2015届高三数学北师大版(通用,理)总复习讲义+强化训练+专题检测:第六章 数列(6份)第六章 专题三
2015届高三数学北师大版(通用,理)总复习课件第六章 6.3
(2)等比数列{an}的首项 a1=-1, 由等比数列前 n 项和的性质知 S10 31 前 n 项和为 Sn, 若 = , 则公 S5 32 S5,S10-S5,S15-S10 成等比数 1 5 - 列,且公比为 q , 比 q=________. 2
1 1 故 q5=- ,q=- . 32 2
基础知识
题型分类·深度剖析
题型一 等比数列的基本运算
思维启迪 解析 答案 思维升华
【例 1】 (1)设{an}是由正数组 成的等比数列, Sn 为其前 n 项和.已知 a2a4=1,S3=7, 则 S5 等于 15 31 33 A. B. C. 2 4 4 ( 17 D. 2 )
(2) 在等比数列 {an} 中,若 a4 -a2=6,a5-a1=15,则 a3 =________.
(2) 设 等 比 数 列 {an} 的 公 比 为 q(q≠0), 3 a1q -a1q=6 则 4 , a1q -a1=15 q 2 两式相除,得 = , 1+q2 5 即 2q2-5q+2=0,解得 q=2 或 1 q= . 2 a =-16 1 a1=1 所以 或 1 . q= q=2 2 故 a3=4 或 a3=-4.
要点梳理
5.等比数列的前 n 项和公式 等比数列{an}的公比为 q(q≠-anq = q≠1 1 - q 1 - q 6.等比数列前 n 项和的性质 公比不为-1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n-
练出高分
题型分类·深度剖析
跟踪训练 1 (1)在等比数列{an}中,a1=1,公比为 q,且|q|≠1. ( C.11 D.12 )
若 am=a1a2a3a4a5,则 m 等于 A.9 B.10
2015届高三数学北师大版(通用,理)总复习讲义+强化训练+专题检测:第四章 三角函数、解三角形(7份)第四
§4.4 三角函数的图像和性质1. 用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图像中,五个关键点:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图像中,五个关键点:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2. 正弦函数、余弦函数、正切函数的图像和性质1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)常数函数f (x )=a 是周期函数,它没有最小正周期. ( √ ) (2)y =sin x 在x ∈[0,π2]上是增函数.( √ ) (3)y =cos x 在第一、二象限上是减函数. ( × ) (4)y =tan x 在整个定义域上是增函数. ( × ) (5)y =k sin x +1(x ∈R ),则y max =k +1. ( × ) (6)若sin x >22,则x >π4.( × ) 2. (2012·福建)函数f (x )=sin ⎝⎛⎭⎫x -π4的图像的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2答案 C解析 方法一 ∵正弦函数图像的对称轴过图像的最高点或最低点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .取k =-1,则x =-π4.方法二 用验证法.x =π4时,y =sin ⎝⎛⎭⎫π4-π4=0,不合题意,排除A ; x =π2时,y =sin ⎝⎛⎭⎫π2-π4=22,不合题意,排除B ; x =-π4时,y =sin ⎝⎛⎭⎫-π4-π4=-1,符合题意,C 项正确; x =-π2时,y =sin ⎝⎛⎭⎫-π2-π4=-22,不合题意,故D 项也不正确. 3. 已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2<f (π),则下列结论正确的是( )A .f ⎝⎛⎭⎫1112π=-1B .f ⎝⎛⎭⎫7π10>f ⎝⎛⎭⎫π5C .f (x )是奇函数D .f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) 答案 D解析 ∵f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立, ∴2×π6+φ=k π+π2,k ∈Z ,φ=k π+π6,k ∈Z .∵f ⎝⎛⎭⎫π2<f (π),sin(π+φ)=-sin φ<sin(2π+φ)=sin φ,sin φ>0.∴φ=2k π+π6,k ∈Z . 不妨取φ=π6,f ⎝⎛⎭⎫11π12=sin 2π=0,∴A 错;∵f ⎝⎛⎭⎫7π10=sin ⎝⎛⎭⎫7π5+π6=sin 47π30=-sin 17π30<0, f ⎝⎛⎭⎫π5=sin ⎝⎛⎭⎫2π5+π6=sin 17π30>0,∴B 错; ∵f (-x )≠-f (x ),∴C 错;∵2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,k π-π3≤x ≤k π+π6,k ∈Z ,∴D 对.故选D.4. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图像向左平移m (m >0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是( )A.π12 B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.5. 设当x =θ时,函数f (x )=sin x +2cos x 取得最大值,则cos θ=________.答案255解析 由f (x )=sin x +2cos x 可得f (x )=5sin(x +φ),其中tan φ=2,当x +φ=π2+2k π(k ∈Z )时函数f (x )取得最大值,所以cos θ=cos ⎝⎛⎭⎫π2-φ+2k π=sin φ=255.题型一 求三角函数的定义域和最值例1 (1)(2012·山东)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3(2)函数y =1tan x -1的定义域为______________________.思维启迪 求函数的定义域可利用三角函数的图像或数轴;求函数最值或值域时要利用图像、三角变换、二次函数等知识.答案 (1)A (2){x |x ≠π4+k π且x ≠π2+k π,k ∈Z }解析 (1)利用三角函数的性质先求出函数的最值. ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[]-3,2,∴y max +y min =2- 3.(2)要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z x ≠π2+k π,k ∈Z .故函数的定义域为{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }.思维升华 (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图像来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(1)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54]答案 (1){x |2k π<x ≤π3+2k π,k ∈Z } (2)C解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z }.(2)y =sin 2x +sin x -1,令t =sin x ,则有y =t 2+t -1,t ∈[-1,1],画出函数图像如图所示,从图像可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1,可得y ∈[-54,1].题型二 三角函数的单调性、周期性 例2 写出下列函数的单调区间及周期:(1)y =sin ⎝⎛⎭⎫-2x +π3;(2)y =|tan x |. 思维启迪 (1)化为y =-sin ⎝⎛⎭⎫2x -π3,再求单调区间及周期.(2)由y =tan x 的图像→y =|tan x |的图像→求单调性及周期. 解 (1)y =-sin ⎝⎛⎭⎫2x -π3, 它的增区间是y =sin ⎝⎛⎭⎫2x -π3的减区间, 它的减区间是y =sin ⎝⎛⎭⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ; 增区间为⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z . 最小正周期T =2π2=π.(2)观察图像可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,减区间是⎝⎛⎦⎤k π-π2,k π,k ∈Z . 最小正周期T =π.思维升华 (1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图像,结合图像判定.求函数y =sin ⎝⎛⎭⎫π3+4x +cos ⎝⎛⎭⎫4x -π6的周期、单调区间及最大、最小值. 解 ∵⎝⎛⎭⎫π3+4x +⎝⎛⎭⎫π6-4x =π2, ∴cos ⎝⎛⎭⎫4x -π6=cos ⎝⎛⎭⎫π6-4x =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+4x =sin ⎝⎛⎭⎫π3+4x . ∴y =2sin ⎝⎛⎭⎫4x +π3,周期T =2π4=π2. 当-π2+2k π≤4x +π3≤π2+2k π (k ∈Z )时,函数单调递增,∴函数的递增区间为⎣⎡⎦⎤-5π24+k π2,π24+k π2 (k ∈Z ). 当π2+2k π≤4x +π3≤3π2+2k π (k ∈Z )时,函数单调递减, ∴函数的递减区间为⎣⎡⎦⎤π24+k π2,7π24+k π2(k ∈Z ). 当x =π24+k π2(k ∈Z )时,y max =2;当x =-5π24+k π2 (k ∈Z )时,y min =-2.题型三 三角函数的奇偶性和对称性例3 (1)已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ) ⎝⎛⎭⎫|φ|≤π2的图像关于直线x =0对称,则φ的值为________.(2)如果函数y =3cos(2x +φ)的图像关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6B.π4C.π3D.π2答案 (1)π6(2)A解析 (1)f (x )=2sin ⎝⎛⎭⎫x +π3, y =f (x +φ)=2sin ⎝⎛⎭⎫x +π3+φ图像关于x =0对称, 即f (x +φ)为偶函数.∴π3+φ=π2+k π,k ∈Z ,φ=k π+π6,k ∈Z , 又∵|φ|≤π2,∴φ=π6.(2)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π =3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.思维升华 若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大值或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0. 如果求f (x )的对称轴,只需令ωx +φ=π2+k π (k ∈Z ),求x .如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π (k ∈Z )即可.(1)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图像的一个对称中心为( )A .(-π8,0)B .(0,0)C .(-18,0)D .(18,0)(2)设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图像关于直线x =π12对称,则在下面四个结论:①图像关于点(π4,0)对称;②图像关于点(π3,0)对称;③在[0,π6]上是增函数;④在[-π6,0]上是增函数中,所有正确结论的编号为________. 答案 (1)C (2)②④解析 (1)由条件得f (x )=2sin(ax +π4),又函数的最小正周期为1,故2πa =1,∴a =2π,故f (x )=2sin(2πx +π4).将x =-18代入得函数值为0.(2)∵T =π,∴ω=2.又2×π12+φ=k π+π2(k ∈Z ),∴φ=k π+π3(k ∈Z ).∵φ∈(-π2,π2),∴φ=π3,∴y =sin(2x +π3),由图像及性质可知②④正确.三角函数的单调性、对称性典例:(20分)(1)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2](2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3(3)(2012·课标全国)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ等于( )A.π4B.π3C.π2D.3π4(4)函数y =sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上单调递减,且函数值从1减小到-1,那么此函数图像与y 轴交点的纵坐标为( )A.12B.22C.32D.6+24思维启迪 (1)(π2,π)为函数f (x )某个单调减区间的子集;(2)由f (x +π4)=f (-x )可得函数的对称轴,应用函数在对称轴处的性质求解即可;(3)f (x )=sin(ωx +φ)图像相邻两条对称轴之间的距离是T2;(4)可结合图像分析函数的单调性,周期性确定ω,φ.解析 (1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆[π2,3π2],∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)利用三角函数的对称轴求得周期. 由题意得周期T =2⎝⎛⎭⎫5π4-π4=2π, ∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.(4)函数y =sin(ωx +φ)的最大值为1,最小值为-1,由该函数在区间[π6,2π3]上单调递减,且函数值从1减小到-1,可知2π3-π6=π2为半周期,则周期为π,ω=2πT =2ππ=2,此时原函数式为y =sin(2x +φ),又由函数y =sin(ωx +φ)的图像过点(π6,1),代入可得φ=π6,因此函数为y =sin(2x +π6),令x =0,可得y =12.答案 (1)A (2)C (3)A (4)A温馨提醒 (1)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集;其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解.(2)函数y =A sin(ωx +φ)+b 的图像与其对称轴的交点是最值点.方法与技巧1. 讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2. 函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. 3. 对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx+φ,将其转化为研究y =sin t 的性质. 失误与防范1. 闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2. 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.A 组 专项基础训练 (时间:40分钟)一、选择题1. 下列函数中,周期为π且在[0,π2]上是减函数的是( )A .y =sin(x +π4)B .y =cos(x +π4)C .y =sin 2xD .y =cos 2x答案 D解析 对于函数y =cos 2x ,T =π,当x ∈[0,π2]时,2x ∈[0,π],y =cos 2x 是减函数.2. (2012·湖南)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为 ( )A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎡⎦⎤-32,32 答案 B解析 将函数化为y =A sin(ωx +φ)的形式后求解. ∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6 =sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3].3. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )D /⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.4. 函数y =cos 2x +sin 2x ,x ∈R 的值域是( )A .[0,1]B .[12,1]C .[-1,2]D .[0,2]答案 A解析 y =cos 2x +sin 2x =cos 2x +1-cos 2x 2=1+cos 2x2.∵cos 2x ∈[-1,1],∴y ∈[0,1].5. (2012·天津)将函数f (x )=sin ωx (其中ω>0)的图像向右平移π4个单位长度,所得图像经过点⎝⎛⎭⎫3π4,0,则ω的最小值是 ( )A.13 B .1C.53D .2答案 D解析 根据题意平移后函数的解析式为y =sin ω⎝⎛⎭⎫x -π4, 将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0, 故ω的最小值为2. 二、填空题6. 函数y =cos(π4-2x )的单调减区间为________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4)得2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).7. 函数y =sin x 的定义域为[a ,b ],值域为[-1,12],则b -a 的最大值为________.答案 43π解析 由正弦函数的图像知(b -a )max =13π6-5π6=4π3.8. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)=________.答案3解析 由题中图像可知,此正切函数的半周期等于3π8-π8=π4,即最小正周期为π2,所以ω=2.由题意可知,图像过定点(3π8,0),所以0=A tan(2×3π8+φ),即3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ),又|φ|<π2,所以φ=π4.又图像过定点(0,1),所以A =1. 综上可知,f (x )=tan(2x +π4),故有f (π24)=tan(2×π24+π4)=tan π3= 3.三、解答题9. 设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间.解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 10.设函数f (x )=sin(πx 4-π6)-2cos 2πx8+1.(1)求f (x )的最小正周期.(2)若函数y =g (x )与y =f (x )的图像关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.解 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx 4=32sin πx 4-32cos πx4=3sin(πx 4-π3),故f (x )的最小正周期为T =2ππ4=8.(2)方法一 在y =g (x )的图像上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图像上,从而g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin[π2-πx 4-π3]=3cos(πx 4+π3).当0≤x ≤43时,π3≤πx 4+π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.方法二 区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图像关于直线x =1对称, 故y =g (x )在[0,43]上的最大值为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(πx 4-π3),当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.B 组 专项能力提升 (时间:30分钟)1. 函数y =|sin x +cos x |-1的定义域是( )A .[k π,k π+π2](k ∈Z )B .[2k π,2k π+π2](k ∈Z )C .[-π2+k π,k π](k ∈Z )D .[-π2+2k π,2k π](k ∈Z )答案 A解析 |sin x +cos x |-1≥0⇒(sin x +cos x )2≥1 ⇒sin 2x ≥0,∴2k π≤2x ≤2k π+π,k ∈Z ,故原函数的定义域是[k π,k π+π2](k ∈Z ).2. 设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 答案 2解析 f (x )=3sin(π2x +π4)的周期T =2π×2π=4,f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.3. 已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π; ③f (x )在区间[-π4,π4]上是增函数;④f (x )的图像关于直线x =3π4对称.其中真命题是________. 答案 ③④解析 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题; f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图像关于直线x =34π对称,故④是真命题.4. 已知函数f (x )=sin 2x -3cos 2x +1.(1)当x ∈[π4,π2]时,求f (x )的最大值和最小值;(2)求f (x )的单调区间.解 (1)f (x )=sin 2x -3cos 2x +1=2sin(2x -π3)+1.∵π4≤x ≤π2,∴π2≤2x ≤π,∴π6≤2x -π3≤2π3, ∴12≤sin(2x -π3)≤1,∴1≤2sin(2x -π3)≤2,于是2≤2sin(2x -π3)+1≤3,∴f (x )的最大值是3,最小值是2. (2)由2k π-π2≤2x -π3≤2k π+π2,k ∈Z得2k π-π6≤2x ≤2k π+5π6,k ∈Z ,∴k π-π12≤x ≤k π+5π12,k ∈Z ,即f (x )的单调递增区间为[k π-π12,k π+5π12],k ∈Z ,同理由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z得f (x )的单调递减区间为[k π+5π12,k π+11π12],k ∈Z . 5. 已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1, ∴4sin ⎝⎛⎭⎫2x +π6-1>1, ∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
2015届高三数学北师大版(通用,理)总复习讲义:第六章 数列范文
