二次函数考点分析
二次函数【考点精讲】- 中考数学考点总复习高分导航(全国通用)(原卷版)
考点1:二次函数的图象和性质1.二次函数的一般形式:(a,b,c是常数,a≠0)注:未知数的最高次数是2,a≠0,b,c是任意实数。
2.函数图象和性质函数二次函数y=ax2+bx+c(a,b,c为常数,a≠0)图象a>0a<0性质①当a>0时,抛物线开口向上,并向上无限延伸.①对称轴是abx2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--abacab4422,.①在对称轴的左侧,即当x<ab2-时,y随x的增大而减小;在对称轴的右侧,即当x>ab2-时,①当a<0时,抛物线开口向下,并向下无限延伸.①对称轴是abx2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--abacab4422,.①在对称轴的左侧,即当x<ab2-时,y随x的增大而增大;在对称轴的右侧,即当x>ab2-时,y随x的增大而减小,简记为左增右减.专题10 二次函数知识导航知识精讲y随x的增大而增大,简记为左减右增.①抛物线有最低点,当x=ab2-时,y有最小值,y最小值=abac442-.①抛物线有最高点,当x=ab2-时,y有最大值,y最大值=abac442-.【例1】(山东中考真题)一次函数()0y ax b a=+≠与二次函数()20y ax bx c a=++≠在同一平面直角坐标系中的图象可能是()A.B.C.D.【例2】(四川中考真题)如图,已知抛物线2y ax bx c=++(a,b,c为常数,0a≠)经过点()2,0,且对称轴为直线12x=,有下列结论:①0abc>;①0a b+>;①4230a b c++<;①无论a,b,c取何值,抛物线一定经过,02ca⎛⎫⎪⎝⎭;①2440am bm b+-≥.其中正确结论有()A.1个B.2个C.3个D.4个抛物线y=ax2+bx+c中a,b,c的作用(1)a决定开口方向及开口大小,这与y=ax2中的a完全一样.方法技巧a >0时,抛物线开口向上;a <0时,抛物线开口向下;a 的绝对值越大,开口越小. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax 2+bx +c 的对称轴是直线abx 2-=,故:①b =0时,对称轴为y 轴;①abx 2-=>0(即a,b 同号) 时,对称轴在y 轴左侧;①abx 2-=<0(即a,b 异号)时,对称轴在y 轴右侧.(口诀:“左同右异”)【注意问题】(1)二次函数的图象与系数的关系;(2)会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换.1.(湖南中考真题)若二次函数2(0)y ax bx c a =++≠的图象如图所示,则一次函数y ax b =+与反比例函数cy x=-在同一个坐标系内的大致图象为( )A .B .C .D .2.(福建中考真题)二次函数()220y ax ax c a =-+>的图象过1234()()3,,1,,2(),,)4,(A y B y C y D y --四个点,下列说法一定正确的是( ) A .若120y y >,则340y y > B .若140y y >,则230y y > C .若240y y <,则130y y <D .若340y y <,则120y y <3.(湖北中考真题)二次函数()20y ax bx c a =++≠的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;①420a b c ++<;①80a c +<;①若抛物线经过点()3,n -,则关于针对训练x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个考点2:二次函数的平移1.抛物线y=a (x -h )2+k 与y=ax 2的关系(1)二者的形状相同,位置不同,y=a (x -h )2+k 是由y=ax 2通过平移得来的,平移后的顶点坐标为(h,k). (2)y=ax 2的图象y=a (x -h )2的图象y=a (x -h )2+k 的图象.口诀:上加下减,左加右减【例3】(广东)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式( ) A .y =x 2+2 B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3图像平移规律:由函数y =ax 2平移得到y =a (x -h )2+k 满足“h 值正右移,负左移;k 值正上移,负下移”,概括成八个字,即:“左加右减,上加下减”.1.(上海中考真题)将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是( ) A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变2.(绥化)将抛物线y =2(x ﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物方法技巧针对训练右左 上下线的解析式是( ) A .y =2(x ﹣6)2 B .y =2(x ﹣6)2+4 C .y =2x 2D .y =2x 2+43.(哈尔滨)将抛物线y =x 2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线 为( ) A .y =(x +3)2+5 B .y =(x ﹣3)2+5 C .y =(x +5)2+3 D .y =(x ﹣5)2+3考点3:二次函数与方程、不等式的关系 1.二次函数与一元二次方程的关系二次函数图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点。
二次函数考点和题型归纳
