枫树中学九年级上册数学10月月考试题
人教版数学九年级上册10月月考试卷附答案
人教版数学九年级上册10月月考试卷附答案一、选择题(共10小题;共30分)1. 下列四个函数中,一定是二次函数的是A. B.C. D.2. 抛物线的对称轴是直线A. B. C. D.3. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是4. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间都在降雨B. “抛一枚硬币正面朝上的概率为次就有一次正面朝上C. “彩票中奖的概率为”表示买张彩票肯定会中奖D. “抛一枚正方体骰子,朝上的点数为的概率为“抛出朝上的点数为”这一事件发生的频率稳定在附近5. 某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是A. B.C. D.6. 小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字,,,现将标有数字的一面朝下,小明从中任意抽取一张.记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是A. 小亮B. 小明C. 一样D. 无法确定7. 是关于的二次函数,当的取值范围是时,在时取得最大值,则实数的取值范围是A. B. C. D.8. 已知,,为非负实数,且,则代数式的最小值为B. C. D.9. 如图,已知:正方形边长为,,,,分别为各边上的点,且,设小正方形的面积为,为,则关于的函数图象大致是A. B.C. D.10. 如图,已知抛物线和直线.我们约定:当任取一值时,对应的函数值分别为,,若,取,中的较小值记为;若,记.下列判断:①当时,;②当时,值越大,值越大;③使得大于的值不存在;④若,则.其中正确的有A. 个B. 个C. 个D. 个二、填空题(共6小题;共18分)11. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到).12. 抛物线经过点和两点,则.13. 函数:的顶点坐标是.14. 某果园有棵橘子树,平均每一棵树结个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结个橘子.设果园增种棵橘子树,果园橘子总个数为个,则果园里增种棵橘子树,橘子总个数最多.15. 已知和时,多项式的值相等,且,则当时,多项式的值等于.16. 抛物线经过点,,,已知,.(1)如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,点的坐标为;(2)抛物线顶点为,轴于点,是轴上一动点,是线段上一点,若,实数的变化范围是.三、解答题(共8小题;共102分)17. 如图所示,转盘被等分成八个扇形,并在上面依次标有数字,,,,,,,.(1)自由转动转盘,当它停止转动时,指针指向的数正好能被整除的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为18. 已知:抛物线.(1)完成下表:(2)在下面的坐标系中描点画出抛物线的图象.19. 如图,已知二次函数过点,.(1)求此二次函数的式;(2)在抛物线上存在一点使的面积为,请直接写出点的坐标.20. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润(千元)与进货量(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润(千元)与进货量(吨)之间的函数图象如图②所示.(1)分别求出,与之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共吨,设乙种蔬菜的进货量为吨,写出这两种蔬菜所获得的销售利润之和(千元)与(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?21. 一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球个,蓝球个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用"画树状图法"或"列表法",求两次摸出都是红球的概率;(3)现规定:摸到红球得分,摸到黄球得分,摸到蓝球得分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于分的概率.22. 已知二次函数的图象经过点.(1)求的值并写出当时的取值范围;(2)设,,在这个二次函数的图象上,当取不小于的任意实数时,,,一定能作为同一个三角形三边的长,请说明理由.23. 已知,,,,五个点,抛物线经过其中的三个点.(1)求证:,两点不可能同时在抛物线上;(2)点在抛物线上吗?为什么?(3)求和的值.24. 如图,在平面直角坐标系中,矩形的边、分别在轴和轴的正半轴上,且长分别为、,为边的中点,一抛物线经过点、及点.(1)求抛物线的解析式(用含的式子表示);(2)把沿直线折叠后点落在点处,连接并延长与线段的延长线交于点,若抛物线与线段相交,求实数的取值范围;(3)在满足(2)的条件下,求出抛物线顶点到达最高位置时的坐标.答案第一部分1. D2. B3. B4. D5. C6. A7. B8. D9. B10. C第二部分11.13.14.【解析】假设果园增种棵橘子树,那么果园共有棵橘子树,每多种一棵树,平均每棵树就会少结个橘子,这时平均每棵树就会少结个橘子,则平均每棵树结个橘子.果园橘子的总产量为,则,当(棵)时,橘子总个数最多.15.【解析】先将和时,多项式的值相等理解为和时,二次函数的值相等,则抛物线的对称轴为直线,又二次函数的对称轴为直线,得出,化简得,即可求出当时,的值.第三部分17. (1)(2)根据随机事件概率的求法:当自由转动的转盘停止时,指针指向的区域的概率为个即可;如:当自由转动转盘停止时,指针指向区域的数小于的概率(答案不唯一).18. (1)填表如下:(2)如图所示:19. (1)二次函数过点,,解得二次函数的解析式为.(2)或.【解析】当时,,解得:,,,,,设,的面积为,,解得:,当时,,解得:,.当时,,方程无解,故.20. (1)由题意得:,解得.;由;(2)甲种蔬菜进货量为吨,乙种蔬菜进货量为吨时,获得的销售利润之和最大,最大利润是元.21. (1)设口袋中黄球的个数为,根据题意得:,解得.经检验是原分式方程的解.∴ 口袋中黄球的个数为.(2)画树状图,如图,∵ 共有种等可能的结果,两次摸出都是红球的有种情况,∴ 两次摸出都是红球的概率为.(3)∵ 摸到红球得分,摸到蓝球得分,摸到黄球得分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,∴ 乙同学已经得了分,∴ 若随机再摸一次,共有种等可能的结果,乙同学三次摸球所得分数之和不低于分的有种情况,∴ 若随机再摸一次,乙同学三次摸球所得分数之和不低于分的概率为22. (1)把代入二次函数得:,,,抛物线的开口方向向上,对称轴是直线,把代入得:,把代入得:,当时的取值范围是.(2)把,,代入得:,,,,,,根据三角形的三边关系定理:三角形的任意两边之和大于第三边(也可求出两小边的和大于第三边),当取不小于的任意实数时,,,一定能作为同一个三角形三边的长.23. (1)抛物线的对称轴为,而,两点纵坐标相等,由抛物线的对称性可知,,关于直线对称,又与对称轴相距,与对称轴相距,,两点不可能同时在抛物线上.(2)假设点在抛物线上,则,解得,抛物线经过个点中的三个点,将,,,代入,得出的值分别为,,,,抛物线经过的点是,,又,与矛盾,假设不成立.不在抛物线上.(3)将,两点坐标代入中,得解得或将,两点坐标代入中,得解得综上所述,或24. (1)设抛物线的解析式为.将,,,得解得所以抛物线的解析式为.(2)过点作轴于点,设交轴于点.由折叠的性质可得..又,..设,则,在中,,解得.,..点坐标为.易求直线的解析式为,当时,.点坐标为.当抛物线经过点时,解得.当抛物线与经过点时,解得.的取值范围为.(3).抛物线开口向下,最大时,顶点达到最高位置.当时,随的增大而增大,在内,当时,.最高点的坐标为.。
人教版初三九年级上学期10月月考数学试题(含答案)
人教版初三九年级上学期10月月考数学试题(含答案)一、选择题(每小题3分,共30分)1.下列方程一定是一元二次方程的是( ) A .22310x x+-= B .25630x y --=C .20ax bx c ++=D .23210x x --=2.下列说法正确的是( ) A .矩形对角线相互垂直平分 B .对角线相等的菱形是正方形 C .两邻边相等的四边形是菱形D .对角线分别平分对角的四边形是平行四边形3.若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ) A .1-B .14-C .0D .14.若菱形ABCD 的一条对角线长为8,边CD 的长是方程210240x x -+=的一个根,则该菱形ABCD 的周长为( ) A .16B .24C .16或24D .485.如图,矩形ABCD 的对角线8AC =,120BOC ∠=︒,则BC 的长为( )A .B .4C .D .86.如图,在ABC ∆中,点E 、D 、F 分别在边AB 、BC 、CA 上,且//DE CA ,//DF BA ,下列四个判断中,不正确的是( ) A .四边形AEDF 是平行四边形B .如果AD EF =,那么四边形AEDF 是矩形C .如果AD 平分EAF ∠,那么四边形AEDF 是菱形 D .如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是正方形7.如图,一块长方形绿地的长为100m ,宽为50m ,在绿地中开辟两条道路后剩余绿地面积为24704m 。
则根据题意可列出方程( ) A .50001504704x -=B .250001504704x x -+= C .250001504704x x --=D .21500015047042x x -+=8.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若140ABC ∠=︒,则OED ∠=( ) A .20︒B .30︒C .40︒D .50︒9.如图Rt ABC ∆中,90ABC ∠=︒,6AB cm =,8BC cm =,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 移动,点Q 从点B 出发,沿BC 边以2cm /秒的速度向点C 移动,如果点P ,Q 分别从点A ,B 同时出发,在运动过程中,设点P 的运动时间为t ,则当BPQ ∆的面积为8cm 时,t 的值( ) A .2或3B .2或4C .1或3D .1或410.如图,P 为正方形ABCD 的对角线BD 上任一点,过点P 作PE BC ⊥于点E ,PF CD ⊥于点F ,连接EF 。
九年级(上)数学月考试题(10月)有答案)
西瓜每降 0.1 元 /kg ,每天可多售出 40kg ,另外,每天的房租等固定成本共
元,应将每千克小型西瓜的售价降低多少元?
