高二数学10月月考试题 理9
山东省青岛市城阳第一高级中学2024-2025学年高二上学期10月月考数学试题
山东省青岛市城阳第一高级中学2024-2025学年高二上学期10月月考数学试题一、单选题1.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡四百人,南乡两百人,凡三乡,发役六十人,而北乡需遗十,问北乡人数几何?“其意思为:“今有某地北面若干人,西面有400人,南面有200人,这三面要征调60人,而北面共征调10人(用分层抽样的方法),则北面共有( )人.”A .200B .100C .120D .1402.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差3.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是 A .至少有1件次品与至多有1件正品B .至少有1件次品与都是正品C .至少有1件次品与至少有1件正品D .恰有1件次品与恰有2件正品4.两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+,则220715a a b b ++等于( ) A .10724 B .724 C .14912 D .14935.已知数列{}n a 满足:11,a =13,21,n n n nn a a a a a ++⎧=⎨+⎩为奇数为偶数,则6a = A .16 B .25 C .28 D .336.疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为( )A .34B .712C .23D .567.已知数列 a n 满足24a =,对m ∀,*n ∈N ,都有m n m n a a a +=⋅,n T 为数列 a n 的前n 项乘积,若54T T <,则101T =( )A .51512-B .50502C .1012-D .515128.在数学上,斐波纳契数列{}n a 定义为:11a =,21a =,21++=+n n n a a a ,斐波纳契数列有种看起来很神奇的巧合,如根据21++=+n n n a a a 可得21n n n a a a ++=-,所以()()()123243212221n n n n n a a a a a a a a a a a a ++++++⋯+=-+-+⋯+-=-=-,类比这一方法,可得2221210a a a ++⋯=( )A .714B .1870C .4895D .4896二、多选题9.近年来,乡村游成为中国国民旅游的热点,下面图1,2,3,4分别为2023年中国乡村旅游消费者年龄、性别、月收入及一次乡村旅游花费金额的有关数据分析,根据该图,下列结论错误的是( )A .2023年中国乡村旅游消费者中年龄在19~50岁之间的男性占比超过13B .2023年中国乡村旅游消费者中月收入不高于1万元的占比超过70%C .2023年中国乡村旅游消费者中一次乡村旅游花费4个范围占比的中位数为30.6%D .2023年中国乡村旅游消费者一次乡村旅游花费的平均数估计值高于650元(同一花费区间内的数据用其中间值作代表)10.设等比数列{}n a 的公比为q ,前n 项积为n T ,且满足条件1202220231,1a a a >⋅>,20222023(1)(1)0a a -⋅-<则下列选项正确的是( )A .01q <<B .2022202410a a ⋅->C .2023T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于404411.抛出一枚质地均匀的硬币n 次,得到正反两面的概率相同.事件:A n 次中既有正面朝上又有反面朝上,事件B :n 次中最多有一次正面朝上,下列说法正确的是( )A .当2n =时,A ,B 相互独立 B .当3n =时,A ,B 相互独立C .2n ≥时,22()2-=n nP A D . 2n ≥时,1()2-=n n P B三、填空题12.已知某7个数的平均数为2,方差为4,现加入一个新数据2,此时这8个数的方差为. 13.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为.14.已知等差数列{}n a 的前n 项和为n S ,*3N ,n n S S ∀∈≥,则65a a 的取值范围为.四、解答题15.甲、乙、丙三人进行乒乓球比赛,比赛规则如下:每次比赛两人上场比赛,第三人为裁判,一局结束后,败者下场作为裁判,原裁判上场与胜者比赛,按此规则循环下去,共进行4局比赛.三人决定由乙、丙先上场比赛,甲作为裁判.