!湛江一中2008—2009学年度第一学期期中考试高二数学文科1
广东省湛江市第一中学2018-2019学年高一上学期第一次大考试题数学Word版含答案
湛江一中2018-2019学年度第一学期“第一次大考”高一级 数学科试卷考试时间:120分钟 满分:150分 命题人:凌 志审题人:龙清清 做题人:彭静静一、选择题(每题5分,共12题60分,在每小题给出的四个选项中,只有一项符合题目只有一项符合题目要求的)1. 设集合A ={0,2,4,6,8,10},B ={4,8},则C A B =( )A. {4,8}B. {0,2,6}C. {0,2,6,10}D. {0,2,4,6,8,10} 2.函数3132)(-+-=x x x f 的定义域为( ) A .),23[+∞ B .),3()3,-(+∞⋃∞ C.),3()3,23[+∞⋃D .),3(+∞ 3.设}21|{},20|{≤≤=≤≤=y y B x x A ,下列图形中表示集合A 到集合B 的函数图形的是( )A B C D4.设函数)(x f=()0102xx x ⎧≥,⎪⎨,<,⎪⎩则=-))4((f f ( ) A . 4- B .41C .1D .4 5、9.04=a 、48.08=b 、5.1)21(-=c 的大小关系是 ( )A .c >a >bB .b >a >c C.a >b >cD .a >c >b6.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20172017b a+的值为( ) A .0 B .1 C.1- D .1或1-7.不等式x x ax ax 424222+<-+对任意实数x 均成立,则实数a 的取值范围是( ) A.B.C.D.8.已知函数)(x f 是定义在上的偶函数,当时,是增函数,且0)1(=-f ,则不等式的解集为( ) A.B.C.D.9. 若ax x x f 2)(2+-=与xa x g -+=1)1()(在区间[1,2]上都是减函数,则a 的取值范围是( )A.]1,21( B.]21,0( C .[0,1]D .(0,1]10.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为223y x =-,值域为{}1,5-的“孪生函数”共有( )A .10个B .9个C .8个D .4个11、函数()⎩⎨⎧≥<-+-=0,0,33x a x a x x f x 是R 上的减函数,则a 的取值范围是( )A .(0,1)B .]32,0( C.)1,32[D .]32,( -∞ 12已知)(x f 是定义域为的奇函数,满足)1()1(x f x f +=-,若2)1(=f ,则A. 50-B. 0C. 2D. 50二、填空题(每题5分,共4题20分) 13、不论()1,0≠>a a a 为何值,函数()12+=-x a x f 的图象一定经过点P ,则点P 的坐标为___________.14、已知函数)2(xf 的定义域是[-1,1],则)(x f 的定义域为___________.15.已知 )(x f ,)(x g 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ___________.16.若关于x 的函数225222018()(0)tx x t x f x t x t+++=>+的最大值为M ,最小值为N ,且M +N =4,则实数t 的值为___________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)(1)求值:21023213(2)(9.6)(3)(1.5)48-----++144[(5)]-(2)已知11223a a -+=,求3322a a -+的值.18.(12分)已知全集U =R ,集合}121|{+<<-=a x a x A ,}10|{<<=x x B . (1)若21=a ,求A ∩B ; (2)若A ∩B =∅,求实数a 的取值范围.19. (12分)已知函数()x f 是定义在R 上的偶函数,且当0≤x 时,()x x x f 22+=.(1)现已画出函数()x f 在y 轴左侧的图像,如图所示,请补全函数()x f 的图像,并根据图像直接写出函数()()R x x f ∈的增区间;(2)求函数()()R x x f ∈的解析式;(3)求函数()()R x x f ∈的值域。
“八校”高二联考成绩统计(湛江一中)
139.5
5
139.5
6
138.5
7
138
8
137.5
9
136.5
10
136
11
136
12
134
13
133.5
14
133.5
15
133
16
133
17
132
18
132
19
132
20
132
(5)理科综合
学校
名次
湛江一中
北江中学
茂名一中
阳江一中
阳春一中
新会一中
高州中学
化州一中
1
266
2
266
3
260
4
258
北江中学
茂名一中
阳江一中
阳春一中
新会一中
高州中学
化州一中
150
0
145以上
0
140以上
0
135以上
0
130以上
0
125以上
6
120以上
39
115以上
156
110以上
370
105以上
653
100以上
932
95以上
1156
90以上
1320
(2)理科数学
学校
分数
湛江一中
北江中学
茂名一中
阳江一中
阳春一中
新会一中
阳江一中
阳春一中
新会一中
高州中学
化州一中
语文
79.9%
理科数学
48%
文科数学
29%
英语
57.3%
高二数学上学期期中文科试题
高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。
高二上学期期中考试数学试卷含答案
高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。
第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。
广东省湛江市第一中学、深圳实验学校高中部两校2023届高三上学期1月联考数学试题
湛江一中、深圳实验2023届高三两校三部1月联考数 学 试 题命题:深圳实验光明部 曾嘉诚 郭淇凯 审题:深圳实验光明部 王鹏 官友凤(满分 150分 考试时间 120 分钟)注意事项:1.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
并用2B 铅笔将对应的信息点涂黑,不按要求填涂的,答卷无效。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,只需将答题卡交回。
一、单选题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项符合题目要求.1. 已知集合=M {0,1,2,3},集合N =∈+≤N x x {||1|3}*,则=MN ( )A. {0,1}B. {1,2}C. {0,1,2}D. {1,2,3}2.已知复数z 满足+⋅=z (12i)52(其中i 为虚数单位),则=z ( ) A. -55i 34 B. +55i 34 C. -+55i 34 D. --55i 343.已知a =-(2,1),b =k (6,),c =(1,2),若a b c -⊥(2),则=k ( ) A. -3 B. -2 C. 2 D. 34. “圆++-+++=C x y x k y k k :2(22)220222的圆心C 在第二象限”是“>-k 1”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.点声源在空间中传播时,衰减量∆L (单位:dB )与传播距离(单位:m )的关系式为∆=πL r 410lg2,取≈lg 20.3,则r 从10米变化到80米时,衰减量的增加值约为 ( )A. 24dBB. 18dBC. 16dBD. 12dB6.已知等差数列a n {}与各项均为整数的等比数列b n {}的首项分别为==a b 1,211,且=a b 22,=a b 64.将数列a n {}, b n {}中所有项按照从小到大的顺序排列成一个新的数列c n {}(重复的项只计一次),则数列c n {}的前40项和为 ( ) A. 1843 B. 2077 C. 2380 D. 26687.双曲线C 的左、右焦点分别为F F ,12,以C 的实轴为直径的圆记为D ,过F 1作D 的切线分别交双曲线的左、右两支于M N ,两点,且=MN MF 21,则C 的离心率为 ( )A. B. 2 C. D.8.已知函数且⎩⎪>≠⎨=⎪-+≤⎧xx x x f x x x x ln ,01()32,03,若方程-+++=f x a f x a a [()](21)()022有3个不同的实数根,则a 的取值范围是 ( ) A. --[1,0)[1,e 1) B. --(1,0)(1,e 1) C. -e [1,1) D. -(1,e 1)二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对5分,部分选对得2分,有选错得0分.9.