常考题型强化练——数列A 组 专项基础训练 (时间:40分钟)一、选择题1.设等差数列{a n }前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6B .7C .8D .9答案 A解析 设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6, 解得d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36, ∴当n =6时,取最小值.2.已知{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5等于( )A .35B .33C .31D .29答案 C解析 设数列{a n }的公比为q ,则由等比数列的性质知, a 2·a 3=a 1·a 4=2a 1,即a 4=2. 由a 4与2a 7的等差中项为54知,a 4+2a 7=2×54,∴a 7=12⎝⎛⎭⎫2×54-a 4=14. ∴q 3=a 7a 4=18,即q =12,∴a 4=a 1q 3=a 1×18=2,∴a 1=16,∴S 5=16⎝⎛⎭⎫1-1251-12=31.3.已知S n 为数列{a n }的前n 项和,且满足2a n -a 1=S 1·S n (a 1≠0,n ∈N +),则a 7等于( ) A .16 B .32C .64D .128答案 C解析 令n =1,则a 1=1,当n =2时,2a 2-1=S 2=1+a 2, 解得a 2=2,当n ≥2时,由2a n -1=S n , 得2a n -1-1=S n -1,两式相减, 解得2a n -2a n -1=a n ,即a n =2a n -1,于是数列{a n }是首项为1,公比为2的等比数列, 因此a n =2n -1.故a 7=26=64.4.已知等差数列{a n }的公差d =-2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是( )A .-78B .-82C .-148D .-182答案 B解析 ∵a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =a 1+a 4+a 7+…+a 97+2d ×33 =50+66×(-2) =-82.5.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N +,且m ≥2),则必定有( ) A .S m >0,且S m +1<0 B .S m <0,且S m +1>0 C .S m >0,且S m +1>0D .S m <0,且S m +1<0答案 A解析 -a m <a 1<-a m +1⇔⎩⎪⎨⎪⎧a 1+a m >0,a 1+a m +1<0.易得S m =a 1+a m 2·m >0,S m +1=a 1+a m +12·(m +1)<0.二、填空题6.若数列{a n }满足1a n +1-1a n =d (n ∈N +,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列且x 1+x 2+…+x 20=200,则x 5+x 16=________. 答案 20解析 由题意知,若{a n }为调和数列,则⎩⎨⎧⎭⎬⎫1a n 为等差数列,∴由⎩⎨⎧⎭⎬⎫1x n 为调和数列,可得数列{x n }为等差数列,由等差数列的性质知,x 5+x 16=x 1+x 20=x 2+x 19=…=x 10+x 11=20010=20.7.已知数列{a n }的前n 项和为S n ,且S n =2n -a n ,则数列{a n }的通项公式a n =__________. 答案 2-⎝⎛⎭⎫12n -1解析 由于S n =2n -a n ,所以S n +1=2(n +1)-a n +1,后式减去前式,得S n +1-S n =2-a n+1+a n ,即a n +1=12a n +1,变形为a n +1-2=12(a n -2),则数列{a n -2}是以a 1-2为首项,12为公比的等比数列.又a 1=2-a 1,即a 1=1. 则a n -2=(-1)⎝⎛⎫12n -1,所以a n=2-⎝⎛⎫12n -1. 8.已知等比数列{}a n 中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8的值为_____.答案 3+2 2解析 设等比数列{a n }的公比为q , ∵a 1,12a 3,2a 2成等差数列,∴a 3=a 1+2a 2.∴a 1q 2=a 1+2a 1q .∴q 2-2q -1=0.∴q =1±2. ∵各项都是正数,∴q >0.∴q =1+ 2. ∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2.三、解答题9.已知等差数列{a n }的前n 项和为S n ,n ∈N +,a 3=5,S 10=100. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =5,10a 1+10×92d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =2n -1.(2)因为b n =2a n +2n =12×4n +2n ,所以T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23×4n +n 2+n -23.10.已知等差数列{a n }的前三项为a -1,4,2a ,记前n 项和为S n .(1)设S k =2 550,求a 和k 的值;(2)设b n =S nn ,求b 3+b 7+b 11+…+b 4n -1的值.解 (1)由已知得a 1=a -1,a 2=4,a 3=2a , 又a 1+a 3=2a 2,∴(a -1)+2a =8,即a =3. ∴a 1=2,公差d =a 2-a 1=2. 由S k =ka 1+k (k -1)2d ,得2k +k (k -1)2×2=2 550,即k 2+k -2 550=0,解得k =50或k =-51(舍去). ∴a =3,k =50.(2)由S n =na 1+n (n -1)2d ,得S n =2n +n (n -1)2×2=n 2+n .∴b n =S nn=n +1.∴{b n }是等差数列.则b 3+b 7+b 11+…+b 4n -1=(3+1)+(7+1)+(11+1)+…+(4n -1+1)=(4+4n )n2.∴b 3+b 7+b 11+…+b 4n -1=2n 2+2n .B 组 专项能力提升 (时间:25分钟)1.已知数列{a n }是首项为a 1=4的等比数列,且4a 1,a 5,-2a 3成等差数列,则其公比q 等于( )A .1B .-1C .1或-1 D. 2答案 C解析 依题意,有2a 5=4a 1-2a 3, 即2a 1q 4=4a 1-2a 1q 2,整理得q 4+q 2-2=0,解得q 2=1(q 2=-2舍去), 所以q =1或q =-1.2.在直角坐标系中,O 是坐标原点,P 1(x 1,y 1),P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是 ( )A .1B .2C .3D .4答案 A解析 由等差、等比数列的性质, 可求得x 1=2,x 2=3,y 1=2,y 2=4, ∴P 1(2,2),P 2(3,4).∴S △OP 1P 2=1.3.已知数列{a n}满足:a 1=1,a n=⎩⎨⎧1+2a n 2, n 为偶数,12+2a n -12, n 为奇数,n =2,3,4,…,设b n =a 2n -1+1,n =1,2,3,…,则数列{b n }的通项公式是________. 答案 b n =2n解析 由题意,得对于任意的正整数n ,b n =a 2n -1+1, ∴b n +1=a 2n +1,又a 2n +1=(2a 2n 2+1)+1=2(a 2n -1+1)=2b n ,∴b n +1=2b n ,又b 1=a 1+1=2,∴{b n }是首项为2,公比为2的等比数列, ∴b n =2n .4.某音乐酒吧的霓虹灯是用,,三个不同音符组成的一个含n +1(n ∈N +)个音符的音符串,要求由音符开始,相邻两个音符不能相同.例如n =1时,排出的音符串是,;n =2时,排出的音符串是,,,;…….记这种含n +1个音符的所有音符串中,排在最后一个的音符仍是的音符串的个数为a n .故a 1=0,a 2=2.则 (1)a 4=________; (2)a n =________.答案 (1)6 (2)2n +2(-1)n3解析 由题意知,a 1=0,a 2=2=21-a 1,a 3=2=22-a 2,a 4=6=23-a 3,a 5=10=24-a 4, 所以a n =2n -1-a n -1,所以a n -1=2n -2-a n -2,两式相减得a n -a n -2=2n -2.当n 为奇数时,利用累加法得a n -a 1=21+23+…+2n -2=2n -23,所以a n =2n-23.当n 为偶数时,利用累加法得a n -a 2=22+24+…+2n -2=2n -223,所以a n =2n +23.综上所述,a n =2n +2(-1)n3.5.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n . 解 (1)当n =1时,a 1=13,当n ≥2时,a n =S n -S n -1, 又S n =12-12a n ,所以a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝⎛⎭⎫13n.(2)由已知可得f (a n )=log 3⎝⎛⎭⎫13n =-n , 则b n =-1-2-3-…-n =-n (n +1)2,故1b n =-2⎝ ⎛⎭⎪⎫1n -1n +1, 又T n =-2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=-2⎝ ⎛⎭⎪⎫1-1n +1,所以T 2 012=-4 0242 013.(3)由题意得c n =(-n )·⎝⎛⎭⎫13n , 故U n =c 1+c 2+…+c n=-⎣⎡⎦⎤1×⎝⎛⎭⎫131+2×⎝⎛⎭⎫132+…+n ·⎝⎛⎭⎫13n , 则13U n =-⎣⎡⎦⎤1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+…+n ·⎝⎛⎭⎫13n +1, 两式相减可得23U n =-⎣⎡⎦⎤⎝⎛⎭⎫131+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -n ·⎝⎛⎭⎫13n +1 =-12⎣⎡⎦⎤1-⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1 =-12+12·⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1, 则U n =-34+34·⎝⎛⎭⎫13n +32n ·⎝⎛⎭⎫13n +1.。
【步步高】2015届高考数学总复习 第六章 6.4数列求和强化训练 理 北师大版
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1)(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫作倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101B.99101 C.99100D.101100 答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎨⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2 D .2n +n 2-2 答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解.解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1.解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)n 个-(12+122+…+12n )] =2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N +),求数列{b n }的前n 项和S n . 思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{}对应项之积组成的数列{a n },即a n =b n ×的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用X 围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n-12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N +.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N +,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1. ∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·某某)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .规X 解答解 (1)当n =k ∈N +时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案;(2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防X1.直接应用公式求和时,要注意公式的应用X 围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1B.4n n +1C.3n n +1D.5nn +1 答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1), ∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)] =4(1-1n +1)=4n n +1. 2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A .20B .17C .19D .21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于 ( )A .0B .100C .-100D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185答案 C解析 a 1+...+a k +...+a 10=240-(2+...+2k + (20)=240-(2+20)×102=240-110=130. 5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________. 答案 n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n ) =n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n . 7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x,∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830. 三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 41a n (n ∈N +),数列{}满足=a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{}的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N +), 又b n =3log 41a n -2,故b n =3n -2(n ∈N +).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N +),所以=(3n -2)×(14)n (n ∈N +). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N +). 10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求等比数列S 1,S 2,S 4的公比;(2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈ N +都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q ,所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2.因为公差d ≠0.所以d =2a 1.所以q =S 2S 1=4a 1a 1=4. (2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1.(3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1), 所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32. 要使T n <m 20对所有n ∈N +都成立,则有m 20≥32,即m ≥30. 因为m ∈N +,所以m 的最小值为30.B 组 专项能力提升(时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A .2 008B .2 010C .1D .0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n 的三边长分别为a n 、b n 、,△A n B n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=+a n 2,+1=b n +a n 2,则( ) A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13; 故S 1= 3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1, S 2= 3a 12·a 12·2a 13·a 13=66a 21.显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1, c 3=56a 1+a 12=1112a 1, S 3= 3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·某某)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N +,则: (1)a 3=________; (2)S 1+S 2+…+S 100=________.答案 (1)-116(2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1, ∴a n =(-1)n a n -(-1)n -1a n -1+12n . 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…, ∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N +).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N +时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 5.直线l n :y =x -2n 与圆:x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N +.数列{a n }满足:a 1=1,a n +1=14|A n B n |2. (1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎪⎨⎪⎧ n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。
2015届高三数学北师大版(通用,理)总复习讲义+强化训练+专题检测:第二章 函数(10份)第二章 2.8
§2.8函数与方程1.函数的零点(1)函数零点的定义函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)若函数y=f(x)在区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.2.二次函数y=ax2+bx+c (a>0)的图像与零点的关系3.其中:“初始区间”是一个两端函数值反号的区间;“M”的含义:取新区间,一个端点是原区间的中点,另一端是原区间两端点中的一个,新区间两端点的函数值反号;“N ”的含义:方程解满足要求的精度;“P ”的含义:选取区间内的任意一个数作为方程的近似解.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图像与x 轴的交点.( × ) (2)函数y =f (x )在区间(a ,b )内有零点(函数图像连续不断),则f (a )·f (b )<0. ( × ) (3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ ) (4)只要函数有零点,我们就可以用二分法求出零点的近似值. ( × ) (5)函数y =2sin x -1的零点有无数多个.( √ ) (6)函数f (x )=kx +1在[1,2]上有零点,则-1<k <-12.( × ) 2. (2013·天津)函数f (x )=2x |log 0.5 x |-1的零点个数为( )A .1B .2C .3D .4答案 B解析 当0<x <1时,f (x )=2x log 0.5x -1,令f (x )=0,则log 0.5x =⎝⎛⎭⎫12x由y =log 0.5x ,y =⎝⎛⎭⎫12x 的图像知,在(0,1)内有一个交点,即f (x )在(0,1)上有一个零点. 当x >1时,f (x )=-2x log 0.5x -1=2x log 2x -1, 令f (x )=0得log 2x =⎝⎛⎭⎫12x ,由y =log 2x ,y =⎝⎛⎭⎫12x 的图像知在(1,+∞)上有一个交点,即f (x )在(1,+∞)上有一个零点,故选B.3. (2013·重庆)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图像是连续不断的曲线,因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内,故选A. 4. 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)答案 C解析 ∵f (x )=e x +4x -3,∴f ′(x )=e x +4>0. ∴f (x )在其定义域上是严格单调递增函数.∵f (-14)=e 41--4<0,f (0)=e 0+4×0-3=-2<0,f (14)=e 41-2<0,f (12)=e 21-1>0, ∴f (14)·f (12)<0.5. 已知函数f (x )=ln x -x +2有一个零点所在的区间为(k ,k +1) (k ∈N +),则k 的值为________. 答案 3解析 由题意知,当x >1时,f (x )单调递减,因为f (3)=ln 3-1>0,f (4)=ln 4-2<0,所以该函数的零点在区间(3,4)内,所以k =3.题型一 函数零点的判断和求解例1 (1)函数f (x )=e x +2x -3的零点所在的一个区间是( )A.⎝⎛⎭⎫-12,0 B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫1,32 (2)(2012·湖北)函数f (x )=x cos x 2在区间[0,4]上的零点个数为( )A .4B .5C .6D .7思维启迪 (1)利用零点存在性定理判断;(2)函数零点的确定问题. 答案 (1)C (2)C解析 (1)由于函数f (x )的图像在R 上是连续的,且f ⎝⎛⎭⎫-12=e 21-+2×(-12)-3=e 21--4<0, 即f ⎝⎛⎭⎫-12<0; f (0)=e 0+2×0-3=-2<0,f ⎝⎛⎭⎫12=e 21+2×12-3=e 21-2=e -2<0, f (1)=e 1+2×1-3=e -1>0, ∴f ⎝⎛⎭⎫12·f (1)<0, 故函数f (x )=e x +2x -3的一个零点所在的区间是⎝⎛⎭⎫12,1. (2)当x =0时,f (x )=0.又因为x ∈[0,4], 所以0≤x 2≤16.因为5π<16<11π2,所以函数y =cos x 2在x 2取π2,3π2,5π2,7π2,9π2时为0,此时f (x )=0,所以f (x )=x cos x 2在区间[0,4]上的零点个数为6.思维升华 函数零点的确定问题,常见的有①函数零点值大致存在区间的确定,②零点个数的确定,③两函数图像交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判断或数形结合法.(1)函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .多于4个B .4个C .3个D .2个答案 (1)B (2)B解析 (1)∵f ′(x )=2x ln 2+3>0, ∴f (x )=2x +3x 在R 上是增函数. 而f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=20=1>0,f (1)=2+3=5>0,f (2)=22+6=10>0, ∴f (-1)·f (0)<0.故函数f (x )在区间(-1,0)上有零点. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图像,如下:观察图像可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 题型二 二次函数的零点问题例2 是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.思维启迪 可将问题转化为f (x )=0在[-1,3]上有且只有一个实数根,结合二次函数的图像特征转化题中条件.