(1)第一局比赛开始前,丙提出由掷骰子决定谁先发球,连续抛掷一枚质地均匀的六面体骰子两次,记下骰子朝上的点数,若两次点数之和为6则由乙发球,两次点数之和能被4整除则由丙发球,用所学知识判断这个方法公平吗?并说明理由;(2)三人实力相当,在每局比赛中战胜对手的概率均为12,每局比赛相互独立且每局比赛没有平局,求在四局比赛中甲当2局裁判的概率.16.某地区有小学生9000人,初中生8600人,高中生4400人,教育局组织网络“防溺水”网络知识问答,现用分层抽样的方法从中抽取220名学生,对其成绩进行统计分析,得到如下图所示的频率分布直方图所示的频率分布直方图.(1)根据频率分布直方图,估计该地区所有学生中知识问答成绩的平均数和众数;(2)成绩位列前10%的学生平台会生成“防溺水达人”优秀证书,试估计获得“防溺水达人”的成绩至少为多少分;(3)已知落在 60,70 内的平均成绩为67,方差是9,落在[)60,80内的平均成绩是73,方差是29,求落在[)70,80内的平均成绩和方差.(附:设两组数据的样本量、样本平均数和样本方差分别为:221122,,;,,m x s n x s .记两组数据总体的样本平均数为w ,则总体样本方差()()222221122m n s s x w s x w m n m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦++) 17.如图,四边形ABCD 与BDEF 均为菱形,FA FC =,且60DAB DBF ∠∠o ==.(1)求证:AC ⊥平面BDEF ;(2)求直线AD 与平面ABF 所成角的正弦值.18.已知n S 为数列{}n a 的前n 项和,19a =,()()2*1n n S n n a n -=-∈N .(1)求{}n a 的通项公式;(2)求数列{}||n a 的前n 项和n T .19.在高中数学教材苏教版选择性必修2的101页11题阐述了这样一个问题:假设某种细胞分裂(每次分裂都是一个细胞分裂成两个)和死亡的概率相同,如果一个种群从这样的一个细胞开始变化,那么这个种群最终灭绝的概率是多少?在解决这个问题时,我们可以设一个种群由一个细胞开始,最终灭绝的概率为p ,则从一个细胞开始,它有12的概率分裂成两个细胞,在这两个细胞中,每个细胞灭绝的概率都是p ,两个细胞最终都走向灭绝的概率就是2p ,于是我们得到:21122p p =+,计算可得1p =;我们也可以设一个种群由一个细胞开始,最终繁衍下去的概率为p ,那么从一个细胞开始,它有12的概率分裂成两个细胞,每个细胞繁衍下去的概率都是p ,两个细胞最终都走向灭绝的概率就是2(1)p -,于是我们得到:211(1)2p p ⎡⎤=--⎣⎦,计算可得0p =.根据以上材料,思考下述问题:一个人站在平面直角坐标系的()*(,0)N P n n ∈,他每步走动都会有*p 的概率向左移动1个单位,有1*p -的概率向右移动一个单位,原点(0,0)处有一个陷阱,若掉入陷阱就会停止走动,以n p 代表当这个人由(,0)P n 开始,最终掉入陷阱的概率.若这个人开始时位于点(1,0)P 处,且1*3p =,(1)求他在5步内(包括5步)掉入陷阱的概率;(2)求他最终掉入陷阱的概率()1101p p <<;(3)已知()*1112N 33n n n p p p n -+=+∈,若01p =,求n p .。
2024-2025学年重庆市高二上学期10月月考数学质量检测试题(含解析)
2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C. D. 290x y ++=290x y +-=2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)133. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于()1,,AB a AD b AA c ===BM A. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 4. 已知空间三点O (0,0,0),A (12),B -1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P率k 的取值范围是( )A. 或B. 4k ≤-34k ≥1354k -≤≤C .或 D.或34k ≤-4k ≥15k ≤-34k ≥6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CN ND=MN =A .D. 27. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N分别为直线BC ,AD 上两个动点,则最小值为()MN二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 13.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO14.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===AC M l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u r u u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O P D O Q =l 理由.2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C .D. 290x y ++=290x y +-=【正确答案】B【分析】根据题意,得到,结合直线的点斜式方程,即可求解.12l k =-【详解】直线的斜截式方程为,则其斜率为,2l24y x =-+2-因为直线过点,且与直线平行,所以,1l()2,5A 2l12l k =-则直线的点斜式方程为,即为.1l()522y x -=--290x y +-=故选:B.2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)13【正确答案】C【分析】根据向量在向量上的投影向量的概念求解即可.【详解】向量在向量上的投影向量为,b a 22224035(2,2,1)22(1)9||||b aaa a a →→→→→→⋅⨯+-⋅=⋅=-++-故选:C3. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于( )1,,AB a AD b AA c ===BMA. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 【正确答案】D【分析】根据空间向量的线性运算即可得到答案.【详解】因为为与的交点,M 11A C 11B D 所以111111()22BM BB B M AA BD AA AD AB =+=+=+-.111112222AB AD A ca b A =-++=-++故选:D.4. 已知空间三点O (0,0,0),A (12),B-1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 【正确答案】D【分析】先求出OA ,OB 的长度和夹角,再用面积公式求出的面积进而求得四边形OAB △的面积.【详解】因为O (0,0,0),A (12),B-1,2),所以,OA ==OB ==2),1,2),OA OB ==-,1cos ,2OA OB ==所以sin ,OA OB =以OA ,OB 为邻边的平行四边形的面积为1222ABC S =⨯⨯= 故选:D.5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P 率k 的取值范围是()A. 或B. 4k ≤-34k ≥1354k -≤≤C.或 D.或34k ≤-4k ≥15k ≤-34k ≥【正确答案】B【分析】画出图形,数形结合得到,求出,得到答案.BP BA k k k ≥≥,BP BA k k 【详解】如图所示:由题意得,所求直线l 的斜率k 满足,BP BA k k k ≥≥即且,所以.231325k -+≥=---123134k +≤=+1354k -≤≤故选:B .6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CNND =MN =A. D. 2【正确答案】B【分析】将用、、表示,利用空间向量数量积的运算性质可求得.MN AB AC AD MN【详解】因为,所以,,2AM MB = 23AM AB=又因为,则,所以,,2CN ND = ()2AN AC AD AN -=- 1233AN AC AD =+ 所以,,122333MN AN AM AC AD AB=-=+-由空间向量的数量积可得,293cos 602AB AC AB AD AC AD ⋅=⋅=⋅==因此,1223MN AC AD AB =+-=.==故选:B.7. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关【正确答案】B【分析】建立坐标系,利用向量的乘积计算出,即可求解''0D E B F ⋅=【详解】建立如图所示空间直角坐标系.