下列说法中正确的是 ( ) A.若>P A ()0,>P B ()0,则事件A B ,相互独立与事件A B ,互斥不能同时成立 B.一组数据-a a 4,3,3,5的平均数为4,则a 的值为1C.五位同学站成一排拍照,其中甲不能站在最左边的位置,则不同的排队方法有120种D.若随机变量μσX N (,)2,且>=<-=P X P X (7)(3)0.1,则-<<=P X (32)0.410.已知向量a =-ωωωx x x (sin ,sin cos ),b =+>ωωωωx x x ,sin cos )(0). 设函数 a b R =⋅∈f x x ()(),且函数=y f x ()图象的两相邻对称轴间的距离为π2,则 ( ) A.=-πf x x 6()2sin(2)B.π3(,0)是函数=y f x ()图象的对称中心C.函数=y f x ()在区间--ππ36(,)2上单调递减 D.使≥f x ()0成立的x 的取值区间为Z ++∈ππππk k k 1212[,],711. 如果一双曲线的实轴及虚轴分别为另一双曲线的虚轴及实轴,则此二双曲线互为共轭双曲线.已知双曲线C 1与C 2互为共轭双曲线,设C 1的离心率为e 1,C 2的离心率为e 2,则 ( )A.若=e 1,则=e 2 B.e e 12的最小值为4C.+e e 1222的最小值为4D.+e e 121212. 在棱长为1正方体-ABCD A B C D 1111中,若点P 为棱C D 11上的一动点,则下列说法中正确的有 ( )A.+AP PCB.当P 为棱C D 11的中点时,则四棱锥-P ABB A 11的外接球的表面积为π1641 C.平面A PC 1与平面CBB C 11所成夹角取最小值时,则线段=C P 211 D.若点E F ,分别为棱AB AD ,的中点,点Q 为线段C D 1上的动点,则直线A Q 1与平面D EF 1交三、填空题:本题共4小题,每小题5分,共20分.13.-+xx (1)(1)18的展开式中x 2项的系数为 .(用数字作答)14.已知抛物线=C y x :42的焦点为F ,准线为l ,P 是l 上一点,PF 交C 于M N ,两点,且满足=MP FP 2,则NF =__________.15. 已知点P x y (,)00在曲线=y e x 上,该曲线过P 的切线交坐标轴于Q R ,两点,若≤x 00,则∆ORQ 面积的取值范围是__________.(O 为坐标原点)16.数学家康托(Cantor)在线段上构造了一个不可数点集——康托三分集.将闭区间[0,1]均分为三段,去掉中间的区间段33(,)12,余下的区间段长度为a 1;再将余下的两个区间33[0,],[,1]12分别均分为三段,并各自去掉中间的区间段,余下的区间段长度为a 2.以此类推,不断地将余下各个区间均分为三段,并各自去掉中间的区间段.重复这一过程,余下的区间集合即为康托三分集,记数列a n {}表示第n 次操作后余下的区间段长度. (1)=a 4 ;(2)若N ∀∈n *,都有≤λn a a n 42恒成立,则实数λ的取值范围是 .四、解答题:本题共6小题,第17题10分,第18~22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)∆ABC 的内角A B C ,,的对边分别为a b c ,,+=b C c B a B C sin sin )4sin sin .(1)求角A ;(2)若=a ,且∆ABC ,求∆ABC 的周长.18.(12分)数列a n {}的前n 项和为S n ,且+=a S n n 2. (1)求数列a n {}的通项公式;(2)在a n 与+a n 1之间插入n 个数,使得这+n (2)个数依次组成公差为d n 的等差数列,求数列d n{}1的前n 项和.19.(12分)如图1,四边形ABCD 为边长为4的菱形,∠=ABC 60°,E 为BC 的中点.将∆ABE 沿AE翻折至∆PAE 位置(如图2),使二面角--P AE D 为60°. (1)求四棱锥-P AECD 的体积;(2)M 是线段AE 上一点,记平面PDM 与平面PEC 所成的角为α.当α取得最小值时,求线段AM 的长度.图 1 图 22020年,一场突如其来的新型冠状病毒疫情席卷全球,时至今日,仍影响着人们的生产生活. 为快速筛查出阳性患者,需按如下方案进行核酸检测:随机将10人分成一组,将10人样本混合后检测. 若混合样本呈阴性,说明10人全部阴性;若混合样本呈阳性,说明其中至少一人呈阳性,则必须对这10人进行单人单检.假设携带病毒(阳性)的人在人群中的占比为<<p p (01),且每个人是否携带病毒相互独立.(1)现有10份单人单检的样本,其中有2份为阳性.求恰好经过3次检测就排查出所有阳性样本的概率.(2)请结合离散型随机变量及其分布列的有关知识,计算当p 值在什么范围时,上述核酸检测方案优于单人单检方案. (参考数据:≈-lg0.7940.1)21.(12分)如图3,A B ,是椭圆+=<<bC b x y 4:1(02)222上关于原点对称的两点,其中点A 在第一象限,过A 作x 轴的垂线,垂足为D .(1)当D 点与C 的右焦点重合时,求ABD 面积的最大值;(2)已知点E 在C 上,从下面三个条件①②③中选择两个条件,证明另一个条件成立:①B D E ,,三点共线;②⊥AE AB ;③=b图 3对于函数f x ()和g x (),若存在≠x x 12满足==f x g x f x g x ()(),()()1221,则称f x ()和g x ()为一组“矩形函数”.(1)判断=f x x ()sin 1与=g x x ()cos 1是否为一组“矩形函数”,并说明理由; (2)若=>f x ax a ()ln (0)2与=xg x ()12为一组“矩形函数”,求a 的取值范围.。
高二数学期中考试试卷(文科)
高二数学期中考试试卷(文科)考试范围:数学1(解析几何初步)、数学1—1(圆锥曲线)、数学1—2(全部)时间:120分钟 满分:150分一.选择题(共10题,每小题5分,满分50分) 1.y -+5=0的倾斜角为( )A .0150 B . 0120 C . 060 D .0302.如果直线022=++y ax 与直线023=--y x 垂直,那么a 等于( )A .3-B .6-C .23-D .323.在研究两个分类变量x 、y 的关系时进行独立性检验常常使用统计变量2χ,如果我们有99.9%的把握认为x 、y 有关系,那么2χ值应在的临界值为( ) A .2.706 B .3.841 C .6.635 D .10.8284.已知圆的方程为222610x y ax ay +-+-=,则圆心的轨迹方程为( ) A .3y x =- B .3y x = C .3x y =- D .3x y =5.复数13z i =+,21z i =-,则复数12z z z =在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.把1,3,6,10,15,21,…这些数称为三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图):则第10个三角形数为( ) A .45 B .55 C .50 D .56 7.以下是计算201614121++++ 的值的一个 程序框图,其中判断框内填入的条件是( )A .10>iB .10<iC .20>iD .20<i1 3 158.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( )A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= 9.椭圆192522=+y x 上一点M 到左焦点1F 的距离为2,N 是1MF 的中点,O 为坐标原点,则ON =( )A .2B .4C .8D .2310.已知抛物线的顶点在坐标原点,对称轴为坐标轴,焦点在直线2470x y -+=上,则抛物线的方程为( )A .214y x =-B .22147y x x y =-=或C .27x y =D .22147y x x y ==-或 二.填空题(共4题,每小题5分,满分20分)11.在一组随机变量x 、y 的两个回归摸型中,残差的平方和越 大的模型拟合的效果越 (填好或差).12.阅读所给的算法流程图,则输出的结果是S= ; 13.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 .14. 设P 为抛物线x y 42=上的点,则P 到直线3+=x y 的最短距离为 .三.解答题(共6题,满分80分) 15.(满分12分)直线l 过点A (-2,3)且与两坐标轴截得的线段恰好被点A 平分,求直线l 的方程。
广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题