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8 =9(a -89)2+89>0,即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可. f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1) =4(1-a )(5a +1)≤0, ∴a ≤-15或a ≥1.检验:(1)当f (-1)=0时,a =1,所以f (x )=x 2+x . 令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两个实数根,不合题意,故a ≠1. (2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得x =-25或x =3.方程在[-1,3]上有两个实数根,不合题意,故a ≠-15.综上所述,a <-15或a >1.思维升华 解决二次函数的零点问题:(1)可利用一元二次方程的求根公式; (2)可用一元二次方程的判别式及根与系数之间的关系; (3)利用二次函数的图像列不等式组.已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1. 方法二 函数图像大致如图, 则有f (1)<0,即1+(a 2-1)+a -2<0, ∴-2<a <1.题型三 函数零点的应用例3 若关于x 的方程22x +2x a +a +1=0有实根,求实数a 的取值范围.思维启迪 方程的根也就是与方程对应的函数零点,判断方程的根是否存在,可以通过构造相应的函数,将其转化为函数零点的存在性问题求解,也可直接通过分离参数,转化为函数的值域问题求解. 解 方法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0, (*)原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根,不合题意,舍去),则f (0)=a +1<0,解得a <-1;③当a =-1时,t =1,x =0符合题意. 综上,a 的取值范围是(-∞,2-22]. 方法二 (分离变量法)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-⎝⎛⎭⎫t +2t +1-1=2-⎣⎡⎦⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.思维升华 对于“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域来解决.已知定义在R 上的函数y =f (x )满足f (x +2)=f (x ),当-1<x ≤1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有5个零点,则a 的取值范围是( )A .(1,5)B .(0,15)∪[5,+∞)C .(0,15]∪[5,+∞)D .[15,1]∪(1,5]答案 B解析 依题意知函数f (x )的周期为2,在坐标平面内画出函数y =f (x )与函数y =log a |x |的图像,如图所示,结合图像,可知要使函数g (x )=f (x )-log a |x |至少有5个零点,则有0<a <15或a ≥5,即实数a 的取值范围是(0,15)∪[5,+∞).函数与方程思想的应用典例:(12分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.思维启迪 (1)y =g (x )-m 有零点即y =g (x )与y =m 的图像有交点,所以可以结合图像求解;(2)g (x )-f (x )=0有两个相异实根⇔y =f (x )与y =g (x )的图像有两个不同交点,所以可利用它们的图像求解. 规范解答解 (1)方法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),[3分] 因而只需m ≥2e ,则y =g (x )-m 就有零点.[6分] 方法二 作出g (x )=x +e 2x (x >0)的大致图像如图.[3分] 可知若使y =g (x )-m 有零点,则只需m ≥2e.[6分](2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图像有两个不同 的交点,作出g (x )=x +e 2x(x >0)的大致图像如图.[8分]∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图像的对称轴为x =e ,开口向下, 最大值为m -1+e 2.[10分]故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有 两个交点,即g (x )-f (x )=0有两个相异实根. ∴m 的取值范围是(-e 2+2e +1,+∞).[12分]温馨提醒 (1)求函数零点的值,判断函数零点的范围及零点的个数以及已知函数零点求参数范围等问题,都可利用方程来求解,但当方程不易甚至不可能解出时,可构造两个函数,利用数形结合的方法进行求解.(2)本题的易错点是确定g (x )的最小值和f (x )的最大值时易错.要注意函数最值的求法.方法与技巧1. 函数零点的判定常用的方法有(1)零点存在性定理;(2)数形结合;(3)解方程f (x )=0.2. 研究方程f (x )=g (x )的解,实质就是研究G (x )=f (x )-g (x )的零点.3. 转化思想:方程解的个数问题可转化为两个函数图像交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题. 失误与防范1. 函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图像与x 轴交点的横坐标.2. 函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图像.A 组 专项基础训练 (时间:40分钟)一、选择题1. 方程log 3x +x -3=0的解所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x +x -3,则f (2)=log 32-1<0, f (3)=log 33+3-3=1>0, ∴f (x )=0在(2,3)有零点,又f (x )为增函数,∴f (x )=0的零点在(2,3)内. 2. 方程|x 2-2x |=a 2+1(a >0)的解的个数是( )A .1B .2C .3D .4答案 B解析 (数形结合法) ∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图像如图,∴y =|x 2-2x |的图像与y =a 2+1的图像总有两个交点.3. 若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)答案 C解析 ∵方程x 2+mx +1=0有两个不相等的实数根, ∴Δ=m 2-4>0,∴m >2或m <-2.4. 已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b答案 B解析 由于f (-1)=12-1=-12<0,f (0)=1>0,且f (x )为单调递增函数.故f (x )=2x +x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2;∵h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0, 且h (x )为单调递增函数,∴h (x )的零点c ∈⎝⎛⎭⎫12,1,因此a <c <b .5. 已知x 0是函数f (x )=11-x+ln x 的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0 答案 D解析 令f (x )=11-x +ln x =0.从而有ln x =1x -1,此方程的解即为函数f (x )的零点.在同一坐标系中作出函数y =ln x 与y =1x -1的图像如图所示.由图像易知,1x 1-1>ln x 1,从而ln x 1-1x 1-1<0,故ln x 1+11-x 1<0,即f (x 1)<0.同理f (x 2)>0. 二、填空题6. 定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为________. 答案 3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间(0,12 015)内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数f (x )在R 上的零点的个数为3.7. 已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.答案 (0,1)解析 画出f (x )=⎩⎪⎨⎪⎧2x -1,x >0-x 2-2x ,x ≤0的图像,如图. 由于函数g (x )=f (x )-m 有3个零点,结合图像得:0<m <1,即m ∈(0,1).8. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.答案 {x |-32<x <1} 解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3.∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧ -2+3=-a -2×3=b , ∴⎩⎪⎨⎪⎧a =-1b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为{x |-32<x <1}. 三、解答题9. 已知函数f (x )=x 3-x 2+x 2+14. 证明:存在x 0∈(0,12),使f (x 0)=x 0. 证明 令g (x )=f (x )-x .∵g (0)=14,g (12)=f (12)-12=-18, ∴g (0)·g (12)<0. 又函数g (x )在[0,12]上连续, ∴存在x 0∈(0,12),使g (x 0)=0.即f (x 0)=x 0. 10.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.解 ∵f (x )=4x +m ·2x +1有且仅有一个零点,即方程(2x )2+m ·2x +1=0仅有一个实根.设2x =t (t >0),则t 2+mt +1=0.当Δ=0,即m 2-4=0,∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去),∴2x =1,x =0符合题意.当Δ>0,即m >2或m <-2时,t 2+mt +1=0有两正根或两负根,即f (x )有两个零点或没有零点.∴这种情况不符合题意.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0.B 组 专项能力提升(时间:30分钟)1. 已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则 ( )A.1e <x 1x 2<1B .1<x 1x 2<eC .1<x 1x 2<10D .e<x 1x 2<10 答案 A解析 在同一坐标系中画出函数y =e -x 与y =|ln x |的图像,结合图像不难看出,它们的两个交点中,其中一个交点的横坐标属于区间(0,1),另一个交点的横坐标属于区间(1,+∞),即在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e -x 1=|ln x 1|=-ln x 1∈(e -1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln x 1x 2∈(-1,0),于是有e -1<x 1x 2<e 0,即1e<x 1x 2<1. 2. 若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图像上;②P ,Q关于原点对称.则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( ) A .0对B .1对C .2对D .3对答案 C解析 函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0的图像及函数f (x )=-x 2- 4x (x ≤0)的图像关于原点对称的图像如图所示,则A ,B 两点关于原点的对称点一定在函数f (x )=-x 2-4x (x ≤0)的图像上,故函数f (x )的“友好点对”有2对,选C.3. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.答案 (512,34]解析 作出函数y 1=4-x 2和y 2=k (x -2)+3的图像如图所示,函数y 1的图像是圆心在原点,半径为2的圆在x 轴上方的半圆(包括端点),函数y 2的图像是过定点P (2,3)的直线,点A (-2,0),k P A=3-02-(-2)=34.直线PB 是圆的切线,由圆心到直线的距离等于半径得,|3-2k PB |k 2PB +1=2,得 k PB =512.由图可知当k PB <k ≤k P A 时,两函数图像有两个交点,即原方程有两个不等实根.所 以512<k ≤34. 4. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围;(2)若方程两根均在区间(0,1)内,求m 的取值范围.解 (1)由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如右图所示,得⎩⎪⎨⎪⎧f (0)=2m +1<0f (-1)=2>0f (1)=4m +2<0f (2)=6m +5>0⇒⎩⎪⎨⎪⎧ m <-12,m ∈R ,m <-12,m >-56. 即-56<m <-12,故m 的取值范围是(-56,-12). (2)抛物线与x 轴交点的横坐标均在区间(0,1)内,如右图所示,列不等 式组⎩⎪⎨⎪⎧ f (0)>0f (1)>0Δ≥00<-m <1⇒⎩⎪⎨⎪⎧ m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.即-12<m ≤1- 2. 故m 的取值范围是(-12,1-2]. 5. 已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解 f (x )=2ax 2+2x -3-a 的对称轴为x =-12a. ①当-12a ≤-1,即0≤a ≤12时, 须使⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1, ∴a 的解集为∅.②当-1<-12a <0,即a >12时, 须使⎩⎪⎨⎪⎧ f (-12a )≤0,f (1)≥0,即⎩⎪⎨⎪⎧ -12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).。
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-5 Word版含解析
基础达标检测一、选择题1.已知数列{a n}是首项为a1=4的等比数列,且4a1,a5,-2a3成等差数列,则其公比q等于()A.1B.-1C.1或-1 D. 2[答案] C[解析]依题意有2a5=4a1-2a3,即2a1q4=4a1-2a1q2,整理得q4+q2-2=0,解得q2=1(q2=-2舍去),所以q=1或-1,故选C.2.等差数列{a n}的前n项和为S n,S9=-18,S13=-52,等比数列{b n}中,b5=a5,b7=a7,则b15的值为()A.64 B.-64C.128 D.-128[答案] B[解析]因为S9=92(a1+a9)=9a5=-18,S13=132(a1+a13)=13a7=-52,所以a5=-2,a7=-4,又b5=a5,b7=a7,所以q2=2,所以b15=b7·q8=-4×16=-64.3.一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等数列的公差等于()A .0 B.π12 C.π6 D.π4[答案] A[解析] 因A ,B ,C 成等差数列,a ,b ,c 成等比数列, 则B =π3,b 2=ac ,∴cos B =a 2+c 2-b 22ac =12,可推得a =c =b . ∴A =B =C ,即公差为0.4.等差数列{a n }中,a 1=a 3+a 7-2a 4=4,则a n a n +1+12n 2+3n 的值为整数时n 的个数为( )A .4B .3C .2D .1[答案] C[解析] a 3+a 7-2a 4=2d =4, ∴d =2.∴a n =2n +2.∴a n a n +1+12n 2+3n =(2n +2)(2n +4)+12n 2+3n=4+20n (n +3).当n =1,2时,符合题意.5.某种细胞开始时有2个,1h 后分裂成4个并死去1个,2h 后分裂成6个并死去1个,3h 后分裂成10个并死去1个,…,按照此规律,6h 后细胞存活数是( )A .33B .64C.65 D.127[答案] B[解析]每一小时后细胞变为前一小时细胞数的2倍减1,4小时后为17个,5小时后为33个,6小时后为65个.6.小正方形按照如图的规律排列:每个图中的小正方形的个数就构成一个数列{a n},有以下结论:①a5=15;②数列{a n}是一个等差数列;③数列{a n}是一个等比数列;④数列的递推公式为:a n+1=a n+n+1(n∈N+).其中正确的命题序号为()A.①②B.①③C.①④D.①[答案] C[解析]当n=1时,a1=1;当n=2时,a2=3;当n=3时,a3=6;当n=4时,a4=10,…,观察图中规律,有a n+1=a n+n+1,a5=15.故①④正确.二、填空题7.已知m、n、m+n成等差数列,m、n、mn成等比数列,则椭圆x2m+y2n=1的离心率为________.[答案] 22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22.8.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] ∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2 =2-2n 1-2+2=2n -2+2=2n , ∴S n =2-2n +11-2=2n +1-2.9.(2013·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n (n ∈N +)等于________.[答案] 6[解析] 本题考查等比数列通项公式,前n 项和公式等.记第一天植树a 1=2,则第n 天为a n =2n,这n 天总共植树S n =2(1-2n)1-2=2(2n-1),令S n ≥100得n ≥6,所以最少要6天.三、解答题10.(2013·安徽高考)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N +函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′(π2)=0.(1)求数列{a n }的通项公式;(2)若b n =2(a n +12a n),求数列{b n }的前n 项和S n .[解析] (1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1·sin x -a n +2cos x对任意n ∈N +.f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1. (2)由b n =2(a n +12a n )=2(n +1+12n +1)=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+12[1-(12)n ]1-12=n 2+3n +1-12n .能力强化训练一、选择题1.已知函数f (x )=x 2+bx 的图像在点A (1,f (1))处的切线的斜率为3,数列{1f (n )}的前n 项和为S n ,则S 2 014的值为( )A.2 0132 015B.2 0122 013C.2 0132 014D.2 0142 015[答案] D[解析] ∵f ′(x )=2x +b ,∴f ′(1)=2+b =3,∴b =1,∴f (x )=x 2+x ,∴1f (n )=1n (n +1)=1n -1n +1, ∴S 2 014=(1-12)+(12-13)+…+(12 013-12 014)+(12 014-12 015)=1-12 015=2 0142 015.2.已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64an的最小值为( )A .7B .8 C.152 D.172[答案] D[解析] 由题意知⎩⎪⎨⎪⎧ a 1+d =4,10a 1+45d =110.∴⎩⎪⎨⎪⎧a 1=2,d =2.∴S n =n 2+n ,a n =2n .∴S n +64a n=n 2+n +642n=n 2+12+32n ≥12+2n 2·32n =172.等号成立时,n 2=32n ,∴n =8,故选D.二、填空题3.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.[答案] 10[解析] 由等差数列的性质可知2a m =a m +1+a m -1, 又∵a m -1+a m +1-a 2m =0,∴a 2m =2a m ,∴a m =2(a m =0不合题意,舍去),又S 2m -1=2m -12(a 1+a 2m -1)=2m -12×2a m =(2m -1)·a m =38,∴2m -1=19. ∴m =10.4.(2014·济南模拟)若数列{a n }满足1a n +1-1a n=d (n ∈N +,d 为常数),则称数列{a n }为“调和数列”.已知数列{1x n}为“调和数列”,且x 1+x 2+…+x 20=200,则x 3x 18的最大值是________.[答案] 100[解析] 因为数列{1x n}为“调和数列”,所以x n +1-x n =d (n ∈N +,d 为常数),即数列{x n }为等差数列,由x 1+x 2+…+x 20=200得20(x 1+x 20)2=20(x 3+x 18)2=200, 即x 3+x 18=20,易知x 3,x 18都为正数时,x 3x 18取得最大值,所以x 3x 18≤(x 3+x 182)2=100,即x 3x 18的最大值为100.三、解答题5.已知数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上. (1)求数列{a n }的通项公式;(2)若b n =a n ·3n ,求数列{a n }的前n 项和T n . [解析] (1)∵点(a n ,a n +1)在直线y =x +2上, ∴a n +1=a n +2,即a n +1-a n =2.∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1. (2)∵b n =a n ·3n ,∴b n =(2n +1)·3n .∴T n =3×3+5×32+7×33+…+(2n -1)·3n -1+(2n +1)·3n ,① ∴3T n =3×32+5×33+…+(2n -1)·3n +(2n +1)·3n +1.②①-②得-2T n =3×3+2(32+33+…+3n )-(2n +1)·3n +1=9+2×9(1-3n -1)1-3-(2n +1)·3n +1=-2n ·3n +1∴T n =n ·3n +1.6.在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列; (3)若c n =a n ·b n ,求证:c n +1<c n .[解析] (1)由已知点A n (a n ,a n +1)在y 2-x 2=1上知, a n +1-a n =1,又∵a 1=2.∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上, ∴T n =-12b n +1,①∴T n -1=-12b n -1+1(n ≥2),② ①②两式相减得 b n =-12b n +12b n -1(n ≥2), ∴32b n =12b n -1,∴b n =13b n -1. 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列. (3)证明:由(2)可知b n =23·(13)n -1=23n . ∴c n =a n ·b n =(n +1)·23n ,∴c n +1-c n =(n +2)·23n +1-(n +1)· 23n=23n +1[(n +2)-3(n +1)]=23n +1(-2n -1)<0, ∴c n +1<c n .------------------------------------------------------------------------怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。
2015届高三数学北师大版(通用,理)总复习课件:第二章 函数(10份)第二章 常考题型强化练——函数
(1)由图像知,函数在[0,1]内单调递减, ∴当 x=0 时,y=18;当 x=1 时,y=12, ∴f(x)在[0,1]内的值域为[12,18].
