M )∩N ={x |x <-2}.答案:A5.已知S ={x |x 是平行四边形或梯形},A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形}.下列式子不成立的是( )A .B ∩C ={x |x 是正方形}B .∁A B ={x |x 是邻边不相等的平行四边形}C .∁S A ={x |x 是梯形}D .A =B ∪C解析:根据平行四边形和梯形的概念知,选项D 错误.答案:D二、填空题6.设集合U ={1,2,3,4,5},A ={1,2,3},B ={3,4,5},则∁U (A ∩B )=________. 解析:因为A ={1,2,3},B ={3,4,5},所以A ∩B ={3},故∁U (A ∩B )={1,2,4,5}.答案:{1,2,4,5}7.已知全集U ={1,2,3,4,5},A ={1,2,3},那么∁U A 的子集个数有________个. 解析:∁U A ={4,5},子集有∅,{4},{5},{4,5},共4个.答案:48.已知全集U ={2,4,a 2-a +1},A ={a +1,2},∁U A ={7},则a =________. 解析:由∁U A ={7},得4∈A ,故a +1=4,即a =3,此时,U ={2,4,7},满足A ⊆U ,故a =3.答案:3三、解答题9.设全集是数集U ={2,3,a 2+2a -3},已知A ={b ,2},∁U A ={5},某某数a ,b 的值.解:因为∁U A ={5},所以5∈U 且5∉A .又b ∈A ,所以b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3, 解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3.经检验都符合题意.10.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.(1)求A ∪B ,(∁R A )∩B ;(2)若A ∩C ≠∅,求a 的取值X 围.解:(1)因为A ={x |3≤x <7},B ={x |2<x <10},所以A ∪B ={x |2<x <10}.因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |x <3或x ≥7}∩{x |2<x <10}={x |2<x <3或7≤x <10}.(2)如图所示,当a >3时,A ∩C ≠∅.B 级 能力提升1.已知全集U ={-1,1,3},集合A ={a +2,a 2+2},且∁U A ={-1},则a 的值是( )A .-1B .1C .3D .±1解析:因为U ={-1,1,3},∁U A ={-1},所以A ={1,3},又因为a 2+2≥2,所以a2+2=3且a +2=1,得a =-1.答案:A2.已知集合A ={0,2,4,6},∁U A ={-1,1,-3,3},∁U B ={-1,0,2},则集合B =______________.解析:∵∁U A ={-1,1,-3,3},∴U ={-1,1,0,2,4,6,-3,3},又∁U B ={-1,0,2},∴B ={1,4,6,-3,3}. 答案:{1,4,6,-3,3}3.设全集U =⎩⎨⎧⎭⎬⎫-13,5,-3,集合A ={x |3x 2+px -5=0},B ={x |3x 2+10x +q =0},且A ∩B =⎩⎨⎧⎭⎬⎫-13.求∁U A ,∁U B . 解:因为A ∩B =⎩⎨⎧⎭⎬⎫-13,所以-13∈A 且-13∈B , 所以3⎝ ⎛⎭⎪⎫-132-13p -5=0,3⎝ ⎛⎭⎪⎫-132-13×10+q =0, 解得p =-14,q =3.故A ={x |3x 2-14x -5=0}=⎩⎨⎧⎭⎬⎫-13,5, B ={x |3x 2+10x +3=0}=⎩⎨⎧⎭⎬⎫-13,-3, 所以∁U A ={-3},∁U B ={5}.。

