人教A版高中数学必修2《2.1.4 平面与平面之间的位置关系》_4

合集下载

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有

①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(

(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )

新人教A版高中数学教材目录(必修+选修)【很全面】

新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

数学:第二章《点、直线、平面之间的位置关系》教案(新人教A版必修2)

数学:第二章《点、直线、平面之间的位置关系》教案(新人教A版必修2)

点、直线、平面之间的位置关系复习(一)课型:复习课一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。

2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。

3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。

二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。

三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。

2、本章知识结构框图(二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。

公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。

2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。

(三)应用举例,深化巩固1、P.73 A 组第1题2、P.74 A 组第6、8题(四)、课堂练习:1.选择题 (1)如图BC 是R t ⊿ABC 的斜边,过A 作⊿ABC 所在平面α垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是( ) (A )4个 (B )6个 (C )7个 (D )8个(2)直线a 与平面α斜交,则在平面α内与直线a 垂直的直线( ) (A )没有 (B )有一条 (C )有无数条 (D )α内所有直线 答案:(1)D (2) C2.填空题(1)边长为a 的正六边形ABCDEF 在平面α内,PA ⊥α,PA =a ,则P 到CD 的距离为 ,P 到BC 的距离为 .(2)AC 是平面α的斜线,且AO =a ,AO 与α成60º角,OC ⊂α,AA '⊥α于A ',∠A 'OC =45º,则A 到直线OC 的距离是 , ∠AOC 的余弦值是 . 答案:(1)a a27,2; (2)42,414a 3.在正方体ABCD -A 1B 1C 1D 1中,求证:A 1C ⊥平面BC 1D .分析:A 1C 在上底面ABCD 的射影AC ⊥BD, A 1C 在右侧面的射影D 1C ⊥C 1D,所以A 1C ⊥BD, A 1C ⊥C 1D,从而有A 1C ⊥平面BC 1D .A A ′ CαOC1课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、P.76 B组第2题。

