第三章 正弦交流电路
电工学课件--第三章 正弦交流电路
U • o I= U =U 0 ∠ R
• •
u =Um sinω t u Um i = = sinω = Im sinω t t R R
U =I R
U =I R
•
•
可见: 可见:电压与电流同相位 ui
i
u
•
IU
•
I
•
U
+−
2.功率关系
ui
i
⑴ 瞬时功率
•
u
IU
p=ui=UmImsin2ωt =UI(1-cos2ωt)
角频率ω: 单位时间里正弦量变化的角度 称为角频率。单位是弧度/秒 (rad/s). ω=2π/T=2πf 周期,频率,角频率从不同角度描 述了正弦量变化的快慢。三者只要知 道其中之一便可以求出另外两时值, 瞬时值中最大的称为最大值。Im、 U m 、E m 分别表示电流、电压和电动 势的最大值. 表示交流电的大小常用有效值的概 念。
单位是乏尔(Var) 单位是乏尔(Var)
第四节 RLC串联交流电路 串联交流电路 一.电压与电流关系
i R u L C
uR uL
u =uR +uL +uC
U =UR+UL+UC
• • • •
uC
以电流为参考相量, 以电流为参考相量, 相量图为: 相量图为:
•
UL UL+UC
φ
• • • •
•
U I
•
U
φ UR
UL-UC
UR
UC
2 可见: 可见: U = UR +(UL −UC)2
U L −UC X L − XC = arctg = arctg UR R
电工电子学第三章
负半周
3
设正弦交流电流: 设正弦交流电流:
Im
Ψ
i
O π T 2π π
ωt
i = I m sin (ω t + ψ )
初相角:决定正弦量起始位置 初相角: 角频率:决定正弦量变化快慢 角频率: 幅值:决定正弦量的大小 幅值:
幅值、角频率、初相角成为正弦量的三要素。 幅值、角频率、初相角成为正弦量的三要素。
5
3.1.2 幅值与有效值 幅值: 幅值:Im、Um、Em
幅值必须大写, 幅值必须大写, 下标加 m。
有效值: 有效值:与交流热效应相等的直流定义为交流电的 有效值。 有效值。
∫0
T
2 i 2R dt = I RT
交流
直流
则有
I =
1 T
∫
T
0
i 2dt
Im 1 T 2 2 有效值必 = ∫0 Imsin ωt dt = 2 须大写 T U Em 同理: 同理: U = m E= 2 2
12
3. 正弦量的相量表示
实质:用复数表示正弦量 实质: 复数表示形式 为复数: 设A为复数 为复数 (1) 代数式 A =a + jb 式中: a = r cos ψ 式中
+j
b
A
r ψ
0
2 2
a
+1
b = r sin ψ
(2) 三角式 由欧拉公式: 由欧拉公式
r = a + b 复数的模 b ψ = arctan 复数的辐角 a
16
⑥“j”的数学意义和物理意义 因子: 旋转 90o因子:e± j90o
± j90o
e
= cos 90° ± jsin90° = ±j
第三章正弦交流电
第三章正弦交流电第三章正弦交流电路直流电路的电压、电流和电动势的⼤⼩和⽅向都不随时间的变化⽽变化。
在实际⽣产(含汽车上)中,还普遍存在着另⼀类电压、电流和电动势的⼤⼩和⽅向随时间变化的交流电路。
本章从介绍正弦交流电的基本概念⼈⼿,通过分析电阻、电容和电感器件在正弦交流电作⽤下的规律,系统地阐述交流电路的特点和简单分析计算的⽅法。
第⼀节正弦交流电的基本概念⼀、交流电概述交流电是指⼤⼩和⽅向都随时间作周期性变化的电动势(或电压、电流),或说交流电是交变电动势、交变电压和交变电流的总称。
按交流电的变化规律可分为正弦交流电和⾮正弦交流电,如图3—1所⽰。
本章如没有特别说明,所讲的交流电都是指正弦交流电。
a) b)图3⼀l 交流电的波形图a)正弦交流电 b)⾮正弦交流电交流电之所以应⽤⼴泛,这是因为它在⽣产、输送和使⽤等⽅⾯具有许多优越性。
⾸先,在交流电路中可以利⽤变压器来改变电压,实现⾼压输电(减少线路损耗)和低压⽤电(⽤电安全和降低绝缘要求);其次,电⼒拖动普遍应⽤的交流电动机与直流电动机相⽐,具有结构简单、价格便宜、运⾏可靠、维护⽅便等特点。