23.(10 分 ) 如图,在△ ABC中, AD 是∠ BAC 的平分线, EF 垂直平分 AD 交 A 求证:四边形 AEDF是菱形 .
24 . (14 分 ) 将两块全等的含 30 °角的三角尺如图 1 摆放在一起,设较短直角边长
( 4)( x+8 )( x+1 ) =-12 (运
20. ( 8 分)如图,在宽为 20 米、长为 30 米的矩形地面上修建两条同样宽的道路,
下部分作为耕地.若耕地面积需要
2
551 米 ,则修建的路宽应为多少米?
3 元 /kg 的价格出售,每天可售出
200kg ,为了尽快销售,该经营户决定降低销售价
参考答案
一.选择题(每题 3 分,共 30 分)
题号
1
2
3
4
5
6
7
答案
C
D
D
D
A
B
B
二.填空题(每题 3 分,共 24 分)
11. 1,1 12.3,-10 13. 18. ① ②④ ⑤
1
14. 24CM
3
三.解答题(本题共 5 题,总 66 分)
19 .( 1) x=1.x=5 (2) x=
3 21 , x= 3 21
A
PFE= ∠ BAP ; ⑤ PD= 2 EC . 其 中 正 确 结 论 的 序 号
M
是
.
三、解答题(本题共 5 题,总 66 分) 19. 解方程( 16 分)
2
( 1 ) 2 (x 3) 8 (直接开平方法)
九年级数学十月份月考试卷 试题
中学九年级数学十月份月考试卷本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
说明:全卷一共8页,考试时间是是90分钟,满分是120分.一、选择题:每一小题3分,一共15分;每一小题给出四个答案,其中有一个是正确的,把所选答案的编号填写上在题目后面的括号内. 1.以下命题中,正确的选项是 〔 〕A .有两边和一角对应相等的两个三角形全等B .有一边和两角对应相等的两个三角形全等C .有三个角对应相等的两个三角形全等D .以上答案都不对2.方程2650x x +-=的左边配成完全平方后所得方程为 〔 〕A .14)3(2=+x B .14)3(2=-x C .21)6(2=+x D .以上答案都不对 3. 如图,□ABCD 的周长为cm 16,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,那么△DCE 的周长为〔 〕A .4 cmB .6 cmC .8 cmD .10 cm4. 下面哪个图能近似反映上午九点天安门上的旗杆与影子的位置关系〔 〕DCB A北东5.将一张矩形纸对折再对折〔如图〕,然后沿着图中的虚线剪下,得到①、②两局部,将①展开后得到的平面图形是〔 〕A .矩形B .三角形C .梯形D 菱形二、填空题:每一小题3分,一共30分;答案填写上在该题的横线上. 6.方程0)1)(2(=+-x x 的根是 ;7.两根木棒的长分别为7cm 和10cm ,要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒x 〔cm 〕的取值范围是______________ ;8.直角三角形的两条边长分别为6和8,那么这个直角三角形斜边上的中线长等于 9.假设a 为整数,且点M 〔3a -9,2a -10〕在第四象限,那么a 2+1的值是______________ ; 10.要使一个菱形ABCD 成为正方形,那么需增加的条件是 〔填上一个正确的条件即可〕11.如图,在ΔABC 中,∠C=600,AB=14,AC=10,AD 是BC 边上的高,那么BC 的长为 .12.如图,在△ABC 中,BC cm 5=,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC ,那么△PDE 的周长是 cm13.如图中阴影局部表示的四边形是〔第11题图〕 〔第12题图〕 〔第13题图〕14.当x = 时,分式2233x x x ---的值是零.15.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点〔点P 不与点A 、C 重合〕, 且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,那么阴影部D C B A 菱形矩形平行四边形四边形CDA E P F分的面积是_______.三、解答题:本大题有10小题,一共75分. 16.本小题满分是6分.解方程:0352=++x x17.本小题满分是6分.计算:2)22444(22-÷+-++--a aa a a a a18.本小题满分是6分.,如图,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影BC =3m. 〔1〕请你在图中画出此时DE 在阳光下的投影;〔2〕在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.19.本小题满分是6分.,如图,在梯形ABCD 中,AD//BC ,∠B=∠C ,点E 是BC 的中点. 求证:AE=DE.20.本小题满分是7分.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路〔图中阴影局部〕,余下的局部种上草坪.要使草坪的面积为2540m ,求道路的宽.〔局部参考数据:2321024=,2522704=,2482304=〕21.本小题满分是7分.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,假设两年后人均上缴农业税为16元,假设这两年降低的百分率一样. 〔1〕求降低的百分率;〔2〕假如该乡约有16000农民,问该乡农民明年减少多少农业税22.本小题满分是8分.梁教师在一次“探究性学习〞课中,设计了如下数表EDCB A32m20m(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示:a = ,b = ,c = .(2)猜测:以a 、b 、c 为边的三角形是否为直角三角形?并证明你的猜测23.本小题满分是8分.如图,在Rt ABC △与Rt ABD △中,90ABC BAD ∠=∠=,AD BC AC BD =,,相交于点G ,过点A 作AE DB ∥交CB 的延长线于点E ,过点B 作BF CA ∥交DA 的延长线于点F AE BF ,,相交于点H .〔1〕图中有假设干对三角形是全等的,请你任选一对进展证明;〔不添加任何辅助线〕 〔2〕证明四边形AHBG 是菱形;〔3〕假设使四边形AHBG 是正方形,还需在Rt ABC △的边长之间添加一个什么条件?请你写出这个条件.〔不必证明〕24.本小题满分是10分.EFA如图,在等腰Rt ABC △中,P 是斜边BC 的中点,以P 为顶点的直角三角形的两边分别与边AB ,AC 交于点E ,F ,连接EF .当EPF ∠绕顶点P 旋转时〔点E 不与A ,B 重合〕,PEF △始终也是等腰直角三角形,请你说明理由.25.本小题满分是11分.如图,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE=∠C.〔1〕求证:ΔABF ∽ΔEAD ;〔2〕假设AB=4,∠BAE=300,求AE 的长;〔3〕在〔1〕、〔2〕的条件下,假设AD=3,求BF 的长.〔计算结果要求化为最简根式〕F E DCBAA FEBPC[参考答案]一、选择题:每一小题3分,一共15分;1. B ; 2 . A ; 3. C ; 4. C ; 5. D 二、填空题:每一小题3分,一共30分;6. x 1 = 2 x 2=-1 ;7. 3<x <17 ;8. 5 ;9. 17 ;10. 对角线相等〔开放题,答案不惟一〕 ;11. 16 ; 12. 5 ; 13. 正方形 ; 14. -1 ; 三、解答题:本大题有10小题,一共75分. 16. 解:a=1, b=5 ,c=3b 2-4ac=52-4×1×3=13>0 (3分)2135±-=∴x 2133,213521--=+-=∴x x (3分) 17.解:原式=a a a a a a a a a 2222)2()2)(2(-⋅+---⋅--+2=)2(2)2(2+--+a a a a a =)2(2)2(2)2(+--+a a a a=)2(8+a a a=28+a 18. 解:〔1〕〔连接AC ,过点D 作DE //AC ,交直线BC 于点F ,线段EF 即为DE 的投影〕(3分) 〔2〕∵AC //DF ,∴∠ACB =∠DFE .∵∠ABC =∠DEF =90°∴△ABC ∽△DEF .53,.6AB BCDE EFDE ∴=∴= ∴DE =10〔m 〕. (3分)说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF ,再连结EF 即可. 19.证明:在梯形ABCD 中,AD ∥BC ∵∠B=∠C ,∴AB=CD 又∵E 是BC 的中点,∴BE=EC ∴△ABE ≌△DCE ∴AE=DE20. 解法〔1〕:由题意转化为右图,设道路宽为x 米〔没画出图形不扣分〕 ·· 〔1分〕 根据题意,可列出方程为()()2032540x x --= · 〔3分〕 整理得2521000x x -+= ······ 〔4分〕解得150x =〔舍去〕,22x = ···· 〔6分〕答:道路宽为2米 ························· 〔7分〕 解法〔2〕:由题意转化为右图,设道路宽为x 米,根据题意列方程得: ·· 〔1分〕()220322032540x x ⨯-++= ··· 〔3分〕整理得:2521000x x -+= ····· 〔4分〕 解得:12x =,250x =〔舍去〕 ··· 〔6分〕 答:道路宽应是2米 ········ 〔7分〕 21. 解:〔1〕设降低的百分率为x ,由题意得:16)1(252=-x∴541±=-x ∴541±=x ∴%202.01==x , %1808.12==x 〔不符题意,舍去〕 ∴降低的百分率为%20〔2〕80000160002.025=⨯⨯〔元〕 22.〔1〕由题意有:12-n ,n 2,12+n ;〔2〕猜测为以a 、b 、c 为边的三角形是直角三角形。
九年级数学上学期10月月考试题
九年级数学上学期10月月考试题一、选择题(每题3分,共30分)1、若关于x的方程(m−1)x2−2x+1=0是一元二次方程,则m的取值范围是()A.m≠1 B. m≠0 C. m≤2且m≠1 D. m>12、抛物线y=−12x2+3x−52的对称轴是()A.x=3 B. x=−3 C. x=6 D. x=−523、平面直角坐标系内与点P(-2,3)关于原点对称的点的坐标是()A.(3,-2) B. (2,3) C. (2,-3) D. (-2,-3)4、某商品的价格为100元,连续两次降价x%后的价格是81元,则x为()A.8 B. 9 C. 10 D. 195、半径等于12的圆中,垂直平分半径的弦长为()A.3√6 B. 12√3 C. 6√3 D. 18√36、如图,函数y=ax2−2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A B C D7、若α、β是方程2x2−5x−1=0的两个实数根,则2α2+3αβ+5β的值为()A.-13 B. 12 C. 14 D. 158、如图所示,⊙O的半径为5,弦AB的长为8,M是AB上的动点,则线段OM的长不可能是()A.2.8 B. 3.2 C. 4 D. 59、如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD的长度必定满足()A.BD<2 B. BD=2 C. BD>2 D. 以上情况均有可能10、如图,抛物线y=ax2+bx+c交x轴于点A(-2,0)和B,交y轴负半轴于点C,且OB=OC,则下列结论:①2b−c=2;②a=12;③ac=b−1;④a+bc>0。
