八年级【几何模型三角形轴对称】试卷中考真题汇编[解析版]
八年级数学上册【几何模型三角形轴对称】试卷测试卷(含答案解析)
八年级数学上册【几何模型三角形轴对称】试卷测试卷(含答案解析)一、八年级数学 轴对称解答题压轴题(难)1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∴当AQ=AP时,△APQ为等边三角形∴2t=20-2t,解得t=5②当P于B重合,Q与C重合,则所用时间为:4÷2=20综上,当△APQ为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.2.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.3.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF =BD ,理由如下:如图1中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA -∠DCA =∠DCF -∠DCA ,即:∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AF 与BD 在(1)中的结论成立,理由如下:如图2中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.4.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.5.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.6.再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt △ABC 中,AB =22AC BC +=2212+=5.故答案为5.(2)结论:四边形BADQ 是菱形.理由如下: 如图③中,∵四边形ACBF 是矩形,∴BQ ∥AD .∵AB ∥DQ ,∴四边形ABQD 是平行四边形,由翻折可知:AB =AD ,∴四边形ABQD 是菱形.(3)如图④中,黄金矩形有矩形BCDE ,矩形MNDE .∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1. ∵BC =2,∴CD BC =51-,∴矩形BCDE 是黄金矩形. ∵MN DN =15+=51-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH 51,宽HE =35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.7.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB∠=∠=︒,18CDE∠=︒,求BAD∠的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究BAD∠与CDE∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.8.如图,在平面直角坐标系中,点B坐标为()6,0-,点A是y轴正半轴上一点,且10AB=,点P是x轴上位于点B右侧的一个动点,设点P的坐标为()0m,.(1)点A的坐标为___________;(2)当ABP△是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE AB⊥交线段AB于点E,连接OE,若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=_____________.(直接写出答案)【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫⎪⎝⎭;(3)425【解析】【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:∴1064OP BP BO ,∴P 点的坐标是()4,0; 当AP AB =时,如图二所示:∴6OP BO∴P 点的坐标是()6,0; 当AP BP =时,如图三所示:设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA , ∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.9.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE ①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】 【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022nn . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________ (拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由; (知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)72762+. 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
八年级上册数学 【几何模型三角形轴对称】试卷测试卷(含答案解析)
八年级上册数学【几何模型三角形轴对称】试卷测试卷(含答案解析)一、八年级数学轴对称解答题压轴题(难)1.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD=BD ,AD ⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF ≌△DBE (SAS ),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.2.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A作AK ED⊥于K,90AKD CHD∴∠=∠=︒,AD CD=,ADK CDH∠=∠,∴△AKD≌△CHD(AAS),DK DH∴=,∵,,AK DF AF AD AE AH⊥==,,FK DK EK HK∴==,3DH EF∴==,6DF∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.3.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.5.已知△ABC.(1)在图 中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD OE、求证:OD OE=;(3)如图 ,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG,CG=BG,∵OB=OB,∴OBH OBG∆≅∆,∴BH=BG,∵BE=CD,∴EH=BH-BE=BG-CD=CG-CD=DG,在OEH∆和ODG∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE,所以OEH ODG∆≅∆且OE=OD,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.6.八年级的小明同学通到这样一道数学题目:△ABC 为边长为4的等边三角形,E 是边AB 边上任意一动点,点D 在CB 的延长线上,且满足AE =BD .(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=3=∴DH =DB +BH =2+1=3,∴DE2293=+=+=23.DH EH故答案为:23;(2)DE=CE.理由如下:如图②,过E作EF∥BC交AC于F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∴∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∴AB﹣AE=AC﹣AF,∴BE=CF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,且AE=EF=DB,BE=CF,∴△DBE≌△EFC(SAS),∴DE=CE,(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H.∵将△ABC沿AB翻折得到△ABC',∴AC=AC'=BC=BC'=4,∠BAC=∠BAC'=60°,且AE'=AE',∴△ACE'≌△AC'E'(SAS),∴C'E'=CE',由(2)可知:DE'=CE',∴C'E'=CE'=DE'.∵DE+EF=C'E+EF=C'E'+EF,∴当点C',点E',点F三点共线时,DE+EF的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.7.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)求∠DBC 的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB 的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB 的大小;(3)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.【答案】(1)∠DBC 60α=︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°;(3)BD =2AE +CE ,证明见解析.【解析】【分析】(1)如图1,连接CD ,由轴对称的性质可得AC=DC ,∠DCP =∠ACP =α,由△ABC 是等边三角形可得AC=BC ,∠ACB =60°,进一步即得∠BCD =602α︒+,BC=DC ,然后利用三角形的内角和定理即可求出结果;(2)设AC 、BD 相交于点H ,如图2,由轴对称的性质可证明△ACE ≌△DCE ,可得∠CAE =∠CDE ,进而得∠DBC =∠CAE ,然后根据三角形的内角和可得∠AEB =∠BCA ,即可作出判断;(3)如图3,在BD 上取一点M ,使得CM=CE ,先利用三角形的外角性质得出∠BEC 60=︒,进而得△CME 是等边三角形,可得∠MCE =60°,ME=CE ,然后利用角的和差关系可得∠BCM =∠DCE ,再根据SAS 证明△BCM ≌△DCE ,于是BM=DE ,进一步即可得出线段AE ,BD ,CE 之间的数量关系.【详解】解:(1)如图1,连接CD ,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,∠DCP =∠ACP =α,∵△ABC 是等边三角形,∴AC=BC ,∠ACB =60°,∴∠BCD =602α︒+,BC=DC ,∴∠DBC =∠BDC ()1806021806022BCD αα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.8.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.9.探究题:如图,AB ⊥BC ,射线CM ⊥BC ,且BC =5cm ,AB =1cm ,点P 是线段BC (不与点B 、C 重合)上的动点,过点P 作DP ⊥AP 交射线CM 于点D ,连结AD .(1)如图1,若BP =4cm ,则CD = ;(2)如图2,若DP 平分∠ADC ,试猜测PB 和PC 的数量关系,并说明理由;(3)若△PDC 是等腰三角形,则CD = cm .(请直接写出答案)【答案】(1)4cm ;(2)PB =PC ,理由见解析;(3)4【解析】【分析】(1)根据AAS 定理证明△ABP ≌△PCD ,可得BP =CD ;(2)延长线段AP 、DC 交于点E ,分别证明△DPA ≌△DPE 、△APB ≌△EPC ,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC =5cm ,BP =4cm ,∴PC =1cm ,∴AB =PC ,∵DP ⊥AP ,∴∠APD =90°,∴∠APB +∠CPD =90°,∵∠APB +∠CPD =90°,∠APB +∠BAP =90°,∴∠BAP =∠CPD ,在△ABP 和△PCD 中,B C BAP CPD AB PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△PCD ,∴BP =CD =4cm ;(2)PB =PC ,理由:如图2,延长线段AP 、DC 交于点E ,∵DP 平分∠ADC ,∴∠ADP =∠EDP .∵DP ⊥AP ,∴∠DPA =∠DPE =90°,在△DPA 和△DPE 中,ADP EDP DP DPDPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DPA ≌△DPE (ASA ),∴PA =PE .∵AB ⊥BP ,CM ⊥CP ,∴∠ABP =∠ECP =Rt ∠.在△APB 和△EPC 中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB ≌△EPC (AAS ),∴PB =PC ;(3)∵△PDC 是等腰三角形,∴△PCD 为等腰直角三角形,即∠DPC =45°,又∵DP ⊥AP ,∴∠APB =45°,∴BP =AB =1cm ,∴PC =BC ﹣BP =4cm ,∴CD =CP =4cm ,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)262. 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】 解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形 ,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅ ,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
八年级数学上册【几何模型三角形轴对称】试卷中考真题汇编[解析版]
八年级数学上册【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE 是等腰直角三角形.∴∠DFE=45°.∵G 为BE 中点,∴BF=EF.∴AE=EF.∴△AEF 是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF ⊥DF.(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,∵点G 为BE 的中点,BG=GE.∵∠BGM ∠EGD,∴△BGM ≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM ≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF ⊥DG.∴AF=2DG,且AF ⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.3.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM ∠∠=,22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯=BMD ∴是等腰直角三角形.()2解:如图2,BDM 是等腰直角三角形,理由是:延长ED 交AC 于F ,ADE 和ABC △是等腰直角三角形,45BAC EAD ∠∠∴==,AD ED ⊥,ED DF ∴=,M 为EC 中点,EM MC ∴=,12DM FC ∴=,//DM FC , 45BDN BND BAC ∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,DM FM∴=,DE FC=,AD ED FC∴==,作AN EC⊥于点N,由已知90ADE∠=,90ABC∠=,可证得DEN DAN∠∠=,NAB BCM∠∠=,//CF ED,DEN FCM∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD∠∠∠∠∠∠∠∠∴=+=+=+=,BCF∴≌BAD,BF BD∴=,DBA CBF∠∠=,90DBF DBA ABF CBF ABF ABC∠∠∠∠∠∠∴=+=+==,DBF∴是等腰直角三角形,点M是DF的中点,则BMD是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.4.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()() 111347463222y y +⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.5.