对于⼀些必须使⽤直流电的场合,如城市⽆轨电车、蓄电池充电电源以及各种电⼦仪器,也往往是将交流电通过整流设备转换为直流电。
⼆、正弦交流电的产⽣⼯农业⽣产和⽇常⽣活中使⽤的正弦交流电是交流发动机产⽣的。
图3—2是最简单的交流发电机的发电原理图。
它包括两部分:固定在机壳上的⼀对磁极和可以绕轴⾃由转动的圆柱形电枢。
磁极的作⽤是使⽓隙中的磁感应强度沿电枢周围按正弦规律分布,且磁⼒线垂直于电枢表⾯。
电枢的作⽤是当电枢转动时(原动机带动),嵌在电枢中的线圈作切割磁感应线运动产⽣感应电动势;线圈的两端分别与装在电枢转轴上的两个彼此绝缘的滑环(铜环)相接,滑环经过电刷与外电路连接。
在图3—2b 中,⽓隙中的磁场按正弦规律分布:磁极中⼼,磁感应线密集,磁感应强度最⼤(B =B max );离开磁极中⼼处。
第3章 正弦交流电路
Um 正弦交流电压的有效值为 U = = 0.707U m 2 正弦交流电压的有效值为 E = Em = 0.707 Em 2
i = I m sin (ω t + ψ i )时,可得 也可以写为 i = 2 I sin (ω t + ψ i )
当电流
e = E m sin ( ω t + ψ e ) 时,可得 E = 2 也可以写为 e = 2 E sin ( ω t + ψ e )
1 1 T= = = 0.02s f 50
我国工业和民用交流电源的有效值为220V,频率为50Hz, ,频率为 我国工业和民用交流电源的有效值为 因而通常将这一交流电压简称为工频电压 频率称为工频 工频电压, 工频。 因而通常将这一交流电压简称为工频电压,频率称为工频。
例:已知正弦交流电流为i=2sin(ωt-30˚) A。电路中的电阻 已知正弦交流电流为 。电路中的电阻R=10Ω, , 试求电流的有效值和电阻消耗的功率。 试求电流的有效值和电阻消耗的功率。 解:电流有效值 电阻消耗的功率 I=0.707×Im=0.707×2=1.414A × × P=I2R=20W
已知一正弦电流的有效值为5A,频率为50Hz,初 例:已知一正弦电流的有效值为 ,频率为 , 相为50˚,试写出其解析式。 相为 ,试写出其解析式。 由题目可知, 解:由题目可知,m = 5 2V,ψ=50˚ I 又频率f=50Hz,则角频率 又频率 , ω=2πf=2×3.14×50=314rad/s × × 则该电流解析式为
(三)相位与相位差 相位:表示正弦量的变化进程,也称相位角。 相位:表示正弦量的变化进程,也称相位角。 相位角 初相位: 时的相位 时的相位, 初相位:t=0时的相位,用ψ表示。
第三章 正弦交流电路
m
式中,Im正弦交流电流的幅值。说明正弦交流电压和 电流的幅值之间满足欧姆定律。
(二)电压、电流的有效值关系
据电压、电流幅值之间的关系,把等式两边同 时除以 2 即得到有效值关系,即 或 U IR 这说明,正弦交流电压和电流的有效值之间 也满足欧姆定律。
I U R
(三)相位关系
(黄色)
电动势、电压和电流的大小和方向随时间按正弦规 律性变化。叫做正弦交流电流、电压、电动势。在任一 时刻可用三角函数表示。
e Em sin(t e ) u U m sin(t u ) i I m sin(t i )
第四章
交流电路
第一节 交流电的基本概念
三、描述正弦交流电特征的物理量
(三)相位、初相位与相位差
1、相位(或相角):
t i I m sin(t )
i
O
反映正弦量变化的进程。 2、初相位: 表示正弦量在t =0时的初相位。
——
如:
给出了观察正弦波 的起点或参考点。
ωt
e1 Em sin(t 1 ) e2 Em sin(t 2 )
X L 2fL 2 3.14 50 0.1 31.4Ω
U 10 I 318m A XL 31.4
(2)当 f = 5000Hz 时
X L 2fL 2 3.14 5000 0.1 3140 Ω