其中正确的个数有()A.1个 B. 2个 C. 3个 D. 4个二、填空题(每题3分,共18分)11、抛物线y=−x2+1的顶点坐标是12、等腰△ABC的两边长分别是方程x2−7x+10=0的两个根,则△ABC的周长是13、与已知点A的距离为3cm的点所组成的平面图形是14、已知点P1(x1,a),P2(x2,a)(x1≠x2)是抛物线y=ax2上的两点,则当x=x1+x2时,函数y的值是15、如图,已知四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=√2,则四边形ABCD的面积是16、已知P(m,m-2),点Q是抛物线y=x2上的动点,当PQ最小时,点Q的坐标是三、解答题(共72分)17.(本题8分)解方程:x(x+3)=2x+618.(本题8分)如图,在等腰Rt△ABC和等腰Rt△ECF中,∠ACB=∠ECF=90°,写出线段AE与BF之间的关系,并证明你的结论。
人教版数学九年级上册10月月考试卷附答案
人教版数学九年级上册10月月考试卷附答案一、选择题(共10小题;共30分)1. 下列四个函数中,一定是二次函数的是A. B.C. D.2. 抛物线的对称轴是直线A. B. C. D.3. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是4. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间都在降雨B. “抛一枚硬币正面朝上的概率为次就有一次正面朝上C. “彩票中奖的概率为”表示买张彩票肯定会中奖D. “抛一枚正方体骰子,朝上的点数为的概率为“抛出朝上的点数为”这一事件发生的频率稳定在附近5. 某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是A. B.C. D.6. 小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字,,,现将标有数字的一面朝下,小明从中任意抽取一张.记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是A. 小亮B. 小明C. 一样D. 无法确定7. 是关于的二次函数,当的取值范围是时,在时取得最大值,则实数的取值范围是A. B. C. D.8. 已知,,为非负实数,且,则代数式的最小值为B. C. D.9. 如图,已知:正方形边长为,,,,分别为各边上的点,且,设小正方形的面积为,为,则关于的函数图象大致是A. B.C. D.10. 如图,已知抛物线和直线.我们约定:当任取一值时,对应的函数值分别为,,若,取,中的较小值记为;若,记.下列判断:①当时,;②当时,值越大,值越大;③使得大于的值不存在;④若,则.其中正确的有A. 个B. 个C. 个D. 个二、填空题(共6小题;共18分)11. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到).12. 抛物线经过点和两点,则.13. 函数:的顶点坐标是.14. 某果园有棵橘子树,平均每一棵树结个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结个橘子.设果园增种棵橘子树,果园橘子总个数为个,则果园里增种棵橘子树,橘子总个数最多.15. 已知和时,多项式的值相等,且,则当时,多项式的值等于.16. 抛物线经过点,,,已知,.(1)如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,点的坐标为;(2)抛物线顶点为,轴于点,是轴上一动点,是线段上一点,若,实数的变化范围是.三、解答题(共8小题;共102分)17. 如图所示,转盘被等分成八个扇形,并在上面依次标有数字,,,,,,,.。
九年级上学期月考数学试卷(10月份)附答案
九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=03.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+14.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.196.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10008.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1二、填空题(每空4分,20分)11.使分式的值等于零的x的值是.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0是.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(只填序号)三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.考点:二次函数的定义.分析:根据二次函数的定义逐一进行判断.解答:解:A、等式的右边不是整式,不是二次函数,故本选项错误;B、原式化简后可得,y=2x﹣1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;故选C.点评:本题考查了二次函数的定义,要知道:形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=0考点:一元二次方程的一般形式.分析:先把(x﹣)(x+)转化为x2﹣2=x2﹣5;然后再把(2x﹣1)2利用完全平方公式展开得到4x2﹣4x+1.再合并同类项即可得到一元二次方程的一般形式.解答:解:(x﹣)(x+)+(2x﹣1)2=0即x2﹣2+4x2﹣4x+1=0移项合并同类项得:5x2﹣4x﹣4=0故选:A.点评:本题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式.3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1考点:二次函数图象与几何变换.分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,则x'=x﹣2,y'=y﹣1,代入原抛物线方程即可得平移后的方程.解答:解:由题意得:,代入原抛物线方程得:y'+1=(x'+2)2,变形得:y=x2+2x+1.故选B.点评:本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.4.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对考点:解一元二次方程-配方法.分析:方程移项后,方程两边除以2变形得到结果,即可判定.解答:解:方程移项得:2x2﹣3x=﹣1,方程两边除以2得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.19考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故选D.点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限考点:二次函数图象与系数的关系.分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.解答:解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.点评:此题主要考查二次函数的以下性质.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.解答:解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是考点:二次函数图象与系数的关系.分析:由OA=OC可以得到点A、C的坐标为(﹣c,0),(0,c),把点A的坐标代入y=ax2+bx+c得ac2﹣bc+c=0,c(ac﹣b+1)=0,然后即可推出ac+1=b.解答:解:∵OA=OC,∴点A、C的坐标为(﹣c,0),(0,c),∴把点A的坐标代入y=ax2+bx+c得,ac2﹣bc+c=0,∴c(ac﹣b+1)=0,∵c≠0∴ac﹣b+1=0,∴ac+1=b.故选A.点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:计算题.分析:利用抛物线的顶点式和二次函数的性质分别进行判断.解答:解:∵a=2>,∴抛物线开口向上,所以①正确;∵y=2(x﹣3)2+1,∴抛物线的对称轴为直线x=3,顶点坐标为(3,1),所以②③错误;当x<3时,y随x的增大而减小,所以④错误;当x=3时,y有最小值1,所以⑤错误.故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.二、填空题(每空4分,20分)11.使分式的值等于零的x的值是6.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零:分子为0,分母不为0.解答:解:根据题意,得x2﹣5x﹣6=0,即(x﹣6)(x+1)=0,且x+1≠0,解得,x=6.故答案是:6.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=﹣2.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x ﹣3的对称轴为x=﹣1,根据对称轴x=,可求a+b的值.解答:解:已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,因为点P(a,m)和Q(b,m)点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x﹣3的对称轴为x=﹣1;故有a+b=﹣2.故答案为:﹣2.点评:本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.考点:根与系数的关系.专题:计算题.分析:先判断x2﹣x+3=0没有实数解,则两个方程的所有实数根的和就是2x2﹣3x﹣1=0的两根之和,然后根据根与系数的关系求解.解答:解:方程2x2﹣3x﹣1=0的两根之和为∵x2﹣x+3=0没有实数解,∴方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.故答案为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0x1=2,x2=7.考点:解一元二次方程-直接开平方法.分析:先利用直接开平方法得方程a(x+m)2+b=0的解为x=﹣m±,则﹣m+,=1,﹣m ﹣,=﹣2,再解方程a(x+m﹣2)2+b=0得x=3﹣m±,然后利用整体代入的方法得到方程a (x+m﹣3)2+b=0的根.解答:解:解:解方程a(x+m)2+b=0得x=﹣m±,∵方程a(x+m)2+b=0(a,m,b均为常数,a≠0)的根是x1=﹣1,x2=4,∴﹣m+,=﹣1,﹣m﹣,=4,∵解方程a(x+m﹣3)2+b=0得x=3﹣m±,∴x1=3﹣1=2,x2=3+4=7.故答案为x1=2,x2=7.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(1)(2)(5)(只填序号)考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b2﹣4ac与0的关系;由抛物线与y轴的交点判断c与1的关系;根据对称轴在x=﹣1的左边判断2a﹣b与0的关系;把x=1,y=0代入y=ax2+bx+c,可判断a+b+c<0是否成立.解答:解:(1)∵抛物线的开口向下,∴a<0,故本信息正确;(2)根据图示知,该函数图象与x轴有两个交点,故△=b2﹣4ac>0;故本信息正确;(3)由图象知,该函数图象与y轴的交点在点(0,1)以下,所以c<1,故本信息错误;(4)由图示,知对称轴x=﹣>﹣1;又∵a<0,∴﹣b<﹣2a,即2a﹣b<0,故本信息错误;(5)根据图示可知,当x=1,即y=a+b+c<0,所以a+b+c<0,故本信息正确;故答案为(1)(2)(5).