深圳中学2023-2024学年度第一学期期中考试试题年级:高二科目:数学注意事项:答案写在答题卡指定的位置上,写在试题卷上无效。
选择题作答必须用2B 铅笔,修改时用橡皮擦干净。
一、单项选择题(每小题只有一个答案符合题意,共8小题,每小题5分,共40分)1.在等差数列{}n a 中,4820a a +=,712a =,则4a =( ) A .4B .5C .6D .82.在等比数列{}n a 中,若52a =,387a a a =,则{}n a 的公比q =( )A B .2C .D .43.已知两条直线1l :350x y +−=和2l :0x ay −=相互垂直,则a =( ) A .13B .13−C .3−D .34.已知椭圆C 的一个焦点为(1,0,且过点(,则椭圆C 的标准方程为()A .22123x y +=B .22143x y +=C .22132x y +=D .22134x y +=5.在等比数列{}n a 中,24334a a a =,且652a a =,则{}n a 的前6项和为( ) A .22B .24C .21D .276.已知F 是双曲线C :2213x y −=的一个焦点,点P 在C 的渐近线上,O 是坐标原点,2OF PF =,则△OPF 的面积为( )A .1B C D .127.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()1,0F c −、()2,0F c ,若椭圆C 上存在一点P ,使得12PF F ∆的内切圆的半径为2c,则椭圆C 的离心率的取值范围是( ) A .30,5B .40,5C .3,15D .4,158.已知双曲线C :22221x y a b−=(0a >,0b >),点B 的坐标为()0,b ,若C 上的任意一点P 都满足PB b ≥,则C 的离心率取值范围是( )A .B .+∞C .(D .)+∞二、多项选择题(共4小题,每小题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分)9.已知等差数列{}n a 的前n 项和为n S ,51a =,则( ) A .222a a +=B .371a a =C .99S =D .1010S =10,已知圆M :22430x y x +−+=,则下列说法正确的是( ) A .点()4,0在随M 内 B .圆M 关于320x y +−=对称CD .直线0x −=与圆M 相切11.已知双曲线22221x y a b−=(0a >,0b >)的右焦点为F ,过点F 且斜率为k (0k ≠)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥( )A .23BCD 12.若数列{}n a 满足121a a ==,12n n n a a a −−=+(3n ≥),则称该数列为斐波那契数列.如图所示的“黄金螺旋线”是根据斐波那契数列画出来的曲线.图中的长方形由以斐波那契数为边长的正方形拼接而成,在每个正方形中作圆心角为90°的扇形,连接起来的曲线就是“黄金螺旋线”.记以n a 为边长的正方形中的扇形面积为n b ,数列{}n b 的前n 项和为n S .则下列说法正确的是( ):A .821a =B .2023a 是奇数C .24620222023a a a a a ++++=D .2023202320244s a a π=⋅三、填空题(共4小题,每空5分,共20分)13.数列{}n a 的通项公式n a =,若9n S =,则n = .14.已知直线l :y x =被圆C :()()22231x y r −+−=(0r >)截得的弦长为2,则r = . 15.已知椭圆C :22221x y a b+=(0a b >>)的左、右两焦点分别是1F 、2F ,其中122F F c =.椭圆C 上存在一点A ,满足2124AF AF c ⋅=,则椭圆的离心率的取值范围是 .16.已知A ,B 分别是椭圆E :22143x y +=的左、右顶点,C ,D 是椭圆上异于A ,B 的两点,若直线AC ,BD的斜率1k ,2k 满足122k k =,则直线CD 过定点,定点坐标为 .四、解答题(共6小题,17题10分,18-22题12分)17.在平面直角坐标系xOy 中,圆1C :()2214x y ++=与圆2C :()22310x y +−=相交于P ,Q 两点. (1)求线段PQ 的长;(2)记圆1C 与x 轴正半轴交于点M ,点N 在圆2C 上滑动,求2MNC ∆面积最大时的直线MN 的方程. 18.已知等差数列{}n a 的前n 项和为n S ,13a =,{}n b 为等比数列,且11b =,0n b >,2210b S +=,53253S b a =+,*n N ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T .19.已知半径为3的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4370x y −+=相切. (1)求圆的方程;(2)设直线420ax y a −+−=与圆相交于A ,B 两点,求实数a 的取值范围;(3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点()3,1P −?若存在,求出实数a 的值;若不存在,请说明理由.20.在平面直角坐标系xOy 中,圆1O :()2221x y ++=,圆2O :()2221x y −+=,点()1,0H ,一动圆M 与圆1O 内切、与圆2O 外切. (1)求动圆圆心M 的轨迹方程E ;(2)是否存在一条过定点的动直线l ,与(1)中的轨迹E 交于A 、B 两点,并且满足HA ⊥HB ?若存在,请找出定点;若不存在,请说明理由.21.已知等差数列{}n a 的前n 项和为n S ,且44a =,数列{}n b 的前n 项之积为n T ,113b =,且()n n S T =.(1)求n T ; (2令nn na cb =,求正整数n ,使得“11n n n c c c −+=+”与“n c 是1n c −,1n c +的等差中项”同时成立; (3)设27n n d a =+,()()112nn nn n d e d d +−+=,求数列{}n e 的前2n 项和2n Y .22.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点为1F 、2F,12F F =P 为椭圆C 上异于长轴端点的一个动点,O 为坐标原点,直线1PF ,PO ,2PF 分别与椭圆C 交于另外三点M ,Q ,N ,当P 为椭圆上顶点时,有112PF F M =.(1)求椭圆C 的标准方程; (2)求12POF POF PQMPQNs s s s ∆∆∆∆+的最大值。
广东省湛江一中2009-2010学年高三第一次摸底测试
广东省湛江一中2009-2010学年高三第一次摸底测试数学(理)一、选择题:(本大题共8个小题,每小题5分,共40分) 1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,===c b a A 则,1,3,3π( )A .1B .2C .13-D .32.已知命题P :;311,1),,0(,=+=++∞∈∃ba b a b a 时当命题01,:2≥+-∈∀x x R x Q 恒成立,则下列命题是假命题的是( ) A .⌝P ∨⌝Q B .⌝P ∧⌝Q C .⌝P ∨QD .⌝P ∧Q3.已知圆),(,1)2()1(:,4)()(:222221R b a b y a x O b y a x O ∈=--+--=-+-那么两圆的位置关系是 ( ) A .内容 B .内切 C .相交 D .外切4.右图为一个几何体的三视国科,尺寸如图所示,则该几何体的表面积(不考虑接触点) 为( ) A .6+3+πB .18+3+4πC .18+23+πD .32+π5.函数⎪⎩⎪⎨⎧≤≤+<≤-+=)380(),sin(2)03(,1πϕωx x x kx y 的图象如下图,则( ) A .6,21,31πϕω===kB .3,21,31πϕω===kC .6,2,31πϕω==-=kD .3,2,3πϕω==-=k 6.如果函数)(x f 在区间D 上是“凸函数”,则对于区间D 内任意的n x x x ,,,21 ,有)()()()(2121nx x x f n x f x f x f nn +++≤+++ 成立. 已知函数x y sin =在区间[0,π]上是“凸函数”,则在△ABC 中,C B A sin sin sin ++的最大值是( )A .21 B .23 C .23 D .233 7.某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”,黑“电子狗”爬行的路线是AA 1→A 1D 1→…,黄“电子狗”爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须成异面直线(其中i 是正整数).设黑“电子狗”爬完2006段、黄“电子狗”爬完2005段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 ( ) A .0B .1C .2D .38.如果一对兔子每月能生产一对(一雌一雄)小兔子,而每一对小兔子在它出生的第三个月里,又能生产一对小兔子. 假定在不发生死亡的情况下,由一对初生的小兔子从第一个月开始,如果用a 1表示初生小兔子的对数,a n 表示第n 个月的兔子总对数,),2(|,|),(*112*N n n a a a b N n n n n n ∈≥-=∈-+且记那么以下结论正确的是( )A .b n 是n 无关的常量B .b n 是n 有关的变量,且既有最大值,又有最小值C .b n 是n 有关的变量,且有最小值,但无最大值D .b n 是n 有关的变量,且既有最大值,但无最小值 二、填空题(本大题共6个小题,每小题5分,共30分).9.一个高中研究性学习小组对本地区2002年至2004年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭__________万盒。