U 10 I 3.18m A XL 3140
4
可知
(1)最大值
(2)有效值 (3)角频率 (4)频率 (5)周期
m 30 2 42.6
m 30 2
100s 1 314rad / s
第3章 正弦交流电路
3.3.1 单一参数的正弦交流电路
1.纯电阻电路 (1) 电压与电流的关系
+
u iR
u
i I m sin t
_
u iR I m R sin t U m sin t
i R
对于正弦交流电路中的电阻电路(又称纯电阻 电路),一般结论为:
1)电压、电流均为同频率的正弦量。
2)电压与电流初相位相同,即两者同相。
y
i
ω
Im
i1
ωt1 φ
Im
i0
90
o
x
o
ωt1
ωt
φ
t t1 i1 I m sin(t 1)
对于一个正弦量可以找到一个与其对应的旋转矢量,反之, 一个旋转矢量也都有一个对应的正弦量。
3.2.2 复数及复数的运算 1、复数
A a jb
A r cos r sin
e j cos j sin
作相量图时要注意: 只有同频率的正弦量才 能画在一个相量图上,不 同频率的正弦量不能画在 一个相量图上。
+j
U
Φu
o
Φi
+1
I
3.3正弦交流电路的简单分析与运算
电阻元件、电感元件与电容元件都是组成 电路模型的理想元件。
所谓理想元件,就是突出元件的主要电磁 性质,而忽略其次要因素。如电阻元件具 有消耗电能的性质(电阻性),其它的电 磁性质如电感性、电容性等忽略不计。。
f = 1/T T = 1/f
i
角频率是指交流电在1s内变化的电 Im
角度。正弦量每经过一个周期T,
o
对应的角度变化了2π弧度,所以
φ
ωt
T
2f 2
电工基础 第三章
角频率 1 2 2πf 2 3.14 333rad/s 2091rad/s
(2)最大值 U ml (10 3)V 30V
U m2 (10 2)V 20V
相应的有效值为
U1
Uml 2
30 2
V 21.2V
U2
Um2 2
20 V 14.1V 2
第一节 正弦交流电的基本概念及其表示方法
相同的时间内,两个电阻产生的热量相等,我们就把这个直流电 流的数值定义为交流电流的有效值。电动势、电压和电流的有效 值分别用大写字母E、U、I表示。
第一节 正弦交流电的基本概念及其表示方法
E
Em 2
0.707Em
U
Um 2
0.707U m
I
Im 2
0.707I m
第一节 正弦交流电的基本概念及其表示方法
交流电是指大小和方向均随时间做周期变化的电流、电压 或电动势,分为正弦交流电和非正弦交流电两大类。正选交流 电按正弦规律变化,如图3-1所示;非正弦交流电不按正弦规 律变化,如图3-1d所示。
图3-1 直流电和交流电的波形 a)恒定直流电 b)脉动直流电 c)正弦交流电 d)非正弦交流电
第一节 正弦交流电的基本概念及其表示方法
1MHz 106 Hz
频率和周期的关系是 (3)角频率
f 1 T
指交流电每秒钟变化的弧度数,用ω表示
2π 2πf
t
T
第一节 正弦交流电的基本概念及其表示方法
3.相位、初相位和相位差
(1)相位 电角度(ωt+φ) 为交流电的相位,其单位是弧度或度。相位 反映了交流电变化的进程。
(2)φ表
(3)平均值 交流电的平均值是指由零点开始的半个周期内的平均值,如
第三章正弦交流电路
1 = U 2
cm m
I sin2 ωi = U Isin2 t
第四节电容和纯电容交流电路
纯电容电路瞬时功率波形图
第三章 正弦交流电路
上一页
下一页
返 回
结 束
第四节电容和纯电容交流电路
二、纯电容正弦交流电路
• 2.电路的功率 (2)平均功率(有功功率) 瞬时功率在一个周期内的平均功率等于零,即:
2
2 C
第三章 正弦交流电路
上一页
下一页
返 回
结 束
第四节电容和纯电容交流电路
二、纯电容正弦交流电路
例题
0
把一个C 80μ F的电容器接在 u 220 2sin(314t 30 ) 的电源上。试求:(1 ) 电流相量并写出其解析 式; (2) 无功功率 (3)画出电压和电流 的相量图.