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,22CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)32【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒,AB AV ==∴1422BC AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴2232CE EM CM =-=【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.6.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.7.如图(1),在ABC 中,90A ∠=︒,AB AC =,点D 是斜边BC 的中点,点E ,F 分别在线段AB ,AC 上, 且90EDF ∠=︒.(1)求证:DEF 为等腰直角三角形;(2)若ABC 的面积为7,求四边形AEDF 的面积;(3)如图(2),如果点E 运动到AB 的延长线上时,点F 在射线CA 上且保持90EDF ∠=︒,DEF 还是等腰直角三角形吗.请说明理由.【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.【解析】【分析】(1)由题意连接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形;(2)由题意分析可得S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,以此进行分析计算求出四边形AEDF的面积即可;(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.【详解】解:(1)证明:如图①,连接AD.∵∠BAC=90˚,AB=AC,点D是斜边BC的中点,∴AD⊥BC,AD=BD,∴∠1=∠B=45°,∵∠EDF=90°,∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴ΔDEF为等腰直角三角形.(2)由(1)可知DE=DF,∠C=∠6=45°,又∵∠2+∠3=90°,∠2+∠5=90°,∴∠3=∠5,∴△ADE≌△CDF,∴S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,∴ S∆ABC=2 S四边形AEDF,∴S四边形AEDF=3.5 .(3)是.如图②,连接AD.∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD ,∴∠1=45°,∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,∠DAF=∠DBE,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.【点睛】本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.8.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD = 证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.9.操作发现:如图,已知△ABC 和△ADE 均为等腰三角形,AB =AC ,AD =AE ,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若∠ABC =∠ACB =∠ADE =∠AED =55°,求证:△BAD ≌△CAE ;(2)在(1)的条件下,求∠BEC 的度数;拓广探索:(3)如图2,若∠CAB =∠EAD =120°,BD =4,CF 为△BCE 中BE 边上的高,请直接写出EF 的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS 证明△BAD ≌△CAE 即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD ≌△CAE ,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.在等边ABC中,点D是边BC上一点.作射线AD,点B关于射线AD的对称点为点E.连接CE并延长,交射线AD于点F.(1)如图,连接AE,①AE 与AC 的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1) ①AB=AE ;②∠BCF=α;(2) AF-EF=CF ,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB ,∠BAF=∠EAF=α,由ABC 是等边三角形,得AB=AC ,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解; (2)作∠FCG=60°交AD 于点G ,连接BF ,易证∆FCG 是等边三角形,得GF=FC ,再证∆ACG ≅∆BCF(SAS),从而得AG=BF ,进而可得到结论.【详解】(1)①∵点B 关于射线AD 的对称点为点E ,∴AB 和AE 关于射线AD 的对称,∴AB=AE.故答案是:AB=AE ;②∵点B 关于射线AD 的对称点为点E ,∴AE=AB ,∠BAF=∠EAF=α, ∵ABC 是等边三角形,∴AB=AC ,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC , ∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦, ∴∠BCF=∠ACE-∠ACB=60α+-60°=α. (2)AF-EF=CF ,理由如下:作∠FCG=60°交AD 于点G ,连接BF ,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCF CG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.。
八年级数学【几何模型三角形轴对称】试卷测试卷(含答案解析)
八年级数学【几何模型三角形轴对称】试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.2.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS证明△ABE≌AFE即可;(2)由(1)得出∠AEB=∠AEF,BE=EF,再证明△DEF≌△DEC(SAS),得出DF=DC,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性质得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,进而证明△EFG是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG是等边三角形,∴GF=EF=BE=12 BC,∵AD=AF+FG+GD,∴AD=AB+CD+12 BC.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.5.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P 点作PF ∥AC 交BC 于F ,由点P 和点Q 同时出发,且速度相同,得出BP=CQ ,根据PF ∥AQ ,可知∠PFB=∠ACB ,∠DPF=∠CQD ,则可得出∠B=∠PFB ,证出BP=PF ,得出PF=CQ ,由AAS 证明△PFD ≌△QCD ,得出,再证出F 是BC 的中点,即可得出结果;(2)过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,可得BE=12BF ,由(1)证明方法可得△PFD ≌△QCD 则有CD=12CF ,即可得出BE +CD =8. 【详解】 解:(1)如图①,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.6.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.7.如图,在平面直角坐标系中,A 、B 坐标为()6,0、()0,6,P 为线段AB 上的一点.(1)如图1,若P 为AB 的中点,点M 、N 分别是OA 、OB 边上的动点,且保持AM ON =,则在点M 、N 运动的过程中,探究线段PM 、PN 之间的位置关系与数量关系,并说明理由.(2)如图2,若P 为线段AB 上异于A 、B 的任意一点,过B 点作BD OP ⊥,交OP 、OA 分别于F 、D 两点,E 为OA 上一点,且PEA BDO =∠∠,试判断线段OD 与AE 的数量关系,并说明理由.【答案】(1)PM=PN ,PM ⊥PN ,理由见解析;(2)OD=AE ,理由见解析【解析】【分析】(1)连接OP .只要证明△PON ≌△PAM 即可解决问题;(2)作AG ⊥x 轴交OP 的延长线于G .由△DBO ≌△GOA ,推出OD=AG ,∠BDO=∠G ,再证明△PAE ≌△PAG 即可解决问题;【详解】(1)结论:PM=PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P 为AB 的中点, ∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中, ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.9.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠),∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∴MN AN AM BM CN =+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN 、和MN 之间的关系式.10.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
八年级数学【几何模型三角形轴对称】试卷测试卷(含答案解析)
八年级数学【几何模型三角形轴对称】试卷测试卷(含答案解析)一、八年级数学 轴对称解答题压轴题(难)1.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.【答案】(1)6;(2)y=-3x+10(1≤x <103);(2)1769或32 【解析】【分析】(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点H∵∠C=45°,DH ⊥BC∴△DHC 是等腰直角三角形∵四边形ABCD 是梯形,∠B=90°∴四边形ABHD 是矩形,∴DH=AB=8∴HC=8∴BH=BC -HC=6∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.2.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20综上,当△APQ 为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.3.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB 的垂直平分线,P 是MN 上任一点,连结PA 、PB ,将线段AB 沿直线MN 对称,我们发现PA 与PB 完全重合,由此即有:线段垂直平分线的性质定理 线段垂直平分线上的点到线段的距离相等.已知:如图,MN ⊥AB ,垂足为点C ,AC =BC ,点P 是直线MN 上的任意一点.求证:PA =PB .分析:图中有两个直角三角形APC 和BPC ,只要证明这两个三角形全等,便可证明PA =PB .定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.4.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.5.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,∵∠BAO=60°,∴∠ABO=30°,∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°, ∴∠ABC =∠DBQ , 在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12, ∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB , ∴∠AEP =∠ADB =120°, ∴∠OEF =60°, ∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小, ∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:∴1064OP BP BO ,∴P 点的坐标是()4,0; 当AP AB =时,如图二所示:∴6OP BO∴P 点的坐标是()6,0; 当AP BP =时,如图三所示:设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA , ∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.7.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由. 以下是小宇同学给出如下正确的解法: 解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒, …请根据小宇同学的证明思路,写出该证明的剩余部分. (2)你有与小宇不同的思考方法吗?请写出你的证明过程. (3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -= 【解析】 【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO∠=︒,交O B于点F,通过ASA证明CDO CEF∆∆≌,得到,CD CE OD EF==,所以OE OD OE EF OF OC+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.【详解】解:(1)OC平分AOB∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形O DCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD∆与CNE∆中,13CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS∆∆≌,∴,CD CE DM EN==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在Rt CMO∆中,1490590302AOB ∠=︒-∠=︒-∠=︒,∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F , ∵OC 平分AOB ∠,∴1260∠=∠=︒, ∴3180260FCO ∠=︒-∠-∠=︒, ∴13∠=∠,32FCO ∠=∠=∠, ∴COF ∆是等边三角形, ∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中, 1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌, ∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.②在图4中,(1)中的结论成立,OE OD OC -=. 如图,以OC 为一边,作∠OCF=60°与OB 交于F 点 ∵∠AOB=120°,OC 为∠AOB 的角平分线 ∴∠COB=∠COA=60° 又∵∠OCF=60° ∴△COF 为等边三角形 ∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.8.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】 (1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1),∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS )∴ BD=CE.② 由△CAE ≌△BAD ,∴ ∠AEC=∠ADB=180°-∠ADE=120°.∴ ∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC 和△ADE 均为等腰直角三角形(如图2),∴ AB=AC ,AD=AE ,∠ADE=∠AED=45°,∵ ∠BAC=∠DAE=90°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS ).∴ BD=CE ,∠AEC=∠ADB=180°-∠ADE=135°.∴ ∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ︒,理由如下, ∵△ABC 和△ADE 均为等腰直角三角形,∴ AB=AC ,AD=AE ,∠ADE=∠AED=n°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS ). ∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.9.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒∴180120AOD D CAO ∠=︒-∠-∠=︒∴30COD AOD AOC ∠=∠-∠=︒(2)过O 作//OE AB ,OE 交AD 于E∵//OE AB∴60EOC ABC ∠=∠=︒60CEO CAB ∠=∠=︒∴COE ∆为等边三角形∴OE OC CE ==180120AEO CEO ∠=︒-∠=︒180120DCO ACB ∠=︒-∠=︒又∵OA OD =∴EAO CDO ∠=∠在AOE ∆和COD ∆中AOE DOC EAO CDO OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS ∆≅∆∴CD EA =∵EA AC CE =-BO BC CO =-∴EA BO =∴BO CD =,∵AB AC =,AD AC CD =+∴AD AB BO =+(3)AOP ∆为等边三角形证明过程如下:连接,PC PD ,延长OC 交PD 于F∵P D 、关于OC 对称∴,90PF DF PFO DFO =∠=∠=︒在ODF ∆与OPF ∆中,PF DF PFO DFO OF OF =⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS ∆≅∆∴OP OD =,POC DOC ∠=∠∵OA OD =∴AO=OP∴AOP ∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+ (22DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠= 222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