人教A版高中数学导学案必修2 第2章 点线面的位置关系

人教A版高中数学导学案必修2 第2章 点线面的位置关系

1§2.1.1 平面学习目标1. 了解平面的描述性概念;2. 掌握平面的表示方法和基本画法;3. 掌握平面的基本性质;4. 能正确地用数学语言表示点、直线、平面以及它们之间的关系.学习过程一、课前准备4043引入:平面是构成空间几何体的基本要素.那么什么是平面呢?平面如何表示呢?平面又有哪些性质呢?二、新课导学※探索新知探究1:平面的概念与表示问题:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗?新知1:平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.问题:通常我们用一条线段表示直线,那你认为用什么图形表示平面比较合适呢?新知2:如上图,通常用平行四边形来表示平面.平面可以用希腊字母,,αβγ来表示,也可以用平行四边形的四个顶点来表示,还可以简单的用对角线的端点字母表示.如平面α,平面ABCD,平面AC等.规定:①画平行四边形,锐角画成45°,横边长等于其邻边长的2倍;②两个平面相交时,画出交线,被遮挡部分用虚线画出来;③用希腊字母表示平面时,字母标注在锐角内.问题:点动成线、线动成面.联系集合的观点,点和直线、平面的位置关系怎么表示?直线和平面呢?新知3:⑴点A在平面α内,记作Aα∈;点A在平面α外,记作Aα∉.⑵点P在直线l上,记作P l∈,点P在直线外,记作P l∉.⑶直线l上所有点都在平面α内,则直线l在平面α内(平面α经过直线l),记作lα⊂;否则直线就在平面外,记作lα⊄.探究2:平面的性质问题:直线l与平面α有一个公共点P,直线l是否在平面α内?有两个公共点呢?新知4:公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表示为:,,A lB l∈∈且,A B lααα∈∈⇒⊂问题:两点确定一直线,两点能确定一个平面吗?任意三点能确定一个平面吗?新知5:公理2 过不在一条直线上的三点,有且只有一个平面. 如上图,三点确定平面ABC.问题:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B?为什么?新知6:公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面α与平面β相交于直线l,记作lαβ=.公理3用集合符号表示为,P a∈且Pβ∈⇒lαβ=,且P l∈※典型例题例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.2例2 如图在正方体ABCD A B C D ''''-中,判断下列⑴直线AC 在平面ABCD ⑵设上下底面中心为,O O 则平面AA C C ''与平面BB D D '的交线为OO ';⑶点,,A O C '⑷平面AB C ''与平面AC '重合.※ 动手试试练 用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内.三、总结提升※ 学习小结1. 平面的特征、画法、表示;2. 平面的基本性质(三个公理);3. 用符号表示点、线、面的关系.※ 知识拓展平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下面说法正确的是( ).①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示.A.①B.②C.③D.④ 2. 下列结论正确的是( ).①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过两条平行直线,可以确定一个平面④经过空间任意三点可以确定一个平面A.1个B.2个C.3个D.4个3. 们的交点一定( ) A.在直线DB 上B.在直线AB 上C.在直线CB 上D.都不对4. 直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________.5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个. 1. 画出满足下列条件的图形:⑴三个平面:一个水平,一个竖直,一个倾斜; ⑵ ,,,l AB CD αβαβ=⊂⊂AB ∥l ,CD ∥l .2.如图在正方体中,A 是顶点,,B C 都是棱的中点,请作出经过,,A B C 三点的平面与正方体的截面.3§2.1.2空间直线与直线之间的位置关系1. 正确理解异面直线的定义;2. 会判断空间两条直线的位置关系;3. 掌握平行公理及空间等角定理的内容和应用;4. 会求异面直线所成角的大小.一、课前准备(预习教材P 44~ P 47,找出疑惑之处) 复习1:平面的特点是______、 _______ 、_______.复习2:平面性质(三公理)公理1___________________________________; 公理2___________________________________; 公理3___________________________________.二、新课导学※ 探索新知探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线A B'与CC '的位置关系如何?结论:直线A B '与CC '既不相交,也不平行.新知1:像直线A B '与CC '这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b 异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线C D ''∥A B '',AB ∥A B '',那么直线AB 与C D ''平行吗?图2-1新知3: 公理4 (平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,ADC ∠与A D C '''∠,ADC ∠与A B C '''∠的两边分别对应平行,这两组角的大小关系如何?新知4: 定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.探究3:异面直线所成的角问题:平面内两条直线的夹角是如何定义的?想一想异面直线所成的角该怎么定义?图2-2新知5: 如图2-2,已知两条异面直线,a b ,经过空间任一点O 作直线 a '∥a ,b '∥b ,把a '与b '所成的锐角(或直角)叫做异面直线,a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ⊥.反思:思考下列问题.⑴ 作异面直线夹角时,夹角的大小与点O 的位置有关吗?点O 的位置怎样取才比较简便? ⑵ 异面直线所成的角的范围是多少?4⑶ 两条互相垂直的直线一定在同一平面上吗?⑷ 异面直线的夹角是通过什么样的方法作出来的?它体现了什么样的数学思想?※ 典型例题例1 如图2-3,,,,E F G H 分别为空间四边形ABCD 各边,,,AB BC CD DA 的中点,若对角线2,BD = 4AC =,则22EG HF +的值为多少?(性质:平行四边形的对角线的平方和等于四条边的平方和).图2-3例2 如图2-4,在正方体中,求下列异面直线所成的角.⑴BA '和CC ' ⑵B D ''和C A '图2-4※ 动手试试练 正方体ABCD A B C D ''''-的棱长为a ,求异面直线AC 与A D ''所成的角.三、总结提升※ 学习小结1. 异面直线的定义、夹角的定义及求法;2. 空间直线的位置关系;3. 平行公理及空间等角定理.※ 知识拓展异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.如图,,,,a A B B a ααα⊂∉∈∉,则直线AB 与直线※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. ,,a b c 为三条直线,如果,a c b c ⊥⊥,则,a b 的位置关系必定是( ).A.相交B.平行C.异面D.以上答案都不对 2. 已知,a b 是异面直线,直线c 平行于直线a ,那么c 与b ( ).A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线 3. 已知l αβ=,,a b αβ⊂⊂,且,a b 是异面直线,那么直线l ( ).A.至多与,a b 中的一条相交B.至少与,a b 中的一条相交C.与,a b 都相交D.至少与,a b 中的一条平行4. 正方体ABCD A B C D ''''-的十二条棱中,与直线AC '是异面直线关系的有___________条.5. 长方体1111ABCD A B C D -中,3AB =,2,BC =1AA =1,异面直线AC 与11AD 所成角的余弦值是______. 1. 已知,E E '是正方体AC '棱AD ,A D ''的中点,求证:CEB C E B '''∠=∠.2. 如图2-5,在三棱锥P ABC -中,PA BC ⊥,E 、F 分别是PC 和AB 上的点,且32PE AF EC FB ==,设EF 与PA 、BC 所成的角分别为,αβ, 求证:90αβ+=°.5图2-5§2.1.3空间直线与平面之间的位置关系 §2.1.4平面与平面之间的位置关系1. 掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系,会画相交平面的图形.一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:空间任意两条直线的位置关系有_______、 _______、_______三种.复习2:异面直线是指________________________ 的两条直线,它们的夹角可以通过______________ 的方式作出,其范围是___________.复习3:平行公理:__________________________ ________________;空间等角定理:____________ ___________________________________________.二、新课导学※ 探索新知 探究1:空间直线与平面的位置关系 问题:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线A B 与长方体的六个面有几种位置关系?图3-1新知1:直线与平面位置关系只有三种:⑴直线在平面内—— ⑵直线与平面相交—— ⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.反思:⑴从交点个数方面来分析,上述三种关系对应的交点有多少个?请把结果写在新知1的——符号后面 ⑵请你试着把上述三种关系用图形表示出来,并想想用符号语言该怎么描述.探究2:平面与平面的位置关系 问题:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种? 图3-2新知2:两个平面的位置关系只有两种: ⑴两个平面平行——没有公共点 ⑵两个平面相交——有一条公共直线试试:请你试着把平面的两种关系用图形以及符号语言表示出来.6※ 典型例题例1 下列命题中正确的个数是( )①若直线l 上有无数个点不在平面α内,则l ∥α. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3例2 已知平面,αβ,直线,a b ,且α∥β,a α⊂, b β⊂,则直线a 与直线b 具有怎样的位置关系?※ 动手试试练1. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A.α内的所有直线与a 异面B.α内不存在与a 平行的直线C.α内存在唯一的直线与a 平行D.α内的直线与a 都相交.练2. 已知,,a b c 为三条不重合的直线,,,αβγ为三个不重合的平面:①a ∥c ,b ∥c ⇒a ∥b ; ②a ∥γ,b ∥γ⇒a ∥b ; ③a ∥c ,c ∥α⇒a ∥α; ④a ∥γ,a ∥αα⇒∥γ;⑤a α⊄,b α⊂,a ∥b ⇒a ∥α. 其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤三、总结提升※ 学习小结1. 直线与平面、平面与平面的位置关系;2. 位置关系用图形语言、符号语言如何表示;3. 长方体作为模型研究空间问题的重要性.※ 知识拓展求类似确定空间的部分、平面的个数、交线的条数、交点的个数问题,都应对相应的点、线、面的位置关系进行分类讨论,做到不重不漏.分类讨论是数学中常用的重要数学思想方法,可以使问题化难※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线l 在平面α外,则( ).A.l ∥αB.l 与α至少有一个公共点C.l A α=D.l 与α至多有一个公共点 2. 已知a ∥α,b α⊂,则( ). A.a ∥b B.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ). A.1对 B.1对或2对 C.1对或2对或3对D.0对或1对或2对或3对4. 过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______. 1. 已知直线,a b 及平面α满足: a ∥α,b ∥α,则 直线,a b 的位置关系如何?画图表示.2. 两个不重合的平面,可以将空间划为几个部分?三个呢?试画图加以说明.§2.1 空间点、直线、平面之间的1. 理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系.一、课前准备(预习教材P40~ P50,找出疑惑之处)复习1:概念与性质⑴平面的特征和平面的性质(三个公理);⑵平行公理、等角定理;⑶直线与直线的位置关系⎧⎪⎨⎪⎩平行相交异面⑷直线与平面的位置关系⎧⎪⎨⎪⎩在平面内相交平行⑸平面与平面的位置关系⎧⎨⎩平行相交复习2:异面直线夹角的求法:平移线段作角,解三角形求角.复习3:图形语言、符号语言表示点、线、面的位置关系⑴点与线、点与面的关系;⑵线与线、线与面的关系;⑶面与面的关系.二、新课导学※典型例题例1 如图4-1,ABC∆在平面α外,AB Pα=,BC Qα=,AC Rα=,求证:P,Q,R三点共线.图4-1小结:证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.例2 如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH FG与相交于点K.求证:EH,BD,FG三条直线相交于同一点.图4-2小结:证明三线共点的基本方法为:先确定待证的三线中的两条相交于一点,再证明此点是二直线所在平面的公共点,第三条直线是两个平面的交线,由公理3得证这三线共点.例3 如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对?图4-378反思:分析清楚几何特点是避免重复计数的关键,计数问题必须避免盲目乱数,分类时要不重不漏.※ 动手试试练1. 如图4-4,是正方体的平面展开图,图4-4则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60°角 ④DM 与BN 是异面直线 其中正确命题的序号是( )A.①②③B.②④C.③④D.②③④练2. 如图4-5,在正方体中,E ,F 分别为AB 、AA '的中点,求证:CE ,D F ',DA 三线交于一点.图4-5练3. 由一条直线和这条直线外不共线的三点,能确定平面的个数为多少?小结:分类讨论的数学思想三、总结提升※ 学习小结1. 平面及平面基本性质的应用;2. 点、线、面的位置关系;3. 异面直线的判定及夹角问题.※ 知识拓展异面直线的判定方法:①定义法:利用异面直线的定义,说明两直线不平行,也不相交,即不可能在同一个平面内. ②定理法:利用异面直线的判定定理说明.③反证法(常用):假设两条直线不异面,则它们一定共面,即这两条直线可能相交,也可能平行,然.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ). A.1个 B.3个 C.6个 D.9个 2. 下列推理错误的是( ).A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合3. a ,b 是异面直线,b ,c 是异面直线,则a ,c 的位置关系是( ).A.相交、平行或异面B.相交或平行C.异面D.平行或异面4. 若一条直线与两个平行平面中的一个平面平行,则它与另一平面____________.5. 垂直于同一条直线的两条直线位置关系是_____ _____________;两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.课后作业1. 如图4-6,在正方体中M ,N 分别是AB 和DD '的中点,求异面直线B M '与CN 所成的角.图4-62. 如图4-7,已知不共面的直线a,b,c相交于O点,M,P点是直线α上两点,N,Q分别是直线b,c上一点.求证:MN和PQ§2.2.1 直线与平面平行的判定1. 通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;2. 理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.一、课前准备(预习教材P54~ P55,找出疑惑之处)复习:直线与平面的位置关系有______________,_______________,_________________.讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义好判断吗?二、新课导学※探索新知探究1:直线与平面平行的背景分析实例1:如图5-1,一面墙上有一扇门,门扇的两边是平行的.当门扇绕着墙上的一边转动时,观察门扇转动的一边l与墙所在的平面位置关系如何?图5-1实例2:如图5-2,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?图5-2结论:上述两个问题中的直线l与对应平面都是平行的.探究2:直线与平面平行的判定定理问题:探究1两个实例中的直线l为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.如图5-3所示,a∥α.图5-3反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思想?⑶如果要证明这个定理,该如何证明呢?※典型例题例1 有一块木料如图5-4所示,P为平面BCEF内一点,要求过点P在平面BCEF内作一条直线与平面ABCD平行,应该如何画线?图5-4例2 如图5-5,空间四边形ABCD中,,E F分别是910,AB AD 的中点,求证:EF ∥平面BCD .图5-5※ 动手试试练1. 正方形ABCD 与正方形ABEF 交于AB ,M 和N 分别为AC 和BF 上的点,且AM FN =,如图5-6 所示.求证:MN ∥平面BEC .图5-6练 2. 已知ABC ∆,,D E 分别为,AC AB 的中点,沿DE 将ADE ∆折起,使A 到A '的位置,设M 是A B '的中点,求证:ME ∥平面A CD '.三、总结提升※ 学习小结1. 直线与平面平行判定定理及其应用,其核心是线线平行⇒线面平行;2. 转化思想的运用:空间问题转化为平面问题.※ 知识拓展判定直线与平面平行通常有三种方法: ⑴利用定义:证明直线与平面没有公共点.但直接证明是困难的,往往借助于反正法来证明. ⑵利用判定定理,其关键是证明线线平行.证明线线平行可利用平行公理、中位线、比例线段等等. ⑶利用平面与平面平行的性质.(后面将会学习到)※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若直线与平面平行,则这条直线与这个平面内的( ).A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交 2. 下列结论正确的是( ). A.平行于同一平面的两直线平行B.直线l 与平面α不相交,则l ∥平面αC.,A B 是平面α外两点,,C D 是平面α内两点,若AC BD =,则AB ∥平面αD.同时与两条异面直线平行的平面有无数个3. 如果AB 、BC 、CD 是不在同一平面内的三条线段,则经过它们中点的平面和直线AC 的位置关系是( ).A.平行B.相交C.AC 在此平面内D.平行或相交 4. 在正方体1111ABCD A B C D -的六个面和六个对角面中,与棱AB 平行的面有________个.5. 若直线,a b 相交,且a ∥α,则b 与平面α的位置关系是_____________.1. 如图5-7,在正方体中,E 为1DD 的中点,判断1BD 与平面AEC 的位置关系,并说明理由.图5-72. 如图5-8,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD.图5-8§2.2. 2 平面与平面平行的判定1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.一、课前准备 (预习教材P 56~ P 57,找出疑惑之处) 复习1:直线与平面平行的判定定理是___________ ___________________________________________. 复习2:两个平面的位置关系有___种,分别为____ ___和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BBC C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCCD ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证: 平面11AB D ∥1CB D.图6-5例2 如图6-6,已知,a b 是两条异面直线,平面α过 a ,与b 平行,平面β过b ,与a 平行, 求证:平面α∥平面β图6-6小结:证明面面平行,只需证明线线平行,而且这两条直线必须是相交直线.※ 动手试试练. 如图6-7,正方体中,,,,M N E F 分别是棱A B '',A D '',BC '',CD ''的中点,求证:平面∥ 平面EFDB .三、总结提升※ 学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※ 知识拓展判定平面与平面平行通常有5种方法 ⑴根据两平面平行的定义(常用反证法); ⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 平面α与平面β平行的条件可以是( ). A.α内有无穷多条直线都与β平行B.直线a 与,αβ都平行,且不在α和β内C.直线a α⊂,直线b β⊂,且a ∥β,b ∥αD.α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A.有且只有一个B.不存在C.至多有一个D.至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ).①若a ∥α,b ∥α,则a ∥b ②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A.0个B.1个C.2个D.3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是_______________. 1. 如图6-8,在几何体ABC A B C '''-中,1∠+ 2180∠=°,34180∠+∠=°,求证:平面ABC ∥ 平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、 PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9§2.2.3 直线与平面平行的性质1. 掌握直线和平面平行的性质定理;2. 能灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.5860复习1:两个平面平行的判定定理是____________ _____________________________________;它的实质是由__________平行推出__________平行.复习2:直线与平面平行的判定定理是___________ _____________________________________.讨论:如果直线a 与平面α平行,那么a 和平面α内的直线具有什么样的关系呢?二、新课导学※ 探索新知探究:直线与平面平行的性质定理问题1:如图7-1,直线a 与平面α平行.请在图中的平面α内画出一条和直线a 平行的直线b .图7-1问题2:我们知道两条平行线可以确定一个平面(为什么?),请在图7-1中把直线,a b 确定的平面画出来,并且表示为β.问题3:在你画出的图中,平面β是经过直线,a b 的平面,显然它和平面α是相交的,并且直线b 是这两个平面的交线,而直线a 和b 又是平行的.因此,你能得到什么结论?请把它用符号语言写在下面.问题4:在图7-2中过直线a 再画另外一个平面γ与平面α相交,交线为c .直线a ,c 平行吗?和你上面得出的结论相符吗?你能不能从理论上加以证明呢?图7-2新知:直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.反思:定理的实质是什么?※ 典型例题例 1 如图7-3所示的一块木料中,棱BC 平行于A C ''面.⑴要经过A C ''面内的一点P 和棱BC 将木料锯开,应怎样画线?⑵所画的线与平面AC 是什么位置关系?。

必修二2.1.空间点、直线、平面之间的位置关系(教案)

必修二2.1.空间点、直线、平面之间的位置关系(教案)