• 若万用表的指针向小电阻方向摆动,不 能回摆至“∞”,而停在某一位置上,说 明电容器有漏电现象。
第三章 正弦交流电路
上一页
下一页
返 回
结 束
第四节电容和纯电容交流电路
u C
5.技能训练:用万用表检测电容器
• 若万用表的指针立即指到“0”位置上不 回摆,说明电容器内部已短路 。
第三章 正弦交流电路
上一页
下一页
返 回
结 束
最大值
上一页
下一页
返 回
结 束
(3)有效值
正弦量的有效值是根据电流的热效应来规 定的。如图3-5所示,在相同的时间里, 直流电和交流电在相同的负载上产生相 同的热量,就把该直流电的值叫做该交 流电的有效值
上一页
下一页
返 回
结 束
I
Im 2
第三章:正弦交流电路
& =U & = − jI & X = − j 2 × 50∠45 o = 50 2∠ − 45 o V U ao C C C & =U & = jI & X = j 2 × 50∠ − 45o = 50 2∠45o V U bo L L L & & & U = U − U = 50 2∠ − 45o − 50 2∠45o =
2
& 与U & 之间的相位差 I R
ϕ = arctan
XC 1 = arctan R Rω C
第三章
正弦交流电路
31
& 与U & 之间的相位差 U θ = 2ϕ ab 由上式可知,当改变电阻 R 时,输出电压 Uab 是一个不变恒定的值,即有 U U ab = 2 20 本题中 U ab = = 10V 2 当电阻 R 由零变到无穷大时, ϕ 角由 90o 变到零, θ 角由 180o 变到零。当电阻 R & 的相位从 180o 减小到: 由零变到 1.5kΩ 时, U
& = jI &X = j4.4 × 40∠73o = 176∠163o V U L L & & U C = − jIX C = − j4.4 × 80∠73o = 352∠ − 17 o V 【例题 3.2】 图 3.2(a)为 RC 移相电路。已知电阻 R = 100 Ω ,输入电压 u1 的频率为
Z = R + j( X L − X C ) = 30 + j(40 − 80) = 30 − j40 = 50∠ − 53o Ω
28
电工学试题精选与答题技巧
o & & = U = 220∠20 = 4.4∠73o Α I Z 50∠ − 53o & =I &R = 4.4 × 30∠73o = 132∠73o V U R
正弦交流电路
f 1 T
2 2 f
T
小常识
* 电网频率: 中国 50 Hz 美国 、日本 60 Hz
* 有线通讯频率:300 - 5000 Hz
* 无线通讯频率: 30 kHz - 3×104 MHz
正弦波 特征量之三
-- 初相位
i 2I sin t
u u1 u2
2U1 sin t 1 2U 2 sin t 2
2U1 sin t 1 2U2 sin t 2
2U sin t 幅度、相位变化 频率不变
结论:
因角频率()不变,所以以下讨论同频率正弦波 时, 可不考虑,主要研究幅度与初相位的变化。
例 已知: i sin1000 t 30
不同频率不行。
新问题提出: 平行四边形法则可以用于相量运算,但不方便。
故引入相量的复数运算法。
相量
复数表示法 复数运算
相量的复数表示
将复数 U 放到复平面上,可如下表示:
j
bU
U
+1
U a2 b2
tg 1 b
a
a
U a jb U cos jU sin
U
b
U
a
U a jb
欧 拉
i
u
R
i 2 I sin ( t) u 2U sin ( t)
p u i Ri 2 u 2 / R
小写
p u i Ri 2 u 2 / R
iu
ωt
p
ωt
结论:
1. p 0 (耗能元件)
p 2. 随时间变化
3. p 与 u2、i2 成比例
2. 平均功率(有功功率)P:一个周期内的平均值
电路分析基础第3章 正弦交流电路
20 图3.2.4 不同初相时的正弦电流波形
21