八年级数学上册【几何模型三角形轴对称】试卷中考真题汇编[解析版]
八年级数学上册【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学轴对称解答题压轴题(难)1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA =OC ,∴OA =OB ∵OH ⊥AB ,∴AH =BH ;(2)如图③中,连接BD ,BE .∵BA =BC ,∠ABC =120°,∴∠A =∠C =30°,∵边AB 的垂直平分线交AC 于点D ,边BC 的垂直平分线交AC 于点E ,∴DA =DB ,EB =EC ,∴∠A =∠DBA =30°,∠C =∠EBC =30°,∴∠BDE =∠A +∠DBA =60°,∠BED =∠C +∠EBC =60°,∴△BDE 是等边三角形,∴AD =BD =DE =BE =EC ,∵AC =15=AD +DE +EC =3DE ,∴DE =5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.3.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b-【解析】 【分析】(1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CF AFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.4.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE .(1)求∠CAM 的度数;(2)若点D 在线段AM 上时,求证:△ADC ≌△BEC ;(3)当动D 在直线..AM 上时,设直线BE 与直线AM 的交点为O ,试判断∠AOB 是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB 是定值,∠AOB =60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°.∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE . 在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD和△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD.由(1)得:∠CAM=30°,∴∠CBE=∠CAD=150°,∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上所述:当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.6.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =-解得103t =∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.9.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.10.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC∆,如图1,并在边AC上任意取了一点F(点F不与点A、点C重合),过点F作FH AB⊥交AB于点H,延长CB到G,使得BG AF=,连接FG交AB于点l.(1)若10AC=,求HI的长度;(2)如图2,延长BC到D,再延长BA到E,使得AE BD=,连接ED,EC,求证:ECD EDC∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP∥BC交AB于点P,证明APF∆是等边三角形得到AH=PH,再证明PFI BGI∆≅∆得到PI=BI,于是可得HI =12AB,即可求解;(2)延长BD至Q,使DQ=AB,连结EQ,就可以得出BE=BQ,得出△BEQ是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC ∆是等边三角形,∴∠ABC=∠A=60°,∵FP ∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF ∆是等边三角形,∴PF=AF,∵FH AB ⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI ∆和BGI ∆中,PIF BIG PFI BGI PF BG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴PFI BGI ∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB, ∴HI=PI+PH =12AB= 1102⨯=5; (2)如图2,延长BD 至Q ,使DQ=AB ,连结EQ ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.。
八年级上册数学 【几何模型三角形轴对称】试卷中考真题汇编[解析版]
八年级上册数学【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BP t (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.(1)如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段EF ,BE ,FD 之间的数量关系.小明同学探究的方法是:延长FD 到点G .使DG =BE .连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论是 (直接写结论,不需证明);(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是BC ,CD 上的点,且∠EAF 是∠BAD 的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD 是边长为5的正方形,∠EBF =45°,直接写出三角形DEF 的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵EAF GAFAF AF⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵A BOG AF BF ⎪∠=∠⎨⎪=⎩,∴△AEB ≌△CGB (SAS ),∴BE =BG ,∠ABE =∠CBG .∵∠EBF =45°,∠ABC =90°,∴∠ABE +∠CBF =45°,∴∠CBF +∠CBG =45°.在△EBF 与△GBF 中,∵BE BG EBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△GBF (SAS ),∴EF =GF ,∴△DEF 的周长=EF +ED +CF =AE +CF +DE +DF =AD +CD =10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.3.(1)已知△ABC 是等腰三角形,其底边是BC,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC=∠DCE,若∠A 等于60°(如图①).求证:EB=AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC 交AC 于F ,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC 是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF 是等边三角形,∠DFC=120°,得出AD=DF ,由已知条件得出∠FDC=∠DEC,ED=CD ,由AAS 证明△DBE≌△CFD,得出EB=DF ,即可得出结论;(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,则△ADF 为等边三角形∴AD=DF ,又∵ ∠DEC=∠DCB ,∠DEC+∠EDB=60°,∠DCB+∠DCF=60° ,∴ ∠EDB=∠DCA ,DE=CD ,在△DEB 和△CDF 中,120EBD DFC EDB DCF DE CD ,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB ≌△CDF ,∴BD=DF ,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.4.(1)如图1,在Rt△ABC 中,AB AC=,D 、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.5.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.【答案】(1)详见解析;(2)BE +CF >EF ,证明详见解析【解析】【分析】(1)先利用ASA 判定△BGD ≅CFD ,从而得出BG=CF ;(2)利用全等的性质可得GD=FD ,再有DE ⊥GF ,从而得到EG=EF ,两边之和大于第三边从而得出BE+CF >EF .【详解】解:(1)∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD又∵∠BDG =∠CDF ,在△BGD 与△CFD 中,∵DBG DCF BD CD BDG CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD ≌△CFD (ASA ).∴BG =CF .(2)BE +CF >EF .∵△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴EG =EF (垂直平分线到线段端点的距离相等).∴在△EBG 中,BE +BG >EG ,即BE +CF >EF .【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 、HL .6.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.7.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v =【解析】【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t =解得3t =∴3CQ vcm = ∵5AB CQ cm ==∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.8.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC ≌△CHA ,即可证得AH =BC ,此时AD =12BC ,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC ≌△CHA ,并用一句话总结题中的结论;(2)现将图1中△ABC 折叠(如图3),点A 与点D 重合,折痕为EF ,此时不难看出△BDE 和△CDF 都是等腰直角三角形.BE =DE ,CF =DF .由勾股定理可知DE 2+DF 2=EF 2,因此BE 2+CF 2=EF 2,若图2中△ABC 也进行这样的折叠(如图4),此时线段BE 、CF 、EF 还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF 绕着点D 旋转(如图5),射线DE 、DF 分别交AB 、AC 于点E 、F ,此时(2)中结论还成立吗?请说明理由.图4中的△DEF 也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED 到H 山顶DH =DE .∵ED =DH ,∠EDB =∠HDC ,DB =DC ,∴△EDB ≌△HDC (SAS ),∴∠B =∠HCD ,BE =CH ,∵∠B +∠ACB =90°,∴∠ACB +∠HCD =90°,∴∠FCH =90°,∴FH 2=CF 2+CH 2,∵DF ⊥EH ,ED =DH ,∴EF =FH ,∴EF 2=BE 2+CF 2.(3)图5,图6中,上面的关系式仍然成立.结论:EF 2=BE 2+CF 2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.在等边ABC 中,点D 是边BC 上一点.作射线AD ,点B 关于射线AD 的对称点为点E .连接CE 并延长,交射线AD 于点F .(1)如图,连接AE ,①AE 与AC 的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1)①AB=AE;②∠BCF=α;(2) AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB,∠BAF=∠EAF=α,由ABC是等边三角形,得AB=AC,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解;(2)作∠FCG=60°交AD于点G,连接BF,易证∆FCG是等边三角形,得GF=FC,再证∆ACG≅∆BCF(SAS),从而得AG=BF,进而可得到结论.【详解】(1)①∵点B关于射线AD的对称点为点E,∴AB和AE关于射线AD的对称,∴AB=AE.故答案是:AB=AE;②∵点B关于射线AD的对称点为点E,∴AE=AB,∠BAF=∠EAF=α,∵ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦,∴∠BCF=∠ACE-∠ACB=60α+-60°=α.(2)AF-EF=CF,理由如下:作∠FCG=60°交AD于点G,连接BF,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCFCG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.已知:4590ABC A ACB∆∠=∠=,,,点D是AC延长线上一点,且22AD=+,,M是线段CD上一个动点,连接BM,延长MB到H,使得HB MB=,以点B为中心,将线段BH逆时针旋转45,得到线段BQ,连接AQ.(1)依题意补全图形;(2)求证:ABQ AMB∠=∠;(3)点N是射线AC上一点,且点N是点M关于点D的对称点,连接BN,如果QA BN=,求线段AB的长.【答案】(1)见解析;(2)证明见解析;(3)22AB=【解析】【分析】(1)根据题意可以补全图形;(2)根据三角形外角的性质即可证明;(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,2CD x =,结合已知22AD =+,构建方程即可求解. 【详解】(1)补全图形如下图所示:(2)解:∵∠ABH 是ABM 的一个外角,∴ ABH BAM AMB ∠=∠+∠∵ABH HBQ ABQ ∠=∠+∠ 又∵45HBQ BAM ∠=∠=︒∴ ABQ AMB ∠=∠(3)过Q 作QE ⊥AB ,垂足为E , 如下图:∵⊥QE AB∴90QEB BCM ∠=∠=︒,在QEB 和BCM 中,QEB BCM QBE BMC QB BM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ QEB BCM ≅(AAS)∴EB CM =,QE BC =,在Rt QEA 和Rt BCN 中∵QE BC =,Q A BN = ∴Rt QEA Rt BCN ≅ (HL)∴AE CN CM MD DN ==++∵点N 是点M 关于点D 的对称点,∴MD DN =∴22AE CM MD EB MD =+=+∴ ()2222AB AE EB EB MD EB MD CD =+=+=+=设AC BC x ==,则AB =,CD x =,又∵2AD =, 2AD AC CD x x =+=+∴22x x += 解得:2x =∴ AB =【点睛】本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.。