(精品)高中数学必修1全套 同步练习册

(精品)高中数学必修1全套 同步练习册

第一章集合与函数概念1.1.1(1)集合的含义与表示1.下列几组对象可以构成集合的是( ).A.充分接近π的实数的全体B.善良的人C.某校高一所有聪明的同学D.某单位所有身高在1.7 m以上的人2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有2个元素.其中正确语句的个数是( ).A.0 B.1 C.2 D.33.下列所给关系正确的个数是( ).①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2 C.3 D.44.已知x、y、z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是( ).A.0∉M B.2∈M C.-4∉M D.4∈M5.满足“a∈A且4-a∈A”,a∈N且4-a∈N的有且只有2个元素的集合A的个数是( ).A.0 B.1 C.2 D.36.设集合M中的元素为平行四边形,p表示某个矩形,q表示某个梯形,则p________M,q________M.7.已知集合A中只含有1,a2两个元素,则实数a不能取的值为________.8.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为________.9.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.10.设1,0,x三个元素构成集合A,若x2∈A,求实数x的值.11.已知集合M中含有三个元素2,a,b,集合N中含有三个元素2a,2,b2,且M=N,求a,b的值.12.(能力提升)设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?1.1.1(2)集合的含义与表示1.下列集合表示法正确的是( ).A .{1,2,2}B .{全体实数}C .{有理数}D .{祖国的大河} 2.集合M ={(x ,y )|xy >0,x ∈R ,y ∈R }是指( ).A .第一象限内的点集B .第三象限内的点集C .第一、三象限内的点集D .第二、四象限内的点集 3.下列语句:①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x -1)2(x -2)2=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. 正确的是( ).A .只有①和④B .只有②和③C .只有②D .以上语句都不对 4.直线y =2x +1与y 轴的交点所组成的集合为( ).A .{0,1}B .{(0,1)}C.⎩⎨⎧⎭⎬⎫-12,0 D.⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫-12,05.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A 、B 中x ∈R ,y ∈R ).选项中元素与集合的关系都正确的是( ).A .2∈A ,且2∈B B .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B 6.集合A ={a ,b ,(a ,b )}含有________个元素.7.用列举法表示集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,86-x ∈N =________.8.已知集合{-1,0,1}与集合{0,a ,b }相等,则a 2 010+b 2 011的值等于________.9.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}中所有元素之和为________.10.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x |x =|x |,x <5且x ∈Z };(4){(x ,y )|x +y =6,x ∈N *,y ∈N *};(5){-3,-1,1,3,5}.11.用适当的方法表示下列对象构成的集合. (1)绝对值不大于3的整数;(2)平面直角坐标系中不在第一、三象限内的点; (3)方程2x +1+|y -2|=0的解.12.(能力提升)已知集合M ={0,2,4},定义集合P ={x |x =ab ,a ∈M ,b ∈M },求集合P .1.1.2 集合间的基本关系1.下列说法:①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集;④若∅A ,则A ≠∅. 其中正确的有( ).A .0个B .1个C .2个D .3个2.如果A ={x |x >-1},那么正确的结论是( ).A .0⊆AB .{0}AC .{0}∈AD .∅∈A3.集合A ={x |0≤x <3且x ∈Z }的真子集的个数是( ).A .5B .6C .7D .84.下列关系中正确的是________.①∅∈{0};②∅{0};③{0,1}⊆{(0,1)};④{(a ,b )}={(b ,a )}.5.集合U 、S 、T 、F 的关系如图所示,下列关系错误的有________.①S U ;②F T ;③S T ;④S F ;⑤S F ;⑥F U .6.已知集合A ={(x ,y )|x +y =2,x ,y ∈N },试写出A 的所有子集.7.已知集合A =⎩⎨⎧⎭⎬⎫x |x =k3,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k6,k ∈Z ,则( ).A .AB B .B AC .A =BD .A 与B 关系不确定8.满足{a }⊆M {a ,b ,c ,d }的集合M 共有( ).A .6个B .7个C .8个D .15个9.设A ={1,3,a },B ={1,a 2-a +1},若B A ,则a 的值为________.10.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的取值是________.11.已知M ={a -3,2a -1,a 2+1},N ={-2,4a -3,3a -1},若M =N ,求实数a 的值.12.(能力提升)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围; (2)若x ∈Z ,求A 的非空真子集的个数;(3)当x ∈R 时,若没有元素使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.1.1.3(1)集合的基本运算(交集与并集)1.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},则M ∪N 等于( ).A .{x |x <-5或x >-3}B .{x |-5<x <5}C .{x |-3<x <5}D .{x |x <-3或x >5}2.满足条件M ∪{1}={1,2,3}的集合M 的个数是( ).A .1B .2C .3D .43.设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N等于( ).A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}4.满足{1,3}∪A={1,3,5}的所有集合A的个数是( ).A.1 B.2 C.3 D.45.已知集合A={(x,y)|y=2x+1},B={x|y=x-1},则A∩B=().A.{-2} B.{(-2,-3)}C.∅D.{-3}6.满足{0,1}∪A={0,1,2}的所有集合A是________.7.若集合P={x|x2=1},集合M={x|x2-2x-3=0},则P∩M=________.8.设集合A={x|x>-1},B={x|-2<x<2},则A∪B=________.9.集合A={0,2,a2},B={1,a},若A∩B={1},则a=________.10.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.11.若A∩B=A,A∪C=C,B={0,1,2},C={0,2,4},写出满足上述条件的所有集合A. 12.(能力提升)设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.1.3(2)集合的基本运算(补集及综合运算)1.设全集U=R,A={x|0≤x≤6},则∁R A=( ).A.{0,1,2,3,4,5,6} B.{x|x<0或x>6}C.{x|0<x<6} D.{x|x≤0或x≥6}2.已知全集U={2,5,8},且∁U A={2},则集合A的真子集个数为( ).A.3 B.4 C.5 D.63.若A为全体正实数的集合,B={-2,-1,1,2},则下列结论中正确的是( ).A.A∩B={-2,-1} B.(∁R A)∪B={-2,-1,1}C.A∪B={1,2} D.