二次函数考点和题型归纳一、基础知识1.二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0); 顶点式:f (x )=a (x -h )2+k (a ≠0); 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象与性质二次函数系数的特征(1)二次函数y =ax 2+bx +c (a ≠0)中,系数a 的正负决定图象的开口方向及开口大小; (2)-b2a的值决定图象对称轴的位置; (3)c 的取值决定图象与y 轴的交点;(4)b 2-4ac 的正负决定图象与x 轴的交点个数. 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎣⎡⎭⎫-b2a ,+∞上单调递增;在⎝⎛⎦⎤-∞,-b 2a 上单调递减在⎝⎛⎦⎤-∞,-b2a 上单调递增;在⎣⎡⎭⎫-b 2a ,+∞上单调递减奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点 ⎝⎛⎭⎫-b 2a,4ac -b 24a 对称性 图象关于直线x =-b2a成轴对称图形二、常用结论1.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b2a≤m 时,最小值为f (m ),最大值为f (n );(2)当m <-b 2a ≤m +n2时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (n ); (3)当m +n 2<-b2a≤n 时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:利用零点式由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7.[题组训练]1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.解析:法一:设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎪⎨⎪⎧ -b2a=-2,4ac -b24a =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:设所求解析式为f (x )=ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧-b2a=-2,4a -2b +c =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法三:设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.答案:19x 2+49x -592.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则函数的解析式f (x )=____________.解析:∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又∵f (x )的图象经过点(4,3), ∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3. 答案:x 2-4x +3考点二 二次函数的图象与性质考法(一) 二次函数图象的识别[典例]若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()[解析]因为一次函数y=ax+b的图象经过第二、三、四象限,所以a<0,b<0,所以二次函数的图象开口向下,对称轴方程x=-b2a<0,只有选项C适合.[答案]C考法(二)二次函数的单调性与最值问题[典例](1)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时,有最大值2,则a的值为________.(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是________.[解析](1)函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.当a<0时,f(x)max=f(0)=1-a,所以1-a=2,所以a=-1.当0≤a≤1时,f(x)max=a2-a+1,所以a2-a+1=2,所以a2-a-1=0,所以a=1±52(舍去).当a>1时,f(x)max=f(1)=a,所以a=2.综上可知,a=-1或a=2.(2)依题意a≠0,二次函数f(x)=ax2-2ax+c图象的对称轴是直线x=1,因为函数f(x)在区间[0,1]上单调递减,所以a>0,即函数图象的开口向上,所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2.[答案](1)-1或2(2)[0,2][解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题[典例] (1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解析] (1)作出二次函数f (x )的草图如图所示,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. (2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1.故k 的取值范围为(-∞,1). [答案] (1)⎝⎛⎭⎫-22,0 (2)(-∞,1)[解题技法]由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[题组训练]1.(2019·杭州模拟)已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( )A.54 B .1或54C .-1或54D .-5或54解析:选D f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为直线x =a 2. ①当a2≥1,即a ≥2时,f (x )在[0,1]上单调递增,∴f (x )max =f (1)=-4-a 2.令-4-a 2=-5,得a =±1(舍去).②当0<a2<1,即0<a <2时,f (x )max =f ⎝⎛⎭⎫a 2=-4a . 令-4a =-5,得a =54.③当a2≤0,即a ≤0时,f (x )在[0,1]上单调递减,∴f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,得a =-5或a =1(舍去). 综上所述,a =54或-5.2.若函数y =x 2-3x +4的定义域为[0,m ],值域为⎣⎡⎦⎤74,4,则m 的取值范围为( ) A .(0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎦⎤32,3D.⎣⎡⎭⎫32,+∞解析:选C y =x 2-3x +4=⎝⎛⎭⎫x -322+74的定义域为[0,m ],显然,在x =0时,y =4,又值域为⎣⎡⎦⎤74,4,根据二次函数图象的对称性知32≤m ≤3,故选C. 3.已知函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.解析:令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.答案:2[课时跟踪检测]A 级1.(2019·重庆三校联考)已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( )A .2,4B .