八年级数学上册【几何模型三角形轴对称】试卷测试卷(解析版)
八年级数学上册【几何模型三角形轴对称】试卷测试卷(解析版)一、八年级数学 轴对称解答题压轴题(难)1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.2.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.3.已知:三角形ABC 中,∠A=90°,AB=AC,D 为BC 的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.4.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE .(1)求∠CAM 的度数;(2)若点D 在线段AM 上时,求证:△ADC ≌△BEC ;(3)当动D 在直线..AM 上时,设直线BE 与直线AM 的交点为O ,试判断∠AOB 是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB 是定值,∠AOB =60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°.∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE . 在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD .由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.6.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答. 【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H , ∵∠BAO =60°, ∴∠ABO =30°, ∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ , 在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°, ∴PD =2DO =6, ∵PD =23DC , ∴DC =9,即 OC =OD+CD =12, ∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB , ∴∠AEP =∠ADB =120°, ∴∠OEF =60°, ∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小, ∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.7.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________. 【答案】(1)见详解;(2)见详解;(3)20或40. 【解析】 【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案. 【详解】 (1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4, ∵DE CE =,c x ∠=︒, ∴∠EDB=x °, ∴∠ADE=∠AED=2x °, ∵AD BD =, ∴∠BAD=∠B=30°, ∴30+30=2x+x , 解得:x=20;②当AD=DE 时,如图5, ∵DE CE =,c x ∠=︒, ∴∠EDB=x °, ∴∠DAE=∠AED=2x °, ∵AD BD =, ∴∠BAD=∠B=30°, ∴30+30+2x+x=180,解得:x=40.③当AE=DE时,则∠EAD=∠EDA=1802(90)2xx-=-,∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.9.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.10.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)【答案】(1)4cm;(2)PB=PC,理由见解析;(3)4【解析】【分析】(1)根据AAS定理证明△ABP≌△PCD,可得BP=CD;(2)延长线段AP、DC交于点E,分别证明△DPA≌△DPE、△APB≌△EPC,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,B CBAP CPDAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,ADP EDPDP DPDPA DPE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPA≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB 和△EPC 中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB ≌△EPC (AAS ),∴PB =PC ;(3)∵△PDC 是等腰三角形,∴△PCD 为等腰直角三角形,即∠DPC =45°,又∵DP ⊥AP ,∴∠APB =45°,∴BP =AB =1cm ,∴PC =BC ﹣BP =4cm ,∴CD =CP =4cm ,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.。
数学八年级上册 【几何模型三角形轴对称】试卷(Word版 含解析)
数学八年级上册【几何模型三角形轴对称】试卷(Word版含解析)一、八年级数学轴对称解答题压轴题(难)1.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m 是边BC 的垂直平分线,∴OB =OC ,∵直线n 是边AC 的垂直平分线,∴OA =OC ,∴OA =OB∵OH ⊥AB ,∴AH =BH ;(2)如图③中,连接BD ,BE .∵BA =BC ,∠ABC =120°,∴∠A =∠C =30°,∵边AB 的垂直平分线交AC 于点D ,边BC 的垂直平分线交AC 于点E ,∴DA =DB ,EB =EC ,∴∠A =∠DBA =30°,∠C =∠EBC =30°,∴∠BDE =∠A +∠DBA =60°,∠BED =∠C +∠EBC =60°,∴△BDE 是等边三角形,∴AD =BD =DE =BE =EC ,∵AC =15=AD +DE +EC =3DE ,∴DE =5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.2.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.3.问题探究:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .(1)证明:AD=BE ;(2)求∠AEB 的度数.问题变式:(3)如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE .(Ⅰ)请求出∠AEB 的度数;(Ⅱ)判断线段CM 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.4.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线,∴∠CAM12=∠BAC,∴∠CAM=∠BAM=30°.(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD =∠BCE.在△ADC和△BEC中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)∠AOB是定值,∠AOB=60°.理由如下:①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°.∵△ABC是等边三角形,线段AM为BC边上的中线,∴AM平分∠BAC,即11603022BAM BAC∠∠==⨯︒=︒,∴∠BOA=90°﹣30°=60°.②当点D在线段AM的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD .由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案; (3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.6.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1),∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS )∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.7.已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.①当t=2时,求∠AQP的度数.②当t为何值时△PBQ是直角三角形?(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.【答案】(1)①∠AQP=30°;②当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),解得t=83;∴当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由如下:如图所示,过点Q作QF∥AC,交AB于F,则△BQF是等边三角形,∴BQ=QF,∠BQF=∠BFQ=60°,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠BFQ=60°,∴∠QFP=∠PAC=120°,∵PQ=PC,∴∠QCP=∠PQC,∵∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∴∠BPQ=∠ACP,在△PQF和△CPA中,∵BPQ ACPQFP PAC PQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF≌△CPA(AAS),∴AP =QF ,∴AP =BQ ,∴BQ +CQ =BC =AC ,∴AP +CQ =AC .【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.8.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.9.已知ABC 为等边三角形,E 为射线AC 上一点,D 为射线CB 上一点,AD DE =. (1)如图1,当点E 在AC 的延长线上且CD CE =时,AD 是ABC 的中线吗?请说明理由;(2)如图2,当点E 在AC 的延长线上时,写出,,AB BD AE 之间的数量关系,请说明理由;(3)如图3,当点D 在线段CB 的延长线上,点E 在线段AC 上时,请直接写出,,AB BD AE 的数量关系.【答案】(1)AD 是ABC 的中线,理由详见解析;(2)AB BD AE +=,理由详见解析;(3)AB AE BD =+.【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,AD DEDF DFAF EF=⎧⎪=⎨⎪=⎩,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.10.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.。
数学八年级上册 【几何模型三角形轴对称】试卷专题练习(解析版)
数学八年级上册 【几何模型三角形轴对称】试卷专题练习(解析版)一、八年级数学 轴对称解答题压轴题(难)1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值; (3)当△APQ 为等边三角形时,直接写出t 的值. 【答案】(1)60;(2)103或203;(3)5或20 【解析】 【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形. 【详解】 解:(1)60°. (2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°. ∴QA=2PA . 即2022 2.t t -=⨯ 解得 10.3t =当∠AQP=90°时,∠APQ=90°-60°=30°. ∴PA=2QA . 即2(202)2.t t -= 解得 20.3t =∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形 ∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20 综上,当△APQ 为等边三角形时,t=5或20. 【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.2.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”. 理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”; 在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可); 应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42° 【解析】 【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.3.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.4.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.5.已知:等边ABC∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求ANBN的值.(2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BEBC-的值. 【答案】(1)3;(2)见解析;(3)32.【解析】 【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得. 【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点 ∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒ ∴30BAM ∠=︒,90AMB ∠=︒ ∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN ∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠ ∴在Rt BNM ∆中,2BM BN = 在Rt ABM ∆中,2AB BM = ∴24AB AN BN BM BN =+== ∴3AN BN =即3ANBN=. (2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCP AEP PFC MPPC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS ∆∆≌ ∴ME FC =∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+= ∴3322BCBF BE BC BC -==. 【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.6.