(∁R A)∩B={-2,-1}4.在如图中,用阴影表示出集合(∁U A)∩(∁U B).5.已知U 为全集,集合M 、N 是U 的子集,若M ∩N =N ,则( ).A .(∁U M )⊇(∁U N )B .M ⊆(∁U N )C .(∁U M )⊆(∁U N )D .M ⊇(∁U N )6.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( ).A .a ≤2 B.a <1 C .a ≥2 D.a >27.已知集合A ={3,4,m },集合B ={3,4},若∁A B ={5},则实数m =________.8.设全集U =A ∪B ={x ∈N *|0<x <10},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.9.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.10.设全集U =R ,集合A ={x |x ≥0},B ={y |y ≥1},则∁U A 与∁U B 的包含关系是________.11.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ;(2)求(∁U B )∪P ;(3)求(A ∩B )∩(∁U P ).12.(能力提升)已知全集U =R ,集合A ={x |-1≤x ≤2},B ={x |4x +p <0},且B ⊆∁U A ,求实数p 的取值范围.1.2.1函数的概念1.下列式子中不能表示函数y =f (x )的是( ).A .x =y 2+1B .y =2x 2+1 C .x -2y =6 D .x =y2.函数y =1-x +x 的定义域是( ).A .{x |x ≥0} B.{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1} 3.与y =|x |为相等函数的是( ).A .y =(x )2B .y =x 2C .y =⎩⎪⎨⎪⎧x x >0-x x <0D .y =3x 34.给出下列函数:①y =x 2-x +2,x >0;②y =x 2-x ,x ∈R ;③y =t 2-t +2,t ∈R ;④y =t 2-t +2,t >0.其中与函数y =x 2-x +2,x ∈R 是相等函数的是________.5.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.6.已知函数f (x )=x 2-4x +5,f (a )=10,求a 的值.7.下列各组函数表示相等函数的是( ).A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D.y =2x +1,x ∈Z 与y =2x -1,x ∈Z8.设f (x )=x 2-1x 2+1,则f 2f ⎝ ⎛⎭⎪⎫12=( ).A .1B .-1 C.35 D .-359.y =x +4x +2的定义域为________.10.集合{x |-1≤x <0或1<x ≤2}用区间表示为________.11.求函数y =x +26-2x -1的定义域,并用区间表示.12.(能力提升)若函数f (x )的定义域为[-2,1],求g (x )=f (x )+f (-x )的定义域.1.2.2(1)函数的表示法1.若g (x +2)=2x +3,g (3)的值是( ). A .9 B .7 C .5 D .32.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的解析式为( ).A .y =12xB .y =24xC .y =28xD .y =216x3.下列图形中,不可能作为函数y =f (x )图象的是( ).4.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________. 5.已知f (x )与g (x )分别由下表给出那么f (g (3))=________.6.已知函数f (x )是二次函数,且它的图象过点(0,2),f (3)=14,f (-2)=8+52,求f (x )的解x 1 2 3 4 g (x ) 3 1 4 2x 1 2 3 4 f (x ) 4 3 2 1析式.7.下列表格中的x 与y 能构成函数的是( ). A.B.C.D.8.已知函数f (x +1)=3x +2,则f (x )的解析式是( ).A .f (x )=3x +2B .f (x )=3x +1C .f (x )=3x -1D .f (x )=3x +4 9.下列图形中,可以是函数y =f (x )图象的是________.11.作出下列函数的图象:(1)f (x )=x +x 0;(2)f (x )=1-x (x ∈Z ,且-2≤x ≤2).12.(能力提升)已知函数f (x )对任意实数a 、b ,都有f (ab )=f (a )+f (b )成立. (1)求f (0)与f (1)的值;(2)求证:f ⎝ ⎛⎭⎪⎫1x =-f (x );(3)若f (2)=p ,f (3)=q (p ,q 均为常数),求f (36)的值.1.2.2.(2)函数的表示法(分段函数及映射)1.下列对应不是映射的是( ).2.以下几个论断:①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈(-3,3]的图象是一条线段; ③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1、D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅. 其中正确的论断有( ).A .0个B .1个C .2个D .3个3.若定义运算a ⊙b =⎩⎪⎨⎪⎧ba ≥b ,a a <b ,则函数f (x )=x ⊙(2-x )的值域是( ).A .(-∞,1]B .(-∞,1)C .(-∞,+∞) D.(1,+∞)4.设集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},则下列的对应不表示从P 到Q 的映射的是( ).A .f :x →y =12xB .f :x →y =13xC .f :x →y =23x D .f :x →y =xx 非负数 非正数 y 1 -1 x 奇数 0 偶数y 1 0 -1 x 有理数 无理数 y 1 -1 x 自然数 整数 有理数y 1 0 -15.下列图形是函数y =⎩⎪⎨⎪⎧x 2, x <0x -1,x ≥0的图象的是________.6.已知f (x )=⎩⎪⎨⎪⎧2x ,x <0,x 2,x ≥0,若f (x )=16,则x 的值为________.7.作出函数y =⎩⎪⎨⎪⎧1x0<x <1,xx ≥1的图象,并求其值域.8.函数f (x )=|x -1|的图象是( ).9.设函数f (x )=⎩⎪⎨⎪⎧x 2+2 x ≤2,2x x >2,若f (x 0)=8,则x 0=________.10.设集合A =B ={(x ,y )|x ∈R ,y ∈R },点(x ,y )在映射f :A →B 的作用下对应的点是(x -y ,x +y ),则B 中点(3,2)对应的A 中点的坐标为________.11.已知f (x )=⎩⎪⎨⎪⎧x x +4x ≥0,x x -4 x <0,若f (1)+f (a +1)=5,求a 的值.12.(能力提升)在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).1.3.1(1)函数的单调性1.函数y =-x 2的单调减区间是( ).A .[0,+∞)B.(-∞,0]C .(-∞,0) D .(-∞,+∞) 2.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f a -f ba -b>0,则必有( ).A .函数f (x )先增后减B .函数f (x )先减后增C .函数f (x )是R 上的增函数D .函数f (x )是R 上的减函数 3.下列说法中正确的有( ).①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x在定义域上是增函数;④y =1x的单调区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个4.函数f (x )=-2x 2+mx +1在区间[1,4]上是单调函数,则实数m 的取值范围是________. 5.函数y =-(x -3)|x |的递增区间为________.6.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.7.若函数y =f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数y =f (x )在区间(a ,b )∪(b ,c )上( ).A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性8.