-2,4C .2,-4D .-2,-4解析:选C ∵y =ax 2+bx +1的图象的对称轴是x =1,∴-b2a =1. ①又图象过点P (-1,7),∴a -b +1=7,即a -b =6. ② 由①②可得a =2,b =-4.2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1D .-2解析:选D 函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选A 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )<f (4)=-2,所以a <-2.6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.解析:由于函数f (x )的图象开口向上,对称轴是x =-a , 所以要使f (x )在[-4,6]上是单调函数, 应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. 答案:(-∞,-6]∪[4,+∞)7.已知二次函数y =f (x )的顶点坐标为⎝⎛⎭⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.解析:设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0), 方程a ⎝⎛⎭⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 答案:f (x )=-4x 2-12x +408.(2018·浙江名校协作体考试)y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________.解析:当a =0时,y =4x -1,值域为[0,+∞),满足条件;当a ≠0时,要使y =2ax 2+4x +a -1的值域为[0,+∞),只需⎩⎪⎨⎪⎧2a >0,Δ=16-8a (a -1)≥0,解得0<a ≤2.综上,0≤a ≤2.答案:[0,2]9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.解:函数f (x )=-⎝⎛⎭⎫x -a 22+a 24的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a2>1,即a <-2,-2≤a ≤2和a >2三种情形讨论.(1)当a <-2时,由图①可知f (x )在[-1,1]上的最大值为f (-1)=-1-a =-(a +1). (2)当-2≤a ≤2时,由图②可知f (x )在[-1,1]上的最大值为f ⎝⎛⎭⎫a 2=a24.(3)当a >2时,由图③可知f (x )在[-1,1]上的最大值为f (1)=a -1.综上可知,f (x )max=⎩⎪⎨⎪⎧-(a +1),a <-2,a24,-2≤a ≤2,a -1,a >2.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).B 级1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③解析:选B 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b 2a=-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,因为x ∈⎣⎡⎦⎤-2,-12,所以f (x )min =f (-1)=0,f (x )max =f (-2)=1,所以m ≥1,n ≤0,m -n ≥1.所以m -n 的最小值是1.3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴为x =-32∈[-2,3], ∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴函数f (x )的值域为⎣⎡⎦⎤-214,15. (2)∵函数f (x )的对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意.综上可知,a =-13或-1. 4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.解:函数y =x 2-2x -1=(x -1)2-2的图象的对称轴是直线x =1,顶点坐标是(1,-2),函数图象如图所示,对t 进行讨论如下:(1)当对称轴在闭区间右边,即当t +1<1,即t <0时,函数在区间[t ,t +1]上单调递减,f (x )max =f (t )=t 2-2t -1.(2)当对称轴在闭区间内时,0≤t ≤1,有两种情况:①当t +1-1≤1-t ,即0≤t ≤12时, f (x )max =f (t )=t 2-2t -1;②当t +1-1>1-t ,即12<t ≤1时, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.(3)当对称轴在闭区间左侧,即当t >1时,函数在区间[t ,t +1]上单调递增, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.综上所述,t ≤12时,所求最大值为t 2-2t -1;t >12时,所求最大值为t 2-2.。
考点12 二次函数(精讲)(解析版)
考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
二次函数各知识点、考点、典型例题及对应练习(超全)
二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。
初中二次函数考点总结
初中二次函数考点总结初中数学中,二次函数是一个重要的内容,也是学生理解和掌握的重点之一。
下面我会对初中阶段二次函数的考点进行总结。
1. 二次函数的基本概念和特点二次函数是指关于自变量x的二次多项式函数,通常表示为y=ax^2+bx+c,其中a、b和c为常数,a≠0。
二次函数图像是一个抛物线,其开口方向与a的正负相关。
2. 抛物线的图像和性质抛物线的图像可以是开口向上或者向下的。
开口向上的抛物线(a>0)具有最小值,称为顶点,顶点的坐标为(-b/2a,f(-b/2a));开口向下的抛物线(a<0)具有最大值,也称为顶点,顶点的坐标同样为(-b/2a,f(-b/2a))。
抛物线关于y轴对称,也即是对称轴为垂直于y轴的直线x=-b/2a。
3. 抛物线的平移和伸缩通过在二次函数的表达式中添加常数项可以实现平移操作,常数项的加减会在y轴上方或下方平移抛物线的图像。