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可.【详解】AB=,解:(1)∵点B坐标为6,0,点A是y轴正半轴上一点,且10∴ABO是直角三角形,根据勾股定理有:2222AO AB BO,1068∴点A的坐标为()0,8;(2)∵ABP△是等腰三角形,当BP AB时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.7.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC-=.在图5中,(1)中的结论成立,OD OE OC-=【解析】【分析】(1)通过ASA证明CDO CEF∆∆≌即可得到CD=CE;(2)过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,通过AAS证明CMD CNE∆∆≌同样可得到CD=CE;(3)①方法一:过点C作C M OA⊥,CN OB⊥垂足分别为M,N,通过AAS得到CMD CNE∆∆≌,进而得到,CD CE DM EN==,利用等量代换得到=OE OD ON OM++,在Rt CMO∆中,利用30°角所对的边是斜边的一半得12OM OC=,同理得到12ON OC=,所以OE OD OC+=;方法二:以CO为一边作60FCO∠=︒,交O B于点F,通过ASA证明CDO CEF∆∆≌,得到,CD CE OD EF==,所以OE OD OE EF OF OC+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.【详解】解:(1)OC平分AOB∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵90AOB DCE ∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD ∆与CNE ∆中,32CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS ∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC +=.理由如下:方法一:如图3(1),过点 C 作 C M OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形ODCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵60120180AOB DCE ∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO∠=∠+∠=︒,∴46∠=∠,在CDO∆与CEF∆中,1346CO CF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA∆∆≌,∴,CD CE OD EF==.∴OE OD OE EF OF OC+=+==.②在图4中,(1)中的结论成立,OE OD OC-=.如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.8.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=3=∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23故答案为:3(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=3=∴C 'H =4+1=5,∴C'F22'253C H HF=+=+=27,∴DE+EF的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.9.已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.①当t=2时,求∠AQP的度数.②当t为何值时△PBQ是直角三角形?(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.【答案】(1)①∠AQP=30°;②当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),解得t=83;∴当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由如下:如图所示,过点Q作QF∥AC,交AB于F,则△BQF是等边三角形,∴BQ=QF,∠BQF=∠BFQ=60°,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠BFQ=60°,∴∠QFP=∠PAC=120°,∵PQ=PC,∴∠QCP=∠PQC,∵∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∴∠BPQ=∠ACP,在△PQF和△CPA中,∵BPQ ACPQFP PAC PQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF≌△CPA(AAS),∴AP=QF,∴AP=BQ,∴BQ+CQ=BC=AC,∴AP+CQ=AC.【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.10.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,△AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形△AMN?(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【解析】【分析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN=3t﹣24=6解得t=10;④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图此时2t=12+6解得t=9;综上所述,点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.。
八年级上册数学 【几何模型三角形轴对称】试卷中考真题汇编[解析版]
八年级上册数学 【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学 轴对称解答题压轴题(难)1.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数;(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.2.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.3.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC 中,∠A=36°,直线BD 平分∠ABC 交AC 于点D ,求证:△ABD 和△DBC 都是等腰三角形;(2)如图,在△ABC 中,AB=AC ,∠A=36°,请你设计三种不同的方法,将△ABC 分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.4.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.5.如图,在ABC∆中,CE为三角形的角平分线,AD CE⊥于点F交BC于点D (1)若9628BAC B︒︒∠=∠=,,直接写出BAD∠=度(2)若2ACB B∠=∠,①求证:2AB CF=②若,CF a EF b==,直接写出BDCD=(用含,a b的式子表示)【答案】(1)34;(2)①见详解;②2ba b- 【解析】 【分析】(1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由//AH BC 得出AH AE a bBC BE a b-==+,进而得出结论. 【详解】解:(1)∵9628BAC B ︒︒∠=∠=,, ∴180962856ACB ∠=︒-︒-︒=︒, ∵CE 为三角形的角平分线, ∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒, ∴966234BAD ∠=︒-︒=︒. 故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠ ∴B BCE ∠=∠ ∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠ ∴AE=HE ∵AD CE ⊥ ∴HF=CF ∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CFAFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅ ∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+ ∵ //AH BC ∴AH AE a bBC BE a b -==+ ∴CD a bBC a b -=+ ∴2BD bCD a b=-. 故答案为:2ba b-. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.6.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE . (1)求∠CAM 的度数;(2)若点D 在线段AM 上时,求证:△ADC ≌△BEC ;(3)当动D 在直.线.AM 上时,设直线BE 与直线AM 的交点为O ,试判断∠AOB 是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB 是定值,∠AOB =60°. 【解析】 【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论. 【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°. ∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE .在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°. 由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°. ③当点D 在线段MA 的延长线上时. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD . 由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.7.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.8.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N . 【答案】(1)见详解;(2)见详解. 【解析】 【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可. 【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示: (2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.9.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E为AB的中点时,DE=;(2)如图②,点E在运动过程中,DE与EC满足什么数量关系?请说明理由;(3)如图③,F是AC的中点,连接EF.在AB边上是否存在点E,使得DE+EF值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE=CE,理由见解析;(3)这个最小值为7;【解析】【分析】(1)如图①,过点E作EH⊥BC于H,由等边三角形的性质可得BE=DB=AE=2,由直角三角形的性质可求BH=1,EH3(2)如图②,过E作EF∥BC交AC于F,可证△AEF是等边三角形,AE=EF=AF=BD,由“SAS”可证△DBE≌△EFC,可得DE=CE;(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H,由“SAS”可证△ACE'≌△AC'E',可得C'E'=CE',可得当点C',点E',点F三点共线时,DE+EF的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点, ∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC , ∴∠BEH =30°,∴BH =1,EH 3=BH 3=, ∴DH =DB +BH =2+1=3, ∴DE 2293DH EH =+=+=23.故答案为:23; (2)DE =CE.理由如下: 如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC. ∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°, ∴∠AEF =∠AFE =∠A =60°, ∴△AEF 是等边三角形, ∴AE =EF =AF , ∴AB ﹣AE =AC ﹣AF , ∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF , ∴△DBE ≌△EFC (SAS), ∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.10.已知等边△ABC 的边长为4cm ,点P ,Q 分别是直线AB ,BC 上的动点.(1)如图1,当点P 从顶点A 沿AB 向B 点运动,点Q 同时从顶点B 沿BC 向C 点运动,它们的速度都为lcm /s ,到达终点时停止运动.设它们的运动时间为t 秒,连接AQ ,PQ . ①当t =2时,求∠AQP 的度数.②当t 为何值时△PBQ 是直角三角形?(2)如图2,当点P 在BA 的延长线上,Q 在BC 上,若PQ =PC ,请判断AP ,CQ 和AC 之间的数量关系,并说明理由.【答案】(1)①∠AQP=30°;②当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),解得t=83;∴当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由如下:如图所示,过点Q作QF∥AC,交AB于F,则△BQF是等边三角形,∴BQ=QF,∠BQF=∠BFQ=60°,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠BFQ=60°,∴∠QFP=∠PAC=120°,∵PQ=PC,∴∠QCP=∠PQC,∵∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∴∠BPQ=∠ACP,在△PQF和△CPA中,∵BPQ ACPQFP PAC PQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF≌△CPA(AAS),∴AP=QF,∴AP=BQ,∴BQ+CQ=BC=AC,∴AP+CQ=AC.【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.。
数学八年级上册 【几何模型三角形轴对称】试卷(Word版 含解析)