点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:①先移项,再把等号左边因式分解,最后分别解方程即可;②先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案.解答:解:①(5x﹣1)2=3(5x﹣1),(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,(5x﹣1)(5x﹣4)=0,x1=,x2=;②x2+2x=7,x2+2x+1=8,(x+1)2=8,x+1=±2,x1=﹣1+2,x2=﹣1﹣2.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x+2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x+2)2+1,将B(1,0)代入y=a(x+2)2+1得,a=﹣,函数解析式为y=﹣(x+2)2+1,展开得y=﹣x2﹣x+.所以该抛物线的函数解析式为y=﹣x2﹣x+.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.考点:根与系数的关系.分析:设方程的另一个根是m,根据韦达定理,可以得到两根的积等于4,两根的和等于﹣k,即可求解.解答:解:设方程的另一个根是m,根据韦达定理,可以得到:(﹣3+)•m=4,且﹣3++m=﹣k,解得:m=﹣3﹣,k=6.即方程的另一根为﹣3﹣,k=6.点评:本题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.考点:二次函数的应用.分析:(1)设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式;(2)利用函数的性质进行解答即可.解答:解:如图,设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,∴y=.(2)y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?考点:二次函数的应用.分析:(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.解答:解:(1)∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵蓝球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.点评:本题考查了函数类综合应用题,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由于AD=2,即C点的纵坐标为2,将其代入已知的直线解析式中,即可求得C点的横坐标,进而由AB的长,求得A、D的横坐标,由此可确定矩形的四顶点的坐标.(2)根据直线y=x﹣2可求得E点的坐标,进而可利用待定系数法求出该抛物线的解析式.(3)根据(2)所得抛物线的解析式,即可由配方法或公式法求得其顶点坐标,进而根据矩形的四顶点坐标,来判断此顶点是否在矩形的内部.解答:解:(1)如答图所示.∵y=x﹣2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x﹣2,即2=m﹣2,∴m=4,∴C(4,2),∴OB=4,AB=3,∴OA=4﹣3=1,∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x﹣2,∴令x=0,得y=﹣2,∴E(0,﹣2).设经过E(0,﹣2),A(1,0),B(4,0)三点的抛物线关系式为y=ax2+bx+c,∴,解得;∴y=.(3)抛物线顶点在矩形ABCD内部.∵y=,∴顶点为,∵,∴顶点在矩形ABCD内部.点评:此题主要考查了函数图象上点的坐标意义、矩形的性质、二次函数解析式的确定等知识,难度不大,细心求解即可.。
人教版九年级数学上学期(第一学期)10月份月考试题及答案解析.docx
九年级数学10月份月考试题一、单项选择题(本大题共6小题,每小题3分,共18分)1.在下列方程中,一元二次方程的个数是( )①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④2530x x -= A.1个 B.2个 C.3个 D.4个2.若关于x 的一元二次方程2420kx x -+=有实数根,则k 的非负整数值为( )A.0B.0,1C.1,2D. 0,1,23.方程223(6)x x =-化为一般形式后二次项系数、一次项系数、常数项分别是( )A.2,3,-6B. 2,-3,1C.2,-3,6D.2,3,64.已知二次函数26y x x m =-+的最小值是-3,那么m 的值是( )A.10B.4C.5D.65.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单位的抛物线的解析式是( )A.23(1)2y x =++B. 23(1)2y x =+-C. 23(1)2y x =-+D. 23(1)2y x =--6.若A (134-,y 1),B (54-,y 2),C (14,y 3)为二次函数245y x x =+-的图象上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 3<y 1<y 2D. y 1<y 3<y 2二填空题(本大题共6小题,每小题3分,共18分)7.抛物线223y x x =++的顶点坐标是 .8.若27(3)m y m x -=-是二次函数,则m= 。
9.若x=-2是关于x 的一元二次方程x 2-4mx-8=0的一个根,则另一个根是 。
10.若一元二次方程2310x x -+=的两根为1x 和2x ,则1x +2x = 。
11.如果关于x 的一元二次方程260(x x c c -+=是常数)没有实根,那么c 的取值范围是12.二次函数2y (0)ax bx c a =++≠的图象如图所示,下列结论:①2a+b=0;②a+c >b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号)三(本大题共5小题每小题6分,共30分)13.解方程(1)2250x x +-=(2)(8)16x x -=(3)2(2)40x --=14.已知关于x 的方程24(2)10x k x k -++-=有两个相等的实数根,(1)求k 的值;(2)求此时方程的根.15.先化简,再求值:221(1)121m m m m -÷---+,其中m 满足一元二次方程2430m m -+=.16.(本题6分)已知关于x 的方程220x mx m ++-=.(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.17.(本题6分)利用一面长18米的墙,另三边用30米长的篱笆围成一个面积为100平方米的矩形场地,求矩形的长和宽.四、(本大题共4小题,每小题8分,共32分)18.(本题8分)已知关于x 的一元二次方程2(1)20x m x m --++=.(1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于292m m -+,求6m +的值.19.(本题8分)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P,使△ABP的面积为10,请求出点P的坐标。
数学月考9年级上册试卷【含答案】
数学月考9年级上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. 2C. 3D. 42. 在三角形ABC中,若∠A = 90°,AB = 3,AC = 4,则BC的长度为:A. 5B. 6C. 7D. 83. 下列哪个数是无理数?A. √9B. √16C. √25D. √264. 若sinθ = 1/2,且θ是锐角,则cosθ的值为:A. √3/2B. √2/2C. 1/2D. 1/√25. 二项式展开式(a + b)⁵的系数和为:A. 1B. 2C. 3D. 4二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()3. 若一组数据的方差为0,则这组数据中的每个数都相等。
()4. 在平面直角坐标系中,点(3, -4)在第四象限。
()5. 两个函数若它们的定义域和值域都相同,则这两个函数是同一函数。
()三、填空题(每题1分,共5分)1. 若函数f(x) = 2x + 3,则f(-1) = _______。
2. 若一组数据的平均数为10,则这组数据的总和为_______。
3. 在直角坐标系中,点(2, 3)关于y轴的对称点坐标为_______。
4. 若sinθ = 3/5,且θ在第二象限,则cosθ = _______。
5. 若一个等差数列的首项为3,公差为2,则该数列的第5项为_______。
四、简答题(每题2分,共10分)1. 解释什么是函数的单调性。
2. 简述勾股定理的内容。
3. 什么是绝对值?如何计算一个数的绝对值?4. 解释直角坐标系中,第一象限的特点。
5. 简述等差数列的通项公式。
五、应用题(每题2分,共10分)1. 解一元二次方程x² 5x + 6 = 0。
10月九年级上月考数学试卷 (有答案)
10月九年级上月考数学试卷 (有答案)一、填空题(每题2分,共24分)1.已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a= .2.如果,那么= .3.一元二次方程x 2﹣2x ﹣1=0的根的情况为 .4.已知关于x 的二次三项式4x 2﹣mx +25是完全平方式,则常数m 的值为 . 5.关于x 的一元二次方程(a ﹣1)x 2+x +|a |﹣1=0的一个根是0,则实数a 的值是 . 6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是 . 7.若a 是方程x 2﹣2x ﹣2=0的一个根,则2a 2﹣4a= .8.如图∠DAB=∠CAE ,请补充一个条件: ,使△ABC ∽△ADE .9.如图,点P 是△ABC 中AB 边上的一点,过P 作直线(不与AB 重合)截△ABC ,使截得的三角形与原三角形相似,满足条件的直线最多有 条.10.如图△ABC 中,DE ∥BC ,AD :BD=1:2,则DE :BC= .11.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN :S △CEM 等于.12.已知如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则S△COB:S△COD=.二.选择题(每题3分,共15分)13.若关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤1 D.k≤1且k≠014.根据下列表格对应值:)A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.2815.在△ABC中,点D、E分别在AB、AC边上.下列各比例式中,能够判定DE∥BC的是()A.=B.= C.= D.=16.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.1217.下列四个三角形中,与图中的三角形相似的是()A. B.C.D.三、解答题(共81分)18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).19.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?20.已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.21.