人教版新课标普通高中◎数学 2 必修(A 版)第二章点、直线、平面之间的位置关系2. 1空间点、直线、平面之间的位置关系教案 A第 1 课时教学内容: 2. 1. 1平面教学目标一、知识与技能1.利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图;2.掌握平面的基本性质及作用,提高学生的空间想象能力.二、过程与方法在师生的共同讨论中,形成对平面的感性认识.三、情感、态度与价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1.平面的概念及表示;2.平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面基本性质的掌握与运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进行理解,清楚其用途.教法与学法导航教学方法:探究讨论,讲练结合法.学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.教学准备教师准备:投影仪、投影片、正(长)方形模型、三角板.学生准备:直尺、三角板.教学过程教学教学内容师生互动设计过程意图创设什么是平面?师:生活中常见的如黑板、情境一些能看得见的平面实桌面等,给我们以平面的印象,形成平导入例 .你们能举出更多例子吗?那么面的概新课平面的含义是什么呢?这就是念我们这节课所要学习的内容 .1教师备课系统──多媒体教案续上表1.平面含义随堂练习判定下列命题是否正确:主题① 书桌面是平面;探究② 8 个平面重叠起来要比合作 6 个平面重叠起来厚;交流③ 有一个平面的长是50m,宽是 20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念 .师:以上实物都给我们以平面的印象,几何里所说加强对知的平面,就是从这样的一些识的理解物体中抽象出来的,但是,培养,自几何里的平面是无限延展觉钻研的的 .学习习惯 . 数形结合,加深理解 .2.平面的画法及表示师:在平面几何中,怎(1)平面的画法:水平放样画直线?(一学生上黑板置的平面通常画成一个平行四画)边形,锐角画成 45°,且横边之后教师加以肯定,解说、画成邻边的 2 倍长(如图).类比,将知识迁移,得出平面的画法:D CαA B如果几个平面画在一起,主题当一个平面的一部分被另一个探究平面遮住时,应画成虚线或不合作画(打出投影片).交流(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC 、平面 ABCD等.(3)平面内有无数个点,平面可以看成点的集合 .点 A 在平面α内,记作:A ∈ α ; 点B 在平面α外,记作: Bα.β通过类比α探索,培养学生知识迁移能β力,加强知识的系统性 .α·B·Aα2续上表人教版新课标普通高中◎数学 2 必修(A 版)3.平面的基本性质公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.A Bα· C··教师引导学生思考教材P41 的思考题,让学生充分发表自己的见解 .师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理主题探究合作交流符号表示为A ∈ LB∈ L? L ? α.A ∈ αB∈ α公理 1:判断直线是否在平面内.公理 2:过不在一条直线上的三点,有且只有一个平面 .A· Bα·L符号表示为: A 、B、C 三点不共线 ? 有且只有一个平面α,使A ∈ α、 B∈ α、 C∈ α.公理 2 作用:确定一个平面的依据 .公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .βPα·L符号表示为: P∈ α∩β? α∩β =L,且P∈ L .公理 3 作用:判定两个平面是否相交的依据 .1.教师引导学生阅读教材P42 前几行相关内容,并加以解析.师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等.通过类比引导学生归纳出公理探索,培2.养学生知教师用正(长)方形识迁移能模型,让学生理解两个平力,加强面的交线的含义.知识的系注意:( 1)公理中“有统性 .且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“ 有且只有一个平面”也可以说成“确定一个平面 . ”引导学生阅读P42 的思考题,从而归纳出公理3.3教师备课系统──多媒体教案续上表拓展 4. 教材 P43 例 1教师及时评价和纠正同创新通过例子,让学生掌握图形学的表达方法,规范画图和巩固应用中点、线、面的位置关系及符号符号表示 .提高.提高的正确使用 .1.平面的概念,画法及表示方法 .培养学2.平面的性质及其作用.生归纳3.符号表示.整合知4.注意事项.学生归纳总结、教师给识能小结力,以予点拨、完善并板书 .及思维的灵活性与严谨性 .课堂作业1.下列说法中,(1)铺得很平的一张白纸是一个平面;( 2)一个平面的面积可以等于 6cm 2;( 3)平面是矩形或平行四边形的形状. 其中说法正确的个数为().A . 0 B . 1 C. 2 D . 32.若点 A 在直线 b 上,在平面内,则 A, b,之间的关系可以记作().A . A b B. A b C. A b D . A b3.图中表示两个相交平面,其中画法正确的是().A B C D4.空间中两个不重合的平面可以把空间分成()部分.答案: 1. A 2. B 3. D 4. 3 或 4第 2 课时教学内容2.1. 2 空间中直线与直线之间的位置关系教学目标一、知识与技能1.了解空间中两条直线的位置关系;4人教版新课标普通高中◎数学 2 必修(A 版)2.理解异面直线的概念、画法,提高空间想象能力;3.理解并掌握公理 4 和等角定理;4.理解异面直线所成角的定义、范围及应用.二、过程与方法1.经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法.2.体会平移不改变两条直线所成角的基本思想和方法.三、情感、态度与价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1.异面直线的概念 .2.公理 4 及等角定理 .教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法 .教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法与学法导航教学方法探究讨论法.学习方法学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板.学生准备三角板 .教学过程详见下表 .教学教学内容师生互动设计环节意图创设通过身边实物,相互设疑激情境异面直线的概念:不同在任何一个交流异面直线的概念.趣点出导入平面内的两条直线叫做异面直线.师:空间两条直线有主题.新课多少种位置关系?1. 空间的两条直线的位置关系教师给出长方体模多媒体5教师备课系统──多媒体教案相交直线:同一平面内,有且只有型,引导学生得出空间的演示提一个公共点;两条直线有如下三种关高上课平行直线:同一平面内,没有公共系.效率 .探索点;异面直线:不同在任何一个平面内,教师再次强调异面直新知没有公共点 .线不共面的特点.师生互异面直线作图时通常用一个或两个动,突平面衬托,如下图:破重点 .2. 平行公理师:在同一平面内,例 2 的思考:长方体ABCD-A'B'C'D' 中,如果两条直线都与第三条讲解让BB' ∥AA', DD' ∥AA',那么 BB' 与直线平行,那么这两条直学生掌DD' 平行吗?线互相平行 . 在空间中,是握了公否有类似的规律?理 4 的运用.生:是.强调:公理 4 实质上探索是说平行具有传递性,在新知公理 4:平行于同一条直线的两条平面、空间这个性质都适直线互相平行 .用.符号表示为:设a、b、c 是三条直线如果 a//b, b//c,那么 a//c.例 2 空间四边形ABCD 中, E、 F、G、 H 分别是AB 、BC 、 CD 、 DA 的中点.求证:四边形 EFGH 是平行四边形 .续上表3. 思考:在平面上,我们容易证明让学生观察、思考:等角定“如果一个角的两边与另一个角的两边理为异探索分别平行,那么这两个角相等或互补”.面直线新知空间中,结论是否仍然成立呢?所成的等角定理:空间中如果两个角的两角的概边分别对应平行,那么这两个角相等或念作准6人教版新课标普通高中◎数学 2 必修(A 版)互补 .∠ ADC与A'D'C' 、备.∠ ADC与∠ A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ ADC = A'D'C' ,∠ ADC +∠ A'B'C' = 180°4.异面直线所成的角如图,已知异面直线 a、b,经过空探索间中任一点 O 作直线 a'∥ a、b'∥ b,我新知们把 a'与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角).教师画出更具一般性的图形,师生共同归纳出如下等角定理.师:① a'与 b'所成的角的以教师大小只由 a、b 的相互位置讲授为来确定,与 O 的选择无关,主,师为了简便,点 O 一般取在生共同两直线中的一条上;交流,② 两条异面直线所成的导出异角θ∈( 0,π);面直线2所成的③ 当两条异面直线所成角的概探索的角是直角时,我们就说念 .新知这两条异面直线互相垂例 3 让直,记作 a⊥ b;学生掌④ 两条直线互相垂直,有握了如共面垂直与异面垂直两种何求异情形;面直线⑤ 计算中,通常把两条异所成的例 3(投影)面直线所成的角转化为两角,从条相交直线所成的角 .而巩固了所学知识 .续上表充分调动学拓展生动手创新教材 P49 练习 1、 2.生完成练习,教师当的积极应用堂评价 .性,教提高师适时7教师备课系统──多媒体教案给予肯定 .本节课学习了哪些知识内容?小结知2.计算异面直线所成的角应注意什学生归纳,然后老师补识,形小结么?充、完善.成整体思维.课堂作业1. 异面直线是指().A.空间中两条不相交的直线B.分别位于两不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.如右图所示,在三棱锥 P-ABC 的六条棱所在的直线中,异面直线共有().A. 2 对 B . 3 对 C. 4 对 D. 6 对3.正方体 ABCD-A 1B1C1D1中与棱AA1平行的棱共有().A. 1 条 B . 2 条 C. 3 条 D. 4 条4.空间两个角、,且与的两边对应平行,若=60 °,则的大小为()..答案: 1. D 2.B 3. C 4. 60 °或 120°第 3 课时教学内容8人教版新课标普通高中◎数学 2 必修(A 版)2. 1. 3 空间中直线与平面之间的位置关系 2. 1. 4 平面与平面之间的位置关系教学目标一、知识与技能1.了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系;2.提高空间想象能力 .二、过程与方法1.通过观察与类比加深了对这些位置关系的理解、掌握;2.利用已有的知识与经验归纳整理本节所学知识.三、情感、态度与价值观感受空间中图形的基本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学关键借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系.教法与学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺.教学过程详见下表 .教学教学内容师生互动设计过程意图创设问题1:空间中直线和直线有几生 1:平行、相交、异复习9教师备课系统──多媒体教案情境种位置关系?面;回顾,导入问题 2:一支笔所在的直线和一生 2:有三种位置关系:激发新课个作业本所在平面有几种位置关(1)直线在平面内;学习系?(2)直线与平面相交;兴趣 .(3)直线与平面平行.师肯定并板书,点出主题 .1.直线与平面的位置关系 .师:有谁能讲出这三种( 1)直线在平面内——有无数位置有什么特点吗?个公共点 .生:直线在平面内时二( 2)直线与平面相交——有且者有无数个公共点 .仅有一个公共点 .直线与平面相交时,二( 3)直线在平面平行——没有者有且仅有一个公共点 .公共点 .直线与平面平行时,三其中直线与平面相交或平行的者没有公共点(师板书).情况,统称为直线在平面外,记作师:我们把直线与平面加强a.相交或直线与平面平行的对知直线 a 在面内的符号语言是情况统称为直线在平面外 .识的a. 图形语言是:师:直线与平面的三种理解位置关系的图形语言、符号培养,主题语言各是怎样的?谁来画自觉探究图表示一个和书写一下 .钻研合作学生上台画图表示 .的学交流直线 a 与面相交的 a∩ = A.师;好 . 应该注意:画习习图形语言是符号语言是:直线在平面内时,要把直线惯,数画在表示平面的平行四边形结形内;画直线在平面外时,合,加应把直线或它的一部分画深理在表示平面的平行四边形解 .外 .直线 a 与面平行的符号语言是a∥. 图形语言是:10人教版新课标普通高中◎数学 2 必修(A 版)续上表2.平面与平面的位置关系师:下面请同学们思考以( 1)问题 1:拿出两本书,看下两个问题(投影).作两个平面,上下、左右移动和翻生:平行、相交 .转,它们之间的位置关系有几种?师:它们有什么特点?( 2)问题 2:如图所示,围成生:两个平面平行时二者长方体 ABCD –没有公共点,两个平面相交A′B′C′D′的六个时,二者有且仅有一条公共直通过面,两两之间的线(师板书).类比位置关系有几师:下面请同学们用图形探索,种?和符号把平面和平面的位置培养主题关系表示出来⋯⋯学生( 3)平面与平面的位置关系探究——没有公师:下面我们来看几个例知识平面与平面平行合作子(投影例 1).迁移共点 .交流能力 .平面与平面相交——有且只有一条公共直线 .加强平面与平面平行的符号语言知识是∥ . 图形语言是:的系统性 .11教师备课系统──多媒体教案续上表拓展创新应用提高例 1 下列命题中正确的个数是( B ).①若直线 l 上有无数个点不在平面内,则 l∥ .②若直线l 与平面平行,则l与平面内的任意一条直线都平行 .③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行 .④若直线 l 与平面平行,则 l 与平面内的任意一条直线没有公共点 .A . 0B . 1 C. 2 D. 3例 2 已知平面∥,直线a,求证 a∥ .证明:假设 a 不平行,则 a在内或 a 与相交 .∴ a 与有公共点 .又 a.∴ a与有公共点,与面∥面矛盾 .∴∥ .学生先独立完成,然后讨例 1 通论、共同研究,得出答案. 教师过示范利用投影仪给出示范 .传授学师:如图,我们借助长方体生一个模型,棱 AA 1所在直线有无数点通过模在平型来研面究问题ABCD的方外,但法,加棱 AA 1深对概所在直线与平面ABCD 相交,所念的理以命题①不正确; A1B1所在直线解. 例 2平行于平面 ABCD ,A1B1显然不目标训平行于 BD,所以命题②不正确;练学生A1 B1∥AB,A1B1所在直线平行于思维的平面 ABCD ,但直线 AB平灵活,面 ABCD ,所以命题③不正确;并加深l 与平面平行,则 l 与无公对面面共点, l与平面内所有直线都平行、没有公共点,所以命题④正确,线面平应选 B .行的理师:投影例2,并读题,先解.让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解 .1.直线与平面、平面与平培养学面的位置关系 .生整合2.“正难到反”数学思想知识能与反证法解题步骤 .学生归纳总结、教师给予点力,以小结拨、完善并板书 .及思维3. “分类讨论”数学思想.的灵活性与严谨性 . 12人教版新课标普通高中◎数学 2 必修(A 版)课堂作业1.直线与平面平行的充要条件是这条直线与平面内的().A .一条直线不相交B.两条直线不相交C.任意一条直线都不相交 D .无数条直线都不相交【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C.2. “平面内有无穷条直线都和直线l 平行”是“l //”的().A.充分而不必要条件 B .必要而不充分条件C.充分必要条件 D .即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选 B.3.如图,试根据下列要求,把被遮挡的部分改为虚线:( 1)AB 没有被平面遮挡;( 2)AB 被平面遮挡.答案:略4.已知,,直线a,b,且∥,a,b,则直线 a 与直线 b 具有怎样的位置关系?【解析】平行或异面.5.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内 .已知: l ∥,点P∈,P∈ m,m∥ l,求证: m.证明:设 l 与 P 确定的平面为,且= m′,则 l ∥ m′.又知 l ∥ m, m m P ,由平行公理可知,m 与 m′重合 .所以 m.13教师备课系统──多媒体教案教案 B第 1 课时教学内容: 2. 1. 1 平面教学目标1.了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2.理解公理一、二、三,并能运用它们解决一些简单的问题;3.通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形.教学难点:公理三,由抽象图形认识空间模型.学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行 .实践活动:1.仔细观察教室,举出空间的点、线、面的实例.2.只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块.3.请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题. 今后我们将研究空间中的点、线、面之间的关系.图 1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系.练习一:试画出下列各种位置的平面.1.水平放置的平面2.竖直放置的平面14人教版新课标普通高中◎数学 2 必修(A 版)图 2( 1)图2(2)3.倾斜放置的平面图 34.请将以下四图中,看得见的部分用实线描出.图 4(1)图4(2)图4(3)图4(4)小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图 5.平行四边形的锐角通常画成45o,且横边长等于其邻边长的 2 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图 6.βFA DA DααB E CB C图 5图 6图 7平面常用希腊字母, ,等表示(写在代表平面的平行四边形的一个角上),如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图 5 的平面,也可表示为平面ABCD ,平面 AC 或平面BD .前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系?15教师备课系统──多媒体教案显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系.从集合的角度,点 A 在平面内,记为A;点B在平面外,记为B (如图 7).再来研究一下直线与平面的位置关系.将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系?由“两点确定一条直线”这一公理,我们不难理解如下结论:公理 1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内 .A l ,B l , 且 A, B,l.A l Bα图8例1 分别用符号语言、文字语言描述下列图形.AA aa图 9( 1)图 9( 2)图 9( 3)例 2 识图填空(在空格内分别填上, , ,).A____ a;A____ α,B____ a; B____ α,Aa____ α;a____ α = B,B bb____ α;B____ b.a图 10图 11问题情景:制作一张桌子,至少需要多少条腿?为什么?公理 2 经过不在同一条直线上的三点,有且只有一个平A面 .CB实践活动:取出两张纸演示两个平面会有怎样的位置关α图 12系,并试着用图画出来 .图 12试问:如图13 是两个平面的另一种关系吗?(相对于同学们得出的关系)由平面的无限延展性,不难理解如下结论:公理 3如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点16人教版新课标普通高中◎数学 2 必修(A 版)的直线 .βP l 且P l.αP l图 13例 3如图14用符号表示下列图形中点、直线、平面之间的位置关系.l【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.【解析】在(1)中,l , a A , a B .l , a, b, a l P , B l P .在( 2)中,三、巩固练习教材 P43 练习 1— 4.四、课堂小结(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?(3)判断共面的方法 .五、布置作业P51 习题 A 组 1, 2.第 2 课时教学内容: 2. 1. 2 空间中直线与直线之间的位置关系教学目标:一、知识目标1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,培养学生的空间想象能力;3.理解并掌握公理 4.二、能力目标1.让学生在观察中培养自主思考的能力;17教师备课系统──多媒体教案2.通过师生的共同讨论培养合作学习的能力.三、情感、态度与价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点: 1.异面直线的概念; 2.公理 4.教学难点:异面直线的概念.学法与教学用具1.学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标;2.教学用具:多媒体、长方体模型、三角板.教学过程一、复习引入1.平面内两条直线的位置关系有(相交直线、平行直线).相交直线(有一个公共点);平行直线(无公共点).2.实例 . 十字路口——立交桥.立交桥中,两条路线 AB , CD 既不平行,又不相交(非平面问题).六角螺母DCA B二、新课讲解1.异面直线的定义不同在任何一个平面内的两条直线叫做异面直线.练习:在教室里找出几对异面直线的例子.注1:两直线异面的判别一 : 两条直线既不相交、又不平行.两直线异面的判别二 : 两条直线不同在任何一个平面内.合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行.空间两直线的位置关系:按平面基本性质分(1)同在一个平面内:相交直线、平行直线;( 2)不同在任何一个平面内:异面直线.按公共点个数分( 1)有一个公共点 : 相交直线;( 2)无公共点:平行直线、异面直线.2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托. 18。