通过在二次函数的表达式中乘以常数可以实现伸缩操作,常数的乘除会分别使抛物线的图像在y方向上收缩或扩张。
4. 二次函数的零点和因式分解零点指的是二次函数图像与x轴的交点,即函数值为0的x 值。
可以通过解二次方程来求得二次函数的零点,即求解ax^2+bx+c=0。
对于无理根,可以使用因式分解的方法进行求解,将二次方程因式分解为(x-α)(x-β)=0,其中α和β为有理根。
5. 二次函数的最值和解析式对于开口向上的抛物线,其最小值为顶点的纵坐标;对于开口向下的抛物线,其最大值为顶点的纵坐标。
解析式y=ax^2+bx+c可以根据a的正负和顶点的纵坐标的值来判断二次函数的最值。
6. 二次函数的图像和对称性二次函数的图像关于对称轴对称,也即是对于任意一点(x,y),x和-x对应的y值相等。
通过掌握对称性质,可以确定绘制抛物线的图像的关键点和形状。
以上就是初中二次函数的考点总结,希望能对你有所帮助。
初中阶段的学生可以通过掌握以上知识点,理解和解决与二次函数相关的问题。
二次函数知识点 二次函数图像与性质
二次函数图像与性质〖知识要点〗 1.二次函数定义一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
定义域是全体实数,图像是抛物线。
2y ax bx c =++是二次函数的“一般式”。
特点:① 自变量x 最高次数是2,② a ≠0 ③ 整式2. 二次函数的基本形式:2y ax =(0a ≠)的图像性质:a 越大抛物线的开口越小考点一:二次函数定义例1.(1)圆的半径是xcm ,圆的面积为ycm²,写出y 与x 之间的函数关系式;(2)用总长为60m 的篱笆围成矩形场地,写出场地面积y(m ²)与矩形一边长x(m)之间的关系式例2. (1)下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =222(2)2x x --;⑧y=-5x.(2)若y=(m +1)x562--m m 是二次函数,则m=( )A .7B .—1C .-1或7D .以上都不对(3)函数)1(432-=x y 的自变量x 的取值范围是 ; (4)已知二次函数3)12()1(2+++-=x m x m y ,当x=1时,y=3,则其表达式为 ;(5)已知二次函数8-10-2x xy +=,当x=________________时,函数值y 为1.考点二:2y ax =(0a ≠)的图像性质例3.作二次函数2x 2y =的图像观察图象,你发现了:例4.(1) 函数y=-x 2的图像是一条______线,开口向_______,对称轴是______, 顶点是________, 顶点是图像最_____点,表示函数在这点取得最_____值。
函数y=x 2 的图像的开口方向________,对称轴________,顶点_______.(2).关于213y x =,2y x =,y=-3x 2的图像,开口最大的是 .例5已知抛物线y=ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,- 4)是否在此抛物线 ;(3)求出此抛物线上纵坐标为-6的点的坐标.例6已知二次函数mm m +=2xy (1)当m 取何值时它的图象开口向上。
中考考点二次函数知识点汇总全
中考考点二次函数知识点汇总全二次函数是高中数学中的重要内容之一,也是中考考试的重点内容。
它是由一次项、常数项和二次项组成的一元二次方程的图像,其函数关系为y=ax²+bx+c,其中a、b、c为常数,且a≠0。
下面将汇总全面介绍中考中二次函数的知识点。
1.二次函数的图像特点:-当a>0时,二次函数的开口向上,图像是一个U型,顶点在下方;-当a<0时,二次函数的开口向下,图像是一个倒U型,顶点在上方;-函数的图像关于顶点对称。
2.顶点坐标与轴对称:-二次函数的顶点坐标是(-b/2a,f(-b/2a)),其中f(x)为二次函数的定义域;-二次函数的轴对称是x=-b/2a。
3.判断二次函数的开口方向及平移:-当a>0时,二次函数的开口向上;-当a<0时,二次函数的开口向下;-平移后的二次函数的顶点坐标为(x-h,f(x-h)),其中h为平移的横坐标单位,f(x)为原二次函数。
4.与坐标轴的交点与函数值:- 与x轴的交点(零点)是二次方程ax²+bx+c=0的解;-与y轴的交点是二次函数的常数项c;-函数值f(x)是二次函数在x处的y值。
5.最值及取值范围:-当a>0时,二次函数的最小值是顶点的纵坐标,没有最大值,取值范围是[最小值,+∞);-当a<0时,二次函数的最大值是顶点的纵坐标,没有最小值,取值范围是(-∞,最大值]。
6.对称轴的方程及关于顶点的对称点:-对称轴的方程是x=-b/2a;-对于点P(x,y),在对称轴上的对称点是P'(-b/a-x,y)。
7.解析式与一般式转换:- 一般式:y=ax²+bx+c,解析式则为y=a(x-h)²+k,其中(h,k)为顶点坐标;- 解析式:y=a(x-p)(x-q),则一般式为y=ax²-(ap+aq)x+apq,其中p、q是解析式的两个根。
8.方程与二次函数的关系:- 二次函数y=ax²+bx+c的解析式的自变量x和函数值y满足方程y=ax²+bx+c;- 方程y=ax²+bx+c=0的解是对应二次函数的图像在x轴上的交点。
二次函数(最全的中考二次函数知识点总结
二次函数(最全的中考二次函数知识点总结二次函数是中学数学中的一个重要内容,它在中考中也是一个常见的考点。
下面是一个最全的中考二次函数知识点总结。
1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。
2.二次函数的图像:二次函数的图像是一条开口朝上或朝下的抛物线,a的符号决定了抛物线的开口方向。
3. 二次函数的顶点坐标:顶点坐标为(-b/2a, f(-b/2a)),其中f(x) = ax^2 + bx + c。
4.二次函数的对称轴:对称轴为x=-b/2a。
5. 二次函数的判别式:判别式Δ = b^2 - 4ac,可以用来判断二次函数的性质。
6.二次函数的零点:二次函数的零点是指函数图像与x轴的交点,即f(x)=0的解。
7.二次函数的单调性:当a>0时,二次函数是开口朝上的,是递增函数;当a<0时,二次函数是开口朝下的,是递减函数。
8. 定比分点:对于二次函数y = ax^2 + bx + c,若存在一点(x1,y1),使得x1 = -b/2a + t 且 y1 = f(x1),其中t为常数,则称(x1,y1)为定比分点。
9.定比分点与顶点的关系:二次函数的定比分点与顶点的横坐标之差等于m倍的a的倒数,即x1-(-b/2a)=m/a。
10. 二次函数的平移变换:对于二次函数y = ax^2 + bx + c,当a 不等于1时,二次函数的平移变换可以通过替换x变量来实现,平移后的函数为y = a(x-h)^2 + k。