福建省泉州一中08--09学年第一学期期中考试卷高三数学文科人教版
某某省某某一中08--09学年第一学期期中考试卷高 三 数 学 (文科)2008.11命题:黄玫婷 审核:X 水明第I 卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数x x y +-=1的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}2.若,0cos sin <⋅αα则α在( ) A .第一,二象限 B .第一,三象限C .第二,三象限D .第二,四象限3.已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( ) A.(5,10)-- B.(4,8)-- C.(3,6)-- D.(2,4)--4.已知两条直线2-=ax y 和1)2(++=x a y 互相垂直,则a 等于( ) A. -1 B.0 C.1 D.25.已知集合A={x| -2≤x ≤7 }, B={x|m+1<x <2m -1},若A ∪B=A ,则实数m 的取值X围是( )A .-3<m <4B . -3≤m ≤4C .2<m <4D . m ≤46.甲、乙两名同学在5次体育测试中的成绩统计入右面的茎叶图所示,若甲、乙两人的平均成绩分别是X 甲,X 乙,则下列结论正确的是( )A .X 甲<X 乙;乙比甲成绩稳定B .X 甲>X 乙;甲比乙成绩稳定C .X 甲>X 乙;乙比甲成绩稳定D .X 甲<X 乙;甲比乙成绩稳定7.圆22(1)(3)9x y +++=被直线x-y=0截得的弦长为( ) A .7 B .27 C .5 D .25 8.如图,在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=1, 则AC 1与平面A 1B 1C 1D 1所成角的正弦值为( )A.223 B.23 C.13D. 24 9.若1sin 63πα⎛⎫+= ⎪⎝⎭,则2cos 23πα⎛⎫- ⎪⎝⎭的值为() A .97B .31C .97- D .31-10.已知函数m x m x x f -+-+=4)4(2)(2,()g x mx =,若对于任一实数x ,)(x f 与)(x g 的值至少有一个为正数,则实数m 的取值X 围是( )A .(-∞,4)B .(-∞,-4)C .(-4,4)D .[-4,4]二、填空题:本大题共6小题,每小题4分,满分24分.11.在线段[0,3]上任投一点,则此点坐标小于1的概率为.12.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为. 13. 阅读右边的程序框图。
高二上学期期中考试数学试题(带答案)
高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。
)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。
高二数学期中试题(含答案)
班级 姓名 学号 装 订 线高二年级文科数学试题一、选择题(本题共12个小题)1.下面四个命题(1) 0比i -大(2)两个复数互为共轭复数,当且仅当其和为实数(3) 1x yi i +=+的充要条件为1x y ==(4)如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应, 其中正确的命题个数是 ( ) A .0 B .1 C .2 D .32.13()i i --的虚部为 ( ) A .8i B .8i - C .8 D .8-3.使复数为实数的充分而不必要条件是由 ( )A .z z -= B .z z = C .2z 为实数D .z z -+为实数4.设456124561212,,z i i i i z i i i i =+++++⋅⋅⋅⋅ 则12,z z 的关系是( ) A .12z z = B .12z z =- C .121z z =+ D .无法确定 5. 2020(1)(1)i i +--的值是 ( )A . 1024-B . 1024C . 0D .10246.已知2()(1,)n n f n i i i n N -=-=-∈集合{}()f n 的元素个数是( ) A. 2 B. 3 C. 4 D. 无数个7.正三棱锥的侧棱与底面的对边 ( ) A. 平行 B. 垂直 C.相交 D.以上皆错8.数列2,5,11,20,,47,x …中的x 等于 ( ) A .28 B .32 C .33 D .279.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③ED FE +;④FA ED -2中,与AC 等价的有( )A .1个B .2个C .3个D .4个 10.函数]2,0[)44sin(3)(ππ在+=x x f 内 ( ) A .只有最大值 B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值11.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a < C .5481a a a a +>+ D .5481a a a a = 12.函数xy 1=在点4=x 处的导数是 ( )A .81 B .81- C .161 D .161- 二、填空题(本题共4个小题)13.若(2)a i i b i -=-,其中a 、b R ∈,i 使虚数单位,则22a b +=_________。
高二第一学期期中考试数学试卷含答案
高二数学第一学期期中考试试卷一、选择题(本大题共10小题,每小题4分,共40分)(每小题给出的四个选项中,只有一项是符合题目要求的把答案写在题号前) 1. 已知数列{a n }的通项公式为n n a n -=2,则下列各数中不是数列中的项的是( ) A.2 B.40 C.56 D.90 2. 等差数列{a n }的前n 项和为S n ,若12231a ==S ,,则a 6等于( ) A.8 B.10 C.12 D.14 3. 若0<<b a ,则下列不等式一定成立的是( ) A.b a22> B.a 2ab > C.ab b 2> D.b <a4. 等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q=( ) A.1 B.2 C.1或2 D.1或21 5. 已知数列{a n }的前n 项和为S n ,且3a 1=,a n n 2a 1=+,则S 5=( ) A.32 B.48 C.62 D.93 6. 若椭圆122=+kyx 的离心率是21,则实数k 的值为( ) A.3或31 B.34或43 C.2或21 D.32或237. 已知双曲线C :12222=-bya x ()0,0a >>b 的一条渐近线方程为x 3y =,一个焦点坐标为(2,0),则双曲线方程为( )A.16222=-y x B.12622=-y x C.1322x=-y D.13yx 22=-8. 若关于x 的不等式a xx ≥+4对于一切∈x (0,+∞)恒成立,则实数x 的取值范围是( )A.(-∞,5]B.(-∞,4]C.(-∞,2]D.(-∞,1] 9. 已知椭圆12222=+bya x ()0a >>b 的两个焦点分别为F F 21,,若椭圆上存在点P 使得∠PFF 21是钝角,则椭圆离心率的取值范围是( )A.(0,22) B.(22,1) C.(0,21) D.(21,1)10. 设O 为坐标原点,P 是以F 为焦点的抛物线()02y 2>=p px 上任意一点,M 是线段PF 的中点,则直线OM 的斜率的最大值为( ) A.22B.1C.2D.2 二、填空题(本大题共8小题,每小题5分,共40分)11. 