B组 专项能力提升
1
2
3
4
5
5.已知函数 f(x)=ax2+(b-8)x-a-ab(a≠0),当 x∈(-3,2)时,
f(x)>0;当 x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
得最小值 b,则函数 g(x)=1a|x+b|的图像为
(B )
因此 g(x)=1a|x+b|=12|x+1|, 只需将 y=12|x|的图像向左平移 1 个单位即可,
其中 y=12|x|的图像可利用其为偶函数通过 y=12x 作出,故
(2)f(x+1)-f(x)=a·2x+2b·3x>0,
当 a<0,b>0 时,32x>-2ab,则 x>log1.5-2ab;
当 a>0,b<0 时,32x<-2ab,则 x<log1.5-2ab.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
10.某工厂生产某种产品,每日的成本 C(单位:万元)与日产量 x(单位:吨)满足函数关系式 C=3+x,每日的销售额 S(单 位:万元)与日产量 x 满足函数关系式 S=3x+x-k 8+5,0<x<6, 14, x≥6. 已知每日的利润 L=S-C,且当 x=2 时,L=3. (1)求 k 的值; (2)当日产量为多少吨时,每日的利润可以达到最大,并求 出最大值.
D.9
解析 ∵f(x)是最小正周期为 2 的周期函数,且 0≤x<2 时, f(x)=x3-x=x(x-1)(x+1),
2015年高考数学(理)核按钮:第六章《数列》(含解析)
第六章数列§6.1数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.高考以考查通项公式及其性质为主,题型主要为:用归纳猜想法求通项;利用a n与S n的关系求通项;由递推数列的关系式求通项;判断数列的单调性等.1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成,其中a n是数列的第n项,叫做数列的通项.常把一般形式的数列简记作{a n}.(2)通项公式:如果数列{a n}的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有、、、.2.数列的分类(1)数列按项数是有限还是无限来分,分为、.(2)按项的增减规律分为、、和.递增数列⇔a n+1a n;递减数列⇔a n+1a n;常数列⇔a n+1a n.递增数列与递减数列统称为.3.数列前n项和S n与a n的关系已知S n,则a n=⎩⎨⎧≥=).2(),1(nn4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n=____________;(2)2,4,6,8,…的一个通项公式为a n=____________;(3)3,5,7,9,…的一个通项公式为a n=____________;(4)2,4,8,16,…的一个通项公式为a n=____________;(5)-1,1,-1,1,…的一个通项公式为a n=____________;(6)1,0,1,0,…的一个通项公式为a n=____________;(7)a,b,a,b,…的一个通项公式为a n=____________;(8)9,99,999,…的一个通项公式为a n=.注:据此,很易获得数列1,11,111, (2)22,222,…;…;8,88,888,…的通项公式分别为19(10n-1),29(10n-1),…,89(10n-1).【自查自纠】1.(1)项首项a1,a2,a3,…,a n,…(2)第n项n(3)函数值(4)a n a n-1(5)通项公式(解析法)列表法图象法递推公式2.(1)有穷数列无穷数列(2)递增数列递减数列摆动数列常数列><=单调数列3.S1S n-S n-14.(1)n (2)2n (3)2n +1 (4)2n (5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n -1数列-1,43,-95,167,…的一个通项公式是( )A .a n =(-1)n n (n +1)2n -1B .a n =(-1)nn 22n -1C .a n =(-1)nn 22n +1D .a n =(-1)nn 3-2n2n -1解:-1=-11,数列1,4,9,16,…对应通项n 2,数列1,3,5,7,…对应通项2n -1,数列-1,1,-1,1,…对应通项(-1)n .故选B .下列有四个命题:①数列是自变量为正整数的一类函数;②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中正确的个数是( ) A .1B .2C .3D .4解:易知①③正确,②④不正确.故选B .若数列a n =1n +1+1n +2+…+12n ,则a 5-a 4=( )A.110B .-110C.190D.1990解:a 5-a 4=⎝⎛⎭⎫16+17+…+110-(15+16+17+18)=19+110-15=190,故选C .数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为____________.解:当n =1时,a 1=S 1=4;当n ≥2时,a n =S n-S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).故填a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).数列{a n }中,a 1=1,对于所有的n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解法一:由a 1a 2a 3=22a 3=32,得a 3=94,由a 1a 2a 3a 4a 5=42a 5=52,得a 5=2516,∴a 3+a 5=6116.解法二:当n ≥1时,a 1·a 2·a 3·…·a n =n 2. 当n ≥2时,a 1·a 2·a 3·…·a n -1=(n -1)2.两式相除得a n =⎝ ⎛⎭⎪⎫n n -12,n ≥2.∴a 3=94,a 5=2516.∴a 3+a 5=6116.故填6116.类型一 数列的通项公式已知数列:45,910,1617,2526,….(1)试写出该数列的一个通项公式;(2)利用你写出的通项公式判断0.98是不是这个数列中的一项.解:(1)各项的分子为22,32,42,52,…,分母比分子大1,因此该数列的一个通项公式为a n =(n +1)2(n +1)2+1.(2)不妨令(n +1)2(n +1)2+1=0.98,得n 2+2n -48=。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案32 数列的综合应用
探究点一 等差、等比数列的综合问题 例 1 设{an}是公比大于 1 的等比数列,Sn 为数列{an}的前 n 项和.已知 S3=7,且 a1 +3,3a2,a3+4 构成等差数列. (1)求数列{an}的通项; (2)令 bn=ln a3n+1,n=1,2,…,求数列{bn}的前 n 项和 Tn.
Go the distance
学案 32
数列的综合应用
导学目标: 1.通过构造等差、等比数列模型,运用数列的公式、性质解决简单的实际 问题.2.对数列与其他知识综合性的考查也高于考试说明的要求,另外还要注重数列在生产、 生活中的应用.
自主梳理 1.数列的综合应用 数列的综合应用一是指综合运用数列的各种知识和方法求解问题, 二是数列与其他数学 内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会. (1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法. (2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等 差、等比数列或常见的特殊数列问题. (3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若 干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的. (4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由 Sn 求 an 时,要对______________进行分类讨论. 2.数列的实际应用 数列的应用问题是中学数学教学与研究的一个重要内容, 解答应用问题的核心是建立数 学模型. (1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是 求 an 还是求 Sn. (2)分期付款中的有关规定 ①在分期付款中,每月的利息均按复利计算; ②在分期付款中规定每期所付款额相同; ③在分期付款时, 商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增 值; ④各期付款连同在最后一次付款时所生的利息之和, 等于商品售价及从购买时到最后一 次付款的利息之和. 自我检测 1 . ( 原创 题 ) 若 Sn 是等差 数列 {an} 的前 n 项 和, 且 S8 - S3 = 10 , 则 S11 的 值 为 ( ) A.12 B.18 C.22 D.44 a6 2.(2011· 汕头模拟)在等比数列{an}中,an>an+1,且 a7· a11=6,a4+a14=5,则 等于 a16 ( ) 2 3 A. B. 3 2 1 5 C.- D.- 6 6 3.若{an}是首项为 1,公比为 3 的等比数列,把{an}的每一项都减去 2 后,得到一个新 数列{bn}, 设{bn}的前 n 项和为 Sn, 对于任意的 n∈N*, 下列结论正确的是 ( ) 1 n A.bn+1=3bn,且 Sn= (3 -1) 2 1 B.bn+1=3bn-2,且 Sn= (3n-1) 2 1 C.bn+1=3bn+4,且 Sn= (3n-1)-2n 2
2015届高三数学北师大版(通用,理)总复习课件压轴题目突破练——函数与导数
1
2
3
4
5
3.函数 y=x2(x>0)的图像在点(ak,a2k)处的切线与 x 轴的交点的 横坐标为 ak+1,其中 k∈N+.若 a1=16,则 a1+a3+a5 的值是 ____2_1___.
解析 因为 y′=2x,所以过点(ak,a2k)处的切线方程为 y-ak2=2ak(x-ak).
又该切线与 x 轴的交点为(ak+1,0), 所以 ak+1=12ak,即数列{ak}是等比数列, 首项 a1=16,其公比 q=12, 所以 a3=4,a5=1.
解析 设圆柱高为 x,底面半径为 r,
则
r
=
6-x 2π
,
圆
柱
体
积
V
=
π
6-x 2π
2x
=
1 4π
(x3
-
12x2
+
36x)(0<x<6),
V′=43π(x-2)(x-6).
当 x=2 时,V 最大.