人教A版高中数学必修二《空间中直线与平面之间的位置关系》教学设计

人教A版高中数学必修二《空间中直线与平面之间的位置关系》教学设计

2.1.3 空间中直线与平面之间的位置关系一、教材分析空间中直线与平面之间的位置关系是立体几何中最重要的位置关系,直线与平面的相交和平行是本节的重点和难点.空间中直线与平面之间的位置关系是根据交点个数来定义的,要求学生在公理1的基础上会判断直线与平面之间的位置关系.本节重点是结合图形判断空间中直线与平面之间的位置关系.二、教学目标1.知识与技能(1)了解空间中直线与平面的位置关系;(2)培养学生的空间想象能力.2.过程与方法(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;(2)让学生利用已有的知识与经验归纳整理本节所学知识.3.情感、态度与价值让学生感受到掌握空间直线与平面关系的必要性,提高学生的学习兴趣.三、教学重点与难点正确判定直线与平面的位置关系.四、课时安排1课时五、教学设计(一)导入新课思路1.(情境导入)一支笔所在的直线与我们的课桌面所在的平面,可能有几个交点?可能有几种位置关系?思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的六个面所在平面有几种位置关系?图1(二)推进新课、新知探究、提出问题①什么叫做直线在平面内?②什么叫做直线与平面相交?③什么叫做直线与平面平行?④直线在平面外包括哪几种情况?⑤用三种语言描述直线与平面之间的位置关系.活动:教师提示、点拨从直线与平面的交点个数考虑,对回答正确的学生及时表扬.讨论结果:①如果直线与平面有无数个公共点叫做直线在平面内.②如果直线与平面有且只有一个公共点叫做直线与平面相交.③如果直线与平面没有公共点叫做直线与平面平行.④直线与平面相交或平行的情况统称为直线在平面外.⑤直线在平面内a α直线与平面相交a∩α=A直线与平面平行a∥α(三)应用示例思路1例1 下列命题中正确的个数是( )①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.3分析:如图2,图2我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB 平面ABCD,所以命题③不正确;l与平面α平行,则l与α无公共点,l与平面α内所有直线都没有公共点,所以命题④正确.答案:B变式训练请讨论下列问题:若直线l上有两个点到平面α的距离相等,讨论直线l 与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.点评:判断直线与平面的位置关系要善于找出空间模型,结合图形来考虑,注意考虑问题要全面.例2 已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.证明:如图4,∵a∥b,图4∴a、b确定一个平面,设为α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴AB⊂α,即l⊂α.同理b、c确定一个平面β,l⊂β,∴平面α与β都过两相交直线b与l.∵两条相交直线确定一个平面,∴α与β重合.故l与a、b、c共面.变式训练已知a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.证明:∵PQ∥a,∴PQ、a确定一个平面,设为β.∴P∈β,a⊂β,P∉a.又P∈α,a⊂α,P∉a,由推论1:过P、a有且只有一个平面,∴α、β重合.∴PQ⊂α.点评:证明两个平面重合是证明直线在平面内问题的重要方法.思路2例1 若两条相交直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.解:如图5,另一条直线与平面α的位置关系是在平面内或与平面相交.图5用符号语言表示为:若a∩b=A,b⊂α,则a⊂α或a∩α=A.变式训练若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.分析:如图6,另一条直线与平面α的位置关系是与平面平行或与平面相交.图6用符号语言表示为:若a与b异面,a⊂α,则b∥α或b∩α=A.点评:判断直线与平面的位置关系要善于找出空间模型,结合图形来考虑,注意考虑问题要全面.例2 若直线a不平行于平面α,且a⊄α,则下列结论成立的是( )A.α内的所有直线与a异面B.α内的直线与a都相交C.α内存在唯一的直线与a平行D.α内不存在与a平行的直线分析:如图7,若直线a不平行于平面α,且a⊄α,则a 与平面α相交.图7例如直线A′B与平面ABCD相交,直线AB、CD在平面ABCD内,直线AB与直线A′B相交,直线CD与直线A′B异面,所以A、B都不正确;平面ABCD内不存在与a平行的直线,所以应选D.答案:D变式训练不在同一条直线上的三点A、B、C到平面α的距离相等,且A∉α,给出以下三个命题:①△ABC中至少有一条边平行于α;②△ABC中至多有两边平行于α;③△ABC中只可能有一条边与α相交.其中真命题是_____________.分析:如图8,三点A、B、C可能在α的同侧,也可能在α两侧,图8其中真命题是①.答案:①变式训练若直线a⊄α,则下列结论中成立的个数是( )(1)α内的所有直线与a异面(2)α内的直线与a都相交(3)α内存在唯一的直线与a平行(4)α内不存在与a平行的直线A.0B.1C.2D.3分析:∵直线a⊄α,∴a∥α或a∩α=A.如图9,显然(1)(2)(3)(4)都有反例,所以应选A.图9答案:A点评:判断一个命题是否正确要善于找出空间模型(长方体是常用空间模型),另外考虑问题要全面即注意发散思维.(四)知能训练已知α∩β=l,a⊂α且a⊄β,b⊂β且b⊄α,又a∩b=P.求证:a与β相交,b与α相交.证明:如图10,∵a∩b=P,图10∴P∈a,P∈b.又b β,∴P∈β.∴a与β有公共点P,即a与β相交.同理可证,b与α相交.(五)拓展提升过空间一点,能否作一个平面与两条异面直线都平行?解:(1)如图11,C′D′与BD是异面直线,可以过P点作一个平面与两异面直线C′D′、BD都平行.如图12,图11 图12 图13显然,平面PQ是符合要求的平面.(2)如图13,当点P与直线C′D′确定的平面和直线BD平行时,不存在过P点的平面与两异面直线C′D′、BD都平行.点评:判断一个命题是否正确要善于找出空间模型(长方体是常用空间模型),另外考虑问题要全面即注意发散思维.(六)课堂小结本节主要学习直线与平面的位置关系,直线与平面的位置关系有三种:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点.另外,空间想象能力的培养是本节的重点和难点.(七)作业课本习题2.1 A组7、8.11。