11.二次函数与一次函数的关系:当a=0时,二次函数退化为一次函数。
12.二次函数的最值:当a>0时,二次函数的最小值为f(-b/2a);当a<0时,二次函数的最大值为f(-b/2a)。
13.二次函数与根的关系:如果二次函数有两个不相等的根,那么函数图像必定与x轴有两个交点;如果二次函数有两个相等的根,那么函数图像必定与x轴有一个相切的交点;如果二次函数没有实数根,那么函数图像与x轴没有交点。
九年级数学 二次函数知识点、考点、典型例题及练习(附解析)
二次函数知识点、考点、典型例题及练习(附解析)一、二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的二、专题与考点专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a,244ac b a-). 例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)图2图1专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为(不要求写出自变量x的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax2+bx+c(a≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a(x-h)2+k(a≠0);3.若已知抛物线与x轴的两个交点坐标及另一个点,则可用交点式:y=a(x-x1)(x-x2)(a≠0).例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为()A.y=2a(x-1)B.y=2a(1-x)C.y=a(1-x2)D.y=a(1-x)22.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且AOOC=12,CO=BO,AB=3,则这条抛物线的函数解析式是.A BC D图1菜园墙图23.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题:本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例:某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.三、典型例题题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12)下列命题中正确的是( ) ○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
二次函数常见考点汇总
二次函数常见考点汇总二次函数是高中数学中重要的概念之一,也是中学数学的基础知识。
在高考中,二次函数常常作为考察的重点,题目形式多样,考点较为固定。
下面是对二次函数常见考点的汇总。
1. 二次函数定义:二次函数是指一种特殊形式的函数,它的表达式为f(x) = ax² + bx + c,其中a、b、c是常数且a ≠ 0。
二次函数的自变量x是实数,因变量f(x)是实数。
2.二次函数的图象与性质:二次函数的图象是一个抛物线,具有以下性质:-当a>0时,抛物线开口向上,称为正抛物线;当a<0时,抛物线开口向下,称为负抛物线。
-抛物线的顶点是一个特殊点,其横坐标为-x/(2a),纵坐标为f(-x/(2a))。
-若a>0,则抛物线在顶点处取得最小值;若a<0,则抛物线在顶点处取得最大值。
- 抛物线与x轴相交的点称为零点,即f(x) = 0的解。
当抛物线与x轴有相交时,存在一个零点或两个相等的零点,取决于Δ = b² - 4ac的值。
3. 抛物线的对称性:对于二次函数f(x) = ax² + bx + c,若抛物线存在对称轴,则对称轴方程为x = -b/(2a)。
对称轴将抛物线分成两个对称的部分,即左右对称。
4.抛物线的平移与缩放:二次函数可以通过平移和缩放进行变换,常见的变换有:-平移:将抛物线沿x轴平移h个单位,得到f(x-h)=a(x-h)²+b(x-h)+c;将抛物线沿y轴平移k个单位,得到f(x) + k = ax² + bx + (c + k)。
- 缩放:将抛物线的横坐标缩放为原来的t倍,纵坐标缩放为原来的s倍,得到f(tx) = as²x² + bsx + c;将抛物线的纵坐标缩放为原来的s倍,得到sf(x) = as x² + bsx + sc。
5.二次函数的零点与因式分解:二次函数与零点有关的考点较为常见。
常见二次函数考点分析
常见二次函数考点分析二次函数属于人教版全日制义务教育课程标准实验教科书《数学》中“数与代数”领域内容,既是近几年中考数学的一个重要知识点,同时也是一个难点。
这道题目考查的知识点多,综合性较强,解题灵活多变。
许多同学在学习这部分章节知识的时候都很难从本质上去理解、掌握,在教学中要教给学生一定的方法,只要掌握方法,就能灵活解决。
下面通过具体问题的二次函数探讨其常考点。
考点1:二次函数的对称轴函数y=ax2+bx+c(a≠0)中,a、b、c的正负将确定抛物线的开口方向;对称轴位置,对称轴两边函数随自变量的变化情况;顶点坐标及与y轴交点的位置,抛物线在坐标平面内平移与顶点式y=a(x-h)2+k的变化关系。
这些函数的性质,不仅要记忆而且要理解和会运用。
例1:抛物线y=x2-2x+1的对称轴是()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-2另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴为x=1,应选A。
图形的性质、判定、函数的性质,在复习时,要做好基础知识的理解,加强记忆、理解和运用,。
在具体问题中,会根据条件判断出图形具有什么特征,可以由这些特征确定求对称轴思路。
考点2:二次函数的最值问题大家知道,对于二次函数y=a(x-h)2+k(a≠0)(其中h为函数图像顶点的横坐标,k为顶点的纵坐标)来说,当a>0时,顶点(h,k)为图像的最低点,即当x=h时,y 的值最小,最小值为k;当a0(或ax2+bx+c<0,或ax2+bx+c ≠0等)解集的关系,开始由具体的形象的数形结合发展到具有一定的数形结合思想,并在具体的数学内容中渗透和贯穿数学思想,解决数学问题,从根本上提高数学素质。
例4:已知抛物线y=4x2-11x-3,求它与x轴、y轴的交点坐标。
解:由x=0得y=-3,所以抛物线与y轴交点坐标为(0,-3)。
二次函数中考考点+例题-全面解析
二次函数中考考点分析考点1、确定a 、b 、c 的值.二次函数:y=ax 2+bx+c (a,b,c 是常数,且a ≠0) 开口向上, 开口向下.抛物线的对称轴为: ,由图像确定2ba-的正负,由a 的符号确定出b 的符号,a,b 符号左 右 .即当抛物线的对称轴在y 轴的左边时,a,b 号。