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ).A .(-∞,-3)B .(0,+∞)C.(3,+∞) D.(-∞,-3)∪(3,+∞)9.已知函数f (x )为区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________. 10.已知函数y =8x 2+ax +5在[1,+∞)上递增,那么a 的取值范围是________.11.已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,求实数a 的取值范围.12.(能力提升)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数y =f (x )在区间(2,+∞)上是增函数.1.3.1(2)函数的最大(小)值1.函数y =f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( ).A .f (-2),0B .0,2C .f (-2),2D .f (2),22.函数y =1x 2在区间⎣⎢⎡⎦⎥⎤12,2上的最大值是( ). A.14B .-1C .4D .-4 3.函数f (x )=x 2+3x +2在区间(-5,5)上的最大、最小值分别为( ).A .42,12B .42,-14C .12,-14D .无最大值,最小值为-144.函数y =2x 2+1,x ∈N *的最小值为________.5.若函数y =k x(k >0)在[2,4]上的最小值为5,则k 的值为________. 6.画出函数f (x )=⎩⎪⎨⎪⎧-2x,x ∈-∞,0,x 2+2x -1,x ∈[0,+∞的图象,并写出函数的单调区间,函数最小值.7.函数y =2x在区间[2,4]上的最大值、最小值分别是( ).A .1,12B.12,1 C.12,14D.14,128.函数f (x )=11-x 1-x的最大值是( ).A.45B.54C.34D.439.已知函数y *f (x )是(0,+∞)上的减函数,则f (a 2-a +1)与f ⎝ ⎛⎭⎪⎫34的大小关系是________.10.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.11.某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆.租出的车每月需要维护费160元,未租出的车每月需要维护费60元.(1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少?12.(能力提升)已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.1.3.2函数的奇偶性1. 已知y =f (x )是偶函数,且f (4)=5,那么f (4)+f (-4)的值为( ). A .5 B .10 C .8 D .不确定2.对于定义域是R 的任意奇函数y =f (x ),都有( ).A .f (x )-f (-x )>0B .f (x )-f (-x )≤0C .f (x )·f (-x )≤0 D.f (x )·f (-x )>03.已知函数f (x )=1x2(x ≠0),则这个函数( ).A .是奇函数B .既是奇函数又是偶函数C .是偶函数D .既不是奇函数又不是偶函数4.若函数f (x )=(x +1)(x -a )为偶函数,则a 等于( ).A .-2B .-1C .1D .25.奇函数y =f (x )(x ∈R )的图象必定经过点( ).A .(a ,f (-a ))B .(-a ,f (a ))C .(-a ,-f (a )) D.⎝⎛⎭⎪⎫a ,f ⎝ ⎛⎭⎪⎫1a6.已知函数y =f (x )为奇函数,若f (3)-f (2)=1,则f (-2)-f (-3)=________.7.如果定义在区间[2-a,4]上的函数y =f (x )为偶函数,那么a =________.8.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a 的值为________.9.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是________.10.如图是偶函数y =f (x )在x ≥0时的图象,请作出y =f (x )在x <0时的图象.11.判断下列函数的奇偶性:(1)f (x )=2x -1+1-2x ;(2)f (x )=x 4+x ;(3)f (x )=⎩⎪⎨⎪⎧ x 2+20-x 2-2x >0,x =0,x <0;(4)f (x )=x 3-x 2x -1.12.(能力提升)已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),求f (6)的值.章末质量评估一、选择题1.如果集合A ={x |x ≤3},a =2,那么( ).A .a ∉AB .{a }AC .{a }∈AD .a ⊆A2.函数y=2x +1+3-4x 的定义域为( ).A.⎝ ⎛⎭⎪⎫-12,34B.⎣⎢⎡⎦⎥⎤-12,34C.⎝⎛⎦⎥⎤-∞,12D.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)3.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},那么集合A ∩(∁U B )等于 A .{x |-2≤x <4} B .{x |x ≤3或x ≥4}C.{x |-2≤x <-1} D .{x |-1≤x ≤3} 4.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( ).A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -4 5.设集合A ={x |1<x <2},B ={x |x <a },满足A B ,则实数a 的取值范围是( ).A .{a |a ≥2} B.{a |a ≤1}C.{a |a ≥1} D.{a |a ≤2}6.如果奇函数y =f (x )在区间[1,5]上是减函数,且最小值为3,那么y =f (x )在区间 [-5,-1]上是( ).A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为-3D .减函数且最大值为-37.设函数f (x )=1+x21-x2,则有( ).A .f (x )是奇函数,f ⎝ ⎛⎭⎪⎫1x =-f (x )B .f (x )是奇函数,f ⎝ ⎛⎭⎪⎫1x =f (x )C .f (x )是偶函数,f ⎝ ⎛⎭⎪⎫1x =-f (x )D .f (x )是偶函数,f ⎝ ⎛⎭⎪⎫1x =f (x ) 8.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下):表 1 映射f 的对应法则表2 映射g 的对应法则则与f [g (1)]相同的是( ).A .g [f (1)]B .g [f (2)]C .g [f (3)]D .g [f (4)]9.设集合A ={x |0≤x ≤2},B ={y |1≤y ≤2},若对于函数y =f (x ),其定义域为A ,值域为B ,则这个函数的图象可能是( ).10.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f x +f -x 2x<0的解集为( ).A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3) 二、填空题11.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值________.12.用列举法表示集合:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x +1∈Z ,x ∈Z =________. 13.函数y =f (x )是R 上的偶函数,且当x >0时,f (x )=x 3+1,则当x <0时,f (x )=________.14.某城市出租车按如下方法收费:起步价8元,可行3 k m(含3 k m),3 k m 后到10 k m(含10 k m)每走1 k m 加价1.5元,10 k m 后每走1 k m 加价0.8元,某人坐该城市的出租车走了20 k m ,他应交费________元.原象 1 2 3 4 象 3 4 2 1 原象 1 2 3 4 象 4 3 1 2三、解答题,(解答时应写出必要的文字说明、证明过程或演算步骤.)15.(10分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B ); (3)写出(∁U A )∪(∁U B )的所有子集.16.已知y =f (x )为二次函数,且f (x +1)+f (x -1)=2x 2-4x ,求f (x )的表达式.17.