在正弦交流电路的分析中,有时需要比较同频率的正弦 量之间的相位差。例如在一个电路中,某元件的端电压u和 流过的电流i
u=Umsin(ωt+ψu) i=Imsin(ωt+ψi) 它们的初相分别为ψu和ψi,则它们之间的相位差(用φ表 示)为 φ=(ωt+ψu)-(ωt+ψi)=ψu-ψi (3.2.7) 即两个同频率的正弦量之间的相位差就是其初相之差,相位 差φ
以复数运算为基础的,复数的表示如图3.3.1所示。
32 图3.3.1 复数的表示
33
一个复数A可以用下述几种形式来表示。
1.代数形式
A=a+jb
(3.3.1)
式中, j 1 2.三角形式
A=rcosψ+jrsinψ=r(cosψ+jsinψ)
(3.3.2)
式中,r a2b2, t gb,arctban
28
I B I Bm 7 .07 5 A 22
A
100
π
1 300
π 60 3
B
100
π
1 600
π 30 6
A
B
π 3
π 6
π 2
90
(2)
iA=14.1sin(314t+60°)A
iB=7.07sin(314t-30°)A
29 图3.2.6 例3.2.5的波形图
a
a
ψ称为A的辐角。
34
3.指数形式
根据欧拉公式
ejψ=cosψ+jsinψ
第3章正弦交流电路
3)指数形式
A =r (cos jsin) = re j
4)极坐标形式
A=r∠
从图中可以看出,复数A的实部a、虚部b与模r构成一个直角三角形。
三者之间的关系为
r a2 b2
arctan b
个正弦量同相,如图4.2 (b)所示;
(4) 当 12 = 时,一个正弦量到达正最大值时,另一个正弦量到达
负最大值,此时称第1个正弦量与第2个正弦量反相,如图4.2 (c)所示;
(5) 当 12 = /2时,一个正弦量到达零时,另一个正弦量到达正最
大值(或负最大值),此时称第1个正弦量与第2个正弦量正交。如图4.2 (d) 所示。
U1 U1 1
U U1 U 2
U 2 U 2 2
u(t ) 2 U cos( t )
故同频正弦量相加减运算变成对 应相量的相加减运算。
i1 i2 = i3
I1 I2 I3
3.2 单一参数正弦交流电路的分析
一、纯电阻元件电路
1. 电阻元件 在正弦电路中,电流、电压虽然都是随时间变化
= 311sin(30°)= 115.5V
i= 5sin(314t 90°) = 5sin(314×0.00333 90°) = 5sin(150°)
= 2.5A
可见,当两个同频率正弦量的计时起点变化时,各自的相位将发生
变化,但其相位差不变。说明相位的大小与计时起点的选择有关,
而相位差与计时起点的选择无关。
(2)、 乘除运算——极坐标为例
若 A1= r1 1 ,若A2= r2 2
则
A 1
电工学第三章
本章内容
●正弦交流电的基本概念 ●正弦交流电的相量表示法 ●单一参数交流电路
●串联交流电路
●并联交流电路 ●交流电路的功率 ●电路的功率因数
●电路中的谐振
第3章 交流电路
3.1 正弦交流电的基本概念
3.1 正弦交流电的基本概念
正弦交流电—其大小和方向随时间按正弦函数变化的电
动势、电压和电流总称为正弦交流电。其函数表达式(又 为瞬时表达式)和波形图如下所示
阻抗串联电路及其等效电路
= Ri + X i
(2)分压原理
U1 = U
Z1 Z1 + Z 2
U1 = U
Z1 Z1 + Z 2
第3章 交流电路
3.5 并联交流电路
3.5 并联交流电路
(1)等效阻抗的计算 U U I = I1 + I 2 = + Z1 Z 2 ( 1 + 1 ) = U =U Z1 Z 2 Z
第3章 交流电路
3.4 UL
串联交流电路
① u与i的大小关系
2 U = U R + (U L U C ) 2 = ( IR) 2 + ( IX L IXC ) 2
U
UL+ UC UR I
= I R + (X L XC )
2
2
U = R 2 + ( X L X C )2 = R 2 + X 2 = Z I
.
I L
.