数学八年级上册【几何模型三角形轴对称】试卷(Word版含解析)一、八年级数学轴对称解答题压轴题(难)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.2.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.3.如图,在平面直角坐标系中,A (﹣3,0),点 B 是 y 轴正半轴上一动点,点C 、D 在 x 正半轴上.(1)如图,若∠BAO =60°,∠BCO =40°,BD 、CE 是△ABC 的两条角平分线,且BD 、CE 交于点F ,直接写出CF 的长_____.(2)如图,△ABD 是等边三角形,以线段BC 为边在第一象限内作等边△BCQ ,连接 QD 并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,∴DB=DC,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.4.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段O D、OE、OC有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC-=.在图5中,(1)中的结论成立,OD OE OC-=【解析】【分析】(1)通过ASA证明CDO CEF∆∆≌即可得到CD=CE;(2)过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,通过AAS证明CMD CNE∆∆≌同样可得到CD=CE;(3)①方法一:过点C作C M OA⊥,CN OB⊥垂足分别为M,N,通过AAS得到CMD CNE∆∆≌,进而得到,CD CE DM EN==,利用等量代换得到=OE OD ON OM++,在Rt CMO∆中,利用30°角所对的边是斜边的一半得12OM OC=,同理得到12ON OC=,所以OE OD OC+=;方法二:以CO为一边作60FCO∠=︒,交O B于点F,通过ASA证明CDO CEF∆∆≌,得到,CD CE OD EF==,所以OE OD OE EF OF OC+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.【详解】解:(1)OC平分AOB∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N , ∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵90AOB DCE ∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD ∆与CNE ∆中,32CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS ∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC +=.理由如下:方法一:如图3(1),过点 C 作 C M OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形ODCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵60120180AOB DCE ∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+. 在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F , ∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO∠=∠+∠=︒,∴46∠=∠,在CDO∆与CEF∆中,1346CO CF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA∆∆≌,∴,CD CE OD EF==.∴OE OD OE EF OF OC+=+==.②在图4中,(1)中的结论成立,OE OD OC-=.如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.5.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案. 【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.6.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD∆中,30D CAO∠=∠=︒∴180120 AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E ∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F∵P D 、关于OC 对称∴,90PF DF PFO DFO =∠=∠=︒在ODF ∆与OPF ∆中,PF DF PFO DFO OF OF =⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS ∆≅∆∴OP OD =,POC DOC ∠=∠∵OA OD =∴AO=OP∴AOP ∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.7.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.8.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°;变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值. 【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长(3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1)AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=,37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2)CE AB ⊥, 1122ABC S BC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =, 245CE ∴=. (3) 245【点睛】 本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.。
人教版八年级上册数学 【几何模型三角形轴对称】试卷中考真题汇编[解析版]
人教版八年级上册数学【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学轴对称解答题压轴题(难)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.2.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线,∴∠CAM12∠BAC,∴∠CAM=∠BAM=30°.(2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE .在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°. 由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°. ③当点D 在线段MA 的延长线上时. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD . 由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.4.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答. 【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H , ∵∠BAO =60°, ∴∠ABO =30°, ∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°, ∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°, ∴PD =2DO =6, ∵PD =23DC , ∴DC =9,即 OC =OD+CD =12, ∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB , ∴∠AEP =∠ADB =120°, ∴∠OEF =60°, ∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小, ∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.5.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.6.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=- 解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.7.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE时,则∠EAD=∠EDA=1802(90)2xx-=-,∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.8.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC 、BD 相交于点H ,如图2,由轴对称的性质可证明△ACE ≌△DCE ,可得∠CAE =∠CDE ,进而得∠DBC =∠CAE ,然后根据三角形的内角和可得∠AEB =∠BCA ,即可作出判断;(3)如图3,在BD 上取一点M ,使得CM=CE ,先利用三角形的外角性质得出∠BEC 60=︒,进而得△CME 是等边三角形,可得∠MCE =60°,ME=CE ,然后利用角的和差关系可得∠BCM =∠DCE ,再根据SAS 证明△BCM ≌△DCE ,于是BM=DE ,进一步即可得出线段AE ,BD ,CE 之间的数量关系.【详解】解:(1)如图1,连接CD ,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,∠DCP =∠ACP =α,∵△ABC 是等边三角形,∴AC=BC ,∠ACB =60°,∴∠BCD =602α︒+,BC=DC ,∴∠DBC =∠BDC ()1806021806022BCD αα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.9.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD=∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸) (2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠ 60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD == ()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
八年级数学【几何模型三角形轴对称】试卷测试卷(含答案解析)
八年级数学【几何模型三角形轴对称】试卷测试卷(含答案解析)一、八年级数学轴对称解答题压轴题(难)1.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得AD DG=,连接BG,结合D是BC的中点,易证△ADC和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG.∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.2.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C ,∵BD=BC=AD ,∴∠A=∠ABD ,∠C=∠BDC ,设∠A=∠ABD=x ,则∠BDC=2x ,∠C=°180-2x 可得°180-22x x = ∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时,∵2x+x=27°+27°,∴x=18°;②当AD=DE 时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C 为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.3.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数;(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.4.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.5.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .(1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ; ②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以60A ACB∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD∠=︒,∴120BPC∠=︒;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=12∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:2AP PM=;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.6.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x +x =180°,∴x =40°;综上所述,∠C 为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.7.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =. 数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.8.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.9.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数. (2)根据三角形ABC 的面积可得出CE 的长 (3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1)AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=,37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2) CE AB ⊥,1122ABC SBC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =,245CE ∴=. (3) 245【点睛】本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)262. 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠= 222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
八年级上册【几何模型三角形轴对称】试卷测试卷(解析版)