由x=0时,y= ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c 0,与y 轴交点在y 轴的负半轴时,c 0.确定了a 、b 、c 的符号,易确定abc 的符号.考点 2、确定a+b+c 的符号.x=1时,y= ,由图像y 的值确定a+b+c 的符号.与之类似的还经常出现判断4a+2b+c 的符号(易知x=2时,y= ),由图像y 的值确定4a+2b+c 的符号.还有判断a -b+c 的符号(x=-1时,y= )等等.考点3、与抛物线的对称轴有关的一些值的符号.抛物线的对称轴为x=2ba -,根据对称性知:取到对称轴 距离相等 的两个不同的x 值时, 值相等,即当x=2b a -+m 或x=2ba--m 时,y 值相等.中考考查时,通常知道x=2b a -+m 时y 值的符号,让确定出x=2ba--m 时y 值的符号.考点4、由对称轴x=2b a -的确定值判断a 与b 的关系.如:2b a-=1能判断出a = b . 考点5、顶点与最值.若x 可以取全体实数,开口向下时,y 在顶点处取得最大值,开口向上时,y 在顶点处取得最小值.例1、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ).A. 2个B. 3个C. 4个D. 5个解析:此题考查了考点1、2、3、4、5. ①错误.因为:开口向下a <0;对称轴x=2ba-=1,可以得出b >0; x=0时,y=c >0,故abc <0.②错误.因为:由图知x=-1时,y=a -b+c <0,即b >a+c .③正确.因为:由对称轴x=1知,x=0时和x=2时y 值相等,由x=0时,y >0,知x=2时,y=4a+2b+c >0.④正确.因为:由对称轴x=2ba-=1,可以得出a =- b ,代入前面已经证出b >a+c >c,即3b >2c .⑤正确.因为:抛物线开口向下,故顶点处y 值最大,即x =1,y= a+b+c 最大,此时a+b+c >am 2+bm+c (1≠m ),即)(b am m b a +>+,(1≠m ).答案:B .考点6、图象与x 轴交点.∵ >0,ax 2+bx+c=0有两个不相等的实根; <0,ax 2+bx+c=0无实根; =0,ax 2+bx+c=0有两个相等的实根.∴b 2-4ac >0,抛物线与x 轴有 个交点;b 2-4ac<0,抛物线与x 轴 交点;b 2-4ac=0,抛物线与x 轴 个交点. 例2、二次函数221y x x =-+与x 轴的交点个数是( ). A .0 B .1 C .2 D .3解析:求图象与x 轴的交点应令y=0,即x 2-2x+1=0,∵b 2-4ac =4-4=0,∴二次函数图象与x 轴只有一个交点.答案:B .考点7、判断在同一坐标系中两种不同的图形的正误.如:在同一种坐标系中正确画出一次函数y ax b =+和二次函数)0(2≠++=a c bx ax y ,关键是 两个式子中的a 、b 值应相同. 例3、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( ).解析:二次函数2y ax bx =+过点(0,0),故排除答案B 与C .若a >0,抛物线开口向上,一次函数y ax b =+的y 值随着x 值的增大而增大;若a <0,抛物线开口向下,一次函数y ax b =+的y 值随着x 值的增大而减小.答案:A.考点8、能分别判断出在对称轴的左右两侧二次函数y 值随x 值的变化而变化情况.抛物线当开口向上时,在对称轴的左侧二次函数y 值随 的增大而减小,在对称轴的 侧二次函数y 值随x 值的增大而增大.抛物线开口 时,在对称轴的左侧二次函数y 值随x 值的增大而增大,在对称轴的右侧二次函数y 值随x 值的增大而减小.例4、已知二次函数2y ax bx c =++(a ≠0)的图象经过点(-1,2),(1,0) . 下列结论正确的是( ). A. 当x >0时,函数值y 随x 的增大而增大 B. 当x >0时,函数值y 随x 的增大而减小C. 存在一个负数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x > x 0时,函数值y 随x 的增大而增大D. 存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x >x 0时,函数值y 随x 的增大而增大解析:二次函数2y ax bx c =++(a ≠0)的图象没说明开口方向,故过点(-1,2),(1,0)的抛物线有可能开口向上或向下,见图再结合选项,抛物线当开口向上时,在对称轴x =x 0(x 0>0)的左侧二次函数y 值随x 值的增大而减小,在对称轴的右侧二次函数y 值随x 值的增大而增大.抛物线开口向下时,在对称轴x =x 0(x 0<0)的左侧二次函数y 值随x 值的增大而增大,在对称轴的右侧二次函数y 值随x 值的增大而减小.答案:D .考点9、二次函数解析式的几种形式. (1)一般式:y =ax 2+bx+c (a,b,c 为常数,a ≠0).(2)顶点式:y =a(x-h)2+k(a,h,k 为常数,a ≠0). 抛物线的顶点坐标是(h,k),h =0时,抛物线y =ax 2+k的顶点在 轴上;当k =0时,抛物线y =a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在 .(3) (3)两根式:y =a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0(a ≠0)的两个根. 求解析式时若已知抛物线过三点坐标一般设成一般式,已知抛物线过的顶点坐标时设成顶点式,已知抛物线与x 轴的两个交点的横坐标时设成两根式.例5、在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.求该二次函数的解析式OxyO x yOxyOxyA为 .解析:(1)设二次函数解析式为2(1)4y a x =--,二次函数图象过点(30)B ,,044a ∴=-,得1a =. ∴二次函数解析式为2(1)4y x =--,即223y x x =--.【知识梳理】1.定义:一般地,如果是常数,,那么叫做的二次函数.用配方法可化成:的形式,其中.3.抛物线的三要素:开口方向、对称轴、顶点. ①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. ②平行于轴(或重合)的直线记作.特别地,轴记作直线.4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.5.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.