此时底面周长为 6-x=4,4∶2=2∶1.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
9.(2013·重庆)设 f(x)=a(x-5)2+6ln x,其中 a∈R,曲线 y=f(x) 在点(1,f(1))处的切线与 y 轴相交于点(0,6). (1)确定 a 的值; (2)求函数 f(x)的单调区间与极值.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
4.点 P 是曲线 x2-y-2ln x=0 上任意一点,则点 P 到直线
4x+4y+1=0 的最短距离是
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-3 Word版含解析
基础达标检测一、选择题1.(文)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=2,则a 1=( )A .2 B. 2 C.22 D.12[答案] B[解析] ∵a 3·a 9=(a 6)2=2a 25, ∴(a 6a 5)2=2,又{a n }的公比为正数,∴q =a 6a 5= 2.∴a 1=a 2q = 2.(理)已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )A .5 2B .7C .6D .4 2[答案] A[解析] ∵{a n }为正项等比数列,∴a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,且a 4a 5a 6>0, ∴a 4a 5a 6=(a 1a 2a 3)·(a 7a 8a 9)=52,故选A.2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( )A .64B .81C .128D .243[答案] A[解析] 设数列{a n }的公比为q ,则q =a 2+a 3a 1+a 2=2,∴由a 1+a 1q =3得a 1=1,∴a 7=1×27-1=64.3.(文)(2013·新课标Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n[答案] D[解析] 本题考查等比数列前n 项和S n 与通项a n 之间的关系,由题意得,a n =(23)n -1,S n =1-(23)n 1-23=1-23(23)n -113=3-2a n ,选D. (理)(2013·新课标Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1, a 3=9a 1=a 1q 2,∴q 2=9,又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.4.(文)一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项[答案] B[解析] 设前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1,所以前三项之积a 31q 3=2,后三项之积a 31q 3n -6=4.所以两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,a n1qn (n -1)2=64,即(a 21qn -1)n=642,即2n =642.所以n =12.(理)设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N +),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,则S 20=( )A .1 025B .1 024C .10 250D .10 240[答案] C[解析] ∵log 2x n +1=1+log 2x n (n ∈N +), ∴log 2x n +1=log 2(2x n ), ∴x n +1=2x n ,x n +1x n=2(n ∈N +),又x n >0(n ∈N +),所以数列{x n }是公比为2的等比数列,由x 1+x 2+…+x 10=10得到x 1=10210-1,所以S 20=x 1(1-220)1-2=10×(210+1)=10 250.5.(文)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7[答案] D[解析] 本题考查了等比数列的性质及分类讨论思想.a 4+a 7=2,a 5a 6=a 4a 7=-8⇒a 4=4,a 7=-2或a 4=-2,a 7=4, a 4=4,a 7=-2⇔a 1=-8,a 10=1⇔a 1+a 10=-7, a 4=-2,a 7=4⇒a 10=-8,a 1=1⇔a 1+a 10=-7.(理)(2014·山西四校联考)已知数列{a n }的前n 项和S n =2n -1,则数列{a n }的奇数项的前n 项和为( )A.2n +1-13B.2n +1-23C.22n -13D.22n -23[答案] C[解析] 依题意,当n ≥2时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=2-1=1,a n =2n -1也适合a 1. 因此,a n =2n -1,a n +1a n=2,数列{a n }是等比数列.数列{a n }的奇数项的前n 项和为1×(1-22n )1-22=22n -13. 6.(2014·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32 C .1 D .-32[答案] B[解析] 因为a 3a 4a 5=3π=a 34,所以a 4=3π3 ,log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 二、填空题7.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N +都有a n +2+a n +1-2a n =0,则S 5=________.[答案] 11[解析] 本题考查了等比数列通项公式,求和公式等,设{a n }公比为q ,则a n +2+a n +1 -2a n =a 1q n +1+a 1q n -2a 1q n -1=0,所以q 2+q -2=0,即q =-2,q =1(舍去),∴S 5=1-(-2)51-(-2)=11.8.在等比数列{a n }中,已知对任意正整数n ,a 1+a 2+a 3+…+a n=2n -1,则a 21+a 22+…+a 2n 等于________.[答案] 13(4n -1)[解析] 由a 1+a 2+a 3+…+a n =2n -1, ∴a 1=1,a 2=2,q =2 又∵{a n }是等比数列∴{a 2n }也是等比数列,首项为1,公比为4 ∴a 21+a 22+…+a 2n =1-4n 1-4=13(4n -1). 9.(2013·辽宁高考)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.[答案] 63[解析] 本题考查等比数列的基本运算问题.因为方程x 2-5x +4=0的两根为1,4.由a 1,a 3是方程的两根且数列是递增数列知,a 1=1,a 3=4,所以公比q =2,S 6=1-261-2=63.三、解答题10.(文)S n 是无穷等比数列{a n }的前n 项和,且公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项.(1)求S 2和S 3;(2)求此数列{a n }的前n 项和公式.[解析](1)根据已知条件⎩⎪⎨⎪⎧12S 2+13S 3=2,(2S 2)(3S 3)=36.整理得⎩⎨⎧3S 2+2S 3=12,(3S 2)(2S 3)=36.解得3S 2=2S 3=6,即⎩⎨⎧S 2=2,S 3=3.(2)∵q ≠1,则⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=3.可解得q =-12,a 1=4.∴S n =4[1-(-12)n ]1+12=83-83(-12)n. (理)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)若数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列. [解析] (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2. 由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3. (2)数列{b n }的前n 项和S n =54(1-2n)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2, 因此{S n +54}是以52为首项,公比为2的等比数列.能力强化训练一、选择题1.(文)在正项等比数列{a n }中,若a 2·a 4·a 6·a 8·a 10=32,则log 2a 7-12log 2a 8=( )A.18B.16C.14D.12[答案]D[解析] ∵a 2·a 4·a 6·a 8·a 10=32,∴a 6=2, ∴log 2a 7-12log 2a 8=log 2a 7a 8=log 2a 6a 8a 8=log 2a 6=log 22=12.(理)在各项均为正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( ) A.5-12 B.5+12 C.1-52 D.5-12或5+12[答案] B[解析] 设{a n }的公比为q ,则q >0. ∵a 2,12a 3,a 1成等差数列, ∴a 3=a 1+a 2,∴a 1q 2=a 1+a 1q , ∵a 1≠0,∴1+q =q 2, 又∵q >0,∴q =5+12, ∴a 4+a 5a 3+a 4=q =5+12. 2.(2014·武汉模拟)等比数列{a n }的公比为q ,则“a 1>0,且q >1”是“对于任意正整数n ,都有a n +1>a n ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 [答案] A[解析] 易知,当a 1>0且q >1时,a n >0, 所以a n +1a n=q >1,表明a n +1>a n ;若对任意自然数n ,都有a n +1>a n 成立, 当a n >0时,同除a n 得q >1, 但当a n <0时,同除a n 得0<q <1. 也可举反例,如a n =-12n . 二、填空题3.若数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,则a n 等于________.[答案] 2n -1[解析] a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2a 3-a 2=22…a n-a n -1=2n -1相加:a n -a 1=2+22+…+2n -1=2n -2, ∴a n =2n -2+a 1=2n -1.4.(文)已知等比数列{a n}为递增数列,若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q=________.[答案]2[解析]本题考查了等比数列的通项公式.∵{a n}是递增的等比数列,且a1>0,∴q>1,又∵2(a n+a n+2)=5a n+1,∴2a n+2a n q2=5a n q,∵a n≠0,∴2q2-5q+2=0,∴q=2或q=12(舍去),∴公比q为2.(理)已知等比数列{a n}为递增数列,且a25=a10,2(a n+a n+2)=5a n+1,则数列{a n}的通项公式a n=________.[答案]2n[解析]本题考查等比数列通项公式的求法.由题意,a25=a10,则(a1q4)2=a1q9,∴a1=q.又∵2(a n+a n+2)=5a n+1,∴2q2-5q-2=0,∵q>1,∴q=2,a1=2,∴a n=a1·q n-1=2n.三、解答题5.(2013·四川高考)在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项,公比及前n 项和.[解析] 根据题意确定数列的首项及公比.再利用等比数列的前n 项和公式求解.设该数列的公比为q ,由已知可得由a 2-a 1得a 1q -a 1=2,即a 1(q -1)=2.由6a 1=2a 2+a 3得4a 1q =3a 1+a 1q 2,即q 2-4q +3=0解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去.故公比q =3,首项a 1=1.所以数列的前n 项和S n =3n -12.6.(文)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n 2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.[解析] (1)因为a n =13×⎝ ⎛⎭⎪⎫13n -1=13n , S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n=-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.(理)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和. [解析] (1)设数列{a n }的公比为q . 由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13,由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13,故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n=-(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2(1n -1n +1), 1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2nn +1.所以数列{1b n }的前n 项和为-2n n +1.。
高考数学(北师大版理)一轮复习文档:第六章+数列+第3节
第3节 等比数列及其前n 项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比都等于同一个非零常数,那么这个数列叫作等比数列.数学语言表达式:a na n -1=q (n ≥2,q 为非零常数).(2)如果在a 与b 中插入一个数G ,使得a ,G ,b 成等比数列,那么根据等比数列的定义,G a =bG ,G 2=ab ,G =±ab ,我们称G 为a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab . 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N +),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0. 3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(教材习题改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12. 答案 D3.(2018·江西七市联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8B.9C.10D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10.答案 C4.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 65.(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2, ∴b 2=b 1·q =2,则a 2b 2=22=1.答案 1考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q . 由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,②显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q =634,解得⎩⎨⎧a 1=14,q =2,所以a 8=a 1q 7=14×27=32. 答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.【训练1】 (1)(2018·吉安调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A.-2 B.-1 C.12D.23(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析 (1)由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2,得a 1+32a 1=3×32a 1+2,解得a 1=-1,故选B.(2)设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎨⎧a 1=8,q =12,∴a 1a 2…a n =a n 1q1+2+…+(n -1)=2-n 22+7n2.记t=-n 22+7n2=-12(n2-7n),结合n∈N+,可知n=3或4时,t有最大值6.又y=2t为增函数.所以a1a2…a n的最大值为64.答案(1)B(2)64考点二等比数列的性质及应用【例2】(1)(教材习题原题)等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12B.10C.8D.2+log35(2)(2018·云南11校调研)已知数列{a n}是等比数列,S n为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12=()A.40B.60C.32D.50解析(1)由等比数列的性质知a5a6=a4a7,又a5a6+a4a7=18,所以a5a6=9,则原式=log3(a1a2…a10)=log3(a5a6)5=10.(2)数列S3,S6-S3,S9-S6,S12-S9是等比数列,即数列4,8,S9-S6,S12-S9是首项为4,公比为2的等比数列,则S9-S6=a7+a8+a9=16,S12-S9=a10+a11+a12=32,因此S12=4+8+16+32=60.答案(1)B(2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则a m·a n=a p·a q”,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】(1)(2018·西安八校联考)已知数列{a n}是等比数列,数列{b n}是等差数列,若a1·a6·a11=-33,b1+b6+b11=7π,则tan b3+b91-a4·a8的值是()A.- 3B.-1C.-33 D. 3(2)(一题多解)设等比数列{a n}的前n项和为S n,若S6S3=3,则S9S6=________.解析(1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝ ⎛⎭⎪⎫-7π3=-tan π3=- 3.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)A (2)73考点三 等比数列的判定与证明【例3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2017·安徽江南十校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.基础巩固题组 (建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A.{a n +b n },{a n ·b n }都一定是等比数列B.{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C.{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D.{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.(2018·南昌模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A.2B.4C. 2D.2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏B.3盏C.5盏D.9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B4.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B.-18C.578D.558解析 因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,则8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 答案 A5.(2018·渭南调研)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D. 2解析 根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2. 答案 B 二、填空题6.(2018·河南百校联盟联考改编)若等比数列{a n }的前n 项和为S n ,a 5=40,且S 6+3a 7=S 8,则a 2等于________.解析 由S 6+3a 7=S 8,得2a 7=a 8,则公比q 为2,所以a 2=a 523=4023=5. 答案 57.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N +),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n .答案 12n8.(2018·成都诊断)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N +),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n=2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022.答案 1 022 三、解答题9.(2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得 ⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)得S n =a 1(1-q n )1-q =-2[1-(-2)n ]1-(-2)=23[(-2)n -1], 则S n +1=23[(-2)n +1-1],S n +2=23[(-2)n +2-1],所以S n +1+S n +2=23[(-2)n +1-1]+23[(-2)n +2-1]=23[2(-2)n -2]=43[(-2)n -1]=2S n ,∴S n +1,S n ,S n +2成等差数列.10.(2018·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个等差数列,a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12. T n ≤S n 即3n -12≤n 2,又n ∈N +,所以n =1或2.能力提升题组(建议用时:20分钟)11.数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n -1)C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N +,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B12.(2018·东北三省三校联考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.解析 由题意知2b n =a n +a n +1,a 2n +1=b n ·b n +1,∴a n +1=b n b n +1,当n ≥2时,2b n =b n -1b n +b n b n +1,∵b n >0, ∴2b n =b n -1+b n +1,∴{b n }成等差数列,由a 1=1,a 2=3,得b 1=2,b 2=92,∴b 1=2,b 2=322,∴公差d =22,∴b n =n +122,∴b n =(n +1)22, ∴a n =b n -1b n =n (n +1)2. 答案 a n =n (n +1)213.(2017·合肥模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.解 (1)设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n, ②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)假设{a n +1}是等比数列,则对任意的k ∈N +,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.故数列{a n +1}不是等比数列.精美句子1、善思则能“从无字句处读书”。
【步步高】2015届高三数学北师大版(通用,理)总复习强化训练+专题检测第八章 8.6