u i
i u ωt 2π
U = jIX L d ( I m sin wt ) di u=L =L dt dt U = wLI m coswt
电工与电子技术基础课件第三章正弦交流电
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui
正弦交流电路
2. 平均功率(有功功率)P:一个周期内的平均值
i
P=UI
=I2R=i U2/2RI
sint
Uu =IRR
u 2U sint
P1 Tpd t1Tuidt
T0
T0
大写 1 T 2UIsin2t dt
T0
1
T
UI(1cos2t)dtUI
T0
§ 3.4 理想电感元件上的正弦稳态响应
一、电压电流关系
即:瞬时值和相量满足基尔霍夫定律,有效值不满足
I1I2I30
I1
I3
I1-I2+I3= 0
I2
U 3
U 4
U 2 U 1 U 2 U 3 U 4 U 5 U 6 0 U 1
U 5
U 6
例: i162si nt (3)0
i282si nt (6)0
求i=i1+i2
i
解: I 1 6 3 0 5 .1 9 j3 6
Im[Ime ji e jt ]
复指数函数中的一个复常数
复常数定义为正弦量的相量,记
为
Im
相量 的表示
Im 为“最大值”相量
Im Im eji Im i
I 为“有效值”相量 IIeji Ii
相量是一个复数
注意
1)相量可以代表一个正弦量,但不等于该
正弦量。
U 50ej15° 50
2
sin(
实部是余弦量 虚部是正弦量
则 I[ m Im e j( t i)] Im sitn ( i)
正弦量可以用上述形式复数函数描述
I[ m Im e j( t i)] Im sitn ( i)
正弦量可以用上述形式复数函数描述
第3章 正弦交流电路
Z φ 电抗
2
( R jபைடு நூலகம் ) I ZI
Z
XL-XC
R
阻抗
Z R (XL XC)
XL XC arctan R
阻抗角
2
阻抗三角形
阻抗模
相量图
UL UC
U UL+ UC UR I
电压三角形
2 U UR (U L U C ) 2 I R 2 ( X L X C ) 2
2.RL串联电路
u uR uL
I R U R
jX I U L L
U U U R L
i
R
u
L
Z R jX L
Z R X
2 2 L
XL arctan R
例
在RLC串联电路中,
R 30 Ω X L 40Ω X C 80Ω
若电源电压
平均功率
P0
无功功率 能量互换的规模 ,瞬时功率的最大值为无功功率。
QC UI I X C
2
U
2
XC
把电容量为40µ F的电容器接到交流电源上,通过电 容器的电流为
i 2.75 2 sin(314t 30 )A
o
试求电容器两端的电压瞬时值表达式。
解
o I 2.7530 A
u U m sin(t )
有效值相量
U m U m U U
i I m sin(t )
正弦量的相量表示:
I m I m I I
相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位
第3章 正弦交流电路.ppt
在坐标原点右侧,则初相 为负。
综上所述,如果知道一个正弦量的振幅、角频率(频率)和初 相位,就可以完全确定该正弦量,即可以用数学表达式或波 形图将它表示出来。
上一页 下一页 返回
3.1 正弦交流电的基本概念
3. 1. 2正弦量的相位差
对于两个同频率的正弦量而言,虽然都随时间按正弦规律变 化,但是它们随时间变化的进程可能不同,为了描述同频率 正弦量随时间变化进程的先后,引入了相位差。
3.1.1正弦量的三要素
凡随时间作正弦规律变化的物理量,无论电压、电流还是别 的电量统称为正弦量。正弦量可以用正弦函数表示,也可以 用余弦函数表示。本书用正弦函数表示正弦量。
正弦电流、电压的大小和方向是随时间变化的,其在任意时 刻的数值称为瞬时值,用小写字母i和u表示。
下一页 返回
3.1 正弦交流电的基本概念
前”前者(u),或称前者(u)“滞后”后者(i),如图3-7(c)
所示;
当 示;
时,则称两正弦量“反相”,如图3-7(d)所
当 示;
时,则称两正弦量“正交”,如图3-7(e)所
必须强调,比较正弦量之间的相位差时要注意三个条件(即 “三同”)。
(1)同频率。只有同频率的正弦量才有确定的相位关系,它 们的相位差才有意义。
(2)同函数。正弦和余弦函数表示的交流电都是正弦交流电, 当要比较相位差时要化成同一函数来表达才能用式(3-6)进 行计算。
上一页 下一页 返回
3.1 正弦交流电的基本概念
(3)同符号。用式(3-6)计算两正弦量的相位差时,两正弦 量的数学表达式前面的符号应该相同。
3. 1. 3正弦量的有效值
例如,有两个同频率的电压和电流,分别为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 正弦交流电路第一节 单相交流电[3001]某正弦电压表达式为t t u 100sin 2100)(π=V ,则______。