在数列0,41,83,…,2n 1-n ,…中,94是它的第______项.12. 在等差数列{a n }中,542a =+a ,则=a 3______.13. 请写出一个与1322=-yx 有相同焦点的抛物线方程:____________.14. 椭圆14222=+ayx 与双曲线12222=-y a x 有相同的焦点,则实数a=______. 15. 函数()()111>-+=x x x x f 的最小值是______;此时x=______. 16. 要使代数式01a 2<-+ax x 对于一切实数x 都成立,则a 的取值范围是______.17. 已知椭圆的两个焦点1222=+yxFF 21,,点P 在椭圆上,且PF PF21⊥,则PF2=______.18. 在数列{a n }中,5,12113-==a a ,且任意连续三项的和均为11,则a 2019=______;设S n 是数列{a n }的前n 项和,则使得100≤S n 成立的最大整数n=______.三、解答题(本大题共5小题,共70分)19. 设{a n }是等差数列,-101=a ,且a a a a a a 6483102,,+++成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.20. 已知数列{a n }的前n 项和n n S n +=2,其中N n +∈. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设12+=nn b ,求数列{b n }的前n 项和T n .21. 已知函数()R a ax x f x ∈-=,22.(Ⅰ)当a=1时,求满足()0<x f 的x 的取值范围; (Ⅱ)解关于x 的不等式()a x f 32<.22. 已知抛物线C :()022>=p px y ,经过点(2,-2). (Ⅰ)求抛物线C 的方程及准线方程;(Ⅱ)设O 为原点,直线02=--y x 与抛物线相交于B A ,两点,求证:OA ⊥OB .23. 已知椭圆C :的右焦点为12222=+by a x (),且经过点,01F ().10,B (Ⅰ)求椭圆C 的方程;(Ⅱ)直线()2:+=x k y l 与椭圆C 交于两个不同的点N M ,,若线段MN 中点的横坐标为32-,求直线l的方程及ΔFMN的面积.。
广东省湛江一中2005—2006学年度第二学期期中考试高二级文科数学试题(选修1-2)
2010-2011学年度第二学期期中考试高二级文科数学试卷考试时间:120分钟,满分150分 命题教师:王超峰一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选答案的代号填入下表中)1.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系y 与x 的线性回归方程为5.175.6ˆ+=x y,当广告支出5万元时,随机误差的效应(残差)为 (A )10 (B )20 (C )30 (D )40 5)(4)(3)(2)(14,1.2D C B A x x y x 的最小值为则函数若-+=>真命题的个数有中则若则且则且则且下列命题,d b ca d cb a n bna b a R b a ab ba b a R b a bc ac b a R c b a .,,)4(;,,,)3(;2,0.,,)2(;,,,,)1(.322>>>>>∈≥+≠∈>>∈(A )0 (B )1 (C )2 (D )3 4.下面几种推理是类比推理的是(A )两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800(B )由平面三角形的性质,推测空间四边形的性质(C )某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.(D )一切偶数都能被2整除,1002是偶数,所以1002能被2整除.的取值范围是则实数的解集为空集的不等式若关于a ,a x x x <-+-2412.5(A )3≥a (B )2≤a (C )3≤a (D )2≥a对应的点在第四象限复数两个复数不能比较大小正确命题的个数是在下列命题中1.6-=i z ②①,32123222122,0)()(1)23()1(z z z z z z z ④x ,i x x x ③===-+-±=+++-则则实数是纯虚数若(A )0 (B )1 (C )2 (D )37. 统计中有一个非常有用的统计量2k ,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个班级进行数学考试,按学生考试及格与不及格统计成绩后的2×2列联表.则2k 的值为(A )0.559 (B )0.456 (C )0.443 (D )0.48.已知命题2:<x p ,命题02:2<--x x q ,则的是q p(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件=+=+∈z i z z C z 则设,2,.9(A )21i + (B )i +±-)2521( (C )i +43 (D )21i -大值为的最例如定义运算)41sin (cos )23(,443),()(:.102-+∙-=∙⎩⎨⎧<≥=∙ααy x y y x xy x(A )4 (B )3 (C )2 (D )1湛高二级这个等式是面所有的已知等式你写出的等式包含了上的式子性请你写出一个具有一般已知,,,4330sin 30sin 30sin 30sin ,4340sin 20sin 40sin20sin;4350sin 10sin 50sin10sin .140222222=⋅++=⋅++=⋅++三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)()().732111)12.(15的取值范围求在第二象限在复平面内对应的点复数分本小题满m ,i mm z --+--=16.(本小题满分12分)阅读下文,然后画出该章的知识结构图.推理与证明这一章介绍了推理与证明这两个知识点. 推理这节包括合情推理和演绎推理;证明这节包括直接证明和间接证明合情推理中有两种常用推理:归纳推理和类比推理; 直接证明有综合法和分析法;间接证明通常用反证法.17. (本小题满分13分)任意输入6个互不相等的实数6,,2,1a a a ,从中找出最大的数,画出程序框图.x kx k x f x k x f x x x x f b a bax xx f --+<>===+-+=2)1()(:,1)2(.)()1(.4,3012)(),()()14.(18212的不等式解关于设的解析式求函数有两个实根为且方程为常数已知函数分本小题满分学号 姓名 订 线.)2(.,,,)1(.21312111,211214131211)14.(192121并用数学归纳法证明的大小关系与猜想求时当分本题满分,T S T T S S nn n n T nn ,S N n n n n n+++++++=--++-+-=∈+?)3(?)2(.)1(.,2)15.(202的位置又在哪里希望它最长是参观线路如果的位置应该在哪里希望它最小为了省钱是灌溉水管的位置如果的范围并写出表示用设上分别在为分界线如图另一部分种花一部分种草两部分地分为面积相等的的正三角形某旅游区把一块边长为分本小题满分,EF ,EF ,EF ,,EF x ,EF x x AE ,AC AB ,,E,F,EF ,,ABC =参考答案(选修1—2选修4—5)一、(1)=+⨯-=-=)5.1755.6(60ˆˆ555y y e10 选A Dx x ,x ,x x x x x x x y x x 选时取等号即当且仅当.3,4)1(141,5142114)1(2114114,01,1)2(2==--=-=+⋅=+-⋅-≥+-+-=-+=∴>->(3)选B (1),a 时不成立当0=(2),a 时不成立当0<(4).0,0时不成立当d c b a >>>> (4)选BCa ,a ,x a x x a x x 选时不等式的解集为即时当的距离之和的最小值为和到数轴上的点上式的几何意义是,323223221:,22212412)5(φ≤≤<-+-⇒<-+-(6)选AA d b c a d c b a bc ad n k选,559.069214545)3393612(90))()()(()()7(222=⨯⨯⨯⨯-⨯⨯=++++-=Bp q q p x x x x x x x 选则若非若,,,21,0)1)(2(02,222)8(2<<-⇒<+-⇒<--<<-⇒<Ci z b a b baa i babi a R b a bi a z 选解得即则设+=∴==⎪⎩⎪⎨⎧==+++=+++∈+=43,1,4312,2),,()9(2222,0)21(sin 49,49)21(sin 0,2121sin 23,1sin 1,1)21(sin 