高中数学 2.1空间点、直线、平面之间的位置关系 新人教A版必修2

高中数学 2.1空间点、直线、平面之间的位置关系 新人教A版必修2
符号表示:P ∈α ∩β α ∩β = l,且 P ∈l。
公理 3 作用:判定两个平面是否相交的依据。
精品课件
例1、用符号表示下列图形中点、直线、平 面之间的关系。
解 :左边的图中, α∩β=l,a∩α=A,a∩β=B。 右边的图中, α∩β=l,a α,b β, a∩l=P,b∩l=P。
精品课件
新疆 王新敞
奎屯
求证: P 在直线 BD 上新疆 王新敞 奎屯
A
P EH
D
G
B
C
F
精品课件
证明:∵ EH FG P ,∴ PEH , P FG , ∵ E, H 分别属于直线 AB, AD , ∴ EH 平面 ABD,∴ P 平面 ABD, 同理: P 平面 CBD , 又∵平面 ABD 平面 CBD BD ,
集合中“∈”的符号只能用于点与直线,点与平面的关系,“ ”和“∩”的符号只能
用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用
几何语言.(平面α外的直线 a)表示 a (平面α外的直线 a)表示 a 或 a A.
精品课件
问题4:如果直线l与平面α有一个公共点P,直线l是否在平面α内? 直线l不一定在平面α内。
答案:(1)×(2)√(3)×(4)√
精品课件
2.①一条直线与一个平面会有几种位置关系

②如图所示,两个平面、,若相交于一点,则会发生什么现象.
③几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,
有一生提议可将几根一样长的木棍,在等高处用绳捆扎一下作桌脚(如图
所示),问至少要几根木棍,才可能使桌面稳定?
(5)
直线在平面内

直线与平面相交

(2019新教材)人教A版高中数学必修第二册:空间点、直线、平面之间的位置关系

(2019新教材)人教A版高中数学必修第二册:空间点、直线、平面之间的位置关系

■名师点拨 (1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线 既不相交,也不平行. (2)不能把异面直线误认为分别在不同平面 内的两条直线,如图中,虽然有 a⊂α,b⊂β, 即 a,b 分别在两个不同的平面内,但是因 为 a∩b=O,所以 a 与 b 不是异面直线.
2.空间中直线与平面的位置关系
2.[变条件]在本例中,若将条件改为平面 α 内有无数条直线与 平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:如图,α 内都有无数条直线与平面 β 平行.
由图知,平面 α 与平面 β 可能平行或相交.
3.[变条件]在本例中,若将条件改为平面 α 内的任意一条直线 与平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:因为平面 α 内的任意一条直线与平面 β 平行,所以只有这 两个平面平行才能做到,所以平面 α 与平面 β 平行.
平行.( × ) (10)若两个平面都平行于同一条直线,则这两个平面平行.( × )
异面直线是指( ) A.空间中两条不相交的直线 B.分别位于两个不同平面内的两条直线 C.平面内的一条直线与平面外的一条直线 D.不同在任何一个平面内的两条直线
解析:选 D.对于 A,空间两条不相交的直线有两 种可能,一是平行(共面),另一个是异面,所以 A 应排除.对于 B,分别位于两个平面内的直线, 既可能平行也可能相交也可能异面,如图,就是 相交的情况,所以 B 应排除.对于 C,如图中的 a,b 可看作是平 面 α 内的一条直线 a 与平面 α 外的一条直线 b,显然它们是相交直 线,所以 C 应排除.只有 D 符合定义.
位置关系
直线 a 在 平面 α 内
直线 a 在平面 α 外
直线 a 与平
直线 a 与

高一数学人教A版必修2课件2.1.3《空间中直线平面与与平面之间的位置关系》

高一数学人教A版必修2课件2.1.3《空间中直线平面与与平面之间的位置关系》

2
时的一般情况,而忽略了特殊情况.当 0或 时, 这样的
直线只有一条.
2
正解:(1)
当 (0, )时,这样的直线l有两条;
2
(2)当 0或 时,这样的直线l只有1条.
2
答案:C
基础强化
1.a∥b,且a与平面α相交,那么直线b与平面α的位置关系是( )
A.必相交
B.有可能平行
10.求证:过平面内一点,作平面内一直线的平行线必在此平面 内.
证明:设点A∈平面α,a 平面α,
∵A a,∴过点A存在直线b∥a.
设a,b确定的平面为β,则A∈β,且a∈β.∴平面α、β都是由点A和 直线a确定的平面.
∴α与β重合,∴b
α,故结论成立.
11.(湖北高考)已知a,b,c是直线,α、β是平面,给出下列命题: ①若a⊥b,b⊥c,则a∥c; ②若a∥b,b⊥c,则a⊥c; ③a∥α,b α,则a∥b; ④若a、b异面,且a∥β,则b与β相交; ⑤若a、b异面,则至多有一条直线与a、b都垂直.
3.特别提醒 (1)在解答直线与平面的有关问题时,要想像所有可能情况,思
考要全面.
(2)平行平面具有传递性,即α∥β,β∥γ α∥γ.
(3)本节内容可以以长方体为模型,抽象出直线与平面,平面与 平面的位置关系.
题型一 空间图形的画法
例1:分别按下列条件画出直观图. (1)a∩b=P,a∥平面α,b∩平面α=A; (2)平面α∩平面β=l,a∩平面β=A,a∥平面α. 解:根据题设及平面图形直观图的画法,得直观图如下图所示.
1.空间中直线与平面位置关系的分类
直线与平面的位置关系有且只有三种:
按公共点个数分类
直线和平面平行,

人教A版 必修二 第2章 2.1 2.1.3 空间中直线与平面、平面与平面之间的位置关系

人教A版 必修二 第2章 2.1 2.1.3 空间中直线与平面、平面与平面之间的位置关系

判断直线与平面的位置关系
例 1:两条相交直线 a、b 都在平面α内且都不在平面β内, ) 且平面α与β相交,则 a 和 b( A.一定与平面β都相交 B.至少一条与平面β相交 C.至多一条与平面β相交 D.可能与平面β都不相交 思维突破:设α∩β=c,∵若 a、b 都不与β相交,则 a∥c, b∥c,∴a∥b,这与 a、b 相交矛盾,故 a、b 中至少一条与β相 交. 答案:B
高中数学人教版必修2课件
解:(1)(2)是真命题,(3)(4)是假命题.
(3)会出现三点在这个平面的两侧且符合条件的情况,所以
这两个平面还可能相交. (4)会出现两个相交平面同时与另外一个平面垂直的情况, 如正方体中共顶点的三个面. 要判断一个命题是假命题,只需举出一个 反例;而要想说明一个命题是真命题,则需理论上的证明.
高中数学人教版必修2课件
1-1.下列命题:①若直线 l 平行于平面α内的无数条直线, 则 l∥α;②若直线 a 在平面α外,则 a∥α;③若直线 a∥b,直 线 b⊂α,则 a∥α;④若直线 a∥b,b⊂α,那么直线 a 就平行 于平面α内的无数条直线.其中真命题的个数为( A.1 个 B.2 个 A )
作AB⊥平面α于点B,BC⊥a1 于点C,BD⊥b1 于点D,记∠AOB
=θ1,∠BOC=θ2,(θ2=25°或65°), 则有cosθ=cosθ1· cosθ2, 因为0°≤θ≤90°,所以0≤cosθ≤cosθ2.
高中数学人教版必修2课件
当θ2=25°时,由θ≤cosθ≤cos25°,得 25°≤θ≤90°. 当θ2=65°时,由θ≤cosθ≤cos65°,得 65°≤θ≤90°. 故当θ<25°时,直线 l 不存在;
高中数学人教版必修2课件