轴右侧,则.(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.(1)轴与抛物线得交点为(0, ).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切;③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点; ②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故练一练:1、如图,二次函数c bx ax y ++=2的图象开口向上,图像经过点(-1,2)和(1,0)且与y 轴交于负半轴.(以下有(1)、(2)两问,每个考生只须选答一问,若两问都答,则只以第(2)问计分)第(1)问:给出四个结论:①a >0;②b >0;③c >0; ④a+b+c=0 其中正确的结论的序号是 (答对得3分,少选、错选均不得分). 第(2)问:给出四个结论:①abc <0;②2a+b >0;③a+c=1;④a >1.其中正确的结论的序号是 (答对得5分,少选、错选均不得分).2、二次函数122-++=a x ax y 的图像可能是 【 】3、 如图,已知二次函数24y ax x c =-+的图像经过点和点B .(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.4、 有一抛物线的拱形桥洞,桥洞离水面的最大高度为4m ,跨度为10m , 如图所示,把它的图形放在直角坐标系中①求这条抛物线所对应的函数关系式;②如图,在对称轴右边1m 处,桥洞离水面的高是多少?xyO3-9-1 -1ABA. xyB. xyC. xyD. x y【参考答案】:1、(1)①,④. (2)②,③,④2、B.3、解:(1)将x =-1,y =-1;x =3,y =-9分别代入c x ax y +-=42得 ⎩⎨⎧+⨯-⨯=-+-⨯--⨯=-.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧-==.6,1c a ∴二次函数的表达式为642--=x x y . (2)对称轴为2=x ;顶点坐标为(2,-10).(3)将(m ,m )代入642--=x x y ,得 642--=m m m , 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去. ∴ m =6.∵点P 与点Q 关于对称轴2=x 对称, ∴点Q 到x 轴的距离为6. 4、①2+1.6x ;②3.84m .。
二次函数高频考点
二次函数高频考点二次函数是高中数学学习中的重要知识点,也是高考中的常见考点之一。
二次函数的图像具有如下特点:抛物线开口方向与二次项系数正负有关;二次函数的对称轴为直线$x=-\frac{b}{2a}$,顶点坐标为$\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$;二次函数的零点为方程$ax^2+bx+c=0$的根;二次函数的性质还包括单调性、极值、最值等。
1.抛物线的开口方向二次函数的图像为抛物线,其开口方向与二次项系数的正负有关。
当二次项系数$a>0$时,抛物线开口向上;当$a<0$时,抛物线开口向下。
2.对称轴与顶点3.零点二次函数的零点为方程$ax^2+bx+c=0$的根。
解二次方程可以得到二次函数的零点,也就是函数与$x$轴的交点。
4.单调性二次函数在顶点处存在极值,当二次项系数$a>0$时,函数在顶点处有最小值且开口向上,函数在顶点处有最大值且开口向下。
因此,二次函数在其对称轴两侧一定单调递增或单调递减。
5.极值与最值二次函数的极值点即为顶点,二次函数在对称轴两侧的最值为顶点的纵坐标。
6.平移与伸缩二次函数$f(x)=ax^2+bx+c$在平移变换$(h,k)$后相当于$f(x-h)+k=a(x-h)^2+b(x-h)+c+k$,即二次项系数不变,对称轴平移$h$个单位,抛物线上下移动$k$个单位。
在伸缩变换中,若进行$x$轴方向的伸缩,系数$a$变为$k\cdot a$,抛物线的开口方向不变;若进行$y$轴方向的伸缩,系数$c$变为$k\cdot c$,抛物线的顶点坐标也相应地变化。
7.与其他函数的关系二次函数与一次函数的图像相交于最多两个点;与指数函数相交于最多两个点;与对数函数相交于最多一个点。
二次函数的十二个考点
二次函数的十二个考点
1. 二次函数的定义和一般形式:$y = ax^2 + bx + c$,其中$a\neq 0$。
2. 二次函数的图像特征:开口方向、顶点、对称轴。
3. 二次函数的顶点和对称轴的求解方法:通过配方法、求导、平方完成平方等。
4. 二次函数的零点的求解方法:因式分解、配方法、求根公式。
5. 二次函数的判别式:$b^2 - 4ac$,用于判断二次函数的零点个数和开口方向。
6. 二次函数的最值:最大值或最小值的求解方法。
7. 二次函数在坐标轴上的截距:$x$轴截距和$y$轴截距的计算方法。
8. 二次函数的增减性:根据二次函数的导数的正负来判断。
9. 二次函数的平移:对二次函数的顶点进行平移,改变二次函数的图像位置。
10. 二次函数的对称性:关于对称轴的对称性,可以通过图像观察或计算得出。
11. 二次函数与其他函数的关系:与一次函数、指数函数、对数函数等的比较。
12. 二次函数在实际问题中的应用:如抛物线轨道、抛物线天桥等的建模与问题求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中考考点分析二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是近几年河北中考热点之一。
学习二次函数,对于学生数形结合、函数方程等重要数学思想方法的培养,对拓宽学生解题思路、发展智力、培养能力具有十分重要意义。
二次函数主要考查表达式、顶点坐标、开囗方向、对称轴、最大(小)值、用二次函数模型解决生活实际问题。
其中顶点坐标、开囗方向、对称轴、最大(小)值、图象与坐标轴的交点等主要以填空题、选择题出现。
利用二次函数解决生活实际问题以及二次函数与几何知识结合的综合题以解答题形式出现:一类是二次图象及性质的纯数学问题,如2010年河北中考11题,2009河北中考22题,2007河北中考22题;一类是利用二次函数性质结合其它知识解决实际问题的题目,如2010年河北中考26题,2008河北中考25题,2006河北中考24题。
考点1:二次函数的有关概念一般的,形如y=ax?+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数。
例m取哪些值时,函数是以x为自变量的二次函数?考点2:二次函数的图象性质(1)抛物线的形状二次函数y=ax?+bx+c(a≠0)的图像是一条抛物线,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