八年级上册【几何模型三角形轴对称】试卷测试卷(解析版)一、八年级数学轴对称解答题压轴题(难)1.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB=AC,∴BF=AC;(2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90º,∴∠AEB=90°-2x,∵EF=EC,∴∠EFC=∠ECF,∵∠EFC+∠ECF=∠AEB=90°-2x,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.2.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC 中,∠A=36°,直线BD 平分∠ABC 交AC 于点D ,求证:△ABD 和△DBC 都是等腰三角形;(2)如图,在△ABC 中,AB=AC ,∠A=36°,请你设计三种不同的方法,将△ABC 分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.3.再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22AC BC+=2212+=5.故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=5.AN=AC=1,CD=AD﹣AC=5﹣1.∵BC=2,∴CDBC=51-,∴矩形BCDE是黄金矩形.∵MNDN=15+=51-,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH51,宽HE=35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.4.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC , ∵BD 是△ABC 的一条特异线,∴△ABD 与△BCD 为等腰三角形,∴AD=BD=BC ,∴∠A=∠ABD ,∠C=∠BDC ,∴∠ABC=∠C=∠BDC ,∵∠BDC=∠A+∠ABD=2∠A ,设∠A=x ,则∠C=∠ABC=∠BDC=2x ,在△ABC 中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.6.已知如图1,在ABC∆中,AC BC=,90ACB∠=,点D是AB的中点,点E是AB边上一点,直线BF垂直于直线CE于点F,交CD于点G.(1)求证:AE CG=.(2)如图2,直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M,求证:BE CM=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.8.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =-解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.9.探究题:如图,AB ⊥BC ,射线CM ⊥BC ,且BC =5cm ,AB =1cm ,点P 是线段BC (不与点B 、C 重合)上的动点,过点P 作DP ⊥AP 交射线CM 于点D ,连结AD .(1)如图1,若BP =4cm ,则CD = ;(2)如图2,若DP 平分∠ADC ,试猜测PB 和PC 的数量关系,并说明理由;(3)若△PDC 是等腰三角形,则CD = cm .(请直接写出答案)【答案】(1)4cm ;(2)PB =PC ,理由见解析;(3)4【解析】【分析】(1)根据AAS 定理证明△ABP ≌△PCD ,可得BP =CD ;(2)延长线段AP 、DC 交于点E ,分别证明△DPA ≌△DPE 、△APB ≌△EPC ,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC =5cm ,BP =4cm ,∴PC =1cm ,∴AB =PC ,∵DP ⊥AP ,∴∠APD =90°,∴∠APB +∠CPD =90°,∵∠APB +∠CPD =90°,∠APB +∠BAP =90°,∴∠BAP =∠CPD ,在△ABP 和△PCD 中,B C BAP CPD AB PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△PCD ,∴BP =CD =4cm ;(2)PB =PC ,理由:如图2,延长线段AP 、DC 交于点E ,∵DP 平分∠ADC ,∴∠ADP =∠EDP .∵DP ⊥AP ,∴∠DPA =∠DPE =90°,在△DPA 和△DPE 中,ADP EDP DP DPDPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DPA ≌△DPE (ASA ),∴PA =PE .∵AB ⊥BP ,CM ⊥CP ,∴∠ABP =∠ECP =Rt ∠.在△APB 和△EPC 中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB ≌△EPC (AAS ),∴PB =PC ;(3)∵△PDC 是等腰三角形,∴△PCD 为等腰直角三角形,即∠DPC =45°,又∵DP ⊥AP ,∴∠APB =45°,∴BP =AB =1cm ,∴PC =BC ﹣BP =4cm ,∴CD =CP =4cm ,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.10.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.。
八年级数学上册 【几何模型三角形轴对称】试卷专题练习(解析版)
八年级数学上册【几何模型三角形轴对称】试卷专题练习(解析版)一、八年级数学轴对称解答题压轴题(难)1.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.2.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.3.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD =AE 时,∵2x +x =30°+30°,∴x =20°;②当AD =DE 时,∵30°+30°+2x +x =180°,∴x =40°;综上所述,∠C 为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值.(2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN =即3AN BN=. (2)如下图:过点M 作ME ∥BC 交AC 于E∴∠CME=∠MCB ,∠AEM=∠ACB∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴() EMP FCP AAS∆∆≌∴ME FC=∴1322 BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.5.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABCDBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.6.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠, BCF ∴是等腰三角形,90BCF ∠=︒, BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.7.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,通过ASA 证明CDO CEF ∆∆≌,得到,CD CE OD EF ==,所以OE OD OE EF OF OC +=+==;②图4:以OC 为一边,作∠OCF=60°与OB 交于F 点,利用ASA 证得△COD ≌△CFE ,即有CD=CE ,OD=EF得到OE=OF+EF=OC+OD ;图5:以OC 为一边,作∠OCG=60°与OA 交于G 点,利用ASA 证得△CGD ≌△COE ,即有CD=CE ,OD=EF ,得到OE=OF+EF=OC+OD.【详解】解:(1)OC 平分AOB ∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形O DCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC +=.理由如下:方法一:如图3(1),过点 C 作 C M OA ⊥,CN OB⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形ODCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵60120180AOB DCE ∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+. 在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒,∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F , ∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中,1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌,∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.②在图4中,(1)中的结论成立,OE OD OC -=.如图,以OC 为一边,作∠OCF=60°与OB 交于F 点∵∠AOB=120°,OC 为∠AOB 的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF 为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.8.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS进一步证明△BAD≌△CAE,根据对应角相等求出BEC∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n°,根据SAS进一步证明△BAD≌△CAE,根据对应角相等求出得出∠ADB=BEC∠的度数,结合内角和用n表示∠ADE的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC 和△ADE 均为等腰直角三角形,∴ AB=AC ,AD=AE ,∠ADE=∠AED=n°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE. ∴ △BAD ≌△CAE (SAS ).∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.10.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒∴180120AOD D CAO ∠=︒-∠-∠=︒∴30COD AOD AOC ∠=∠-∠=︒(2)过O 作//OE AB ,OE 交AD 于E∵//OE AB∴60EOC ABC ∠=∠=︒60CEO CAB ∠=∠=︒∴COE ∆为等边三角形∴OE OC CE ==180120AEO CEO ∠=︒-∠=︒180120DCO ACB ∠=︒-∠=︒又∵OA OD =∴EAO CDO ∠=∠在AOE ∆和COD ∆中AOE DOC EAO CDO OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS ∆≅∆∴CD EA =∵EA AC CE =-BO BC CO =-∴EA BO =∴BO CD =,∵AB AC =,AD AC CD =+∴AD AB BO =+(3)AOP ∆为等边三角形证明过程如下:连接,PC PD ,延长OC 交PD 于F∵P D 、关于OC 对称∴,90PF DF PFO DFO =∠=∠=︒在ODF ∆与OPF ∆中,PF DF PFO DFO OF OF =⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS ∆≅∆∴OP OD =,POC DOC ∠=∠∵OA OD =∴AO=OP∴AOP ∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.。
八年级上册【几何模型三角形轴对称】试卷测试卷 (word版,含解析)
八年级上册【几何模型三角形轴对称】试卷测试卷(word版,含解析)一、八年级数学轴对称解答题压轴题(难)1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.∆中,线段AM为BC边上的中线.动点D在直线AM上时,以2.如图,在等边ABCCD为一边在CD的下方作等边CDE∆,连结BE.∠的度数;(1)求CAM∆≅∆;(2)若点D在线段AM上时,求证:ADC BEC∠是否(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB为定值?并说明理由.【答案】(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.3.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P作PM∥BC交AB于M,先证明M是AB的中点,再证明EMP∆与FCP∆全等,最后转化边即得.【详解】(1)∵ABC∆为等边三角形,点M是BC的中点∴AM平分∠BAC,AM BC⊥,60B BAC∠=∠=︒∴30BAM∠=︒,90AMB∠=︒∵60AMN∠=︒∴90AMNBAM∠+=︒∠,30∠=︒BMN∴90ANM∠=︒∴18090BNM ANM=︒-=︒∠∠∴在Rt BNM∆中,2BM BN=在Rt ABM∆中,2AB BM=∴24AB AN BN BM BN=+==∴3AN BN=即3ANBN=.(2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P 作PM ∥BC 交AB 于M∴AMP ABC =∠∠∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC ==∴60AMP A ==︒∠∠∴AP MP =,180120EMP AMP =︒-=︒∠∠,180120FCP ACB =︒-=︒∠∠ ∴AMP ∆是等边三角形,120EMP FCP ==︒∠∠∴AP MP AM ==∵P 点是AC 的中点∴111222AP PC MP AM AC AB BC ====== ∴12AM MB AB == 在EMP ∆与FCP ∆中EMP FCP AEP PFC MP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS ∆∆≌ ∴ME FC =∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+= ∴3322BC BF BE BC BC -==. 【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.4.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.5.如图1,在△ABC 中,∠ACB =90°,AC =12BC ,点D 为BC 的中点,AB =DE ,BE ∥AC . (1)求证:△ABC ≌△DEB ;(2)连结AD 、AE 、CE ,如图2.①求证:CE 是∠ACB 的角平分线;②请判断△ABE 是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB ∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.6.已知△ABC.(1)在图①中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD OE、求证:OD OE=;(3)如图②,在(1)的条件下,点E、F分别是AB、BC边上的点,且△BEF的周长等于BC边的长,试探究ABC∠与EOF∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC的平分线;利用基本作图作BC的垂直平分线,即可完成;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,用角平分线的性质证明OH=OG,BH=BG,继而证明EH =DG,然后可证明OEH ODG∆≅∆,于是可得到OE=OD;(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到 CD=BE,OEH ODG∆≅∆,OE=OD,EOH DOG∠=∠,180ABC HOG∠+∠=,可证明EOD HOG∠=∠,故有180ABC EOD∠+∠=,由△BEF的周长=BC可得到DF=EF,于是可证明OEF OGF∆≅∆,所以有EOF DOF∠=∠,然后可得到ABC∠与EOF∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,∴OH=OG,CG=BG,∵OB=OB,∴OBH OBG∆≅∆,∴BH=BG,∵BE=CD,∴EH=BH-BE=BG-CD=CG-CD=DG,在OEH∆和ODG∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩, ∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.7.八年级的小明同学通到这样一道数学题目:△ABC 为边长为4的等边三角形,E 是边AB 边上任意一动点,点D 在CB 的延长线上,且满足AE =BD .(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半) 【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ', 由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF , ∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=3=∴C 'H =4+1=5,∴C 'F 22'253C H HF +=+=27∴DE +EF 的最小值为27【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.9.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD∆中,30D CAO∠=∠=︒∴180120 AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E ∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F∵P D 、关于OC 对称∴,90PF DF PFO DFO =∠=∠=︒在ODF ∆与OPF ∆中,PF DF PFO DFO OF OF =⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS ∆≅∆∴OP OD =,POC DOC ∠=∠∵OA OD =∴AO=OP∴AOP ∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.10.如图,在等边△ABC 中,线段AM 为BC 边上的高,D 是AM 上的点,以CD 为一边,在CD 的下方作等边△CDE ,连结BE .(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.。