A .T =100 sB .f =100πHzC .有效值为141 VD .初相位为0[3002]若两个同频率的正弦量的瞬时值具有如下特征:二者总是同时达到正的最大值,则二者在相位上一定是______。
A .同相B .反相C .同相或反相D .初相位不同[3003]若两个同频率的正弦量的瞬时值具有如下特征:二者总是同时过零,则两者在相位上一定是______。
A .同相B .反相C .同相或反相D .初相位相同[3004]已知t e 314sin 1411=V ,)30628sin(23802︒+=t e V ,则1e 与2e 的相位关系是______。
A .1e 比2e 超前30°B .2e 比1e 超前30°C .1e 与2e 同相D .相位差随时间变化而变化[3005]如图所示,某正弦电压波形图,其瞬时值表达式为______。
A .)90314sin(10︒+=t u VB .)903140sin(10︒+=t u VC .)90314sin(210︒-=t u VD .)904.31(2sin 10︒+=t u V[3006]如图所示,某正弦电流波形图,其瞬时值表达式为______。
A .)90314sin(210︒+=t i AB .)90314sin(10︒+=t i AC .)90314sin(10︒-=t i AD .)904.31sin(10︒+=t i A[3007]某交流用电器的额定电压为220 V 、额定频率为50 Hz ,其两端加上下列哪种正弦电压,会保证其正常工作______。
A .t 314sin 2220-VB .t 314sin 220VC .t 314sin 380VD .t 50sin 2220V[3008]某正弦电流表达式为)60 100sin(100)(︒+=t t i πA ,则______。
A .T =100 sB .ω=314 rad/sC .有效值为100 AD .初相位为60[3009]若交流电路中电压u 与电流i 的相位差φ=0,则在相位上______。
A .u 滞后于i ,角度为φB .u 与i 同相C .u 超前于i ,角度为φD .无法比较[3010]某正弦电压表达式为)30 100sin(100)(︒-=t t u πV ,则______。
A .T =100 sB .f =100πHzC .有效值为100 VD .相位为100πt -30°[3011]正弦电流幅值为10 A ,初相位为6π-,周期为0.02 s ,则电流瞬时值表达式为______。
A .)30314sin(10)(︒-=t t i A B .)602.0sin(10)(π-=t t i A C .)60 100sin(210)(︒+=t t i π A D .)650sin(10)(π-=t t i A [3012]正弦电流有效值为10 A ,初相位为3π,周期为0.01 s ,则电流瞬时值表达式为______。
A .)301.0sin(210)(π+=t t i A B .)60628sin(10)(︒+=T t i AC .)60 200sin(210)(︒+=t t i π AD .)3628sin(10)(π+=t t i A[3013]已知一正弦信号源的电压幅值为10 mV ,初相位为30°,频率为1 000 Hz ,则电压瞬时值表达式为______。
A .)30314sin(210)(︒+=t t u mVB .)30314sin(10)(︒+=t t u mVC .)30 2000sin(210)(︒+=t t u πmVD .)30 2000sin(10)(︒+=t t u πmV[3014]下列各项中,不属于交流电的三要素之一的是______。
A .幅值B .阻抗C .周期D .初相位[3015]下列各项中,不属于交流电的三要素之一的是______。
A .幅值B .功率因数C .频率D .初相位[3016]某正弦电流表达式为)60 100sin(100)(︒+=t t i πA ,则______。
A .频率为工频B .f =314 rad/sC .有效值为100 AD .初相位为100πt+60°[3017]把一个周期性交变的电流i 和一个直流电流I 分别通过阻值相同的电阻R ,在相同的时间内,若它们在电阻上产生的热效应相同,则该直流电的大小对应交变电流i 的______。
A .最大值B .有效值C .瞬时值D .平均值[3018]最大值为有效值的2倍的关系,只适用于______。
A .脉冲交流电B .直流电C .正弦交流电D .三相交流电[3019]让一个10 A 直流电流和一个最大值为210A 的正弦交流电流分别通过两个阻值相同的电阻R ,在相同的时间内,哪个电阻发热量大______。
A .直流电与交流电一样大B .直流电比交流电大C .交流电比直流电大D .由于频率未知,故无法比较[3020]正常情况下用电压表测的电压值是______;而设备名牌上的电压值是______。
A .最大值/最大值B .有效值/最大值C .有效值/有效值D .最大值/有效值[3021]用i 、I 、.I 分别表示正弦电流的瞬时值、有效值、有效值相量。
指出下列哪一式表示合理______。