如图,在▱ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.22.两棵树的高度分别是AB=16米,CD=12米,两棵树的根部之间的距离AC=6米.小强沿着正对这两棵树的方向从右向左前进,如果小强的眼睛与地面的距离为1.6米,当小强与树CD 的距离等于多少时,小强的眼睛与树AB、CD的顶部B、D恰好在同一条直线上,请说明理由.23.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.24.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?25.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)试说明△ABD≌△BCE;(2)△AEF与△ABE相似吗?说说你的理由;(3)BD2=AD•DF吗?请说明理由.26.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O 出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.27.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.九年级(上)月考数学试卷(10月份)参考答案与试题解析一、填空题(每题2分,共24分)1.已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a= 4 . 【考点】比例线段.【分析】由线段a 是线段b 与c 的比例中项,根据线段比例中项的概念,可得b :a=a :c ,可得a 2=bc=16,故a 的值可求.【解答】解:∵线段a 是线段b 与c 的比例中项, ∴a 2=bc=2×8=16, 解得a=±4, 又∵线段是正数, ∴a=4. 故答案为:4.2.如果,那么=.【考点】分式的基本性质.【分析】由可知:若设a=2x ,则b=3x .代入所求式子就可求出.【解答】解:∵,∴设a=2x,则b=3x,∴.故答案为.3.一元二次方程x2﹣2x﹣1=0的根的情况为两个不相等的实数根.【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△>0,由此即可得出结论.【解答】解:∵在方程x2﹣2x﹣1=0中,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程x2﹣2x﹣1=0有两个不相等的实数根.故答案为:两个不相等的实数根.4.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为±20.【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是2x和5这两个数的平方,那么中间一项为加上或减去2x和5的积的2倍.【解答】解:∵4x2﹣mx+25是一个完全平方式,∴mx=±2•2x×5=±20x,∴m=±20,故答案为±20.5.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值是﹣1.【考点】一元二次方程的解.【分析】把x=0代入已知方程,得到关于a的方程,通过解新方程求得a的值.注意二次项系数不等于零.【解答】解:依题意得:|a|﹣1=0且a﹣1≠0,解得a=﹣1.故答案是:﹣1.6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【考点】根的判别式.【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.7.若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=4.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=a代入方程得到a2﹣2a﹣2=0,则a2﹣2a=2,然后把2a2﹣4a变形为2(a2﹣2a),再利用整体代入的方法计算.【解答】解:把x=a代入方程得a2﹣2a﹣2=0,则a2﹣2a=2,所以2a2﹣4a=2(a2﹣2a)=2×2=4.故答案为4.8.如图∠DAB=∠CAE,请补充一个条件:∠D=∠B(答案不唯一),使△ABC∽△ADE.【考点】相似三角形的判定.【分析】根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角可该角的两个边对应成比例即可推出两三角形相似.【解答】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B(答案不唯一).9.如图,点P是△ABC中AB边上的一点,过P作直线(不与AB重合)截△ABC,使截得的三角形与原三角形相似,满足条件的直线最多有4条.【考点】相似三角形的判定.【分析】两个角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似.利用相似三角形的判定方法分别得出符合题意的图形即可.【解答】解:第一种情况如图1所示,过点P作PD∥BC,理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.第二种情况如图2所示,以PA为角的一边,在△ABC内作∠APE=∠C,理由:因为△APE与△ACB中还有公共角∠A,所以这两个三角形也相似.第三种情况如图3所示,过点P作PF∥AC,理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.第四种情况如图4所示,作∠BPG=∠C,理由:因为△GBP与△ACB中还有公共角∠B,所以这两个三角形也相似.故答案为:4.10.如图△ABC中,DE∥BC,AD:BD=1:2,则DE:BC=1:3.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理进行解答. 【解答】解:∵DE ∥BC , ∴AD :AB=DE :BC , ∵AD :BD=1:2, ∴AD :AB=1:3, ∴DE :BC=1:3.11.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN :S △CEM 等于1:3 .【考点】相似三角形的判定与性质.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,可以求出DE=BC ,又点M 是DE 的中点,可以求出DM :BC 的值,也就等于MN :NC 的值,从而可以得到MN :MC 的比值,也就是点N 到DE 的距离与点C 到DE 的距离之比,又DM=ME ,所以S △DMN :S △CEM =MN :MC .【解答】解:∵DE 是△ABC 的中位线,∴DE ∥BC ,DE=BC , ∵M 是DE 的中点,∴DM=ME=BC ,∴==,∴==,即:点N 到DE 的距离与点C 到DE 的距离之比为,∵DM=ME ,∴S △DMN :S △CEM =1:3.故答案为:1:3.12.已知如图,梯形ABCD 中,AB ∥CD ,△COD 与△AOB 的周长比为1:2,则S △COB :S △COD = 2:1 .【考点】相似三角形的判定与性质;梯形.【分析】先证明△COD 与△AOB 相似,再根据相似三角形周长的比等于相似比,推出DO 与OB 的比值,又△COB ,△COD 是等高三角形,所以面积的比等于底边BO 与OD 的比.【解答】解:∵AB ∥CD ,∴△COD ∽△AOB ,∵△COD 与△AOB 的周长比为1:2,∴DO :OB=1:2;∵△COB ,△COD 是等高三角形,∴S △COB :S △COD =BO :OD=2:1.故答案为2:1.二.选择题(每题3分,共15分)13.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k ≥﹣1B .k ≥﹣1且k ≠0C .k ≤1D .k ≤1且k ≠0【考点】根的判别式.【分析】分两种情况讨论:(1)当k=0时,方程为一元一次方程,必有实数根;(2)当k≠0时,方程为一元二次方程,当△≥0时,必有实数根.【解答】解:(1)当k=0时,方程为一元一次方程,必有实数根;(2)当k≠0时,方程为一元二次方程,当△≥0时,方程有实数根:△=4﹣4k(﹣1)≥0,解得k≥﹣1,综上所述,k≥﹣1.故选A.14.根据下列表格对应值:)A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.28【考点】估算一元二次方程的近似解.【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【解答】解:由图表可知,ax2+bx+c=0时,3.24<x<3.25.故选B.15.在△ABC中,点D、E分别在AB、AC边上.下列各比例式中,能够判定DE∥BC的是()A.=B.= C.= D.=【考点】平行线分线段成比例.【分析】根据对应线段成比例,两直线平行,可得出答案.【解答】解:∵,∴DE∥BC,故选D.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.12【考点】相似三角形的判定与性质;正方形的性质.【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解答】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.故选C.17.下列四个三角形中,与图中的三角形相似的是()A. B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.三、解答题(共81分)18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)直接利用公式法求出方程的根即可;(2)先移项,使方程的右边化为零,再利用提取公因式法分解因式得出即可.【解答】解:(1)x2﹣5x+1=0,∵△=b2﹣4ac=25﹣4×1×1=21>0,∴x=;(2)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3.19.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】一元二次方程的应用;平行四边形的性质;菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.20.已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.【考点】相似三角形的判定.【分析】根据两角对应相等的三角形是相似三角形可得△AEC∽△AFB,根据两边对应成比例且夹角相等的三角形是相似三角形可证明△AEF∽△ACB.【解答】证明:∵CE⊥AB于E,BF⊥AC于F,∴∠AFB=∠AEC.∵∠A为公共角,∴△ABF∽△ACE(两角对应相等的两个三角形相似).∴AB:AC=AF:AE,∠A为公共角.∴△AEF∽△ACB(两边对应成比例且夹角相等的两个三角形相似).21.如图,在▱ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据AD∥BC,可以证得∠ADE=∠DEC,然后根据∠CDE=∠DAE即可证得;(2)根据相似三角形对应边的比相等,即可求得EC的长,则BE即可求解.【解答】(1)证明:∵▱ABCD中AD∥BC,∴∠ADE=∠DEC,又∵∠CDE=∠DAE,∴△ADE∽△DEC;(2)解:∵△ADE∽△DEC,∴=,∴=,∴EC=.又∵BC=AD=6,∴BE=6﹣=.22.两棵树的高度分别是AB=16米,CD=12米,两棵树的根部之间的距离AC=6米.小强沿着正对这两棵树的方向从右向左前进,如果小强的眼睛与地面的距离为1.6米,当小强与树CD 的距离等于多少时,小强的眼睛与树AB、CD的顶部B、D恰好在同一条直线上,请说明理由.