数学必修2——2.1.3-2.1.4《直线与平面、平面与平面的位置关系》导学导练

数学必修2——2.1.3-2.1.4《直线与平面、平面与平面的位置关系》导学导练

高中数学必修二2.1.3《空间中直线与平面之间的位置关系》2.1.4《平面与平面之间的位置关系》导学导练【知识要点】1、直线与平面之间的位置关系(重点、难点)1)直线与平面之间的位置关系(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点2)直线与平面之间的位置关系的图形表示及符号表示a α a∩α=A a∥α2、两个平面之间的位置关系(1)两个平面平行——没有公共点(2)两个平面相交——有且只有一条公共直线α∥βα∩β= L【范例析考点】考点一.直线与平面的位置关系问题例1:已知l=⋂βα, a∥α,a∥β,求证:a∥l【针对练习】1、下列命题中正确的个数是( )①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.32.对于直线m、n和平面α,下面命题中的真命题是()A.如果mnm,,αα⊄⊂、n是异面直线,那么α//nB.如果mnm,,αα⊄⊂、n是异面直线,那么α与n相交C.如果mnm,//,αα⊂、n共面,那么nm//D.如果mnm,//,//αα、n共面,那么nm//3.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面a=c,若a∥b,则c与a,b的位置关系是()A.c与a,b都异面 B.c与a,b都相交C.c至少与a,b中的一条相交 D.c与a,b都平行1、已知a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.4.已知m、n是不重合的直线,α、β是不重合的平面,有下列命题①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;其中真命题的个数是()A.0 B.1 C.2 D.35、以下命题(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α②若a∥α,b∥α,则a∥b③若a∥b,b∥α,则a∥α④若a∥α,b⊂α,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个6、已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2个(B)3个(C)4个(D)5个7、下列判断中正确的是( )A. 若平面α内有两条直线都和平面β平行,则α∥βB. 若一条直线l与平面α和β所成的角相等,则α∥βC. 若直线l∥平面β,直线m⊂β,则l∥mD. 若平面α∥平面β,直线l⊂α,则l∥β8、a,b是异面直线,以下四个命题:①过a至少有一个平面平行于b;②过a至少有一个平面垂直于b;③至多有一条直线与a,b都垂直;④至少有一个平面分别与a,b都平行.正确命题的个数是( )A. 0B. 1C. 2D. 39、直线a∥平面α,点A∈α,则过点A且平行于直线a的直线(A)只有一条,但不一定在平面α内αβαβL(B)只有一条,且在平面α内(C)有无数条,但都不在平面α内(D)有无数条,且都在平面α内10、A、B是直线l外的两点,过A、B且和l平行的平面的个数是()(A)0个(B)1个(C)无数个(D)以上都有可能11、直线a,b是异面直线,直线a和平面α平行,则直线b和平面α的位置关系是()A)b⊂αB)b∥αC)b与α相交D)以上都有可能12、如果点M是两条异面直线外的一点,则过点M且与a,b都平行的平面(A)只有一个(B)恰有两个(C)或没有,或只有一个(D)有无数个13、请讨论下列问题:若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.考点二.直线与平面相交关系的证明例2:已知α∩β=l,a⊂α且a⊄β,b⊂β且b⊄α,又a∩b=P.求证:a与β相交,b与α相交.【针对练习】1. 下面说法中正确的是( )A. 如果两个平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β= aB. 两平面α,β有一个公共点A,就说α,β相交于过点A的任意一条直线C. 两平面α,β有一个公共点A,就说α,β相交于点A,并记作α∩β= AD. 两平面ABC与DBC相交于线段BC2、已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l()(A)与m,n都相交(B)与m,n中至少一条相交(C)与m,n都不相交(D)与m,n中一条相交3、空间四点A,B,C,D 共面,但不共线,则下面结论成立的是( )A. 四点中必有三点共线B. 四点中必有三点不共线C. AB,BC,CD,DA 四条直线中总有两条平行D. AB与CD必相交4、已知两条直线m n,,两个平面αβ,.给出下面四个命题:①m n∥,m nαα⇒⊥⊥;②αβ∥,mα⊂,n m nβ⊂⇒∥;③m n∥,m nαα⇒∥∥;④αβ∥,m n∥,m nαβ⇒⊥⊥.其中正确命题的序号是( C )A.①、③B.②、④C.①、④D.②、③5、已知m n,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是()A.m n m nααββαβ⊂⊂⇒,,∥,∥∥B.m n m nαβαβ⊂⊂⇒∥,,∥C.m m n nαα⇒⊥,⊥∥D.n m n mαα⇒∥,⊥⊥考点三.平面与平面的位置关系例3:不在同一条直线上的三点A、B、C到平面α的距离相等,且A∉α,给出以下三个命题:①△ABC中至少有一条边平行于α;②△ABC中至多有两边平行于α;③△ABC中只可能有一条边与α相交.其中真命题是_____________.【针对练习】1、一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角的大小关系是( )A. 相等B. 互补C. 相等或互补D. 不能确定2、下列命题正确的是()A.过平面外一点作与这个平面垂直的平面是唯一的B.过直线外一点作这条直线的垂线是唯一的C.过平面外的一条斜线作与这个平面垂直的平面是唯一的D.过直线外一点作与这条直线平行的平面是唯一的3、如图,在正方体ABCD - A1B1C1D1中,点P,Q,R 分别在棱AB,BB1,CC1上,且DP,QR 相交于点O,求证:O,B,C 三点共线.1 11 1【课后练习】 一、选择题. 1、下列命题:①若直线 l 上有无数个点不在平面 α内,则 l ∥α; ②若直线l 与平面 α平行,则l 与平面α内的任意一条直线平行;③两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行;④若一条直线a 和平面α 内一条直线b 平行,则a ∥α. 正确的个数是( )A .0个B .1个C .2个D .3个 2、下列命题中,不正确的是( ) A. 两条平行直线与同一平面所成的角相等 B. 一条直线与两个平行平面所成的角相等C. 一条直线平行于两个平行平面中的一个平面,它也平行于另一个平面D. 如果两条直线与同一平面所成的角相等,那么这两条直线不一定平行3、已知三条直线m ,n ,l ,三个平面α,β,γ,下面四个命题中,正确的是( )α⇒∥βα⊥γβ⊥γA.m ∥βl ⊥m⇒l ∥βB.⇒m ∥n m ∥γn ∥γ C.m ⊥γn ⊥γ⇒m ∥n D.4、正方形 ABCD 沿对角线 AC 折成直二面角后,AB 与CD 所成的角为( )A. 30°B. 45°C. 60°D. 90° 5、若直线a 不平行于平面α,且a ⊄α,则下列结论成立的是( )A.α内的所有直线与a 异面B.α内的直线与a 都相交C.α内存在唯一的直线与a 平行D.α内不存在与a 平行的直线 6、下面四种说法中:(1)两条平行直线中的一条平行于一个平面,则另一条也平行于这个平面;(2)平行于平面内一条直线的直线平行于该平面; (3)过平面外一点只有一条直线和这个平面平行;(4)若一条直线和一个平面平行,则这条直线和这个平面内所有直线都平行.正确说法的个数为( ) A .0 B .1 C .2 D .37、如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线的位置关系是( )A .都平行B .都相交C .一个相交,一个平行D .都异面8、如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( )(A )平行(B )相交 (C )平行或相交 (D )AB ⊂α二、填空题.1、若点M 在直线 a 上,直线 a 在平面 α 内,则 M ,a ,α之间的关系表示为__________.2、设 a ,b ,c 是空间的三条直线,以下四个命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线;③若a 和b 相交,b 和c 相交,则a 和c 也相交; ④若a 和b 共面,b 和c 共面,则a 和c 也共面. 正确的个数是_________.3、如图,AA 1∥BB 1∥CC 1,且 AA 1,BB 1,CC 1 不共面,则图中各条线段所在的直线中,共有 ______ 对异面直线.4、如图,正方体 ABCD - A 1B 1C 1D 1 的棱长为 a ,点 E ,F 分别是 BB 1,CC 1 的中点,则A 1D 1 到截面 AEFD 的距离是___________.5、已知三棱锥 P - ABC 的三条侧棱 PA ,PB ,PC 两两垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为______________________.6、△ABC 所在平面 α 外有一点 P ,过点 P 作 PO ⊥平面α,垂足为 O ,连接 PA ,PB ,PC .(1)若 PA = PB = PC ,则点 O 为 △ABC 的________心; (2)若 PA ⊥PB ,PA ⊥PC ,PC ⊥PA ,则点 O 是 △ABC 的______心; (3)若点 P 到三边 AB ,BC ,CA 的距离相等,则点 O 是 △ABC 的______心;(4)若 PA = PB = PC ,∠C = 90º,则点 O 是 AB 边的______点; (5)若 PA = PB = PC ,AB = AC ,则点 O 点在 __________ 线上. 三、判断题:1.判断下列命题的真假(1)过直线外一点只能引一条直线与这条直线平行. ( ) (2)过平面外一点只能引一条直线与这个平面平行. ( ) (3)若两条直线都和第三条直线垂直,则这两条直线平行.( )(4)若两条直线都和第三条直线平行,则这两条直线平行.()(5)若直线l ⊄α,则l 不可能与平面α内无数条直线都相交.()(6)若直线l与平面α不平行,则l与α内任何一条直线都不平行()四、解答题.1、如图,在正方体ABCD—A1B1C1D1 中,点E,F 分别是棱AA1,CC1的中点,求证:点D1,E,F,B 共面.2、已知平面α∩平面β= a,平面α∩平面γ= b,平面β∩平面γ= c,且a∩b = O. 求证:a,b,c 相交于一点.4、已知四边形ABCD为矩形,PA⊥平面ABCD,点M、N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)当MN⊥平面PCD时,求二面角P - CD - B的大小.5、平面α与⊿ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面α6、空间四边形ABCD,E、F分别是AB、BC的中点,求证:EF∥平面ACD.7、经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1E∥B1B8、已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.9、如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证://MN平面PAD;(2)若4MN BC==,PA=PA与MN所成的角的大小10、如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AM=求证://MN平面CBEF1 A。

人教A版高一数学必修2人教版精品课件第2章 2.1 2.1.1《平面》

人教A版高一数学必修2人教版精品课件第2章 2.1 2.1.1《平面》

高中数学人教版必修2课件
2.下列命题正确的是( C ) A.因为直线向两方无限延伸,所以直线不可能在平面内 B.如果线段的中点在平面内,那么线段在平面内 C.如果线段上有一个点不在平面内,那么线段不在平面内 D.当平面经过直线时,直线上可以有不在平面内的点 3.下列说法中正确的是( C ) A.两个平面相交有两条交线 B.两个平面可以有且只有一个公共点 C.如果一个点在两个平面内,那么这个点在两个平面的交 线上 D.两个平面一定有公共点
高中数学人教版必修2课件
例 4:如图 5,在正方体 ABCD-A′B′C′D′中,E、F 分别是 AA′、AB 上一点,且 EF∥CD′,求证:平面 EFCD′、 平面 AC 与平面 AD′两两相交的交线 ED′、FC、AD 交于一点.
图5
高中数学人教版必修2课件
错因剖析:遇到此类证明多线共点问题,找不到解决问题 的突破口.
高中数学人教版必修2课件
正确地用图形和符号表示点、直线、平面以 及它们之间的关系.点看成是元素,线、面看成是点的集合, 所以点与线、面的关系用“∈、∉”表示,线与线、线与面及面 与面的关系用“⊂、⊄”表示.
1-1.试用集合符号表示下列各语句,并画出图形: (1)点 A 在平面α内,但不在平面β内; (2)直线 l 经过平面α外一点 P,且与平面α相交于点 M; (3)平面α与平面β相交于直线 l,且 l 经过点 P.
高中数学人教版必修2课件
高中数学课件
(金戈铁骑 整理制作)
高中数学人教版必修2课件
第二章 点、直线、平面之间的位置关系
2.1 空间点、直线、平面之间的位置关系
2.1.1 平面
高中数学人教版必修2课件
1.下列命题正确的是( C ) A.画一个平面,使它的长为 14 cm,宽为 5 cm B.一个平面的面积可以是 16 m2 C.平面内的一条直线把这个平面分成两部分,一个平面把 空间分成两部分 D.10 个平面重叠起来,要比 2 个平面重叠起来厚