41sin sin141sin cos )10(22222≤--≤-≤-≤≤-≤-≤≤-+--=-+-=-+αααααααααD选.11)21(sin 41sin cos )41sin (cos)23(,41sin cos 23,11)21(sin 4522222≤+--=-+=-+∙-∴-+≤-≤+--≤-αααααααα二、填空题(11)4- (12) 50 (13) 10<++<<mb m a ba43)60sin(sin )60(sin sin )14(022=-⋅+-+αααα解答如下:()42)1(2224)1)(11(-=-=+=⎥⎦⎤⎢⎣⎡+i i i ii.105,2022,250,22220)12(时取等号即当且仅当===+=≤∴≥+=y x x x y x ,xy xy y x,10,10,10)13(<++<<<++<<<mb m a b a ,g m mb m a g m ba 所以糖水的浓度大糖后的糖水浓度比原来显然添加糖后其浓度为而添加原来糖水浓度是三、解答题:()1233510.123351035312107237231111172311107320111:)15(,,m m m m m m m m m m m m m ,⋃⎪⎭⎫ ⎝⎛--<<-<<-⇒⎪⎩⎪⎨⎧-<><<-⎩⎨⎧-<->-<-<-⇒⎩⎨⎧>-<-⇒⎪⎩⎪⎨⎧>--<--的取值范围为或或或由题意得解(16(17)解:按下列程序框图,输出的最大数为 6a ,如图:)14(),()2,1(2)12(),2()2,1(2)10(),2(),1(21)8(0))(1)(2(02)1(,2)1(2)2()6()2(2)()4(21)2(,084160939,0124,3)1(:)18(222221分原不等式解集为时当分原不等式解集为时当分原不等式解集为时当分即可化为不等式即为分分解得分得代入方程将解 +∞⋃>+∞⋃=+∞⋃<<>---<--+---+<-≠-=⎩⎨⎧=-=⎪⎩⎪⎨⎧=++=++=+-+==k ,k ③,k ②k ,k ①k x x x xk x k xxkx k xxx xxx f b a b a b a x bax xx x)14(.,*)13(,1)1(21121212)1(11)1(1)12()1(2111121213121)1(2112121312111)1(21121)8()1(211211),*,1()7(111)6(:.)2()4(,1272211212,211111,12741312112,2121111)1(:)19(.21312111211214131211.21312111211214131211分都成立对任意可知由分分分则即时假设分时已证分下面用数学归纳法证明即有猜想对于相同的分时解 n n T S Nn ,①,②k Tk k kk k k k k kk k k k kk k k k k kTk k kS k SNk k kTk ,Sk n ②,T Sn ①n T n S n TT S,Sn kk k k kk nn n n nn =∈+=+++++++++++=+-+++++++++=+-+++++++++=+-++=+-++=+∈≥======+++==+==-+-==-==⎪⎭⎫ ⎝⎛+++++++=--++-+-+++++++=--++-+-)3(43,2260cos 2222)1(:)20(分解 xy AEFSxy yxxy yxEF=∆-+=-+=[])15()(,12,2,42,22,1,12)14(3323223)(23)4()1()12()4,2()2,1()(210')(;420')(,241'2')14('')(),41(24)(2)3()10()//(,22,22.2222,224,124)7(,222224224241,2)2()5().21(22422,2,2,2321分边上的中线边或为三角形最长时即或即此时分的最大值为即分上单调递增在上单调递减在得时得时令分此时时有最小值为此时小值为有最有最小值为时即当且仅当分则令分即 AC AB ,EF xy AFx AE x t x y AF x AE x,t ,EF ,EF ,EF,t f ,f f ,,t f ,t ,t f t ,t f tt t t f t t t t f EFBC EF AF AE EF xy ,EF ,EF x x,t ,tt tt tt ,EF t x t x x xEF xy xy ABCS==============≤≤≤≤≤≤==∴<<<<<>-=--+=≤≤-+====∴====∴∈===-⨯=-⨯≥-+=≤≤=≤≤-+=∴==∴=∆=。
广东省湛江一中2012-2013学年高一上学期期中数学理试题
(2)湛江一中2012——2013学年度第一学期期中考试高一级(理科)数学试卷考试时间:120分钟 满分:150分一、选择题:本大题共8小题,每小题5分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的.1.若U={1,2,3,4},M={1,2},N={2,3},则C U (M∩N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 2. 若函数()y f x =的定义域为M ={x |-2≤x ≤2},值域为 N ={y |0≤y ≤2},则函数()y f x =的图象可能是( )A B C D3.下列函数为偶函数的是( )A. 2y x x =+ B. 3y x = C. xy e = D. ()x x f x e e -=+4.设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( ).A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定 5. 已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x,那么1[()]2f f 的值为( )A B .1 C .13D .1- 6.设01a <<,且函数()log a f x x =,则下列各式成立的是( )A. 11(2)()()34f f f >> B. 11()(2)()43f f f >> C. 11()(2)()34f f f >> D. 11()()(2)43f f f >>7.定义在R 上的奇函数()f x 为减函数,设0a b +≤,给出下列不等式 ①()()0f a f a -≤, ②()()0f b f b -≥,③()()()()f a f b f a f b +≤-+-, ④()()()()f a f b f a f b +≥-+-其中正确不等式的序号为( ) A. ①④ B. ②④ C. ①③ D.②③8.已知函数)(x f 是R 上的增函数,(0,1),(3,1)A B -是其图像上的两点,则(1)1f x +< 的解集是( )A .)2,1(- B.(1, 4) C.[)+∞⋃--∞,4)1,( D.(][)+∞⋃-∞-,21,二、填空题:本大题共6小题, 每小题5分,满分30分.9. 函数1()lg(1)1f x x x=++-的定义域是 . 10.我国的人口约13亿,如果今后能将人口数年平均增长率控制在1%,那么经过x 年后我国人口数为y 亿,则y 与x 的关系式为_____________________. 11. 函数1()1(1)f x x x =--的最大值是 .12.已知()f x 在R 上是奇函数,且2(2)(),(0,2)()2,f x f x x f x x +=-∈=当时,(7)f =则 .13.关于函数()()lg 1()f x x x R =+∈有下列命题:①函数)x (f y =的图象关于y 轴对称; ②在区间)0,(-∞上,函数)x (f y =是增函数;③函数)x (f 的最小值为0.其中正确命题序号为______________.14. 若()()()f x y f x f y +=,且(1)2f =(2)(4)(2010)(2012)(1)(3)(2009)(2011)f f f f f f f f ++++=_________.三、解答题:本大题共6小题,共80分。
高二数学期中试卷带答案