则,,,,'(0,0,1)D (1,1,0)E a -'(1,1,1)B (0,1,0)F a -,'(1,1,1)D E a ∴=-- '(1,,1)B F a =---,''(1)(1)1()(1)(1)110D E B F a a a a ∴⋅=-⨯-+⨯-+-⨯-=--+=''D E B F∴⊥ 故选:B本题考查空间向量的垂直的定义,属于基础题8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N 分别为直线BC ,AD 上两个动点,则最小值为( )MN【正确答案】D【分析】将二面角放到长方体中,根据二面角的定义得到,根据C AB D --120CAF ∠=︒几何知识得到最小值为异面直线,的距离,然后将异面直线,的距离MNBC AD BC AD 转化为直线到平面的距离,即点到平面的距离,最后利用等体积求点BC ADE C ADE 到平面的距离即可.C ADE 【详解】如图,将二面角放到长方体中,取,过点作面交C AB D --4CE BD ==E ⊥EF ABD 面于点,ABD F 由题意可知,,所以为二面角的平面角,即AB AF ⊥CA AB ⊥CAF ∠C AB D --,120CAF ∠=︒因为,分别为直线,上的两个动点,所以最小值为异面直线,M N BC AD MNBC 的距离,AD 由题意知,,所以四边形为平行四边形,,CE BD ∥CE BD =CBDE CB DE ∥因为平面,平面,所以∥平面,则异面直线,的DE ⊂ADE CB ⊄ADE CB ADE BC AD 距离可转化为直线到平面的距离,即点到平面的距离,BC ADE C ADE 设点到平面的距离为,则,,C ADE d C ADED CAE V V --=1133ADE CAE S d S AB⋅⋅=⋅⋅ 在直角三角形中,,,所以,CAH 18012060CAH ∠=︒-︒=︒2CA =1HA=,CH EF ==3AF =AE ==直角梯形中,,ABDF FD ==AD ==,DE ==因为,,所以,,222AC AECE +=222AE DE AD +=CA AE ⊥AE DE ⊥,,122CAE S =⨯⨯=12ADE S =⨯= CAE ADE S AB d S ⋅===故选:D.方法点睛:求异面直线距离的方法:(1)找出异面直线的公垂线,然后求距离;(2)转化为过直线甲且与直线乙平行的平面与直线乙的距离.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )【正确答案】BC【分析】利用点与直线的位置关系可判断A选项;求出直线的斜率,可得出直线的倾斜l l 角,可判断B 选项;作出直线的图象可判断C 选项;求出直线的方向向量,可判断D 选l l 项.【详解】对于A 选项,,所以,点不在上,A 错;2210-++≠ (-l 对于B 选项,直线的斜率为,故的倾斜角为,B 对;lk =l 5π6对于C 选项,直线交轴于点,交轴于点,如下图所示:l x ()1,0-y 0,⎛ ⎝由图可知,直线不过第一象限,C 对;l对于D 选项,直线的一个方向向量为,而向量与这里不共线,Dl )1-)1-(错.故选:BC.10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c【正确答案】ACD【分析】根据平面向量的法向量垂直判断A ,根据直线与平面的关系判断B ,根据空间中共面基本定理判断C ,由空间向量基本定理判断D.【详解】因为,所以,故A 正确;()()2,2,13,4,26820u v ⋅=-⋅-=-+-=αβ⊥因为直线的方向向量,平面的法向量,l ()0,3,0a =α()1,0,2u =不能确定直线是否在平面内,故B 不正确;因为,()0,4,82(2,1,4)(4,2,0)2AP AB AC→→=--=---=-所以,,共面,即点在平面内,故C 正确;AP AB ACP ABC 若是空间的一组基底,,,a b b c c a +++则对空间任意一个向量,存在唯一的实数组,d →(,,)x y z 使得,()()()d x a b y b c z c a =+++++于是,()()()d x z a x y b y z c =+++++ 所以也是空间一组基底,故D 正确.,,a b c故选:ACD.11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --【正确答案】ACD【分析】以A 为坐标原点建立空间直角坐标系,向量法证明线线垂直判断A 选项;向量法求异面直线所成的角判断选项B ;由,求体积最大值判断C 选项;向量法求Q AMN N AMQV V --=二面角余弦值的变化情况判断选项D.