已知函数f (x )=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[1,4]上的最大值与最小值.18.某工厂生产某种零件,每个零件的成本为40元,出厂价是60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购1个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为p 元,写出函数p =f (x )的表达式.19已知函数f (x )对任意x 、y ∈R 都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2. (1)判断函数f (x )的奇偶性.(2)当x ∈[-3,3]时,函数f (x )是否有最值?如果有,求出最值;如果没有,请说明理由.2.1.1指数与指数幂的运算(1)1. 若242x x =-,则x 的取值范围是( )A.0x >B.0x <C.0x ≥D.0x ≤ 2.计算20032004(32)(32)+⋅-的值是( )A.1B.32-C.32+D.23- 3.化简:()⎪⎭⎫ ⎝⎛<+-2391246322b a bab a 的结果是( )A.23a b -B.32b a -C. (23)a b ±-D.32ba - 4下列说法:①16的4次方根是2;②416的运算结果是±2; ③当n 为大于1的奇数时,n a 对任意a ∈R 有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( ) A .①③④ B .②③④ C .②③ D .③④5.求值(1)33(2)-=;(22(2)-=;(344(32)-=.6.当810x <<22(8)(10)x x --= ______. 70(52)9454552+-=-. 8726726+-.9化简:1212--+-+x x x x ) (12)x <<.10.化简:24334(1)(1)(1)x x x -+--1132343(1)(1)8x x ++ 12x y x y y x+++.2.1.1指数与指数幂的运算(2)1.下列运算中,正确的是( )A.5552a a a ⋅=B.56a a a +=C.5525a a a ⋅=D.5315()a a -=- 2.下列根式与分数指数幂的互化中.正确的是( )A.12()(0)x x =->13(0)y y =<C.340)xx -=>D.130)x x -=≠ 3.式子a ) A.111144a b B.111142a b C.114a D.114b4. 3216842111111(1)(1)(1)(1)(1)(1)222222++++++的值等于( ) A.64112- B.63122- C.651122- D.32314(1)2-5.化简:(1)131121373222[()()()]ab ab b ---⋅⋅⋅=.(2)21131133344()()x y z x y z ---⋅⋅⋅⋅⋅=.(3)20a >=.6.若103,104x y ==,则10x y-=. 7.计算:π0+2-2×21412⎪⎭⎫⎝⎛=________.8.已知3a =2,3b =15,则32a -b =________.9.求值: 341681⎛⎫ ⎪⎝⎭, 12100-, 314-⎛⎫ ⎪⎝⎭10.已知0,0a b >>,化简:11112244()()a b a b -÷-11.化简求值: (1)()31064.0--(-18)0+4316+2125.0;(2)a -1+b -1(ab )-1(a ,b ≠0).12.(能力提升)化简1111124242(1)(1)(1)x x x x x x -+++-+.13.(能力提升)已知a +a -1=5,求下列各式的值: (1)a 2+a -2;(2)2121--aa .2.1.2 指数函数及其性质(1)1.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是( ) A.0,1a a >≠ B.1a = C.12a = D.1a =或12a =2.函数y = ) A.(2,)-+∞ B.[1,)+∞ C.(,1]-∞- D.(,2)-∞-3.函数f (x )=3x -3(1<x ≤5)的值域是( )A .(0,+∞) B.(0,9)C.⎝ ⎛⎦⎥⎤19,9D.⎝ ⎛⎭⎪⎫13,27 4.若函数y =(1-2a )x是实数集R 上的增函数,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫12,+∞B .(-∞,0)C.⎝⎛⎭⎪⎫-∞,12D.⎝ ⎛⎭⎪⎫-12,12 5. 若221(2)(2)xxa a a a -++>++,则x 的范围为.6已知函数()f x 满足:对任意的12x x <,都有12()()f x f x <,且有1212()()()f x x f x f x +=⋅,则满足上述条件的一个函数是.7.将三个数10.20.7321.5,1.3,()3-按从小到大的顺序排列是8.(1)函数y =(2)函数y =的定义域是;值域是.9已知指数函数y =f (x )的图象过点M (3,8),则f (4)=________,f (-4)=________.10.已知 2223422(),()(0,1)x x x x f x a g x a a a +-+-==>≠,确定x 的范围,使得()()f x g x >.11.实数,a b 满足11111212a b ++=--,则a b +=.12.(能力提升)若函数2121x xa ay ⋅--=-为奇函数,(1)确定a 的值;(2)讨论函数的单调性.2.1.2 指数函数及其性质(2)1.如图指数函数①x y a =②x y b =③x y c =④xy d =的图象,则( )A.01a b c d <<<<<B.01b a d c <<<<<C.1a b c d <<<<D.01a b d c <<<<<2.在同一坐标系中,函数xy a =与函数1y ax =+的图象只能是 ( )A B C D3.要得到函数122xy -=的图象,只要将函数1()4xy =的图象 ( )A.向左移1个单位B.向右移1个单位C.向左移0.5个单位D.向右移0.5个单位4.已知()|21|xf x =-,当a b c <<时,有()()()f a f c f b >>,则下列各式中正确的是 ( ) A.22a c > B.22a b > C.22ac -< D.222a c +<5函数y =2-x的图象是( ).6.若函数(1)(0,1)xy a b a a =-->≠图象不经过第二象限,则,a b 的满足的条件是_____________. 7. 将函数21()3xy =图象的左移2个单位,再下移1个单位所得函数的解析式是; 8.函数21x y a+=-(0,1)a a >≠的图象过定点.9.函数22363xx y -+=的单调递减区间是.10.已知函数311()()212xf x x =+-,(1)求()f x 的定义域; 11.如果75+->x x a a (a >0,a ≠1),(2)讨论()f x 的奇偶性; (3)证明:()0f x >. 求x 的取值范围.12已知指数函数()(0,1)xf x a a a =>≠,根据它的图象判断121[()()]2f x f x +和12()2x x f +的大小(不必证明).13.函数f (x )=a x(a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.2.1.2 指数函数及其性质(3)1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成( )A.511个B.512个C.1023个D.1024个2.某商场进了A B 、两套服装,A 提价20%后以960元卖出,B 降价20%后以960元卖出,则这两套服装销售后 ( )A.赚不亏B. 赚了80元C.亏了80元D.赚了2000元 3.某商品降价20%后,欲恢复原价,则应提价( )A. 25%B.20%C.30%D.15%4.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( ).A.a >b >cB.b >a >cC.c >a >bD.b >c >a5.某新型电子产品2002年初投产,计划到2004年初使其成本降低36%,那么平均每年应降低成本.6. 据报道,1992年底世界人口达到54.8亿,若世界人口的年平均增长率为%x ,到2005年底全世界人口为y 亿,则y 与x 的函数关系是.7.某工厂的一种产品的年产量第二年比第一年增加21%,第三年比第二年增加44%,则这两年的平均增长率是.8.a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是________.9.函数y =a x在[0,1]上的最大值与最小值之和为3,则a =________.10.甲、乙两人于同一天分别携款1万元到银行储蓄。