【考点】相似三角形的应用.【分析】本题需先过O点作平行于地面的线段交CD于E,交AB于F,再根据△ODE∽△OBF,列出方程即可求出结果.【解答】解:设小强的眼睛的位置为O,过O点作平行于地面的线段交CD于E,交AB于F,连接O、D、E得△ODE和△OBF,设小强与树CD的距离为x,有OE=x,OF=6+x.因为△ODE∽△OBF,所以:=,解得x=15.6米.23.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】一元二次方程的应用.【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.24.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【考点】一元二次方程的应用.【分析】(1)先求出每件的利润.再乘以每月销售的数量就可以得出每月的总利润;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)由题意,得60=4800元.答:降价前商场每月销售该商品的利润是4800元;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由题意,得(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.25.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)试说明△ABD≌△BCE;(2)△AEF与△ABE相似吗?说说你的理由;(3)BD2=AD•DF吗?请说明理由.【考点】相似三角形的判定与性质;全等三角形的判定;等边三角形的性质.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=AD•DF.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△ABE相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴,即BD2=AD•DF.26.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O 出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB 的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当PE⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.27.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.2017年2月11日。
九年级数学上册10月月考试题
A .B .C .D .九年级数学上册10月月考试题初三数学试卷说 明:本试卷共8页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.下列各组二次根式中是同类二次根式的是 ( ) A .2112与 B .2718与 C .313与 D .5445与2.下列图形中对称轴最多的图形是( )3.下列命题中不成立...的是( ) A .矩形的对角线相等B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形4.下列各式正确的是 ( ) A .a a =2 B .a a ±=2 C .a a =2D .22a a = 5.现有下列命题:①()25-的平方根是-5;②近似数3.14310⨯有3个有效数字; ③单项式y x 23与单项式23xy -是同类项;④正方形既是轴对称图形,又是中心对称图形 其中真命题的个数是 ( )A.1B.2C.3D.46.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E ,AD=6cm ,则OE 的长为( ) A .6 cmB .4 cmC .3 cmD .2 cm7.顺次连结任意四边形各边中点所得到的四边形一定是( ) A .平行四边形 B .矩形 C .菱形 D .正方形8.我们来探究 “雪花曲线”的有关问题:图中的图(1)是边长为1的正三角形,将此正三角形的每条边三等分,而以居中的那一条线段为底边再作正三角形,然后以其两腰代替底边,得到第二个图形如图5-4中的图(2);再将图5-4中的图(2)的每条边三等分,并重复上述的作法,得到第三个图形如图5-4中的图(3);如此继续下去,得到的第五个图形的周长应等于( )A .3B .27256C .24316D .102481二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.若x x -=-222)(,那么x 的取值范围是 ; 10.关于x 的方程x ²+mx -1=0的两根互为相反数,则m 的值为_______.11.一组数据;1,-2,a 的平均数是0,那么这组数据的方差是12.下图是一个等边三角形木框,甲虫P 在边框AC 上爬行(A ,C 端点除外),设甲虫P 到另外两边的距离之和为d ,等边三角形ABC 的高为h ,则d 与h 的大小关系是_______.(1) (2) (3)第12题图 第16题图 第18题图13. 若梯形的面积为6㎝2,高为2㎝,则此梯形地中位线长为14.若6+11和6-11的整数部分分别是a 和b ,则a+b 的值是 ;15.甲、乙两同学近期4次数学单元测试成绩的平均分相同,甲同学成绩的方差2.32=甲S ,乙同学成绩的方差1.42=乙S ,则他们的数学测试成绩谁较稳定 (填甲或乙). 16.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.17.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: 。
九年级上学期数学10月月考试卷新版
九年级上学期数学10月月考试卷新版一、单选题 (共10题;共20分)1. (2分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A . 俯视图不变,左视图不变B . 主视图改变,左视图改变C . 俯视图不变,主视图不变D . 主视图改变,俯视图改变2. (2分)下列四个命题中,真命题的是()A . 相等的圆心角所对的弧相等B . 同旁内角互补C . 平行四边形是轴对称图形D . 全等三角形对应边上的高相等3. (2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()B . 60°C . 55°D . 50°4. (2分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年收入400美元,预计2019年年收入将达到1200美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A . 400(1+2x)=12000B . 400(1+x)2=12000C . 400(1+x2)=1200D . 400+2x=120005. (2分)已知a为整数,且,则a等于()A . 1B . 2C . 3D . 46. (2分)把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t-5t ,当小球达到最高点时,小球的运动时间为()A . 1秒B . 2秒C . 4秒7. (2分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A .B .C .D .8. (2分)已知抛物线:y=ax2+bx+c(a<0)经过A(2,4)、B(﹣1,1)两点,顶点坐标为(h,k),则下列正确结论的序号是()①b>1;②c>2;③h>;④k≤1.A . ①②③④B . ①②③C . ①②④D . ②③④9. (2分)关于方程(a+1)x=1,下列结论正确的是()A . 方程无解B . x=C . a≠-1时方程解为任意实数D . 以上结论都不对10. (2分)如图,在△ABC中,∠A=36°,AB=AC,BD、CE分别为△ABC的角平分线,BD、CE相交于O,则图中等腰三角形有()A . 5个B . 6个C . 7个D . 12个二、填空题 (共7题;共8分)11. (2分)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为弧AB的中点,D是OA的中点,则图中阴影部分的面积为________cm2.12. (1分)方程3x(x-1)=2(x-1)的根是________13. (1分)将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为________ .14. (1分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.15. (1分)如图,设矩形ABCD的边BC=x,DC=y,连接BD且CE⊥BD,CE=2,BD=4,则(x+y)2﹣3xy+2的值为________ .16. (1分)如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是________.17. (1分)三元一次方程组的解是________三、解答题 (共8题;共75分)18. (10分)化简(1+ )÷ .19. (10分)如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s)(1)当t=6s时,∠POA的度数是________;(2)当t为多少时,∠POA=120°;(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.20. (8分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差甲a77 1.2乙7b8c (1)写出表格中a,b,c的值;赛,你认为应选哪名队员?(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?21. (10分)根据所学知识填空:(1)(﹣2)+________=﹣4.(2)(﹣2)﹣________=4.22. (7分)已知二次函数y=﹣x2+2x+3图象的对称轴为直线.(1)请求出该函数图象的对称轴;(2)在坐标系内作出该函数的图象;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.23. (10分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?24. (10分)已知,如图所示,在矩形ABCD中,点E在BC边上,∠AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.25. (10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共75分)18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
九年级(上)10月月考数学试题
数学试卷考试时间:120分钟 满分:150分A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。