A .︒-=305j e i AB .)45sin(100︒+=t I AC .t i sin 10=AD .︒∠=3010I A[3022]已知)45sin(380︒-=t u V ,则该电压的有效值U 为______。
A .380 VB .220 VC .190 VD .1902[3023]正弦交流电压的最大值与有效值之间的关系为______。
A .m U U 414.1=B .m U U 732.1=C .U U m 732.1=D .U U m 414.1=[3024]正弦交流电的三要素是______。
A .最大值,有效值,初相位B .角频率,频率,周期C .最大值,角频率,相位差D .最大值,频率,初相位[3025]正弦交流电的最大值I m 、有效值I 之间关系是______。
A .I I m 3=B .I I m 2=C .I I m =D .II m 31= [3026]若交流电路中电压u 与电流i 的相位差φ>0,则在相位上______。
A .u 滞后于i ,角度为φB .u 与i 同相C .u 超前于i ,角度为φD .无法比较[3027]已知某正弦电压有效值为220 V ,频率为50 Hz ,在t =0时,电压u 为220 V ,则______。
A .)90314sin(311︒+=t u VB .)90314sin(220︒+=t u VC .)45314sin(311︒+=t u VD .)45314sin(220︒+=t u V[3028]所谓的“工频”正弦交流电,是指______。
A .交流电的周期为0.02 sB .交流电的有效值为220 VC .交流电的有效值为380 VD .交流电的初相位为0[3029]已知某一交流电流频率f =100 Hz ,则其周期T 为 ______。
A .0.1 sB .0.01 sC .200πradD .0.01rad[3030]已知)10sin(1001︒+=t u ωV ,)402sin(2002︒+=t u ω V ,则在相位上______。
A .1u 滞后2u ,角度为30°B .因为幅度不同,故二者不能比较C .1u 超前2u ,角度为30°D .因为频率不同,故二者不能比较[3031]若交流电路中电压u 与电流i 的相位差φ<0,则在相位上______。
A .u 滞后于i ,角度为ϕB .u 与i 同相C .u 超前于i ,角度为ϕD .无法比较[3032]已知某正弦电压有效值为380 V ,频率为50 Hz ,在t =0时,电压u 为380 V ,则______。
A .)90314sin(380︒+=t u VB .)90314sin(220︒+=t u VC .)45314sin(2380︒+=t u VD .)45314sin(220︒+=t u V[3033]人们平时用电表测得交流电压和电流值的大小是指它们的______。
A .最大值B .有效值C .瞬时值D .平均值[3034] 下面物理量中可以表示正弦交流电的强度或做功能力的是_____。
A.频率大小B.周期大小C.角频率大小D.最大值大小[3035]以下四种交流电中做功能力最强的为_______。
A .)90314sin(380︒+=t u VB .)90314sin(220︒+=t u VC .)45314sin(2380︒+=t u VD .)45314sin(220︒+=t u V[3036]具有下列特征的正弦交流电不符合“工频”范畴的是指:A. 周期为0.02sB. 有效值为220VC. 频率为50HzD. 角频率为314rad/s[3037]已知正弦交流电频率为50赫兹,则周期为______A 、0.02秒B 、0.05秒C 、0.01秒D 、0.2秒第二节 电阻、电感和电容元件[3038]用万用表欧姆挡检测电容好坏时,如表针始终处在“0 Ω”处,则表示______。
A .电容是好的B .电容已被击穿C .电容内部引线已断D .电容漏电[3039]如图,瓦特计的读数为2 kW ,u =230 V ,f =50 Hz ,现将一纯电容C =96 μF 并接到电路中,则瓦特计的读数为______。
A .2 kWB .3.59 kWC .0.41 kWD .2.56 kW[3040]感抗的大小与频率成_____关系,容抗的大小与频率成_____关系。
A . 正比/反比B .正比/正比C .反比/反比D .反比/正比[3041]在纯电感正弦交流电路中,若电压u 和电流i 参考方向一致,按照电工电量符号的一般规定,下列正确表达了欧姆定律的是______。
A .L X U P 2=B .L X U I ..= C .L X u I = D .L IX U = [3042]在纯电感正弦交流电路中,若电压u 和电流i 参考方向一致,按照电工电量符号的一般规定,下列正确表达了欧姆定律的是______。
A .L X U j I ..-= B .P =IU C .L X I U .= D .L X u I = [3043]对于纯电感正弦交流电路,电压u 与电流i 的参考方向一致,按照电量符号一般的规定,下列各式中不正确的是______。