高一数学集合知识点及练习题

高一数学集合知识点及练习题

第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇()A C B UA A U U U ==∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)例题讲解1.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )答案 B解析 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.2.设U =R ,{|0}A x x =>,{|1}B x x =>,则U AB =ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 答案 B解析 对于{}1U C B x x =≤,因此U A B =ð{|01}x x <≤3.(北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<答案 A解析 本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运 算的考查∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤, ∴{12}AB x x =-≤<,故选A.4.(山东卷理)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4 答案 D解析 ∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题. 5.(全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )=( ) A.{5,7} B.{2,4} C. {2.4.8} D. {1,3,5,6,7} 答案 C6.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个 答案 B解析 由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 7.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= ( ) A .1 B .1- C .2 D .2-答案 C8.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}答案 D解析 {}{}2log 12N x x x x =>=>,用数轴表示可得答案D 。

高中数学第一章集合与函数的概念1.1集合1.1.3第二课时补集及综合应用aa高一数学

高中数学第一章集合与函数的概念1.1集合1.1.3第二课时补集及综合应用aa高一数学

12/9/2021
第十六页,共二十五页。
【备用例1】 已知集合(jíhé)A={x|2x-4<0},B={x|0<x<5},全集U=R,求:
(1)A∩B;
(2)(∁UA)∩B.
解:A={x|2x-4<0}={x|x<2},B={x|0<x<5}, (1)A∩B={x|0<x<2}. (2)因为(yīn wèi)A={x|x<2},全集U=R,
(C)A⊆U
(D)A=B
2.(补集运算)已知全集U={1,2,3,4,5,6,7},集合(jíhé)A={1,3,5,6},则∁UA等于(
)
(A){C1,3,5,6} (B){2,3,7}
(C){2,4,7}
(D){2,5,7}
解析(jiě xī):由题意知∁UA={2,4,7},选C.
12/9/2021


a=3,综上所述,所求
a
的取值范围为
{a|a≥3}.
12/9/2021Fra bibliotek第二十二页,共二十五页。
【备用(bèiyòng)例2】 设全集是实数集R,A={x1 | ≤x≤3},B={x|x2+a<0}.
(1)当a=-4时,求A∩B和A∪B;
2
(2)若(∁RA)∩B=B,求实数a的取值范围.
解:(1)因为 A={x| 1 ≤x≤3},B={x|x2+a<0}, 2
12/9/2021
第十三页,共二十五页。
误区警示(jǐnɡ shì) (1)利用数轴求集合的交、并、补集运算时需注意点的虚实情况的 变化. (2)通过改变原不等式的不等号方向取补集时,要防止漏解.如 A={x| 1 <0},∁RA≠

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

2.已知集合A={x|x<a},B={x|x<-1,或x> 0},若A∩(∁RB)=∅,求实数a的取值范围.
解:∵B={x|x<-1,或x>0},
∴∁RB={x|-1≤x≤0}. 因而要使A∩(∁RB)=∅,结合数轴分析(如下图), 可得a≤-1.
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于 研究问题而言的一个相对概念,它仅含有所研究问题中涉及的 所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是 A是全集U的子集,随着所选全集的不同,得到的补集也是不 同的,因此,它们是互相依存、不可分割的两个概念.
解:∁RB={x|x≤1 或 x≥2}≠∅. ∵A ∁RB,∴分 A=∅和 A≠∅两种情况讨论. (1)若 A=∅,此时有 2a-2≥a,∴a≥2; (2)若 A≠∅,则有2aa≤-1,2<a, 或22aa- -22<≥a2,, ∴a≤1. 综上所述,a≤1 或 a≥2.
解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进行分类 讨论,转化为等价不等式(组)求解,同时要注意区域端点的问 题.
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
25
谢谢欣赏!
求集合补集的基本方法及处理技巧
(1)基本方法:定义法.
(2)两种处理技巧:
①当集合用列举法表示时,直接套用定义或借助 Venn图求解.