1.近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 A .420.310⨯人 B .52.0310⨯人C .42.0310⨯人D .32.0310⨯人2.抛物线y=x 2﹣6x+5的顶点坐标为 ( )) . A 、x 4y -= B 、x 4y = C 、x41y -= D 、x 41y = 4.若A (﹣,y 1),B (﹣1,y 2),C (,y 3)为二次函数y=﹣x 2﹣4x+5的图象上的三点,则y 1,y 2,y 3的大小关系是 ( )5.已知在Rt △ABC 中,∠C=90°,sin A=,AC=2,那么BC 的值为( )....A .180,160B .160,180C .160,160D .180,1808.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是 ( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x += D . 2100(1)121x -= 9.下列说法中①若式子1-x 有意义,则x >1. ②已知∠α=27°,则∠α的补角是153°.③已知2=x 是方程062=+-c x x 的一个实数根,则c 的值为8. ④在反比例函数xk y 2-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2. 其中正确命题有 ( )A. 1 个B. 2 个C. 3 个D. 4 个10、如图,等腰Rt △ABC (∠ACB=90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11. 分解因式:39x x -=________________。
九年级(上)数学试卷(10月)
2013~2014学年度上学期数学新课程练习试卷(二)一、选择题(共12小题,每小题3分,共36分) 1.二次根式2(3)-的的相反数是( )A. 3.B. 3-.C. 9.D. -9. 2.函数2y x =-中自变量x 的取值范围是( )A. 0x ≥.B. 2x ≥-.C. 2x ≥.D. 2x ≤-. 3.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A. 30°B. 45°C. 90°D. 135° 4.下列说法中,其中正确的是( )A. 关于x 的方程02=++c bx ax 是一元二次方程.B. 方程0122=++x x 有两个不相等的实数根.C. 旋转前后两个图形的对应点连线的垂直平分线必定经过旋转中心.D. 同一平面上三个点一定可以确定一个元圆5.若1x ,2x 是一元二次方程2430x x ++=的两个根,则21x x +的值是( ) A. 4. B. 3. C. 4-. D. 3-.6.已知AB 是半径为5的⊙O 一条弦,且AB =8,则圆心O 到AB 的距离d =( ) A. 3=d . B. 4=d . C. 6=d . D. 8=d . 7.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA =( )A. 30°.B. 45︒.C. 60°.D. 67.5°. 8.下列图形中,中心对称图形有( )A .4个B .3个C .2个D .1个9.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图9-1.在图9-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图9-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A. 2.B. 3.C. 5.D. 6.10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点B 作⊙O 的切线,交AC 的延长线ABOCD(第3题)CDAO B第7题图图9-1 图9-2 向右翻滚90° 逆时针旋转90°于点F .已知3AE =BE =6,则C F 的长是( )A. 12.B. 16.C. 123.D. 163.11.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多的进入普通家庭,成为居民消费新的增长点,且每年各种车型所占比例基本维持不变。
九年级数学上学期10月月考试题 试题
外国语2021-2021学年度九年级数学上学期10月月考试题 〔全卷一共三个大题,满分是150分,考试时间是是120分钟〕一、选择题〔每一小题4分,一共48分〕1、要使式子aa 2+有意义,a 的取值范围是〔 〕 A 、a ≠0 .B 、a ﹥﹣2且a ≠0 C 、a ≥﹣2 D 、a ≥﹣2且a ≠02、以下二次根式中,最简二次根式有〔 〕个 ①4.0 ②22y x + ③51 ④3 ⑤x1 ⑥45 ⑦﹣a 2abA 、1B 、2C 、3D 、43、假设关于x 的一元二次方程〔m -2〕x 2+5x +m 2-4=0的常数项为0,那么m 的值等于〔 〕A 、﹣2B 、2C 、﹣2 或者2D 、04、以下各组二次根式,属于同类二次根式的是〔 〕A 、12与72B 、5.0与32 C 、34x 与﹣2x 2 D 、63与28 5、方程x 2-9x +18=0的两个根是等腰三角形的底和和腰,那么这个三角形的周长为〔 〕A 、12B 、12或者15C 、15D 、不能确定6、x 1、x 2是方程2x 2-4x +1=0的两个根,那么12x x +21x x 的值是〔 〕 A 、6 B 、4 C 、3 D 、23 7、某食品加工厂今年1月份加工食品2500吨,通过技术革新,加工量逐月上升,第一季度一共加工这种食品9500吨,设二、三月份平均每月增长的百分率为x ,那么可列方程为〔 〕A 、2500〔1+x 〕2=9500 B 、2500〔1+x 〕+2500〔1+x 〕2=9500 C 、2500+2500〔1+x 〕+2500〔1+x 〕2=9500 D 、2500〔1+x 〕2=9500-2500 8、化简:a a8-的结果正确的选项是〔 〕 A 、a 2a 8- B 、﹣2a 2 C 、2a 2a 2- D 、﹣2a 2-9、如下图,CD 为Rt △ABC 斜边上的高,AC:BC =3:2,假如S △ADC =9,那么S △BDC 等于〔 〕A 、2B 、3C 、4D 、510CD 中,点E 是边AD 上的一点,且AE =2ED , EC 交对角线BD 于点F ,那么FCEF =〔 〕 A 、31 B 、21 C 、32 D 、23 11、α、β是方程x 2-2x -4=0的两实根,那么α3+8β+6的值是_________A 、20B 、30C 、36D 、4012、如图,在Rt △ABC 中, ∠ABC =90°,点B 在x 轴上,且B 〔﹣1,0〕,A 点的横坐标是2,AB =3BC ,双曲线y =x m 4〔m ﹥0〕经过A 点,双曲线y =﹣xm 经过C 点,那么m 的值是〔 〕A 、12B 、9C 、6D 、3二、填空题〔每一小题4分,一共24分〕13、方程x 2=3x 的解为___________ 14、假设b a b a -+22=59,那么ba =___________15、假如关于x 的一元二次方程k x 2-12+k x +1=0有两个不相等的实数根,那么k 的取值范围是________16、如图DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于N ,那么S △DMN :S 四边形ANME =___________17、如图,菱形ABCD 中,AC 、BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC 方向以2m/s 匀速直线动动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线动动到D ,假设M 、N 同进出发,那么出发后_______________S 时,△MON 的面积为41m 2 18、如图,点P 是正方形ABCD 内一点,连结AP 、BP 、DP ,假设AP =3,BP =30,∠APD =135°,那么正方形ABCD 的边长为___________三、解答题19、计算:〔每一小题4分,一共8分〕〔1〕121++〔2-2014〕0-〔﹣1〕2021+22-+〔﹣21〕﹣2〔2〕333++311-〔13+〕2+1220、解方程:〔每一小题3分,一共12分〕〔1〕〔x +3〕〔x -2〕=50 〔2〕x 2-4x 3+10=0〔公式法〕 〔3〕3x 2+7x -6=0〔配方法〕21、(8分) 如图,边长为1的正方形网格中有格点△ABC 和格点O ,假设把△ABC 绕着点O 逆时针旋转180°〔1〕在网格中画出△ABC 旋转后的△A 1B 1C 1,并写出B 1的坐标。
九年级数学上学期10月月考试题 试题_5
一中初2021级13—14学年度上期第一次定时作业制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日数学试卷〔全卷一共五个大题,满分是150分,考试时间是是120分钟〕一、选择题:〔本大题12个小题,每一小题4分,一共48分〕在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.的相反数是( )A. B. C. D.2.以下几何体中,俯视图为四边形的是( )3.以下调查适普查的是〔〕A.对和甲型的流感患者同一车厢的乘客进展医学检查B.理解全国手机用户对废手机的处理情况C.理解全球人类男女比例情况D.理解中小学生压岁钱的使用情况4.以下图案中,不是中心对称图形的是〔〕5.如图,在△ABC中,∠C=90°,AB=5,BC=3,那么cosA的值是〔〕A. B. C. D.6.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都一样,从中任意摸出一个球,摸到红球的概率为〔〕A. B. C. D.7.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,那么三角板的最大边的长为〔〕A. B. C. D.8.从2,-2,1,-1四个数中任取2个数求和,其和为0的概率是( )A.B.C.D.9.长方体的主视图与俯视图如下图,那么这个长方体的体积是〔〕A.B.C.D.10.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,那么第10个图案中,所包含的黑色正三角形的个数是〔〕A. 42 B.40 C.38 D.3611.2021年“表示童童从家出发后所用的时间是,表示童童离家的间隔.下面能反映与函数关系的大致图象是( )12.如图,在直角坐标系中,有菱形OABC,A点的坐标为〔10,0〕,对角线OB、AC相交于D点,双曲线经过D点,交BC的延长线于E点,且OB•AC=160,有以下四个结论:①双曲线的解析式为;②E点的坐标是〔4,8〕;③sin∠COA=;④AC+OB=.其中正确的结论有〔〕A.1个B.2个C.3个D.4个二、填空题:〔本大题6个小题,每一小题4分,一共24分〕请将每一小题的正确答案填在以下方框内.题号13 14 15答案题号16 17 18答案13..14.不透明的口袋里装有红、黄、蓝三种颜色的小球〔除颜色不同外,其它都一样〕,其中红球2个,蓝球1个,现从中任意摸出一个球是红球的概率为,那么袋中黄球的个数为.15.生物工作者为了估计一片山林中猴子的数量,设计了如下方案:先捕捉100只猴子,给它们做上标记后放回山林;一段时间是后,再从中随机捕捉500只,其中有标记的猴子有5只.请你帮助工作人员估计这片山林中猴子的数量约为只.16.如图,在A时测得某树的影长为4米,B时又测得该树的影长为9米,假设两次的光线互相垂直,那么树的高度为米.17.有十张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3,4,5,6的不透明卡片,它们除数字不同外其余全部一样.现将它们反面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片上的数字乘以记为.那么数字〔〕使得关于的方程有解的概率为.18.如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为〔4,2〕,将矩形OEFG绕点O逆时针旋转,使点F落在轴上与点N重合,得到矩形OMNP,OM与GF相交于点A.