§8.6 立体几何中的向量方法(一)——证明平行与垂直1. 直线的方向向量:在空间直线l 上任取两点A ,B ,则称AB →为直线l 的方向向量.平面的法向量:如果直线l 垂直于平面α,那么把直线l 的方向向量叫作平面α的法向量. 2. 用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3. 用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的. ( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( × ) (4)若两直线的方向向量不平行,则两直线不平行. ( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行. ( × ) 2. 若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( )A .l 1∥l 2B .l 1⊥l 2C .l 1与l 2相交但不垂直D .以上均不正确答案 B解析 a ·b =-12+36-24=0,故a ⊥b ,即l 1⊥l 2选B.3. 已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P中,在平面α内的是 ( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n , ∴点P 在平面α内,同理可验证其他三个点不在平面α内.4. 若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α内的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________. 答案 2∶3∶(-4)5. 已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________. 答案407,-157,4 解析 由题意知,BP →⊥AB →,BP →⊥BC →.所以⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+(-2)×z =0,(x -1)+5y +(-2)×(-3)=0,3(x -1)+y -3z =0,解得,x =407,y =-157,z =4.题型一 证明平行问题例1 (2013·浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点, 点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD.思维启迪 证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量. 证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知, A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ 平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同证法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设F 点坐标系(x ,y,0)则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0)∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由证法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ 平面BCD ,OF 平面BCD , ∴PQ ∥平面BCD .思维升华 用向量证明线面平行的方法有(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、 CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直 角坐标系Axyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、 E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面. ∵PB 平面EFG ,∴PB ∥平面EFG . 题型二 证明垂直问题例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .思维启迪 证明线面垂直可以利用线面垂直的定义,即证线与平 面内的任意一条直线垂直;也可以证线与面的法向量平行.证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0. 故AB 1→⊥m ,结论得证.方法二 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →为x 轴,y 轴, z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .思维升华 用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角. (1)求证:CM ∥平面P AD ; (2)求证:平面P AB ⊥平面P AD .证明 以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32),∴DP →=(0,-1,2),DA →=(23,3,0), CM →=(32,0,32),(1)令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM 平面P AD , ∴CM ∥平面P AD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE 平面P AB ,∴平面P AB ⊥平面P AD . 题型三 解决探索性问题例3 (2012·福建)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求 AP 的长;若不存在,说明理由.思维启迪 利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算下结论.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图). 设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1), E ⎝⎛⎭⎫a2,1,0,B 1(a,0,1), 故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP 平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC . 若存在,求SE ∶EC 的值;若不存在,试说明理由. (1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .利用向量法解决立体几何问题典例:(12分)(2012·湖南)如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.思维启迪 本题中的(1)有两种证明思路:(1)利用常规方法,将证明线面垂直转化为证明线线垂直,利用线面垂直的判定定理证之; (2)将证明线面垂直问题转化为向量间的关系问题,证明向量垂直;然后计算两个向量的数量积. 规范解答方法一 (1)证明 如图,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5. [1分] 又AD =5,E 是CD 的中点,所以CD ⊥AE .[2分]因为P A ⊥平面ABCD ,CD 平面ABCD ,所以P A ⊥CD .[4分] 而P A ,AE 是平面P AE 内的两条相交直线, 所以CD ⊥平面P AE .[5分](2)解 过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE . 于是∠BPF 为直线PB 与平面P AE 所成的角, [6分]且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. [7分]由题意得∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形. 故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以 BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为 V =13×S ×P A =13×16×855=128515.[12分]方法二 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分 别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0), P (0,0,h ).[2分](1)证明 易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ). 因为CD →·AE →=-8+8+0=0,CD →·AP →=0,[4分]所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线, 所以CD ⊥平面P AE .[5分] (2)解 由题设和(1)知,CD →,P A →分别是平面P AE ,平面ABCD 的法向量. [6分]而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等, 所以|cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|, 即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪P A →·PB →|P A →|·|PB →|.[8分]由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ), 又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为 V =13×S ×P A =13×16×855=128515.[12分]温馨提醒 (1)利用向量法证明立体几何问题,可以建立坐标系或利用基底表示向量;(2)建立空间直角坐标系时要根据题中条件找出三条互相垂直的直线; (3)对于和平面有关的垂直问题,也可利用平面的法向量.方法与技巧用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A组专项基础训练(时间:40分钟)一、选择题1.若直线l的一个方向向量为a=(2,5,7),平面α的一个法向量为u=(1,1,-1),则() A.l∥α或lαB.l⊥αC.lαD.l与α斜交答案 A2.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是() A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案 D解析若l∥α,则a·n=0,D中,a·n=1×0+(-1)×3+3×1=0,∴a⊥n.3.设平面α的法向量为a=(1,2,-2),平面β的法向量b=(-2,h,k),若α∥β,则h+k的值为() A.-2 B.-8 C.0 D.-6答案 C解析 由α∥β得a ∥b ,∴-21=h 2=k -2, ∴h =-4,k =4,∴h +k =0.4. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607 D.657答案 D解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ5=-t +4μλ=3t -2μ,∴⎩⎪⎨⎪⎧t =337μ=177λ=657.5. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( ) A .60° B .45°C .90°D .以上都不正确答案 C解析 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系Dxyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0), M (2,2,0).∴PM →=(2,1,-3), AM →=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0, 即PM →⊥AM →,∴AM ⊥PM . 二、填空题6. 已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.答案 -4解析 ∵a·b =x -2+6=0,∴x =-4.7. 设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________. 答案16解析 P A →=(-1,-3,2),PB →=(6,-1,4). 根据共面向量定理,设PC →=xP A →+yPB →(x 、y ∈R ), 则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4) =(-x +6y ,-3x -y,2x +4y ), ∴⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,解得x =-7,y =4,a =16.8. 如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系 是________. 答案 平行解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →,∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →=23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的法向量, ∴MN →·CD →=⎝⎛⎭⎫23B 1B →+13B 1C 1→·CD →=0, ∴MN →⊥CD →.又∵MN 平面B 1BCC 1, ∴MN ∥平面B 1BCC 1. 三、解答题9. 如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射 线DA 为x 轴的正半轴建立空间直角坐标系Dxyz .依题意有 Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0. 即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,故PQ ⊥平面DCQ , 又PQ 平面PQC ,∴平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ACBD 中,P A ⊥底面ABCD ,E ,F分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .证明 (1)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴, AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0), B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB 平面P AB ,EF 平面P AB , ∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,∴DC ⊥平面P AD . ∵DC 平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升 (时间:30分钟)1. 已知a =(1,1,1),b =(0,2,-1),c =m a +n b +(4,-4,1).若c 与a 及b 都垂直,则m ,n 的值分别为 ( )A .-1,2B .1,-2C .1,2D .-1,-2答案 A解析 由已知得c =(m +4,m +2n -4,m -n +1), 故a·c =3m +n +1=0,b·c =m +5n -9=0.解得⎩⎪⎨⎪⎧m =-1,n =2.2. 已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M 、A 、B 、C 四点共面.所以AM 在平面ABC 内,选D.3. 在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的有________个. 答案 2解析 建立如图的坐标系,设正方体的边长为2,则P (x ,y,2), O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.4. 如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的 中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 (1)如图建立空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC ,又∵NC 平面ABC ,DE 平面ABC . 故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .5. 在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴 建立空间直角坐标系, 设AD =a ,则D (0,0,0)、 A (a,0,0)、B (a ,a,0)、 C (0,a,0)、E ⎝⎛⎭⎫a ,a2,0、 P (0,0,a )、F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a2=0, 得x =a 2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a2,0,0,即G 点为AD 的中点.。
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-4 Word版含解析
基础达标检测一、选择题1.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为( )A .700B .710C .720D .730[答案] C[解析] 因为{a n },{b n }都是等差数列,由等差数列的性质可知,{a n +b n }的前20项的和为S 20=20(a 1+a 20)2+20(b 1+b 20)2=10(a 1+b 1+a 20+b 20)=10×(5+7+60)=720.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15 [答案] A[解析] 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.3.(2014·三门峡模拟)已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .11B .99C .120D .121[答案] C [解析] ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10, 得n =120.4.(2013·全国大纲)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310) C .3(1-3-10) D .3(1+3-10)[答案] C[解析] 本题考查等比数列的定义,前n 项和的求法. 3a n +1+a n =0 ∴a n +1a n=-13=qa 2=a 1·q =-13a 1=-43,∴a 1=4 ∴S 10=4[1-(-13)10]1+13=3(1-3-10).5.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2[答案] C[解析] 考查等比数列的性质、通项、等差数列求和及对数的运算法则.∵{a n }为等比数列,且a 5·a 2n -5=22n ,∴a 2n =22n ,∵a n >0,∴a n =2n ,∴a 2n -1=22n -1. ∴log 2a 1+log 2a 3+…+log 2a 2n -1 =1+3+5+…+(2n -1)=n 2.6.数列1×12,2×14,3×18,4×116,…的前n 项和为( ) A .2-12n -n2n +1B .2-12n -1-n2nC.12(n 2+n +2)-12nD.12n (n +1)+1-12n -1[答案] B[解析] S =1×12+2×14+3×18+4×116+…+n ×12n =1×121+2×122+3×123+…+n ×12n ,①则12S =1×122+2×123+3×124+…+(n -1)×12n +n ×12n +1,②①-②得12S =12+122+123+…+12n -n ×12n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n2n +1=1-12n -n 2n +1.∴S =2-12n -1-n2n .二、填空题7.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________.[答案] 54[解析] 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, S 9=(a 1+a 9)×92=9a 5=54. 8.(文)(2013·北京高考)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________,前n 项和S n =________.[答案] 2 2n +1-2[解析] 本题考查了等比数列性质,前n 项和公式等.由题意a 3+a 5=q (a 2+a 4),∴q =2,又由a 2+a 4=a 1q +a 1q 3知a 1=2,∴S n =2(1-2n )1-2=2n +1-2.(理)(2013·重庆高考)已知{a n }是等差数列,a 1=1,公差d ≠0,S n为其前n 项和,若a 1、a 2、a 5成等比数列,则S 8=________.[答案] 64[解析] 设等差数列{a n }的公差为d ,∵a 22=a 1a 5,∴(1+d )2=1×(1+4d ),即d 2=2d ,∵d ≠0,∴d =2, ∴S 8=8×1+8×72×2=64.9.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N +),则S 100=________.[答案] 2 600[解析] 由已知,得a 1=1, a 2=2, a 3-a 1=0, …a 99-a 97=0, a 100-a 98=2,累加得a 100+a 99=98+3,同理得a 98+a 97=96+3,…,a 2+a 1=0+3, 则a 100+a 99+a 98+a 97+…+a 2+a 1 =50×(98+0)2+50×3=2 600. 三、解答题10.(文)(2013·江西高考)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0.(1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .[解析] (1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0.由于{a n }是正项数列,所以a n =2n . (2)a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12(1n -1n +1).T n =12(1-12+12-13+…+1n -1-1n +1n -1n +1)=12(1-1n +1)=n2(n +1).(理)(2013·浙江高考)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.[解析] (1)由题意得a 1·5a 3=(2a 2+2)2,a 1=10, 即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n ∈N +或a n =4n +6,n ∈N +. (2)设数列{a n }的前n 项和为S n .因为d <0, 由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n , n ≤11,12n 2-212n +110, n ≥12.能力强化训练一、选择题1.数列{a n }满足a n +a n +1=12(n ∈N +),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( )A.212 B .6 C .10 D .11[答案] B[解析] 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项,偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6.2.(文)已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N +),设其前n项和为S n ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值32D .有最小值32[答案] B[解析] S n =a 1+a 2+a 3+…+a n =log 223+log 234+log 245+…+log 2n +1n +2=log 2⎝ ⎛⎭⎪⎫23×34×45×…×n +1n +2=log 22n +2<-5,∴2n +2<132,∴64<n +2, ∴n >62,∴n min =63.(理)已知a n =log (n +1)(n +2)(n ∈N +),若称使乘积a 1·a 2·a 3·…·a n 为整数的数n 为劣数,则在区间(1,2 015)内所有的劣数的和为( )A .2 026B .2 046C .1 024D .1 022[答案] A[解析] ∵a 1.a 2.a 2.....a n =lg3lg2.lg4lg3.....lg (n +2)lg (n +1)=lg (n +2)lg2=log 2(n +2)=k ,则n =2k -2(k ∈Z ).令1<2k -2<2015,得k =2,3,4, (10)∴所有劣数的和为4(1-29)1-2-18=211-22=2 026.二、填空题3.设f (x )=12x +2,则f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)的值为________.[答案] 5 2[解析] ∵f (-n )+f (n +1)=12-n +2+12n +1+2=2n 1+2n ·2+12n +1+2=2n ·2+12n +1+2=22, ∴f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)=5 2.4.(文)数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n a n +1,则数列{b n }的前10项和S 10=________.[答案] 1011[解析] 由题意可知a n +1=a n (1-a n +1), 整理可得1a n +1-1a n =1,则1a n =1+(n -1)=n ,所以a n =1n ,b n =a n a n +1=1n (n +1)=1n -1n +1,故S 10=b 1+b 2+…+b 10=1-111=1011.(理)有限数列A ={a 1,a 2,…,a n },S n 为其前n 项的和,定义S 1+S 2+…+S nn 为A 的“凯森和”;如果有99项的数列{a 1,a 2,…,a 99}的“凯森和”为1 000,则有100项的数列{1,a 1,a 2,…,a 99}的“凯森和”为________.[答案] 991[解析] ∵{a 1,a 2,…,a 99}的“凯森和”为 S 1+S 2+…+S 9999=1 000, ∴S 1+S 2+…S 99=1 000×99,数列{1,a 1,a 2,…,a 99}的“凯森和”为: 1+(S 1+1)+(S 2+1)+…+(S 99+1)100 =100+S 1+S 2+…+S 99100=991. 三、解答题5.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n .[解析] 本题主要考查等差数列的基本性质,以及通项公式的求法,前n 项和的求法,同时也考查了学生的基本运算能力.(1)因为{a n }为首项a 1=19,公差d =-2的等差数列, 所以a n =19-2(n -1)=-2n +21, S n =19n +n (n -1)2(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1-2n +21T n =b 1+b 2+…+b n =(1+3+…+3n -1)+S n =-n 2+20n +3n -12.6.(文)已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n . [解析] (1)由S n =kc n -k ,得 a n =S n -S n -1=kc n -kc n -1(n ≥2),由a 2=4,a 6=8a 3,得⎩⎨⎧kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎨⎧c =2k =2,所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2),于是a n=2n .(2)T n =∑i =1nia i =∑i =1ni ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2n 2T n =22+2·23+…+n ·2n +1∴T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.(理)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n的前n 项和T n . [解析] (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即S =S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4.从而a n =S n -S n -1=92-n (n ≥2),又a 1=S 1=72, 所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1 .所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1.。
【走向高考】2015届高考数学一轮总复习 2-6指数与指数函数课后强化作业 北师大版