精选推荐018-2019学年度高中数学 第一章 集合与函数的概念 1.1 集合 1.1.3 第一课时 并集、交集练习 新人教

精选推荐018-2019学年度高中数学 第一章 集合与函数的概念 1.1 集合 1.1.3 第一课时 并集、交集练习 新人教

第一课时并集、交集【选题明细表】1.设集合M={y|y=x2+1,x∈R},N={y|y=-x2+1,x∈R},则M∩N是( C )(A){0,1} (B){(0,1)}(C){1} (D)以上都不对解析:M∩N={y|y≥1}∩{y|y≤1}={1},选C.2.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则(A∩B)∪C等于( C )(A){0,1,2,6,8} (B){3,7,8}(C){1,3,7,8} (D){1,3,6,7,8}解析:因为集合A={0,1,2,3,4,5},B={1,3,6,9},所以A∩B={1,3},因为C={3,7,8},所以(A∩B)∪C={1,3,7,8},故选C.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( D )(A)1 (B)2 (C)3 (D)4解析:因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.(2018·重庆市第一中学高一月考)设集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},则A∩B等于( D )(A){x=-1,y=2} (B)(-1,2)(C){-1,2} (D){(-1,2)}解析:由得所以A∩B={(-1,2)},故选D.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( B )(A)3 (B)0或3 (C)1或0 (D)1或3解析:因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.设集合A={x|x2-(a+3)x+3a=0},B={x|x2-5x+4=0},集合A∪B中所有元素之和为8,则实数a的取值集合为( D )(A){0} (B){0,3}(C){1,3,4} (D){0,1,3,4}解析:解方程x2-5x+4=0得x=4或1,所以B={1,4},解方程x2-(a+3)x+3a=0得x=3或a,所以A={3}或{3,a},因为1+4+3=8,所以A={3}或{3,0}或{3,1}或{3,4}.所以a=0或1或3或4.故选D.7.(2018·桂林一中高一期中)若集合A={x|2x+1>0},B={x|2x-1<2},则A∩B= .解析:由A中不等式解得x>-,即A={x|x>-},由B中不等式解得x<,即B={x|x<},则A∩B={x|-<x<}.答案:{x|-<x<|8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是,若A∩B=∅,则a的范围为.解析:根据题意,集合A={x|1≤x≤2},若A∩B=A,则有A⊆B,必有a>2,若A∩B=∅,必有a≤1.答案:{a|a>2} {a|a≤1}9.集合A,B各有两个元素,A∩B中有一个元素,若集合C同时满足:(1)C⊆(A∪B),(2)C⊇(A∩B),则满足条件C的个数为( D )(A)1 (B)2 (C)3 (D)4解析:设A={a,b},B={b,c},由(1)知C⊆{a,b,c},由(2)知{b}⊆C,所以C中必有元素b,则C的个数为22=4,故选D.10.设A={x|2x2-px+q=0},B={x|6x2+(p+2)x+5+q=0},若A∩B={},则A∪B等于( A )(A){,,-4} (B){,-4}(C){,} (D){}解析:由A∩B={}知,∈A,∈B,所以⇒所以A={x|2x2+7x-4=0}={-4,},B={x|6x2-5x+1=0}={,}.显然,A∪B={,,-4}.故选A.11.已知集合A={4,5,2},B={4,m},若A∪B=A,则m= .解析:因为A∪B=A,所以B⊆A.又A={4,5,2},B={4,m}.所以m=5或m=2.由m=2知m=0或m=4.当m=4时与集合中元素的互异性矛盾,故m=0或5.答案:0或512.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},若A⊆(A∩B),求实数a的取值范围. 解:因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,如图所示,则或由解得a∈∅;由解得a>.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6,或a>}.13.已知集合A={x|2m-1<x<3m+2},B={x|x≤-2或x≥5},是否存在实数m,使A∩B≠∅?若存在,求实数m的取值范围;若不存在,请说明理由.解:若A∩B=∅,分A=∅和A≠∅讨论:(1)若A=∅,则2m-1≥3m+2,解得m≤-3,此时A∩B=∅;(2)若A≠∅,要使A∩B=∅,则应有即所以-≤m≤1.综上,当A∩B=∅时,m≤-3或-≤m≤1,所以当m取值范围为{m|-3<m<-或m>1}时,A∩B≠∅.。

必修一第一章集合与函数概念同步练习(含答案)

必修一第一章集合与函数概念同步练习(含答案)

第一章 集合与函数概念同步练习1.1.1 集合的含义与表示 一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点 2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集 3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________. 8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。

10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。

11.已知}33,2{12+++∈x x x 试求实数x 的值。

1.1.2 集合的含义与表示一. 选择题:1.集合Φ与}0{的关系,下列表达正确的是( ) A.φ=}0{ B.φ⊆}0{ C.}0{∈φ D.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{ 3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.8 4.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空①},2_____{0Z n n x x ∈=②}_____{1质数③},,_____{}{c b a a ④}0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x 6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合 9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系 10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A I ( ) A.}4,2,1{ B.}6,4,3,2,1{ C.}4,1{ D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A Y ( ) A.R B.}2{<x x C.}1{->x x D.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A I Y )(( ) A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M I ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1 二.填空题5.{偶数}I {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A I __________.7.若集合A B A =I ,则=B A Y ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A Y ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 B A I 10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A =Y ,求a 的值 11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B且}21{=B A I ,求B A Y1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( ) A.7 B.1- C.17-或 D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( )A.}32{≥-≤x x x 或B.}32{>-≤x x x 或C.}32{>-<x x x 或D.}32{≥-<x x x 或 4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B A IC.B C A C u u ID.B C A C u u Y二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A I =__,__=B C A u I ,__=B A C u I .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u I ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M Y ②N C M C u u I10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A I ,}9,1{=B C A C u u I ,}8,6,4{=B A C u I ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( ) A.5 B.5- C.6 D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与 B.xx x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与 4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________. 8.函数11)(22---=x x x f 的定义域为______________.三.解答题9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f10.求下列函数的定义域 (1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x fx(D)(B)(C) (A)x1.2.1函数的概念(二)一、 选择题1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( ) A.}3,0,1{- B.}3,2,1,0{ C.}31{≤≤-y y D.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[ 3.下列命题正确的有( ) ①函数是从其定义域到值域的映射②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个 4.函数xx x y -+=)32(的定义域为( )A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且B.{}0<x xC.{}0>x xD.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值 11.已知函数bax xx f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一) 一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若x xx f -=1)1(,则当10≠≠x x 且时,)(x f 等于( )A.x 1B.11-xC.x -11D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.ttt ABDC7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象 11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )y3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤xA B CD10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。