高二数学期中试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设,则复数在复平面上的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在等差数列中,,其前项和为,若,则的值等于( )A .2013B .-2014C .2016D .-20153.已知的平面直观图是边长为的正三角形,那么原的面积为( ) A . B .C .D .4.已知;矩形的对角线互相垂直,则( )A .假真B .为真C .为真 D .为真 5.实数,,不全为零的条件为( ) A .,,全不为零B .,,中至多只有一个为零C .,,只有一个为零D .,,中至少有一个不为零 6.等差数列中,,,则数列前9项和等于( ) A .66B.99C.144D.2977.下列四个命题中,正确的是()①两个平面同时垂直第三个平面,则这两个平面可能互相垂直②方程表示经过第一、二、三象限的直线③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行④方程可以表示经过两点的任意直线A.②③ B.①④ C.①②④ D.①②③④8.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的,且样本容量为160,则中间一组的频数为()A.28 B.32 C.64 D.1289.设是奇函数,则使f(x)<0的x的取值范围是().A.(-1,0)B.(0, 1)C.(-∞,0)D.(-∞,0)∪(1,+∞)10.阅读如图所示的程序框图,若输入m=2016,则输出S等于()A.10072 B.10082 C.10092 D.2010211.在正方体ABCD—A1B1C1D1中,若E为A1C1中点,则直线CE垂直于()A.AC B.BD C.A1D D.A1A12.执行如下图所示程序框图,若输出的,则①处填入的条件可以是()A. B. C. D.13.是空间三条不同的直线,则下列命题正确的是()A.若,,则B.若,,则C.若,则共面D.若共点,则共面14.已知直线在轴和轴上的截距相等,则a的值是( ) A.1 B.-1 C.-2或-1 D.-2或115.点M()在圆外,则直线与圆的位置关系是()A.相切 B.相交 C.相离 D.不确定16.已知定义在上的奇函数满足,当时,,则函数在区间上所有零点之和为( )A. B. C. D.17.、设,函数的导函数是,且是奇函数.若曲线的一条切线的斜率是,则切点的横坐标为 ( )A. B. C. D.18.下面使用类比推理恰当的是()A.“若a•3=b•3,则a=b”类推出“若a•0=b•0,则a=b”B.“若(a+b)c=ac+bc”类推出“(a•b)c=ac•bc”C.“(a+b)c=ac+bc”类推出“=+(c≠0)”D.“(ab)n=a n b n”类推出“(a+b)n=a n+b n”19.下列函数中,既是偶函数又在上单调递增的是()A. B. C. D.20.()A. B. C. D.二、填空题21..已知,若关于的方程有实根,则的取值范围是 .22.数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,则三位数的回文数中,偶数的概率是 . 23.已知,求= 24.函数的导数.25.已知直线⊥平面,⊥平面,则,的位置关系是 ▲ 26.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元;27.由正态分布N(1,8)对应的曲线可知,当x =__________时,函数P(x)有最大值,为__________.28.下图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是 .29.设双曲线(a>0, b>0)的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果△PQF 是直角三角形,则双曲线的离心率e= . 30.命题:“若a >0,则a 2>0”的否命题是 三、解答题31.在某次电影展映活动中,展映的影片有科幻片和文艺片两种类型,统计一随机抽样调查的样本数据显示,100名男性观众中选择科幻片的有60名,女性观众中有的选择文艺片,选择文艺片的观众中男性观众和女性观众一样多.(Ⅰ)根据以上数据完成下列列联表(Ⅱ)能否在犯错误的概率不超过0.01的前提下,认为选择影片类型与性别有关? 附:… 2.706 3.841 5.024 6.63510.82832.一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。
广东省湛江一中2013届高三上学期期中数学理
湛江一中2012-2013学年度高三年级第一学期期中考试理科数学试卷本试卷共4页,20小题,满分150分,考试时间120分钟一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.复数21ii+等于 A.1i + B.1i -+ C.1i -- D.1i - 2.函数2x y -=的图象大致是3.命题p :“任意非零向量b a ,,都有||||||->+”,则 A .p 是假命题;p ⌝:任意非零向量,,都有||||||-<+ B .p 是假命题;p ⌝:存在非零向量b a ,,使||||||b a b a -≤+ C .p 是真命题;p ⌝:任意非零向量b a ,,都有||||||b a b a -<+ D .p 是真命题;p ⌝:存在非零向量b a ,,使||||||b a b a -≤+ 4. .函数y =lg x -9x的零点所在的大致区间是A.(6,7)B.(7,8)C.(8,9)D.(9,10)5.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .6D .8 6. 已知函数()sin()(0)36f x A x A ππ=+>在它的一个最小正周期内的图象上,最高点与最低点的距离是5,则A 等于A . 1B .2C . 4D .87.若函数(21)y f x =-是偶函数,则(2)y f x =图象的对称轴是8.自然数n ...,3,2,1,按一定的顺序排成一个数列n a a a ,...,,21,若满足4||...|2||1|21≤-++-+-n a a a n ,则称数列n a a a ,...,,21是一个“优数列”,当6=n 时,“优数列”共有 A .24 B.23 C.18 D.168.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共6小题,每小题5分,共30分。
浙江省台州市2023-2024学年高一上学期期中数学试题含解析
2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。
2023-2024学年广东省金太阳大联考高二上期中考试数学试题+答案解析(附后)
2023-2024学年广东省金太阳大联考高二上期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.英文单词peach所有字母组成的集合记为A,英文单词apple所有字母组成的集合记为B,则( )A. B. C. D.2.设,则( )A. 4B. 2C.D.3.若直线的斜率大于,则a的取值范围为( )A. B.C. D.4.在空间直角坐标系中,已知直线l的一个方向向量为,平面的一个法向量为,则直线l与平面所成的角为( )A. B. C. D.5.已知圆C的圆心为抛物线的顶点,且圆C经过点,则圆C的方程为( )A. B.C. D.6.在四面体OABC中,D为BC的中点,E为AD的中点,则( )A. B.C. D.7.某地A,B两厂在平面直角坐标系上的坐标分别为,,一条河所在直线的方程为若在河上建一座供水站P,则P到A,B两点距离之和的最小值为( )A. B. 32 C. D. 488.已知点G为的重心,D,E分别为AB,AC边上一点,D,G,E三点共线,F为BC的中点,若,则的最小值为( )A. B. 7 C. D. 6二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若直线与直线垂直,则a的值可能是( )A. B. C. 0 D. 110.广东省2017到2022年常住人口变化图如图所示,则( )A. 广东省2017到2022年这6年的常住人口逐年递增B. 广东省2017到2022年这6年的常住人口的极差为1515万C. 从这6年中任选1年,则这1年的常住人口大于12000万的概率为D. 广东省2017到2022年这6年的常住人口的第70百分位数为万11.圆与圆的位置关系可能是( )A. 内含B. 相交C. 外切D. 内切12.在棱长为1的正方体中,,,则( )A. 当平面ACP时,B. 的最小值为C. 当点D到平面ACP的距离最大时,D. 当三棱锥外接球的半径最大时,三、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二级数学试题
一.选择题
1.下列输入语句正确的是( )
A.INPUT x ,y ,z
B.INPUT “x=”;x ,“y=”;y
C.INPUT 2,3,4
D.INPUT x=2
2.下面事件:①连续两次掷一枚硬币,两次都出现正面朝上;②异性
电荷,相互吸引;③在标准大气压下,水在00
C 结冰,是随机事件的有( )
A .②;
B .③;
C .①;
D .②、③
3.右边程序运行的结果是( ) A.1,2,3 B.2,3,1 C.2,3,2 D.3,2,1
4.10个正数的平方和是370,方差是33,那么平均数为( ) A .1 B .2 C .3 D .4
5.下列说法中,正确的是( ).