【详解】平面,四边形是正方形,SA ⊥ABCD ABCD 以A 为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,,,AB AD AS,,x y z由,22SA AB DE ===;()()()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,2,1,0,0,2,1,0,1,2,1,0A B C D E S N M ∴对于A ,假设存在点,使得,()(),2,002Q m m ≤≤NQ SB ⊥则,又,()1,2,1NQ m =--()2,0,2SB =-,解得:,()2120NQ SB m ∴⋅=-+=0m =即点与重合时,,A 选项正确;Q D NQ SB ⊥对于B ,假设存在点,使得异面直线与所成的角为,()(),2,002Q m m ≤≤NQ SA 60o,()()1,2,1,0,0,2NQ m SA =--=-,方程无解;1cos ,2NQ SA NQ SA NQ SA ⋅∴===⋅ 不存在点,使得异面直线与所成的角为,B 选项错误;∴Q NQ SA 60o对于C ,连接;,,AQ AMAN 设,()02DQ m m =≤≤,22AMQ ABCD ABM QCM ADQ mS S S S S =---=-当,即点与点重合时,取得最大值2;∴0m =Q D AMQ S △又点到平面的距离,N AMQ 112d SA ==,C 选项正确;()()maxmax 122133Q AMN N AMQ V V --∴==⨯⨯=对于D ,由上分析知:,()()1,2,1,1,1,1NQ m NM =--=-若是面的法向量,则,(),,m x y z =NMQ ()1200m NQ m x y z m NM x y z ⎧⋅=-+-=⎪⎨⋅=+-=⎪⎩ 令,则,1x =()1,2,3m m m =-- 而面的法向量,AMQ ()0,0,1n =所以,令,cos ,m nm n m n ⋅==[]31,3t m =-∈则,而,cos ,m n ==11,13t ⎡⎤∈⎢⎥⎣⎦由从到的过程,由小变大,则由大变小,即由小变大,Q D C m t 1t 所以先变大,后变小,由图知:二面角恒为锐角,cos ,m n故二面角先变小后变大,D 选项正确.故选:ACD.三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 【正确答案】π6【分析】根据已知两点的坐标求得直线的斜率,即可求得答案.AB 【详解】由于,)(),AB故直线的斜率为,AB k ==因为直线的倾斜角范围为,[0,π)故直线的倾斜角是,AB π6故π613.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO【正确答案】3【分析】说明两两垂直,从而建立空间直角坐标系,求得相关点坐标,根据空,,OO OC OP '间距离的向量求法,即可求得答案.【详解】取的中点为,连接,因为为的中点,所以AB O ',,PO OO AE ',PC PD O =CD ,PO CD ⊥又平面平面,平面平面,平面,PCD ⊥ABCD PCD ABCD CD =PO ⊂PCD 所以平面,平面,所以,⊥PO ABCD OO '⊂ABCD PO OO '⊥又底面是矩形,点是的中点,的中点为,所以,ABCD O CD AB O 'OO CD '⊥以点为原点,所在直线分别为轴建立空间直角坐标系如图所示,O ,,OO OC OP ',,x y z由,得,,,6PC PD PC PD CD ⊥==132PO CD ==所以,()()()3,3,0,3,3,0,0,0,3A B P -点为线段上靠近的三等分点,则,E PB B 22(3,3,3)33PE PB ==- 则,所以,,()2,2,1E ()1,5,1AE =-()3,3,0AO =-则,,||AE ==AO AE AO⋅== 因此点到直线的距离,E AO 3d =故314.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===ACM l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN【分析】首先求出中边,角的正弦与余弦值,以底面点为空间原点建系(如ABC V AB B B 图1),设点,由,得,求出坐标,由(),,A x y z '(),0,0H x (,0,)A x z ',,A C M 得出满足的关系式,从而可得的范围也即的范围,翻折过程MC AM A M '==,x z z A H '中可得,设,,由向量的数量积为0从而得出关于MN AA '⊥1,,02N a a ⎛⎫⎪⎝⎭[)0,4a ∈x 的表达式,求得的范围,再由线面角的正弦值得出结论.a x 【详解】中,根据余弦定理,π,4C ABC =△,得AB ==sin sin ACABB C =,由知,则,sin B =AC AB <B C <cos B =如图1,以底面点为空间原点建系,根据底面几何关系,得点,设点B ()()4,2,0,6,0,0A C ,点的投影在轴上,即,由(),,A x y z 'A '(),0,0H x x ()(),0,,5,1,0A x z M ',根据两点间距离公式,MC AM A M '==.