高中数学新人教A版必修2 第2章 2-1空间点、直线、平面的位置关系

高中数学新人教A版必修2 第2章 2-1空间点、直线、平面的位置关系

A B
AB
B
A
作用:用于判定线在面内
小结:公理2及其推论 A,B,C不共线
A,B,C确定一平面.
A∈ a
A和a确定一平面.
aIb=P
a和b确定一平面.
ab
a和b确定一平面.
作用:用于确定一个平面.
A
B C
Aa
aP
b
a
b
公理3:若两个不重合平面有一个公共点, 则它们有且只有一条过该点的公共直线。
空间中基本图形:点、线、面
一、平面的表示方法
1.特点:平面是无限延展,没有厚度的.
(但常用平面的一部分表示平面)
2.画法:水平或竖直的平面常用平行四边形表示.
D
D
C
C
A
B
A
3.记法:
B
①平面α、平面β、平面γ(标记在边上)
②平面ABCD、平面AC或平面BD
巩固:判断下列各题的说法正确与否,在正 确的说法的题号后打 ,否则打 .
CA
C (G)
A
G
E
H
DB
HE F
D
B(F)
空间两条不重合直线的位图关系有且只有三种:
若从有没有公共点的角度来看,可分为两类 :
(1) 有且仅有一个公共点相交直线
(
2)
没有公共点
平行直线 异面直线
若从有没有共面的角度来看,也可分为两类:
(1)
在同一个平面内
相交直线 平行直线
( 2)不同在任何一个平面内异面直线
A1
B1
(2) 直线MB1与CC1异面直线关系
主要特征:既不平行,也不相交
异面直线的定义:
D A

2.1.4 平面与平面之间的位置关系课件 新人教A版必修2

2.1.4 平面与平面之间的位置关系课件 新人教A版必修2
[例5]
如图(1),正方体中,棱a、b都与棱l 垂直相交,三线可确定3个平面. 如图(2),a与l垂直不相交,b与l垂直相交, a∥b,这时三线可确定2个平面.
[正解]
如图(3),a,b都与l垂直相交,a∥b,此
时,三线只能确定1个平面. 如图(4),l⊥a,l⊥b,三线互不相交,此 时,三线不能确定平面,故当三线在两两 垂直交于一点时,确定的平面最多为3 个.
的中点⇒A1M1 綊 AM⇒AMM1A1 为平行四边形
⇒AA1綊MM1 ⇒MM1 綊 BB1 AA1綊BB1
⇒四边形 BB1M1M 为平行四边形 ⇒M1B1∥MB 同理,M1C1∥MC ∠B1M1C1的两边与∠BMC的两边方向相同 ⇒∠BMC=∠B1M1C1. 解法 2:同上可证 M1B1BM 为平行四边形 同理,C1M1=CM 又B1C1=BC ⇒△M1C1B1≌△MCB ⇒∠BMC=∠B1M1C1. ⇒M1B1=MB
AB∥A′B′,AC∥A′C′,且射线AB与A′B′同向, 射线AC与A′C′同向. 求证:∠BAC=∠B′A′C′.
对于∠BAC和∠B′A′C′在同一平面 内的情形,用初中所学的知识容易证明. 下面证明两个角不在同一平面内的情形. 分别在∠BAC的两边和∠B′A′C′的两边上 截取线段AD、AE和A′D′、A′E′,使AD= A′D′、AE=A′E′. ∵AD綊A′D′,∴AA′D′D是平行四边形. ∴AA′綊DD′.同理可得AA′綊EE′. ∴DD′綊EE′.∴DD′E′E是平行四边形.
(3) 找 出 异 面 直 线 所 成 的 角 后 求 角 的 大
小.一般要归到一个三角形中,通过解三 角形求出角的大小,如本题思路1中可归 结为解△DEM.思路2中可归结为解△DEN 等等,由于本例中三角形是斜三角形,待 我们学过解斜三角形后,即可计算. (4)实际问题中,若含有“中点”“比例点” 常利用中位线,比例线段进行平移.

人教版数学高一必修2学案 -4 平面与平面之间的位置关系

人教版数学高一必修2学案 -4 平面与平面之间的位置关系

2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系目标定位 1.掌握直线与平面之间的三种位置关系,会用图形语言和符号语言表示.2.掌握平面与平面之间的两种位置关系,会用图形语言和符号语言表示.自主预习1.直线与平面的位置关系位置关系定义图形语言符号语言直线在平面内有无数个公共点a⊂α直线与平面相交有且只有一个公共点a∩α=A直线与平面平行没有公共点a∥α2.两个平面的位置关系位置关系图形表示符号表示公共点平面α与平面β平行α∥β没有公共点平面α与平面β相交α∩β=l 有一条公共直线1.判断题(1)若直线a在平面α外,则直线a∥α.(×)(2)若平面α内存在直线与平面β无交点,则α∥β.(×)(3)若平面α内的任意直线与平面β均无交点,则α∥β.(√)(4)与两相交平面的交线平行的直线必平行于这两个相交平面.(×) 提示(1)直线a在平面α外,则直线a∥α或a与α相交.(2)α与β可能平行,也可能相交.(4)若α∩β=b,且a∥b,则有a∥α且a∥β,或a⊂α,或a⊂β.2.若直线l与平面α不平行,则()A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对解析若l与α不平行,则l与α相交或l⊂α.答案 C3.若两个平面互相平行,则其中一个平面内的一条直线与另一个平面的位置关系是()A.线面平行B.线面相交C.线在面内D.无法确定解析两面平行时,两个平面没有公共点,在一个平面的直线与另一个平面也没有公共点,所以它们平行.答案 A4.两条直线不相交,则两条直线可能平行或者异面;如果两个平面不相交,则两个平面________.解析两个平面之间的位置关系有且只有两种:平行或相交.答案平行类型一直线与平面的位置关系(互动探究)【例1】以下命题(其中a,b表示直线,α表示平面),①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确命题的个数是()A.0B.1C.2D.3[思路探究]探究点一空间中直线与平面的位置关系有哪几种?提示空间中直线与平面只有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.探究点二判断直线与平面的位置关系的策略是什么?提示判断直线与平面的位置关系时可借助几何模型判断,通过特例排除错误命题.对于正确命题,根据线、面位置关系的定义或反证法进行判断.要注意多种可能情形.解析如图所示在长方体ABCD-A′B′C′D′中,AB∥CD,AB⊂平面ABCD,但CD⊂平面ABCD,故①错误;A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故③错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故④错误.答案 A规律方法 1.本题在求解时,常受思维定势影响,误以为直线在平面外就是直线与平面平行.2.判断直线与平面位置关系的问题,其解决方式除了定义法外,还可以借助模型(如长方体)和举反例两种行之有效的方法.【训练1】下列命题:①若直线l平行于平面α内的无数条直线,则l∥α②若直线a在平面α外,则a∥α③若直线a∥b,直线b⊂α,则a∥α④若直线a∥b,直线b⊂α,那么直线a就平行于平面α内的无数条直线其中假命题的序号是________.解析对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α,∴①是假命题;对于②,∵直线a在平面α外包括两种情况:a∥α和a与α相交,∴a和α不一定平行,∴②是假命题;对于③,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α,∴③是假命题;对于④,∵a∥b,b⊂α,那么a⊂α或a∥α,所以a可以与平面α内的无数条直线平行,∴④是真命题.答案①②③类型二平面与平面的位置关系【例2】给出的下列四个命题中,其中正确命题的个数是()①平面α内有两条直线和平面β平行,那么这两个平面平行;②平面α内有无数条直线和平面β平行,则α与β平行;③平面α内△ABC的三个顶点到平面β的距离相等,则α与β平行;④若两个平面有无数个公共点,则这两个平面的位置关系是相交或重合.A.0B.1C.3D.4解析如图,在正方体ABCD-A1B1C1D1中,对于①,在平面A1D1DA中,AD∥平面A1B1C1D1,分别取AA1、DD1的中点E,F,连接EF,则知EF∥平面A1B1C1D1.但平面AA1D1D与平面A1B1C1D1是相交的,交线为A1D1,故命题①错;对于②,在正方体ABCD-A1B1C1D1的面AA1D1D中,与A1D1平行的直线有无数条,但平面AA1D1D与平面A1B1C1D1不平行,而是相交于直线A1D1,故②是错误的;对于③,在正方体ABCD-A1B1C1D1中,分别取AA1,DD1,BB1,CC1的中点E,F,G,H,A1,B,C到平面EFHG的距离相等,而△A1BC与平面EFHG相交,故③是错误的;对于④,两平面位置关系中不存在重合,若重合则为一个平面,故命题④错.规律方法(1)判断两平面的位置关系或两平面内的线线,线面关系,我们常根据定义,借助实物模型“百宝箱”长方体(或正方体)进行判断.(2)反证法也用于相关问题的证明.【训练2】如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是()A.平行B.相交C.平行或相交D.不能确定解析如图所示,由图可知C正确.答案 C[课堂小结]1.空间中直线与平面的位置关系有两种分类方式(1)按公共点的个数分类⎩⎪⎨⎪⎧直线与平面平行(直线与平面没有公共点)直线与平面不平行⎩⎨⎧直线与平面相交(直线与平面有唯一公共点)直线在平面内(直线与平面有无数公共点)(2)按是否在平面内分类⎩⎨⎧直线在平面内直线在平面外⎩⎨⎧直线与平面相交直线与平面平行2.判断直线与平面及平面与平面位置关系常用定义和反证法.1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交解析直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.2.若M∈平面α,M∈平面β,则α与β的位置关系是()A.平行B.相交C.异面D.不确定解析∵M∈平面α,M∈平面β,∴α与β相交于过点M的一条直线.答案 B3.下列命题:①两个平面有无数个公共点,则这两个平面重合;②若l,m是异面直线,l∥α,m∥β,则α∥β.其中错误命题的序号为________.解析对于①,两个平面相交,则有一条交线,也有无数多个公共点,故①错误;对于②,借助于正方体ABCD-A1B1C1D1,AB∥平面DCC1D1,B1C1∥平面AA1D1D,又AB与B1C1异面,而平面DCC1D1与平面AA1D1D相交,故②错误.答案①②4.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.基础过关1.若a,b是异面直线,且a∥平面α,则b与α的位置关系是()A.b∥αB.相交C.b⊂αD.b⊂α、相交或平行解析如图所示,选D.答案 D2.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()A.平行B.相交C.平行或相交D.AB⊂α解析结合图形可知选项C正确.答案 C3.α、β是两个不重合的平面,下面说法正确的是()A.平面α内有两条直线a、b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β解析A、B都不能保证α、β无公共点,如图①;C中当a∥α,a∥β时,α与β可能相交,如图②;只有D说明α、β一定无公共点,故选D.答案 D4.若a与b异面,则过a与b平行的平面有________个.解析当a与b异面时,如图,过a上任意一点M作b′∥b,则a与b′确定了唯一的平面α,且b∥α,故过a与b平行的平面有1个.答案 15.空间三个平面如果每两个都相交,那么它们的交线有________条.解析以打开的书页或长方体为模型,观察可得结论.答案1或36.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是A1B1和BB1的中点,则下列直线与平面的位置关系是什么?(1)AM所在的直线与平面ABCD的位置关系;(2)CN所在的直线与平面ABCD的位置关系;(3)AM所在的直线与平面CDD1C1的位置关系;(4)CN所在的直线与平面CDD1C1的位置关系.解(1)AM所在的直线与平面ABCD相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)CN所在的直线与平面CDD1C1相交.7.已知一条直线与一个平面平行,求证:经过这个平面内的一点与这条直线平行的直线必在这个平面内.解已知:a∥α,A∈α,A∈b,b∥a.求证:b⊂α.证明如图,∵a∥α,A∈α,∴A∉a,∴由A和a可确定一个平面β,则A∈β,∴α与β相交于过点A的直线,设α∩β=c,由a∥α知,a与α无公共点,而c⊂α,∴a与c无公共点.∵a⊂β,c⊂β,∴a∥c.又已知a∥b,且A∈b,A∈c,∴b与c重合.∴b⊂α.能力提升8.以下四个命题:①三个平面最多可以把空间分成八部分;②若直线a⊂平面α,直线b⊂平面β,则“a与b相交”与“α与β相交”等价;③若α∩β=l,直线a⊂平面α,直线b⊂平面β,且a∩b=P,则P∈l;④若n条直线中任意两条共面,则它们共面.其中正确的是()A.①②B.②③C.③④D.①③解析对于①,正确;对于②,逆推“α与β相交”推不出“a与b相交”,也可能a∥b;对于③,正确;对于④,反例:正方体的侧棱任意两条都共面,但这4条侧棱却不共面,故④错.所以正确的是①③.答案 D9.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D1、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有()A.2个B.3个C.4个D.5个解析如图所示,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.答案 B10.如果空间的三个平面两两相交,则下列判断正确的是________(填序号).①不可能只有两条交线②必相交于一点③必相交于一条直线④必相交于三条平行线解析空间的三个平面两两相交,可能只有一条交线,也可能有三条交线,这三条交线可能交于一点.答案①11.如图,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.解平面ABC与β的交线与l相交.证明如下:∵AB与l不平行,且AB⊂α,l⊂α,∴AB与l一定相交.设AB∩l=P,则P∈AB,P∈l.又∵AB⊂平面ABC,l⊂β,∴P∈平面ABC,P∈β.∴点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,∴直线PC就是平面ABC与β的交线,即平面ABC∩β=PC,而PC∩l=P,∴平面ABC与β的交线与l相交.探究创新12.试画图说明三个平面可把空间分成几个部分?解三个平面可把空间分成4(如图①)、6(如图②③)、7(如图④)或8(如图⑤)个部分.。