"【走向高考】2015届高考数学一轮总复习 2-6指数与指数函数课后强化作业 北师大版 "基础达标检测一、选择题1.(文)函数y =log 2x 的图像大致是( )A B C D[答案]C[解析]考查对数函数的图像.(理)函数f (x )=2|log 2x |的图像大致是( )[答案]C[解析]∵f (x )=2|log 2x |=⎩⎪⎨⎪⎧ x ,x ≥1,1x ,0<x <1,∴选C. 2.设f (x )=lg 2+x 2-x,则f (x 2)+f (2x )的定义域为( ) A .(-4,0)∪(0,4) B .(-4,-1)∪(1,4)C .(-2,-1)∪(1,2)D .(-4,-2)∪(2,4)[答案]B[解析]f (x )的定义域为{x |-2<x <2},要使f (x 2)+f (2x)有意义应满足⎩⎨⎧ x ≠0,-2<x 2<2,-2<2x <2,解得-4<x <-1或1<x <4,故B 正确. 3.(2013·某某高考)设a ,b ,c 为均不等于1的正实数,则下列等式中恒成立的是( )A .log a b ·log c b =log c aB .log a b ·log c a =log c bC .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c[答案]B[解析]本题考查对数的运算法则,运算性质.由换底公式得log a b ·log c a =lg b lg a ·lg a lg c =lg b lg c=log c b ,B 正确.4.若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( )A .(1a,b ) B .(10a,1-b ) C .(10a,b +1) D .(a 2,2b ) [答案]D[解析]该题考查对数的运算性质,将横坐标看成自变量,看函数值是不是纵坐标,假设是,则点在图像上,若不是,则点不在图像上.由题意知b =lg a ,对于A 选项,lg 1a=-lg a =-b ≠b , 对B 选项lg(10a )=1+lg a =1+b ≠1-b .对C 选项lg 10a=1-lg a =1-b ≠b +1, 对D ,lg a 2=2lg a =2b ,故(a 2,2b )在图像上.5.已知f (x )=log a (x +1)(a >0且a ≠1)若当x ∈(-1,0)时,f (x )<0,则f (x )是( )A .增函数B .减函数C .常数函数D .不单调的函数[答案]A[解析]由于x ∈(-1,0),则x +1∈(0,1),所以a >1,因而f (x )在(-1,+∞)上是增函数.6.若函数f (x )=log 2(x +1)且a >b >c >0,则f (a )a 、f (b )b 、f (c )c的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )aC.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b[答案]B[解析]∵f (a )a 、f (b )b 、f (c )c可看作函数图像上的点与原点所确定的直线的斜率,结合函数f (x )=log 2(x +1)的图像及a >b >c >0可知f (c )c >f (b )b >f (a )a.故选B. 二、填空题7.(2013·某某高考)lg 5+lg 20的值是________.[答案]1[解析]本题考查对数的运算. lg 5+lg 20=lg5 12 +lg20 12 =12lg5+12lg20 =12(lg5+lg20)=12lg100=1. 8.(文)方程log 2(x 2+x )=log 2(2x +2)的解是________.[答案]x =2[解析]原方程⇔⎩⎪⎨⎪⎧ x 2+x >0,2x +2>0,x 2+x =2x +2,解得x =2.(理)方程log 2(x -1)=2-log 2(x +1)的解为________.[答案] 5[解析]log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),所以x = 5.9.函数y =log 3(x 2-2x )的单调减区间是________.[答案](-∞,0)[解析](等价转化法)令u =x 2-2x ,则y =log 3u .∵y =log 3u 是增函数,u =x 2-2x >0的单调减区间是(-∞,0),∴y =log 3(x 2-2x )的单调减区间是(-∞,0).三、解答题10.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明;(3)当a >1时,求使f (x )>0的x 的取值X 围.[解析](1)f (x )=log a (x +1)-log a (1-x ),则⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1. 故所求定义域为{x |-1<x <1}.(2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,所以f (x )>0⇔x +11-x >1.解得0<x <1.所以使f (x )>0的x 的取值X 围是{x |0<x <1}.能力强化训练一、选择题1.(2013·某某高考)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg2)+f (lg 12)=() A .-1 B .0C .1D .2[答案]D[解析]本题主要考查函数的性质与换底公式.∵f (x )=ln(1+9x 2-3x )+1 =-ln(1+9x 2+3x )+1,f (-x )=ln(1+9x 2+3x )+1,∴f (x )+f (-x )=2, 又lg 12=-lg2,∴f (lg2)+f (lg 12)=2,故选D. 2.(文)函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14B.12C .2D .4[答案]B[解析]∵y =a x 与y =log a (x +1)具有相同的单调性.∴f (x )=a x +log a (x +1)在[0,1]上单调,∴f (0)+f (1)=a ,即a 0+log a 1+a 1+log a 2=a ,化简得1+log a 2=0,解得a =12. (理)已知x =lnπ,y =log 52,z =e - 12 ,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x[答案]D[解析]本小题主要考查了对数、指数的性质的运用.∵y =log 52=1log 25,z =e - 12 =1e且e<2<log 25 ∴y <z <1,又lnπ>1,∴y <z <x ,故选D.二、填空题3.(改编题)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,3x ,x <0,则满足f (a )<13的a 的取值X 围是________. [答案](-∞,-1)∪(0,33)[解析]⎩⎪⎨⎪⎧ a >0,log 3a <13,或⎩⎪⎨⎪⎧ a <0,3a <13,解得0<a <33或a <-1.4.已知函数f (x )=⎩⎪⎨⎪⎧3x +1,x ≤0log 2x ,x >0,则使函数f (x )的图像位于直线y =1上方的x 的取值X 围是________.[答案]{x |-1<x ≤0或x >2}[解析]当x ≤0时,由3x +1>1,得x +1>0,即x >-1.∴-1<x ≤0.当x >0时,由log 2x >1,得x >2.∴x 的取值X 围是{x |-1<x ≤0或x >2}.三、解答题5.已知函数f (x )=log a (2-ax ),是否存在实数a ,使函数f (x )在[0,1]上是x 的减少的,若存在,求a 的取值X 围.[分析] 参数a 既出现在底数上,又出现在真数上,应全面审视对a 的取值X 围的制约.[解析]∵a >0,且a ≠1,∴u =2-ax 是x 的减函数.又f (x )=log a (2-ax )在[0,1]是减少的,∴函数y =log a u 是u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎨⎧a >12-a >0即1<a <2. ∴a 的取值X 围是(1,2).6.(文)已知定义域为R 的函数f (x )为奇函数,且满足f (x +2)=-f (x ),当x ∈[0,1]时,f (x )=2x -1.(1)求f (x )在[-1,0)上的解析式;(2)求f (log 1224)的值.[解析](1)令x ∈[-1,0),则-x ∈(0,1],∴f(-x)=2-x-1.又∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=f(-x)=2-x-1,∴f(x)=-⎝⎛⎭⎫12x+1.(2)∵log1224=-log224∈(-5,-4),∴log1224+4∈(-1,0),∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),∴f(x)是以4为周期的周期函数,∴f(log1224)=f(log1224+4)=-⎝⎛⎭⎫12log1224+4+1=-24×116+1=-12.(理)若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1),且log2f(x)<f(1).[解析](1)∵f(x)=x2-x+b,∴f(log2a)=(log2a)2-log2a+b,由已知(log2a)2-log2a+b=b,∴log2a(log2a-1)=0.∵a≠1,∴log2a=1,∴a=2.又log2f(a)=2,∴f(a)=4.∴a2-a+b=4,∴b=4-a2+a=2.故f(x)=x2-x+2.从而f(log2x)=(log2x)2-log2x+2=(log2x-12)2+74.∴当log 2x =12,即x =2时,f (log 2x )有最小值74. (2)由题意⎩⎪⎨⎪⎧ (log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2 ⇒⎩⎪⎨⎪⎧ x >2或0<x <1,-1<x <2⇒0<x <1. ∴x 的取值X 围为(0,1).。
2015届高三数学北师大版(通用,理)总复习讲义:第八章 立体几何(7份)第八章 8.3
§8.3 平行关系1. 直线与平面平行的判定与性质aα,b α,a ∥b a ∥α,aβ,α∩β=b 2.a β,b β,a ∩b=P ,a ∥α,b ∥α α∥β,a β1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. ( × ) (2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. ( √ ) (3)若直线a 与平面α内无数条直线平行,则a ∥α.( × )(4)空间四边形ABCD 中,E 、F 分别是AB ,AD 的中点,则EF ∥平面BCD . ( √ ) (5)若α∥β,直线a ∥α,则a ∥β.( × ) 2. 若直线l 不平行于平面α,且l α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交 答案 B解析 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的. 3. 下列命题中,错误的是( )A .平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B .平行于同一个平面的两个平面平行C .若两个平面平行,则位于这两个平面内的直线也互相平行D .若两个平面平行,则其中一个平面内的直线平行于另一个平面 答案 C解析 由面面平行的判定定理和性质知A 、B 、D 正确.对于C ,位于两个平行平面内的直线也可能异面.4. 已知平面α∥平面β,直线a α,有下列命题:①a 与β内的所有直线平行;②a 与β内无数条直线平行;③a 与β内的任意一条直线都不垂直.其中真命题的序号是________. 答案 ②解析 因为α∥β,a α,所以a ∥β,在平面β内存在无数条直线与直线a 平行,但不是所有直线都与直线a 平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a 垂直,故命题③为假命题.5. 如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________. 答案2解析 因为直线EF ∥平面AB 1C ,EF 平面ABCD , 且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC , 又E 是DA 的中点,所以F 是DC 的中点, 由中位线定理可得EF =12AC ,又在正方体ABCD -A 1B 1C 1D 1中,AB =2, 所以AC =22,所以EF = 2.题型一直线与平面平行的判定与性质例1(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN平面BEC,BE平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN平面BEC,BC平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM平面DMN,所以DM∥平面BEC.方法二 如图,延长AD ,BC 交于点F ,连接EF . 因为CB =CD ,∠BCD =120°, 所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因为∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由于点M 是线段AE 的中点, 因此DM ∥EF .又DM 平面BEC ,EF 平面BEC , 所以DM ∥平面BEC .思维升华 判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a α,b α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,aα⇒a ∥β);(4)利用面面平行的性质(α∥β,a β,a ∥α⇒a ∥β).如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别为棱A 1B 1,D 1C 1上的点,且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相 交,交点分别为F ,G ,求证:FG ∥平面ADD 1A 1. 证明 因为EH ∥A 1D 1,A 1D 1∥B 1C 1, EH 平面BCC 1B 1,B 1C 1平面BCC 1B 1, 所以EH ∥平面BCC 1B 1.又平面FGHE ∩平面BCC 1B 1=FG , 所以EH ∥FG ,即FG ∥A 1D 1.又FG 平面ADD 1A 1,A 1D 1平面ADD 1A 1, 所以FG ∥平面ADD 1A 1.题型二 平面与平面平行的判定与性质例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证: (1)B ,C ,H ,G 四点共面;(2)平面EF A1∥平面BCHG.思维启迪要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF平面BCHG,BC平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E平面BCHG,GB平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB平面BDD1B1,EG平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD平面BDD1B1,FG平面BDD1B1,∴FG ∥平面BDD 1B 1,且EG 平面EFG , FG 平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1. 题型三 平行关系的综合应用例3 如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问截面在什么位置时其截面面积最大?思维启迪 利用线面平行的性质可以得到线线平行,可以先确定截 面形状,再建立目标函数求最值. 解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得 x a =CG BC ,y b =BGBC, 两式相加得x a +y b =1,即y =ba (a -x ),∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值,∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b2.即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解 在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG , ∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG 平面P AD ,FE 平面P AD ,∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2, 由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE = a 2-(63a )2=33a , ∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .立体几何中的探索性问题典例:(12分)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明 理由.思维启迪 (1)利用DE ∥PC 证明线面平行;(2)利用平行关系和已知PC ⊥AB 证明DE ⊥DG ; (3)Q 应为EG 中点.规范解答(1)证明 因为D ,E 分别是AP ,AC 的中点, 所以DE ∥PC . 又因为DE平面BCP ,所以DE ∥平面BCP .[3分](2)证明 因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF .所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG .所以四边形DEFG 为矩形.[7分] (3)解 存在点Q 满足条件,理由如下:[8分]连接DF ,EG ,设Q 为EG 的中点,由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN . 与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点 Q ,且QM =QN =12EG ,所以Q 为满足条件的点.[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论. 第二步:证明探求结论的正确性. 第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒 (1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.方法与技巧1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:40分钟)一、选择题1.若直线a平行于平面α,则下列结论错误的是() A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角答案 A解析若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.2.若直线m平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 D3. 已知a ,b 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是( )A .a ∥b ,b α,则a ∥αB .a ,b α,a ∥β,b ∥β,则α∥βC .a ⊥α,b ∥α,则a ⊥bD .当a α,且b α时,若b ∥α,则a ∥b 答案 C解析 A 选项是易错项,由a ∥b ,b α,也可能推出a α;B 中的直线a ,b 不一定相交,平面α,β也可能相交;C 正确;D 中的直线a ,b 也可能异面.4. 在空间四边形ABCD 中,E ,F 分别为AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFG ,且四边形EFGH 是平行四边形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是平行四边形 D .EH ∥平面ADC ,且四边形EFGH 是梯形 答案 B解析 如图,由题意得,EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行.故选B.5. 下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A .①③B .①④C .②③D .②④答案 B解析 ①中易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B 可得出AB ∥平面MNP (如图).④中,NP ∥AB ,能得出AB ∥平面MNP .二、填空题6. 过三棱柱ABC —A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条.答案 6解析 如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.7. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3, 过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.答案 223a 解析 ∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a 3, ∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .8. 在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的为________.①AC ⊥BD ;②AC ∥截面PQMN ;③AC =BD ;④异面直线PM 与BD 所成的角为45°.答案 ③解析 ∵PQMN 是正方形,∴MN ∥QP ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故①②正确.又∵BD ∥MQ ,∴异面直线PM 与BD 所成的角即为∠PMQ =45°,故④正确.三、解答题9. 如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C的中点.(1)求证:DE ∥平面ABC ;(2)求三棱锥E -BCD 的体积.(1)证明 取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1. 由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形.所以ED ∥AG .又DE 平面ABC ,AG 平面ABC ,所以DE ∥平面ABC .(2)解 因为AD ∥BB 1,所以AD ∥平面BCE ,所以V E -BCD =V D -BEC =V A -BCE =V E -ABC ,由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.10.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB ,易证四边形BEGO 为平行四边形,故OB ∥GE ,由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1.如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .B 组 专项能力提升(时间:30分钟)1. 设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2答案 B解析 对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由于n ∥l 2可转化为n ∥β,同选项C ,故不符合题意.综上选B.2. 已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________.答案 24或245解析 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24.3. 空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是________.答案 (8,10)解析 设DH DA =GH AC =k ,∴AH DA =EH BD=1-k , ∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的范围为(8,10).4. 平面α内有△ABC ,AB =5,BC =8,AC =7,梯形BCDE 的底DE=2,过EB 的中点B 1的平面β∥α,若β分别交EA 、DC 于A 1、C 1, 求△A 1B 1C 1的面积.解 ∵α∥β,∴A 1B 1∥AB ,B 1C 1∥BC ,又因∠A 1B 1C 1与∠ABC 同向.∴∠A 1B 1C 1=∠ABC .又∵cos ∠ABC =52+82-722×5×8=12, ∴∠ABC =60°=∠A 1B 1C 1.又∵B 1为EB 的中点,∴B 1A 1是△EAB 的中位线,∴B 1A 1=12AB =52, 同理知B 1C 1为梯形BCDE 的中位线,∴B 1C 1=12(BC +DE )=5. 则S △A 1B 1C 1=12A 1B 1·B 1C 1·sin 60° =12·52·5·32=2583. 故△A 1B 1C 1的面积为2583.5. 如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求三棱锥A —PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM ?若存在,求出AM 的长;若不存在,请说明理由.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD .又因ABCD 是矩形,所以AD ⊥CD .因PD ∩CD =D ,所以AD ⊥平面PCD ,所以AD 是三棱锥A —PDE 的高.因为E 为PC 的中点,且PD =DC =4,所以S △PDE =12S △PDC =12×⎝⎛⎭⎫12×4×4=4.又AD =2,所以V A —PDE =13AD ·S △PDE =13×2×4=83.(2)取AC 中点M ,连接EM ,DM ,因为E 为PC 的中点,M 是AC 的 中点,所以EM ∥P A .又因为EM 平面EDM ,P A 平面EDM ,所以P A ∥平面EDM .所以AM =12AC = 5. 即在AC 边上存在一点M ,使得P A ∥平面EDM ,AM 的长为 5.。
【步步高】2015届高三数学北师大版(通用,理)总复习强化训练+专题检测第八章 8.1【步步高】20
§8.1 空间几何体的三视图、直观图、表面积与体积1.空间几何体的结构特征多面体(1)棱柱的侧棱都平行且相等,上、下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.旋转体(1)圆柱可以由矩形绕一边所在直线旋转得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线旋转得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆或圆绕直径所在直线旋转得到.2(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.、感悟人生化学4.柱、锥、台和球的表面积和体积名称几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × )(4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × )(5)圆柱的侧面展开图是矩形.( √ )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3.(2013·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图像如图所示,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5,所以V =43πR 3=500π3.目前孩子的教育消费化学教案过半网友认为偏高了化学教案增加了家庭的经济负担化学教案同时认可放养式教育的家长寥4.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,所以原三角形的面积为62.成长为正直法官不可或缺的品质试卷试题5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一空间几何体的结构特征例1(1)下列说法正确的是() A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(2)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是() A.0 B.1 C.2 D.3思维启迪从多面体、旋转体的定义入手,可以借助实例或几何模型理解几何体的结构特征.答案(1)B(2)A解析(1)A错,如图1;B正确,如图2,其中底面ABCD是矩形,可证明∠P AB,∠PCB 都是直角,这样四个侧面都是直角三角形;C错,如图3;D错,由棱台的定义知,其侧棱必相交于同一点.(2)①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.思维升华 (1)有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱.(2)既然棱台是由棱锥定义的,所以在解决棱台问题时,要注意“还台为锥”的解题策略.(3)旋转体的形成不仅要看由何种图形旋转得到,还要看旋转轴是哪条直线. 如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,则在正方体盒子中,∠ABC 的值为( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如图所示,连接AB ,BC ,AC ,可得△ABC 是正三角形,则∠ABC =60°.题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是 ( )(2)正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.思维启迪 (1)由主视图和左视图可知该几何体的高是1,由体积是12B.可求出底面积.由底面积的大小可判断其俯视图是哪一个.(2)按照直观图画法规则确定平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,故选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB ,∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系. (1)(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A .1B. 2C.2-12D.2+12和(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形答案(1)C(2)C解析(1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.