=22(5)1x z -+= 图1 图2如图2,在翻折过程中,作于点,则,AMN A MN '△≌△AE MN ⊥E A E MN '⊥并且平面,,,AE A E E AE A E ='⊂' A AE '所以平面平面,MN ⊥,A AE AA ''⊂A AE '所以,即,其中.MN AA '⊥0MN AA '⋅=()4,2,AA x z '=--又动点在线段上,设,所以,且.N AB 1,,02N a a ⎛⎫ ⎪⎝⎭15,1,02MN a a ⎛⎫=-- ⎪⎝⎭ [)0,4a ∈由,得,0MN AA '⋅= ()()132245210,52,255x a a x a ⎛⎫⎛⎤----==+∈ ⎪ ⎥-⎝⎭⎝⎦又因为,对应的的取值为,即,22(5)1x z -+=z 40,5⎛⎤ ⎥⎝⎦40,5A H ⎛⎤'∈ ⎥⎝⎦由已知斜线与平面所成角是,1A MBCMN A MH '∠所以.sin A H A MH A M ⎛∠=∈ ⎝'''故斜线与平面1A MBCMN 四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 【正确答案】(1); 380x y +-=(2)或y x =40x y +-=【分析】(1)由垂直斜率关系求得直线的斜率,再由点斜式写出方程;l (2)分别讨论截距为0、不为0,其中不为0时可设为,代入点P ,即可求得0x y m ++=参数m【小问1详解】直线的斜率为,则直线的斜率为,则直线的方程为360x y -+=3l 13-l ,即;()1223y x -=--380x y +-=【小问2详解】当截距为0时,直线的方程为;l y x =当截距不为0时,直线设为,代入解得,故直线的方程为l 0x y m ++=(2,2)P 4m =-l .40x y +-=综上,直线的方程为或l y x =40x y +-=16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +【正确答案】(1);1-(2)且不同时成立.13m n +<10m n =-⎧⎨=⎩【分析】(1)由向量的坐标表示确定、,再由三点共线,存在使,AB CBR λ∈AB CB λ= 进而求出m 、n ,即可得结果.(2)由向量夹角的坐标表示求,再根据钝角可得cos ,AB BC <>,讨论的情况,即可求范围.2(3)2(1)180m n -+--<,AB BC π<>=m n +【小问1详解】由题设,,又,,三点共线,(3,2,6)AB m =-- (2,1,3)CB n =--A B C 所以存在使,即,可得,R λ∈AB CB λ=322(1)63m n λλλ-=⎧⎪=-⎨⎪-=-⎩210m n λ=⎧⎪=-⎨⎪=⎩所以.1m n +=-【小问2详解】由,(2,1,3)BC n =--由(1)知:当时,有;,AB BC π<>=1m n +=-而,的夹角是钝cos ,||||AB BC AB BC AB BC ⋅<>==AB BC角,所以,可得;2(3)2(1)182()260m n m n -+--=+-<m n +13<综上,且不同时成立.13m n +<10m n =-⎧⎨=⎩17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u ru u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===【正确答案】(1)见解析 (2【分析】(1)设为的中点,连接,,利用中位线的性质证明四边形是平F PA BF EF EFBC 行四边形,则可得平面.//CE ABP (2)点为坐标原点建立合适的空间直角坐标系,求出平面的法向量,A BCE (0,1,2)n =利用点到平面的距离公式即可.【小问1详解】设为的中点,连接,,F PA BF EF是的中点,,E PD 1//,2EF AD EF AD ∴=,且,2,//AD BC AD BC =∴ 12BC AD=,//,EF BC EF BC ∴=四边形是平行四边形,,∴EFBC //CE BF ∴又平面平面,BF ⊂ ,ABP CE ⊂/ABP 平面.