八年级数学上册【几何模型三角形轴对称】试卷测试与练习(word解析版)
八年级数学上册【几何模型三角形轴对称】试卷测试与练习(word解析版)一、八年级数学轴对称解答题压轴题(难)1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.2.如图,在△ABC中,AB=BC=AC=20 cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2 cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=______度;(2)当0<t<10,且△APQ为直角三角形时,求t的值;(3)当△APQ为等边三角形时,直接写出t的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】 (1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20综上,当△APQ 为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.3.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC 边上的中线AD 的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD 到E ,使DE=AD ,连接BE.根据SAS 可证得到△ADC ≌△EDB ,从而根据“三角形的三边关系”可求得AD 的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°, ∵∠D=∠FCH ,∠DAF=∠CHF ,∴∠ACH+∠CAD=180°,故∠BAE= ACH ,又AB=AC ,AD=AE∴△BAE ≌△ACH (SAS ),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE 、BF 、EF 为边的三角形为直角三角形,理由如下:延长FD 到点G ,使DG=FD ,连结GA ,GE ,由题意得△DBF ≌△ADG ,∴FD=GD ,BF=AG,∵DE ⊥DF ,∴DE 垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG ,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG 2=AE 2+AG 2,∵EF=EG, BF=AG∴EF 2=AE 2+BF 2,则以线段AE 、BF 、EF 为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.4.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.5.在等边△ABC 中,点D 在BC 边上,点E 在AC 的延长线上,DE =DA (如图1).(1)求证:∠BAD =∠EDC ;(2)若点E 关于直线BC 的对称点为M (如图2),连接DM ,AM .求证:DA =AM .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC =∠ACB =60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA ,然后结合(1)可得∠MDC =∠BAD ,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,∴∠BAD =60°﹣∠DAE ,∠EDC =60°﹣∠E ,又∵DE =DA ,∴∠E =∠DAE ,∴∠BAD =∠EDC .(2)由轴对称可得,DM =DE ,∠EDC =∠MDC ,∵DE =DA ,∴DM =DA ,由(1)可得,∠BAD =∠EDC ,∴∠MDC =∠BAD ,∵△ABD 中,∠BAD +∠ADB =180°﹣∠B =120°,∴∠MDC +∠ADB =120°,∴∠ADM =60°,∴△ADM 是等边三角形,∴AD =AM .【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.6.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC , ∵BD 是△ABC 的一条特异线,∴△ABD 与△BCD 为等腰三角形,∴AD=BD=BC ,∴∠A=∠ABD ,∠C=∠BDC ,∴∠ABC=∠C=∠BDC ,∵∠BDC=∠A+∠ABD=2∠A ,设∠A=x ,则∠C=∠ABC=∠BDC=2x ,在△ABC 中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE 是线段AC 的垂直平分线,∴EA=EC ,∴△EAC 为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.7.已知△ABC.(1)在图 中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图 ,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.8.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.9.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC =+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
数学八年级上册 【几何模型三角形轴对称】试卷(Word版 含解析)
数学八年级上册【几何模型三角形轴对称】试卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s 【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP与△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC 与线段PQ 垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.3.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.5.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD , ∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.6.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34tt xt=-⎧⎨=⎩,解得11tx=⎧⎨=⎩,②若△ACP≌△BQP,则AC=BQ,AP=BP,34xtt t=⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.7.综合实践如图①,90,,,ACB AC BC AD CE BE CE∠=︒=⊥⊥,垂足分别为点D E、,2.5, 1.7AD cm DE cm==.(1)求BE的长;(2)将CE所在直线旋转到ABC∆的外部,如图②,猜想AD DE BE、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC∆中,,AC BC D C E=、、三点在同一直线上,并且BEC ADC BCAα∠=∠=∠=,其中α为任意钝角.猜想AD DE BE、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE≅,得到AD CE=,CD BE=,再根据2.5, 1.7AD cm DE cm==,CD CE DE=-,易求出BE的值;(2)先证明ACD CBE≅,得到AD CE=,CD BE=,由图②ED=EC+CD,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD与CBE△中,ADC E aACD BCEAC BC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ED EC CD=+∴ED AD BE=+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.8.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD,理由见解析;(2)AF=BD,成立;(3)①AF BF AB'+=,证明见解析;②①中的结论不成立新的结论是AF AB BF'=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可证得BCD ACF△≌△,然后由全等三角形的对应边相等知AF BD=.(2)通过证明BCD ACF△≌△,即可证明AF BD=.(3)①'AF BF AB+=,利用全等三角形BCD ACF△≌△的对应边BD AF=,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.9.操作发现:如图,已知△ABC 和△ADE 均为等腰三角形,AB =AC ,AD =AE ,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB =∠EAD =120°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS ),∴∠BAD =∠ACE ,BD =EC =4,同理可证∠BEC =∠BAC =120°,∴∠FEC =60°,∵CF ⊥EF ,∴∠F =90°,∴∠FCE =30°,∴EF =12EC =2. 【点睛】 本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.已知:4590ABC A ACB ∆∠=∠=,,,点D 是AC 延长线上一点,且22AD =+,,M 是线段CD 上一个动点,连接BM ,延长MB 到H ,使得HB MB =,以点B 为中心,将线段BH 逆时针旋转45,得到线段BQ ,连接AQ .(1)依题意补全图形;(2)求证:ABQ AMB ∠=∠;(3)点N 是射线AC 上一点,且点N 是点M 关于点D 的对称点,连接BN ,如果QA BN =, 求线段AB 的长.【答案】(1)见解析;(2)证明见解析;(3)22AB =【解析】【分析】(1)根据题意可以补全图形;(2)根据三角形外角的性质即可证明;(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,22CD x =,结合已知22AD =+,构建方程即可求解. 【详解】(1)补全图形如下图所示:(2)解:∵∠ABH 是ABM 的一个外角,∴ ABH BAM AMB ∠=∠+∠∵ABH HBQ ABQ ∠=∠+∠ 又∵45HBQ BAM ∠=∠=︒∴ ABQ AMB ∠=∠(3)过Q 作QE ⊥AB ,垂足为E , 如下图:∵⊥QE AB∴90QEB BCM ∠=∠=︒,在QEB 和BCM 中,QEB BCM QBE BMC QB BM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ QEB BCM ≅(AAS)∴EB CM =,QE BC =,在Rt QEA 和Rt BCN 中∵QE BC =,Q A BN = ∴Rt QEA Rt BCN ≅ (HL)∴AE CN CM MD DN ==++∵点N 是点M 关于点D 的对称点,∴MD DN =∴22AE CM MD EB MD =+=+∴ ()2222AB AE EB EB MD EB MD CD =+=+=+=设AC BC x ==,则AB =,2CD x =,又∵2AD =, 2AD AC CD x x =+=+∴2x x += 解得:2x =∴ AB =【点睛】本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学轴对称解答题压轴题(难)1.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB=AC,∴BF=AC;(2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90º,∴∠AEB=90°-2x,∵EF=EC,∴∠EFC=∠ECF,∵∠EFC+∠ECF=∠AEB=90°-2x,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.2.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.【答案】证明见解析【解析】【分析】延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD 到点G ,延长AD 到点G ,使得AD DG =,连接BG .∵AD 是BC 边上的中线,∴DC DB =. 在ADC 和GDB △中,AD DG ADC GDB DC DB =⎧⎪∠=∠⎨⎪=⎩(对顶角相等), ∴ADC ≌GDB △(SAS ).∴CAD G ∠=∠,BG AC =.又BE AC =,∴BE BG =.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C ,∵BD=BC=AD ,∴∠A=∠ABD ,∠C=∠BDC ,设∠A=∠ABD=x ,则∠BDC=2x ,∠C=°180-2x 可得°180-22x x = ∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.5.再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(1)5;(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22+=22AC BC+=5.12故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1.∵BC =2,∴CD BC =512-,∴矩形BCDE 是黄金矩形. ∵MN DN =215+=512-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH =5﹣1,宽HE =3﹣5.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.6.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF =∠1+∠BAF =60°即可解决问题;②只要证明△BFC ≌△ADB ,即可推出∠BFC =∠ADB =90°;(2)在BF 上截取BK =AF ,连接AK .只要证明△ABK ≌CAF ,可得S △ABK =S △AFC ,再证明AF =FK =BK ,可得S △ABK =S △AFK ,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.某数学兴趣小组开展了一次活动,过程如下:设(090BACθθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB、AC上.活动一、如图甲所示,从点1A开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:(填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.8.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG =.(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:BE CM =.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D 是AB 中点,∠ACB =90°,可得出∠ACD =∠BCD =45°,判断出△AEC ≌△CGB ,即可得出AE =CG ;(2)根据垂直的定义得出∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,再根据AC =BC ,∠ACM =∠CBE =45°,得出△BCE ≌△CAM ,进而证明出BE =CM .【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.9.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)262. 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠= 222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。