(2)抛物线的平移二次函数y=ax?向右平移h个单位,向上平移k个单位后得到新的二次函数y=a(x-h)2+k,进一步化简计算得到二次函数y=ax?+bx+c。
新函数与原来函数形状相同,只是位置不同。
(3)抛物线与坐标轴的交点抛物线与x轴相交时y=0,抛物线与y轴相交时x=0。
(4)抛物线y=ax2+bx+C中a、b、c的作用a决定当开囗方向,a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
a和b共同决定对称轴。
C决定与y轴交点。
(5)抛物线顶点坐标、对称轴、最大(小)值顶点式:y=a(x-h)2+k顶点坐标(h,k),对称轴x=h, 最大(小)值k。
一般式:y=ax?+bx+c顶点坐标,对称轴,最大(小)值为。
例1.(2008河北中考9题)如图4,正方形的边长为10,四个全等的小正方形的对称中心分别在正方形的顶点上,且它们的各边与正方形各边平行或垂直.若小正方形的边长为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()例2.(2009河北中考9题)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x>0),若该车某次的刹车距离为5 m,则开始刹车时的速度为()A.40 m/s B.20 m/sC.10 m/s D.5 m/s例3.(2010河北中考11题)如图5,已知抛物线的对称轴为,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为A.(2,3) B.(3,2)C.(3,3)D.(4,3)例4.(2011河北中考8题)一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式h=-5(t-1)2+6,则小球距离地面的最大高度是()A. 1米B. 5米 C .6米 D .7米例5.(2009河北中考22题)已知抛物线经过点和点P (t,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A,如图12,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.例6.(2011河北中考26题)如图15,在平面直角坐标系中,点P从原点O出发,沿x 轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,-5),D(4,0)(1)求c,b(用含t的代数式表示)(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值②求△MPN的面积S与t的函数关系式,并求t为何值时,S=(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”,若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围。
考点2:二次函数与一元二次方程、一元二次不等式的联系例1.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线。
如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2。
考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?例2.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?考点3:求二次函数的解析式例1.(2007河北中考22题)如图13,已知二次函数的图像经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离.考点4:二次函数的图象、性质在生活中的应用例1.(2006河北中考24题)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.例2.(2008河北中考25题)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线的顶点坐标是.例3.(2010河北中考26题)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w内= 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.二次函数复习学案考题特点:《二次函数》在广州中考题所占分值较多。
题型有填空题、选择题、解答题。
主要考查内容有:函数的取值范围,待定系数法,求函数图象与坐标轴的交点,简单函数图象的画法,求二次函数的顶点坐标及最大值与最小值,几何图形与二次函数的关系。
难题主要放在几何图形与函数的综合探索。
自主复习1.二次函数,二次项系数是,一次项系数是,常数项是。
2. 函数y=x2的图象叫线,它开口向,对称轴是,顶点坐标为 .3. 把二次函数配方成的形式为,它的图象是,开口向,顶点坐标是,对称轴是。
4. 将抛物线y=x2向左平移2个单位,再向下平移3个单位,则新抛物线的解析式为().A. B. C. D.5.二次函数,当时,。
此抛物线与x轴有个交点。
例题精讲例1.已知二次函数的图象如图所示,求其解析式。
例2.已知二次函数。
(1)填写下表,画出函数的图象;xy(2)根据图象说明:1.求方程的解;2.当x取何值时,y>0 ?3.当x取何值时,y<0 ?4.当x取何值时,y随x的增大而减少?例3.如图是抛物线形拱桥,当水面在AB时,拱顶离水面2米,水面宽4米,水面下降1米,水面宽度增加多少?巩固提高1. 抛物线的顶点坐标是()A. (0,1)B.(0,-1)C.(1,0)D.(-1,0)2.二次函数与x轴的交点个数是()A.0 B.1 C.2 D.33.在同一坐标系中一次函数和二次函数的图象可能为()4.下列图形中,阴影部分面积为1的是()5.如图所示的抛物线是二次函数的图象,那么的值是.6.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为.7.已知二次函数的图象如图所示,则点在第象限.8. 二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C 在y轴正半轴上,且AB=OC(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值。
9.某旅行社团去外地旅游,30人起组团,每人收费800元,旅行社对超过30人的团给予优惠,即旅行团每增加1人,每人的收费就降低10元。
请计算当旅行团的人数是多少时,旅行社可以获得最大的营业额?。