人教A版 高中数学必修2 点、直线、平面之间的位置关系解读解读

人教A版 高中数学必修2 点、直线、平面之间的位置关系解读解读

◆一条直线与一个平面平行,则过该直线的任一 平面与此平面的交线与该直线平行。 ◆如果两个平行平面同时与第三个平面相交,那么 它们的交线平行。 ◆垂直于同一个平面的两条直线平行。 ◆两个平面垂直,则一个平面内垂直于交线的直线 与另一个平面垂直。 (3)能运用已获得的结论证明一些空间位置关系 的简单命题。
2
金太阳教育网
(2)、以立体几何的上述定义、公理和 定理为出发点,通过直观感知、操作确认、 思辩论证,认识和理解空间中线面平行、 垂直的有关性质与判定。

品质来自专业 信赖源于诚信
通过直观感知、操作确认,归纳出以下判定定理:
◆平面外一条直线与此平面内的一条直线平行,则该直线与
11
第二章 2.1 空间点、直线、平面之间的位置关系(3课时) 基本要求: 1、了解平面的概念,掌握平面的画法、及表示方法。 2、了解平面的基本性质,即公理1、2、3。 3、会进行“文字语言”、“符号语言”、“图形语言”之间的转 4、掌握空间点与直线、点与平面位置关系的分类。 5、理解异面直线的定义,并能正确画出两条异面直线。 6、掌握直线与直线、直线与平面、平面与平面的位置关系的 分类。 7、理解公理4和等角定理。 发展要求: 1、会用反证法证明两条直线是异面直线。 2、初步体验将空间问题转化为平面问题的思想方法。 说明: 确定平面的3个推论、两条异面直线的公垂线、距离及有关概 12 念不作必修要求。
品质来自专业 信赖源于诚信
3.处理方法的变化 (1)从整体到局部,具体到抽象: “ 点、线、面之间的位置关系”推进路线: 原教材:平面→线线→线面→面面; 新教材:平面→平行→垂直。 (2)线线、线面、面面关系: 原教材:判定定理和性质定理都要求逻辑推理; 对于平行与垂直,既重定性又重定量。 新教材:判定定理,要求操作确认、合情推理; 性质定理,要求思辨证论、逻辑推理。 对于平行与垂直,重在定性。 (3)不要求用反证法证明简单的问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.4 平面与平面之间的位置关系
一、教材分析
空间中平面与平面之间的位置关系是立体几何中最重要的位置关系,平面与平面的相交和平行是本节的重点和难点.空间中平面与平面之间的位置关系是根据交点个数来定义的,要求学生在公理3的基础上会判断平面与平面之间的位置关系.本节重点是结合图形判断空间中平面与平面之间的位置关系.
二、教学目标
1.知识与技能
(1)了解空间中平面与平面的位置关系;
(2)培养学生的空间想象能力.
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识.
3.情感、态度与价值
让学生感受到掌握空间两个平面关系的必要性,提高学生的学习兴趣.
三、教学重点与难点
平面与平面的相交和平行.
四、课时安排
1课时
五、教学设计
(一)复习
1.直线与直线的位置关系:相交、平行、异面.
2.直线与平面的位置关系:
①直线在平面内——有无数个公共点,
②直线与平面相交——有且只有一个公共点,
③直线与平面平行——没有公共点.
(二)导入新课
思路1. (情境导入)
拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?
思路2.(事例导入)
观察长方体(图1),围成长方体ABCD—A′B′C′D′的六个面,两两之间的位置关系有几种?
图1
(三)推进新课、新知探究、提出问题
①什么叫做两个平面平行?
②两个平面平行的画法.
③回忆两个平面相交的依据.
④什么叫做两个平面相交?
⑤用三种语言描述平面与平面之间的位置关系.
活动:先让学生思考,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
问题①引导学生回忆直线与平面平行的定义.
问题②怎样体现两个平面平行的特点.
问题③两个平面有一个公共点,两平面是否相交.
问题④回忆公理三.
问题⑤鼓励学生自我训练.
讨论结果:
①两个平面平行——没有公共点.
②画两个互相平行的平面时,要注意使表示平面的平行四边形的对应边平行,如图2.
图2图3
③如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图3,用符号语言表示为:P∈α
且P∈∩β=l,且P∈l.
④两个平面相交——有一条公共直线.
⑤如果两个平面没有公共点,则两平面平行⇔若α∩β=,则α∥β.
α∩β=AB,则α与β相交.
两平面平行与相交的图形表示如图4.
图4
(四)应用示例
思路1
例1 已知平面α,β,直线a,b,且α∥β,,,则直线a与直线b具有怎样的位置关系?
活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视,发现问题及时纠正,并及时评价.
解:如图5,直线a与直线b的位置关系为平行或异面.
图5
例2 如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.
解:三个平面两两相交,它们的交线有一条或三条,如图6.
图6
变式训练
α、β是两个不重合的平面,在下列条件中,可判定α∥β的是( )
A.α、β都平行于直线l、m
B.α内有三个不共线的点到β的距离相等
C.l、m是α内的两条直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α、m∥α、l∥β,m∥β
分析:如图7,分别是A、B、C的反例.
图7
答案:D
点评:判断正误要结合图形,并善于发现反例,即注意发散思维.
思路2
例1 α∩β=l,,,试判断直线a、b的位置关系,并画图表示.
活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视,发现问题及时纠正,并及时评价.
解:如图8,直线a、b的位置关系是平行、相交、异面.
图8
变式训练
α∩β=l,,,b∩β=P,试判断直线a、b的位置关系,并画图表示.
解:如图9,直线a、b的位置关系是相交、异面.
图9
直线a、b不可能平行,这里仅要求学生结合图形或实物模型加以体会,学完下一节后可以证明.
点评:结合图形或实物模型判断直线与平面的位置关系,目的在于培养学生的空间想象能力.
例2 如图10,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l.
图10
(1)画出l的位置;
(2)设l∩A1B1=P,求PB1的长.
解:(1)平面DMN与平面AD1的交线为DM,
则平面DMN与平面A1C1的交线为QN.
QN即为所求作的直线l.如图10.
(2)设QN∩A1B1=P,
∵△MA1Q≌△MAD,∴A1Q=AD=a=A1D1,
∴A1是QD1的中点.又A1P∥D1N,
∴A1P1N1D1.
∴PB1=A1B1-A1P
变式训练
画出四面体ABCD中过E、F、G三点的截面与四面体各面的交线.
解:如图11,分别连接并延长线段EF、BD,
图11
∵线段EF、BD共面且不平行,∴线段EF、BD相交于一点P.
∴连接GP交线段CD于H,分别连接EG、GH、FH即为所作交线.
点评:利用公理3作两平面的交线是高考经常考查的内容,是两平面关系的重点. (五)知能训练
三棱柱的各面把空间分成几部分?
解:分为21部分.
(六)拓展提升
已知平面α∩平面β=a,,b∩a=A,且c∥a,
求证:b、c是异面直线.
证明:反证法:若b与c不是异面直线,则b∥c或b与c相交.
(1)若b∥c.∵a∥c,∴a∥b.这与a∩b=A矛盾.
(2)若b、c相交于B,则B∈β.又a∩b=A,∴A∈β.
∴,即.这与b∩β=A矛盾.
∴b,c是异面直线.
(七)课堂小结
本节主要学习平面与平面的位置关系,平面与平面的位置关系有两种:
①两个平面平行——没有公共点;
②两个平面相交——有一条公共直线.
另外,空间想象能力的培养是本节的重点和难点.
(八)作业
课本习题2.1 B组1、2、3.。

相关文档
最新文档