A .数据5,4,4,3,5,2的众数是4
B .一组数据的标准差是这组数据的方差的平方
C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
D .频率分布直方图中各小长方形的面积等于相应各组的频数
6.如果右边程序执行后输出的结果是132,那么
在程序UNTIL 后面的“条件”应为( )
A.i > 11
B. i >=11
C. i <=11
D.i<11
7.下列说法:
①既然抛掷硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上; ②如果某种彩票的中奖概率为
110
,那么买1000张这种彩票一定能中奖;
③在乒乓球、排球等比赛中,裁判通过让运动员猜上抛均匀塑料圆板着地是正面还是 反面来决定哪一方先发球,这样做不公平;
④一个骰子掷一次得到2的概率是1
6,这说明一个骰子掷6次会出现一次2.
其中不正确...
的说法是( ) A .①②③④ B .①②④ C .③④ D .③
8.从一批产品中取出三个产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三产品不全是次品”,则下列结论哪个是正确的( )
A .A 与
B 互斥 B. B 与
C 互斥 C. 任何两个都互斥 D.任何两个都不互斥
9.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )
A .116
B .216
C .3
16
D .14
10.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a, b 的值分别为( )
A .0.27,78;
B .0.27,87;
C .0.30,87;
D .0.30,78
二、填空题(每小题5分,共20分)
11.甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均
得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是 (填甲或乙)
12.上程序输出的n 的值是___________________.
13.若连续掷两次骰子,第一次掷得的点数为m ,第二次掷得的点数为n ,则点P (m ,n )落在圆
x 2+y 2=16内的概率是 .(骰子为正方体,且六个面分别标有1点,2点,…,6点)
14.随机向边长为2的正方形ABCD 中投一点P,则点P 与A 的距离不小于1且与CPD 为锐角的概率是__________________.
三、解答题
15.某射手在一次射击中命中9环的概率是0.28, 命中8环的概率是0.19, 不够8环的概率是0.29, 计算这个射手在一次射击中命中9环或10环的概率.
16.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,求该船在一昼夜内可以进港的概率。
17.新课程标准对中学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,模块考试成绩占70%,平时成绩占30%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分).
(Ⅰ)设计一算法,通过考试成绩和平时成绩计算学分;
(Ⅱ)根据(Ⅰ)中的算法,画出程序框图。
18.将A、B枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两枚骰子点数之和是3的倍数的结果有多少种?
(3)两枚骰子点数之和是3的倍数的概率为多少?
19.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计数据()(1,2,3,4,5),i i x i y =由资料知y 对
x 呈线性相关,并且统计的五组数据得平均值分别为
4x =, 5.4y =,若用五组数据得到的线性回归方程a bx y +=∧
去估计,使用8年的维修费用
比使用7年的维修费用多1.1万元, (Ⅰ)求回归直线方程;
(Ⅱ)估计使用年限为10年时,维修费用是多少?
20.如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数....)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(Ⅰ)8090 这一组的频数、频率分别是多少?
(Ⅱ)估计这次环保知识竞赛成绩的平均数、众数、中位数。
(不要求写过程)
(Ⅲ) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
40
高二级数学试题参考答案
一.选择题(每小题5分,共50分) 1.A 2.C 3.C 4B 5.C 6.D 7.A 8.B 9.C 10.A 二、填空题(每小题5分,共20分) 11.乙 12.3 13.
2
9
14.3444
π-
15.解: 设这个射手在一次射击中命中9环记为事件A ,
在一次射击中命中10环记为事件B , ………………2分 P (A )=0.28,P (B )=1-0.28-0.19-0.29=0.24 ………………6分 设这个射手在一次射击中命中9环或10环为事件C 则 C=A B
因为事件A 与事件B 互斥 ………………8分 所以 P (C )=P (A B )= P (A )+ P (B )=0.28+0.24=0.52 ………………12分
16.解:因为一昼夜有24小时, 每天涨潮的时间为3小时, (4)
设该船在一昼夜内可以进港为事件A,根据几何概型得: P (A)=
324=1
8
………………1217.解:(Ⅰ)S1:输入模块成绩x 与平时成绩y S2:计算70%30%y s
x +⋅=⋅
S3: 若S ≥60,那么“学分”=2否则“学分”=0 S4:输出“学分”。
18.解: ① 共有3666=⨯种结果 ………………4分 ② 若用(a,b)来表示两枚骰子向上的点数,则点数之和是3的倍数的结果有(1,2),(2,1),(1,5),(5,1),(2,4)(4,2),(3,3),(4,5),(5,4),(3,6),(6,3),(6,6)
共12种 ………………10分 ③两枚骰子点数之和是3的倍数的概率是:P =
3
1
3612= ………………14分 19.解:(1)因为线性回归方程a bx y +=∧
经过定点),(y x -
-
,将4=x ,4.5=y 代入回归方程
得a b +=44.5; 又1.1)7(8=+-+a b a b ;解得1,1.1==a b , 线性回归方程
11.1+=∧
x y ………………7分
(2)将10=x 代入线性回归方程得12y =(万元)
∴线性回归方程11.1+=∧
x y ;使用年限为10年时,维修费用是12(万元).……………14分 20.解:(Ⅰ)依题意,8090 间的频率为:10×0.025=0.25 ……………2分 频数为: 40×0.25=10 ……………4分
(Ⅱ)这次环保知识竞赛成绩的平均数、众数、中位数分别是:
71、75、73.3 ……………8分
(Ⅲ)因为8090 有10人,90100 共有2人,从中任选2人,共有12×11÷2=66种,设分在同组记为事件A ,分在同一组的有10×9÷2+1=46种, 所以 P (A )=
4666=2333
……………14分
(可以用列举法)。