假设经过点A的反比例函数的图象交EF于点B,那么点B的坐标为.三、解答题:〔本大题一一共2个小题,每一小题7分,一共14分〕解答时每一小题都必须写出必要的演算过程或者推理步骤.19.计算:20.用图中两个可自由转动的A,B转盘做“配紫色〞游戏:分别转动两个转盘,假设其中一个转出红色,另一个转出蓝色即可配成紫色.请用画树状图或者列表的方法列出所有可能的结果,并求可配成紫色的概率.四、解答题:〔本大题一一共4个小题,每一小题10分,一共40分〕解答时每一小题都必须写出必要的演算过程或者推理步骤.21.先化简,再求值:,其中为方程的解.22.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以40米/分的速度沿与地面成75°角的方向飞行,35分钟后到达C处,此时热气球上的人测得小侧B点的俯角为30°,求小西两侧A、B两点间的间隔.〔结果保存根号〕23.网络购物开展非常迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进展了调查,并将调查结果绘成了条形图1和扇形图2.〔1〕这次调查中,假如职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?〔2〕假如把对网络购物所持态度中的“经常〔网购〕〞和“偶然〔网购〕〞统称为“参与网购〞,其余叫从不网购,那么该企业职工“从不网购〞的人数大约是多少人?〔3〕这次调查中,25岁以下的职工“从不〔网购〕〞的一共有5人,其中3男2女,在这5人中,打算随机选出2位进展采访,请你用列表法或者画树状图的方法求出所选两人恰好是一男一女的概率.24.如图,正方形ABCD中,E、F分别为边BC、DC上的点,且BE=FD,连接AE,过点F作FH⊥AE,交AB于点G,连接CH.(1)假设DF=2,, 求AE的值.(2)求证:EH+FH=CH五、解答题:(本大题一一共2个小题,每一小题12分,一共24分)解答时每一小题都必须写出必要的演算过程或者推理步骤.25.如图1,直线与双曲线交于点P,PA⊥轴于点A,S△PAO=.〔1〕求的值.〔2〕如图2,点E的坐标为,连接PE,过点P作PF⊥PE,交轴于点F,求点F的坐标.〔3〕如图3,将点A向右平移5个单位长度得点M,问:双曲线上是否存在点Q,使S△QPO=S△MPO?假设存在,求Q点的坐标;假设不存在,请说明理由.26.在矩形AOCB中,边AO=2,OC=6,∠AOC的角平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向挪动;同时点Q从点O出发,以每秒2个单位长度的速度沿射线OC方向挪动.设挪动时间是为t秒.〔1〕当点P挪动到点D时,求出此时t的值;〔2〕设△OPQ与梯形ODBC重叠局部面积为S,直接写出S与的关系式,并写出的取值范围;〔3〕求当t为何值时,△PQB为直角三角形.一中初2021级13—14学年度上期定时作业数学试卷〔答案〕题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D A B D C D C C B A C 一、选择题:二.填空题题号13 14 15 答案 1 10000 题号16 17 18 答案 6三.解答题19.原式=………… 5分=………… 7分由表格知一共有6种等可能出现的结果数,其中能配成紫色的结果数有3种………… 7分21.解:原式====………… 6分解方程得当时原式无意义当时,原式=………… 10分22.解:过A作AD⊥BC交BC于点D,由题意,∠B=30°,∠BCA=75°-∠B =75°-30°=45°在Rt△CDA中,∴………… 6分在Rt△BDA中, ∠B=30°………… 9分∴AB两地之间的间隔为………… 10分23.〔1〕25-35 ………… 2分〔2〕………… 4分〔3〕列表如下:由表格知一共有20种等可能出现的结果数,其中一男一女的结果数有12种………… 10分24.解:〔1〕在………… 5分〔2〕延长HE至M,使EM=FH,连接CM在正方形ABCD中,CD=CB ,∵DF=BE∴CF=CE∵FG⊥AE 在四边形FHEC中∠CFH+∠CEH=180°∵∠CEM+∠CEH=180°∴∠CFH=∠CEM在△CHF和△CME中∴△CHF≌△CME∴CH=CM∠FCH=∠ECM∴∠FCE=∠FCH+ ∠HCE=∠ECM+∠HCE=90°即∠HCM=90°∴△HCM是等腰直角三角形∴∴………… 10分25.〔1〕………… 4分〔2〕过点P作PM⊥y轴交y轴于点M解得∴P(3,3) ∴PA=PM=3 ∠MPA=∠EPF=90°∴∠MPE=∠APF 在△PME和△PAF中∴△PME≌△PAF ∴AF=EM=4 ∴OF=OA+AF=4+3=7∴F(7,0) ………… 8分(3) 由题意得:A(3,0) M(8,0)设当整理得解得∴Q(1,9)当整理得解得∴Q(9,1) ………… 12分26.〔1〕………… 4分〔2〕………… 8分(3)要使△PQB为Rt△,只有∠PQB=90°或者∠PBQ=90°………… 9分当∠PQB=90°时,DO//BQ ∠BQC=∠DOC=45°∴BC=CQ=2 ∴OQ=6-2=4∴………… 10分当∠PBQ=90°∴整理得解得∴当时△PQB为Rt△………… 12分制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。
10月九年级上月考数学试卷(及答案)
10月九年级上月考数学试卷(及答案)
一、填空题(本题共有12小题,每小题2分,共24分.)
1.若关于x的一元二次方程x2﹣ax+a+1=0有一个根为0,则a=.
2.把方程3x2=5x+2化为一元二次方程的一般形式是.
3.已知一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c=.
4.设一元二次方程x2﹣5x+2=0的两个实数根分别为x1和x2,则x12x2+x1x22=.
5.已知四条线段满足a=,将它改写成为比例式为(写出你认为正确的一个).
6.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为.
7.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为.
8.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是.
9.从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有
第1页共25页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011~2012学年初三数学10月月考试题
班级 姓名 学号 得分
一、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.关于x 的一元二次方程
025)2(2
2=-++-m m x x m 的常数项为0,则m 的值为( ). A .1 B .2 C .1或2 D .0 2.已知实数x ,y 满足方程()
=+=-+222
22
41y x ,y x
则( ).
A .3
B .1-
C .3或1-
D .3-或1 3.用配方法解一元二次方程x 2
-4x =5的过程中,配方正确的是( ).
A .(x +2)2=1
B .(x -2)2=1
C .(x +2)2=9
D .(x -2)2=9 4.方程x 2
-2x +3=0根的情况是( ).
A. 只有一个实数根
B. 有两个相等的实数根
C.有两个不相等的实数根
D. 没有实数根 5.能判定四边形ABCD 为平行四边形的题设是( ).
A .A
B ∥CD ,AD=B
C B .∠A=∠B ,∠C=∠
D C .AB=CD ,AD=BC D .AB=AD ,CB=CD 6.如图,在周长为20cm 的
ABCD 中,AB≠AD,AC 、BD 相交于点O ,OE ⊥
AC 交AD 于E ,则△DCE 的周长为( ).
A .4cm
B .6cm
C .8cm
D .10cm
7.如图,圆弧形桥拱的跨度AB =12 m ,拱高CD =4 m ,则拱桥的半径为( ).
A .6.5 m
B .9 m
C .13 m
D .15 m
8.定义新运算: a ⊕b=a-b(a ≤b); a ⊕b=a+b(a ≥b).当x ≥2时,函数y=2⊕x 的图象大致是( ).
二、填空题:(本大题共7小题,每小题3分,共21分) 9.一元二次方程x 2
=2x 的根是 .
10.已知关于x 的一元二次方程(m -l)x 2
-2x +l =0有两个不相等的实数根,则m 的取值范围是 .
11.设a b ,是方程220090x x +-=的两个实数根,则2
2a a b ++的值
第7题
第6题
P O
F E D
C
B
A
于点F,那么四边形AFDE 的周长是 .
13.如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线 上一点,CE=CF 。
若∠BEC=80°,则∠EFD 的度数为 .
14.如图,在平行四边形ABCD 中,AE BC ⊥于
E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则平
行四边形ABCD 的周长为 .
15.如图,在矩形ABCD 中,AB=3 cm ,AD=4 cm ,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为 .
三、 解答题:(本大题共7小题,共55分) 16.解方程:(每题4分,共8分)
(1)03522
=-+x x (配方法) (2)(x -1)2
-5(x -l)+6=0
17.(6分)阅读下面的例题:解方程022=--x x
解:(1)当x ≥0时,原方程化为x 2 – x –2=0,解得:x 1=2,x 2= - 1(不合题意,舍去)
(2)当x <0时,原方程化为x 2 + x –2=0,解得:x 1=1,(不合题意,舍去)x 2= -2∴原方程的根是x 1=2, x 2= - 2。
请参照例题解方程0112=---x x
18.(9分)已知关于x 的方程x 2
-2(k -l )x +k 2
=0有两个实数根x 1,x 2. (1)求k 的取值范围;(4分)
(2)若12121x x x x +=-,求k 的值。
(5分)
19.(8分)为落实国务院房地产调控政策,使“居者有其屋”,达州市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.求每年市政府投资的增长率。
20.(6分)在四边形ABCD 中,AB=CD ,AD=BC ,DE=BF ,EF 与对角线AC 相交于O ,求证:O 为AC 的中点。
21.(8分)已知:如图,在等边三角形ABC 中,D 、E 分别为BC 、AC 上的点,且CE =BD ,连结AD 、
BE 交于点P ,作BQ ⊥AD ,垂足为Q .求证:BP =2PQ .
D
E
F
22.(10分)如图,梯形ABCD中,//
==,AC交BD
AD BC,10
AB DC cm
于G,且60
∠= ,E、F分别为CG、AB的中点。
AGD
(1)求证:AGD
∆为正三角形;
(2)求EF的长度。
23.(本题10分)如图直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2,AB=8,CD=10.
(1)求BC的长;
(2)动点P从点B出发,以1cm/s的速度沿B→A→D方向向点D运动;动点Q从点C出发,以1cm/s的速度沿C→D方向向点D运动;过点Q作QF⊥BC于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之结束,设运动时间为t秒.问:在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.。