改善地表水质、处理含重(2)如图,在原图形OABC中,应有OD=2O′D′=2×2 2=4 2 cm,CD=C′D′=2 cm.∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.题型三空间几何体的表面积与体积例3(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)已知某几何体的三视图如图所示,其中主视图、左视图均由直角三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得几何体的体积为( )A.2π3+12B.4π3+16缺化学教案应在“妻子苦心相劝”前加“不顾”试卷试题C.2π6+16D.2π3+12① 一定条件下化学教案思维启迪:先由三视图确定几何体的构成及度量,然后求表面积或体积.答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确定该几何体是一个半球体与三棱锥构成的组合体, 如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1, 故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,所以三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt △ABC 是半球底面的内接三角形,所以球的直径2R =BC =2, 解得R =22, 所以半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.嚣尘上化学教案严重损害政府的公信力试卷试题思维升华 解决此类问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积. (2012·课标全国)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36案却使人感到徒具虚名试卷试题赭红色的水化学教案几乎看不见流动化学教案细小到无法与河C.23D.22“而”连词化学教案表修饰试卷试题答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.唯独挂念几位好友化学教案只能远隔异地化学教案也不知何时才能相见化学教案梦中转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC ′到M 的最短路线长为29,设这条最短路线与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长; (3)三棱锥C —MNP 的体积.思维启迪 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现怎样的形式; (3)三棱锥以谁做底好. 规范解答解 (1)该三棱柱的侧面展开图为一边长分别为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如下图,设PC =x ,则MP 2=MA 2+(AC +x )2.∵MP =29,MA =2,AC =3, ∴x =2,即PC =2.又NC ∥AM ,故PC P A =NC AM ,即25=NC2.化学教案但是刺猬则只知道一件大事”的一种发挥试卷试题它用以比喻两种相反的思想格:“∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离,即h =32×3=332.乙醚-∴V C —MNP =V M —PCN =13·h ·S △PCN =13×332×45=235.[12分]温馨提醒 (1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题.(3)本题的易错点是,不知道从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方法与技巧1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. 3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”. 4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.注意空间几何体的不同放置对三视图的影响.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时间:40分钟)一、选择题1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).2.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱答案 D解析考虑选项中几何体的三视图的形状、大小,分析可得.球、正方体的三视图形状都相同、大小均相等,首先排除选项A和C.对于如图所示三棱锥O-ABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都不会完全相同, 故答案选D.3.(2013·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803C .200D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =(2+8)×42=20.又棱柱的高为10,所以体积V =Sh =20×10=200.4.如图是一个物体的三视图,则此三视图所描述物体的直观图是( )答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32πB .π+3生是一只狐狸化学教案却以为自己是刺猬试卷试题毫无疑问化学教案伯林不欣赏甚至厌恶大体C.32π+ 3D.52π+315.答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.化学教案多于市人之言语试卷试题二、填空题6.如图所示,E 、F 分别为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面DCC 1D 1上的投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的投影为②:B 在面DCC 1D 1上的投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7.已知三棱锥A —BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________.答案 3π解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,所以正方体ANDM —FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球就是正方体ANDM —FBEC 的外接球,所以三棱锥A —BCD 的外接球的半径为32.所以三棱锥A —BCD 的外接球的表面积为S 球=4π⎝⎛⎭⎫322=3π.8.(2013·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝⎛⎭⎫12AD ·AE ·sin ∠DAE (2h )12(2AD )(2AE )sin ∠DAE什么话也没说化学教案一副马上就要哭出来的样子试卷试题小伙子走后化学教案这件事情成了老板教育=124. 三、解答题9.一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.解 这个几何体是一个圆台被轴截面割出来的一半.根据图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故这个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高. 由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302),解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43,所以棱台的高为4 3 cm.B 组 专项能力提升 (时间:30分钟)1.在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为 ( )A.25VB.13V C.23VD.310V答案 D解析设点B到平面EMC的距离为h1,点D到平面EMC的距离为h2.连接MD.因为M是AE的中点,所以V M—ABCD=12V.所以V E—MBC=12V-V E—MDC.而V E—MBC=V B—EMC,V E—MDC=V D—EMC,所以V E—MBCV E—MDC =V B—EMCV D—EMC=h1h2.了近代化学教案潮菜融合了海内外更多饮食文化的长处化学教案使传统的饮食文化得以发扬、因为B,D到平面EMC的距离即为到平面EAC的距离,而AB∥CD,且2AB=3CD,所以h1h2=3 2.13.所以V E—MBC=V M-EBC=310V.2.已知四棱锥P-ABCD的三视图如下图所示,则四棱锥P-ABCD的四个侧面中的最大的面积是()A.3 B.2 5 C.6 D.8答案 C解析因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为32-22=5,所以后面三角形的面积为12×4×5=25,两个侧面面积为12×2×3=3,后面三角形的面积为12×4×(5)2+22=6,四棱锥P -ABCD 的四个侧面中面积最大的是前面三角形的面积:6.故选C.3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .则12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2. (2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD , 所以在Rt △APD 中, P A =PD 2+AD 2=(62)2+62=6 3 cm.5.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱.(1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大? 解 (1)作圆锥的轴截面,如图所示.因为r R =H -x H ,所以r =R -R Hx ,所以S 圆柱侧=2πrx=2πRx -2πR H x 2(0<x <H ).(2)因为-2πRH<0,所以当x =2πR 4πR H =H2时,S 圆柱侧最大.故当x =H2,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三 高考中的数列问题1.公比不为1的等比数列{a n }的前n 项和为S n ,且-3a 1,-a 2,a 3成等差数列,若a 1=1,则S 4等于( )A .-20B .0C .7D .40答案 A解析 记等比数列{a n }的公比为q ,其中q ≠1, 依题意有-2a 2=-3a 1+a 3,-2a 1q =-3a 1+a 1q 2≠0. 即q 2+2q -3=0,(q +3)(q -1)=0,又q ≠1,因此有q =-3,S 4=1×[1-(-3)4]1+3=-20,选A.2.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( ) A .12B .10C .8D .2+log 35答案 B解析 等比数列{a n }中,a 5a 6=a 4a 7, 又因为a 5a 6+a 4a 7=18,∴a 5a 6=9, log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3(a 5a 6)5=5log 3(a 5a 6)=5log 39=10.3.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 013,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 013·1010B .2 013·1011C .2 014·1010D .2 014·1011答案 A解析 由条件知lg a n +1-lg a n =lga n +1a n =1,即a n +1a n=10,所以{a n }为公比是10的等比数列.因为(a 2 001+…+a 2 010)·q 10=a 2 011+…+a 2 020,所以a 2 011+…+a 2 020=2 013·1010,选A.4.已知数列{a n }满足a n =1+2+22+…+2n -1,则{a n }的前n 项和S n =________.答案 2n +1-2-n解析 ∵a n =1+2+22+…+2n -1=1-2n 1-2=2n -1,∴S n =(21+22+ (2))-n =2×(1-2n )1-2-n=2n +1-2-n .5.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,…循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为________. 答案 392解析 将三个括号作为一组,则由50=16×3+2,知第50个括号应为第17组的第二个括号,即第50个括号中应是两个数.又因为每组中含有6个数,所以第48个括号的最末一个数为数列{2n -1}的第16×6=96项,第50个括号的第一个数应为数列{2n -1}的第98项,即为2×98-1=195,第二个数为2×99-1=197,故第50个括号内各数之和为195+197=392.故填392.题型一 等差、等比数列的综合问题 例1 在等差数列{a n }中,a 10=30,a 20=50.(1)求数列{a n }的通项公式;(2)令b n =2a n -10,证明:数列{b n }为等比数列; (3)求数列{nb n }的前n 项和T n .思维启迪 (1)设出数列{a n }的通项公式,结合已知条件列方程组即可求解; (2)由(1)写出b n 的表达式,利用定义法证明; (3)写出T n 的表达式,考虑用错位相减法求解. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12d =2.所以a n =12+(n -1)·2=2n +10. (2)证明 由(1),得b n =2a n -10=22n +10-10=22n =4n ,所以b n +1b n =4n +14n =4.所以{b n }是首项为4,公比为4的等比数列. (3)解 由nb n =n ×4n ,得 T n =1×4+2×42+…+n ×4n ,①4T n =1×42+…+(n -1)×4n +n ×4n +1,②①-②,得-3T n =4+42+…+4n -n ×4n +1=4(1-4n )-3-n ×4n +1.所以T n =(3n -1)×4n +1+49.思维升华 (1)正确区分等差数列和等比数列,其中公比等于1的等比数列也是等差数列. (2)等差数列和等比数列可以相互转化,若数列{b n }是一个公差为d 的等差数列,则{ab n }(a >0,a ≠1)就是一个等比数列,其公比q =a d ;反之,若数列{b n }是一个公比为q (q >0)的正项等比数列,则{log a b n }(a >0,a ≠1)就是一个等差数列,其公差d =log a q .数列{a n }的前n 项和为S n ,若a 1=2且S n =S n -1+2n (n ≥2,n ∈N +).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,求出数列{b n }的通项公式;若不存在,说明理由. 解 (1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N +成立. 即a n =2n 对n ≥2,n ∈N +成立,又a 1=S 1=2×1,所以a n =2n 对n ∈N +成立. 所以a n +1-a n =2对n ∈N +成立, 所以{a n }是等差数列,所以有S n =a 1+a n 2·n =n 2+n ,n ∈N +.(2)存在.由(1)知,a n =2n 对n ∈N +成立, 所以有a 3=6,a 9=18,又a 1=2, 所以有b 1=2,b 2=6,b 3=18, 则b 2b 1=b 3b 2=3, 所以存在以b 1=2为首项,以3为公比的等比数列{b n }, 其通项公式为b n =2·3n -1.题型二 数列与函数的综合问题例2 已知二次函数y =f (x )的图像经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)均在函数y =f (x )的图像上. (1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N +都成立的最小正整数m .思维启迪 (1)先求出函数f (x ),再利用n ,S n 的关系求a n .(2)可以利用裂项相消法求出T n .通过T n 的取值范围确定最小正整数m . 解 (1)设二次函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2, 所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N +)均在函数y =f (x )的图像上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2=6×1-5, 所以a n =6n -5(n ∈N +).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝⎛⎭⎫16n -5-16n +1,故T n =12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12(1-16n +1).因此,要使12(1-16n +1)<m 20对n ∈N +恒成立,则m 必须且仅需满足12≤m20,即m ≥10.所以满足要求的最小正整数为10.思维升华 数列与函数的综合一般体现在两个方面:(1)以数列的特征量n ,a n ,S n 等为坐标的点在函数图像上,可以得到数列的递推关系; (2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f (x )=x 2+2x 的图像上,且过点P n (n ,S n )的切线的斜率为k n . (1)求数列{a n }的通项公式;(2)设Q ={x |x =k n ,n ∈N +},R ={x |x =2a n ,n ∈N +},等差数列{c n }的任一项c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,110<c 10<115,求{c n }的通项公式. 解 (1)∵点P n (n ,S n )都在函数f (x )=x 2+2x 的图像上, ∴S n =n 2+2n (n ∈N +).当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=3满足上式, 所以数列{a n }的通项公式为a n =2n +1. (2)对f (x )=x 2+2x 求导可得f ′(x )=2x +2.∵过点P n (n ,S n )的切线的斜率为k n ,∴k n =2n +2, ∴Q ={x |x =2n +2,n ∈N +},R ={x |x =4n +2,n ∈N +}. ∴Q ∩R =R .又∵c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,∴c 1=6, ∵{c n }的公差是4的倍数, ∴c 10=4m +6(m ∈N +).又∵110<c 10<115,∴⎩⎪⎨⎪⎧110<4m +6<115m ∈N +,解得m =27,所以c 10=114,设等差数列的公差为d ,则d =c 10-c 110-1=114-69=12,∴c n =6+(n -1)×12=12n -6, 所以{c n }的通项公式为c n =12n -6. 题型三 数列与不等式的综合问题例3 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N +);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N +). (1)求数列{a n },{b n }的通项公式;(2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N +),试确定λ的值,使得对任意n ∈N +,都有c n +1>c n 成立.思维启迪 (1)先求a n ,再构造等比数列求b n ;(2)不等式c n +1>c n 恒成立,可以转化为求函数的最值问题.解 (1)由已知,得S n +2-S n +1-(S n +1-S n )=1, 所以a n +2-a n +1=1(n ≥1). 又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列. 所以a n =n +1. 又b n +1+2=4(b n +2),所以{b n +2}是以4为首项,4为公比的等比数列. 所以b n =4n -2.(2)因为a n =n +1,b n =4n -2,所以c n =4n +(-1)n -1λ·2n +1.要使c n +1>c n 恒成立,需c n +1-c n =4n +1-4n +(-1)n λ·2n +2-(-1)n -1λ·2n +1>0恒成立,即3·4n -3λ(-1)n -12n +1>0恒成立.所以(-1)n -1λ<2n-1恒成立.①当n 为奇数时,即λ<2n -1恒成立,当且仅当n =1时,2n-1有最小值1,所以λ<1;②当n 为偶数时,即λ>-2n -1恒成立,当且仅当n =2时,-2n-1有最大值-2.所以λ>-2,结合①②可知-2<λ<1. 又λ为非零整数,则λ=-1.故存在λ=-1,使得对任意n ∈N +,都有c n +1>c n 成立.思维升华 数列中有关项或前n 项和的恒成立问题,往往转化为函数的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(2013·天津)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N +),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N +).(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n+1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N +,有S n +1S n ≤136.(时间:80分钟)1.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N ),a 1=12,判断⎩⎨⎧⎭⎬⎫1S n 与{a n }是否为等差数列,并说明你的理由. 解 因为a n =S n -S n -1(n ≥2), 又因为a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2), 所以1S n -1S n -1=2(n ≥2),又因为S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.综上,可知⎩⎨⎧⎭⎬⎫1S n 是等差数列,{a n }不是等差数列.2.设数列{a n }满足a 1=0且11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n =∑k =1n b k ,证明:S n <1.(1)解 由题设11-a n +1-11-a n=1,即⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列, 又11-a 1=1,故11-a n=n . 所以a n =1-1n.(2)证明 由(1)得b n =1-a n +1n =n +1-nn +1·n=1n -1n +1, S n =∑k =1n b k =∑k =1n ⎝ ⎛⎭⎪⎫1k -1k +1=1-1n +1<1.3.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1), 曲线在Q 1点处的切线与x 轴交于点P 2,再从P 2作x 轴的垂 线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1; P 2,Q 2;…;P n ,Q n .记P k 点的坐标为(x k,0)(k =1,2,…,n ). (1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+…+|P n Q n |.解 (1)设P k -1(x k -1,0),由y ′=e x 得Q k -1(x k -1,e x k -1)点处切线方程为y -e x k -1=e x k -1(x -x k -1),由y =0得x k =x k -1-1(2≤k ≤n ). (2)由x 1=0,x k -x k -1=-1,得x k =-(k -1), 所以|P k Q k |=e x k =e-(k -1),于是S n =|P 1Q 1|+|P 2Q 2|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-n e -1. 4.设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列;(2)设T n 是数列{3(lg a n )(lg a n +1)}的前n 项和,求T n ;(3)求使T n >14(m 2-5m )对所有的n ∈N +恒成立的整数m 的取值集合.(1)证明 依题意,得a 2=9a 1+10=100,故a 2a 1=10.当n ≥2时,a n +1=9S n +10,a n =9S n -1+10,两式相减得a n +1-a n =9a n , 即a n +1=10a n ,a n +1a n=10,故{a n }为等比数列,且a n =a 1q n -1=10n (n ∈N +),∴lg a n =n .∴lg a n +1-lg a n =(n +1)-n =1, 即{lg a n }是等差数列.(2)解 由(1)知,T n =3[11×2+12×3+…+1n (n +1)]=3(1-12+12-13+…+1n -1n +1)=3nn +1.(3)解 ∵T n =3-3n +1,∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故所求整数m 的取值集合为{0,1,2,3,4,5}.5.已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式;(2)设b n =a na n +1,是否存在m 、k (k >m ≥2,m ,k ∈N +),使得b 1、b m 、b k 成等比数列?若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知,得⎩⎨⎧10a 1+10×92d =55,20a 1+20×192d =210.即⎩⎪⎨⎪⎧2a 1+9d =112a 1+19d =21, 解得⎩⎪⎨⎪⎧a 1=1,d =1.所以a n =a 1+(n -1)d =n (n ∈N +).(2)假设存在m 、k (k >m ≥2,m ,k ∈N +), 使得b 1、b m 、b k 成等比数列,则b 2m =b 1b k , 因为b n =a n a n +1=n n +1,所以b 1=12,b m =m m +1,b k =kk +1,所以(m m +1)2=12×kk +1.整理,得k =2m 2-m 2+2m +1.以下给出求m 、k 的方法: 因为k >0,所以-m 2+2m +1>0, 解得1-2<m <1+ 2.因为m ≥2,m ∈N +,所以m =2,此时k =8. 故存在m =2,k =8,使得b 1、b m 、b k 成等比数列. 6.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列{a n2n }是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意n ∈N +恒成立,求λ的取值范围. 解 (1)当n =1时,S 1=2a 1-22得a 1=4. S n =2a n -2n -1,当n ≥2时,S n -1=2a n -1-2n ,两式相减得 a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=2a n -1+2n2n-a n -12n -1=a n -12n -1+1-a n -12n -1=1. 又a 121=2, 所以数列{a n2n }是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =(n +1)·2n .因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于 5-λ>2n -32n ,记b n =2n -32n ,n ≥2时,b n -1b n =2n -12n +12n -32n =2n -14n -6,所以n ≥3时b n +1b n <1,(b n )max =b 3=38,所以λ<178.。