2018-2019学年高中数学 第一章 集合与函数概念 1.1 集合 1.1.3 第2课时 补集及集合运算的综合应用练习 新人

2018-2019学年高中数学 第一章 集合与函数概念 1.1 集合 1.1.3 第2课时 补集及集合运算的综合应用练习 新人

大道之行也,天下为公,选贤与能,讲信修睦。

故人不独亲其亲,不独子其子,使老有所终,壮有所用,幼有所长,矜、寡、孤、独、废疾者皆有所养,男有分,女有归。

货恶其弃于地也,不必藏于己;力恶其不出于身也,不必为己。

第一章 1.1 1.1.3 第2课时补集及集合运算的综合应用1.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩{∁U B}=( )A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析:因为∁U B={1,5,6},所以A∩(∁U B)={1},故选B.答案:B2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析:由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.答案:D3.设全集U=R,集合A={x|x≥1},B={x|0≤x≤2},则∁U(A∩B)是( )A.{x|1≤x≤2}B.{x|0≤x≤1}C.{x|x>2或x<1} D.{x|0≤x<1}解析:∵A∩B={x|1≤x≤2},∴∁U(A∩B)={x|x>2或x<1}.答案:C4.设集合S={三角形},A={直角三角形},则∁S A=____________________.答案:{锐角三角形或钝角三角形}5.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:A∪B={2,3,4,5},∁U C={1,2,5},故(A∪B)∩(∁U C)={2,5}.答案:{2,5}6.设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},求a,b的值.解:∵A={x|a≤x≤b},∴∁U A={x|x<a或x>b}.又∁U A={x|x<3或x>4},∴a=3,b=4.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3 集合的基本运算
第2课时补集及集合运算的综合应用
A级基础巩固
一、选择题
1.已知全集U=R,集合A={x|1≤2x+1<9},则∁U A=( )
A.{x|x<0或x>4} B.{x|x≤0或x>4}
C.{x|x≤0或x≥4} D.{x|x<0或x≥4}
解析:因为U=R,A={x|0≤x<4},
所以∁U A={x|x<0或x≥4}.
答案:D
2.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则右图中阴影部分所表示的集合为( )
A.{1} B.{0,1}
C.{1,2} D.{0,1,2}
解析:图中阴影部分所表示的集合为A∩(∁R B),因为A={1,2,3,4,5},B={x∈R|x≥2},所以∁R B={x|x<2},所以A∩(∁R B)={1}.
答案:A
3.已知集合A={x∈R|-2<x<6},B={x∈R|x<2},则A∪(∁R B)=( )
A.{x|x<6} B.{x|-2<x<2}
C.{x|x>-2} D.{x|2≤x<6}
解析:由B={x∈R|x<2},得∁R B={x|x≥2}.又A={x∈R|-2<x<6},所以A∪(∁R B)={x|x>-2}.
答案:C
4.设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N=( )
A.{x|x<-2} B.{x|-2<x<1}
C.{x|x<1} D.{x|-2≤x<1}
解析:由题可知∁R M={x|x<-2或x>2},
故(∁R M)∩N={x|x<-2}.
答案:A
5.已知S={x|x是平行四边形或梯形},A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形}.下列式子不成立的是( )
A.B∩C={x|x是正方形}
B.∁A B={x|x是邻边不相等的平行四边形}
C .∁S A ={x |x 是梯形}
D .A =B ∪C
解析:根据平行四边形和梯形的概念知,选项D 错误.
答案:D
二、填空题
6.设集合U ={1,2,3,4,5},A ={1,2,3},B ={3,4,5},则∁U (A ∩B )=________. 解析:因为A ={1,2,3},B ={3,4,5},所以A ∩B ={3},故∁U (A ∩B )={1,2,4,5}. 答案:{1,2,4,5}
7.已知全集U ={1,2,3,4,5},A ={1,2,3},那么∁U A 的子集个数有________个. 解析:∁U A ={4,5},子集有∅,{4},{5},{4,5},共4个.
答案:4
8.已知全集U ={2,4,a 2
-a +1},A ={a +1,2},∁U A ={7},则a =________. 解析:由∁U A ={7},得4∈A ,故a +1=4,即a =3,此时,U ={2,4,7},满足A ⊆U ,故a =3. 答案:3
三、解答题
9.设全集是数集U ={2,3,a 2+2a -3},已知A ={b ,2},∁U A ={5},求实数a ,b 的值. 解:因为∁U A ={5},所以5∈U 且5∉A .
又b ∈A ,所以b ∈U ,由此得⎩
⎪⎨⎪⎧a 2+2a -3=5,b =3, 解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3.经检验都符合题意. 10.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.
(1)求A ∪B ,(∁R A )∩B ;
(2)若A ∩C ≠∅,求a 的取值范围.
解:(1)因为A ={x |3≤x <7},B ={x |2<x <10},
所以A ∪B ={x |2<x <10}.
因为A ={x |3≤x <7},
所以∁R A ={x |x <3或x ≥7},
所以(∁R A )∩B ={x |x <3或x ≥7}∩{x |2<x <10}={x |2<x <3或7≤x <10}.
(2)如图所示,当a >3时,A ∩C ≠∅.
B 级 能力提升
1.已知全集U ={-1,1,3},集合A ={a +2,a 2+2},且∁U A ={-1},则a 的值是( )
A .-1
B .1
C .3
D .±1
解析:因为U ={-1,1,3},∁U A ={-1},所以A ={1,3},又因为a 2+2≥2,所以a 2+2=3且a +2=1,得a =-1.
答案:A
2.已知集合A ={0,2,4,6},∁U A ={-1,1,-3,3},∁U B ={-1,0,2},则集合B =______________. 解析:∵∁U A ={-1,1,-3,3},
∴U ={-1,1,0,2,4,6,-3,3},
又∁U B ={-1,0,2},
∴B ={1,4,6,-3,3}.
答案:{1,4,6,-3,3}
3.设全集U =⎩⎨⎧⎭⎬⎫-13,5,-3,集合A ={x |3x 2+px -5=0},B ={x |3x 2+10x +q =0},且A ∩B =⎩⎨⎧⎭
⎬⎫-13.求∁U A ,∁U B .
解:因为A ∩B =⎩⎨⎧⎭
⎬⎫-13,所以-13∈A 且-13∈B , 所以3⎝ ⎛⎭⎪⎫-132-13
p -5=0, 3⎝ ⎛⎭⎪⎫-132
-13
×10+q =0, 解得p =-14,q =3.
故A ={x |3x 2-14x -5=0}=⎩⎨⎧⎭⎬⎫-13,5, B ={x |3x 2+10x +3=0}=⎩⎨⎧⎭⎬⎫
-13,-3, 所以∁U A ={-3},∁U B ={5}.。

相关文档
最新文档