//CE ∴ABP 【小问2详解】由于侧棱平面,面,AP ⊥ABCD ,AB AD ⊂ABCD ,,则以点为坐标原点,以,,所在的直线,AP AB AP AD ∴⊥⊥AB AD ⊥ A AD AB AP 为轴,轴,轴建立如图空间直角坐标系,x y z,,2AD = 112BC AD ∴==,,,,(0,0,2)P ∴(0,2,0)B (1,2,0)C (1,0,1)E ,,,(1,0,0)BC ∴= (0,2,1)CE =- (0,2,2)PB =-设平面的法向量,BCE (,,)n x y z =则有,即,00n BC n CE ⎧⋅=⎪⎨⋅=⎪⎩ 020x y z =⎧⎨-+=⎩令,则,1y =(0,1,2)n =点到平面的距离.∴PBCE ||||||||||||PB n PB n d PB n PB n ⋅⋅=⋅===⋅18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ【正确答案】(1)证明见解析(2(3)存在,14λ=【分析】(1)由中位线和垂直关系得到,,从而得到线面垂直;PA AD ⊥PA AB ⊥(2)建立空间直角坐标系,求出平面的法向量,求出线面角的正弦值;(3)求出两平面的法向量,根据二面角的正弦值列出方程,求出,得到答案.14λ=【小问1详解】因为,分别为,的中点,所以.A D MB MC AD BC ∥因为,所以,所以.BM BC ⊥BM AD ⊥PA AD ⊥又,,平面,PA AB ⊥AB AD A ⋂=,AB AD ⊂ABCD 所以平面.PA ⊥ABCD 【小问2详解】因为,,,所以,,两两垂直.PA AB ⊥PA AD ⊥90DAB ∠=︒AP AB AD 以为坐标原点,所在直线分别为轴,A ,,AB AD AP ,,x y z 建立如图所示的空间直角坐标系,A xyz -依题意有,,,,,,A (0,0,0)()2,0,0B ()2,2,0C D (0,1,0)()0,0,2P ()1,1,1E 则,,,.(2,2,2)PC =- (1,0,1)DE = (2,1,0)BD =-(2,0,2)BP =- 设平面的法向量,PBD ()111,,n x y z =则有()()()()11111111112,1,0,,202,0,2,,220BD n x y z x y BP n x y z x z ⎧⋅=-⋅=-+=⎪⎨⋅=-⋅=-+=⎪⎩令,得,,所以是平面的一个法向量.12y =11x =11z =()1,2,1n = PBD 因为,cos ,DE n DE n DE n⋅〈〉====⋅所以直线与平面DE PBD 【小问3详解】假设存在,使二面角λG AD P --即使二面角G AD P --由(2)得,,(2,2,2)(01)PG PC λλλλλ==-≤≤所以,,.(2,2,22)G λλλ-(0,1,0)AD = (2,2,22)AG λλλ=-易得平面的一个法向量为.PAD ()11,0,0n =设平面的法向量,ADG ()2222,,n x y z =,()()()()()2222222222220,1,0,,02,2,22,,22220AD n x y z y AG n x y z x y z λλλλλλ⎧⋅=⋅==⎪⎨⋅=-⋅=++-=⎪⎩ 解得,令,得,20y =2z λ=21x λ=-则是平面的一个法向量.()21,0,n λλ=-ADG由图形可以看出二面角,G AD P --故二面角G AD P --则有,1cos ,n,解得,.=112λ=-214λ=又因为,所以.01λ≤≤14λ=故存在,使二面角14λ=G AD P --19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y ;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O PD O Q =l 理由.【正确答案】(1)145(2)1-(3)存在,和1y =y x=【分析】(1)代入和的公式,即可求解;(,)d A B (,)e A B (2)首先设,代入,求得点的轨迹,再利用数形结合,结合公式(),N x y (,)1d M N =N ,结合余弦值,即可求解;(),e A B (3)首先求的最小值,分和两种情况求的最小值,对比后,(),D O P 0k =0k ≠(),d O P 即可判断直线方程.【小问1详解】,348614(,)125555d A B +=--+-==,cos(,)cos ,OA OB A B OA OB OA OB⋅=〈〉===;()(),1cos ,1e A B A B =-=-=【小问2详解】设,由题意得:,(,)N x y (,)|2||1|1d M N x y =-+-=即,而表示的图形是正方形,|2||1|1x y -+-=|2||1|1x y -+-=ABCD 其中、、、.()2,0A ()3,1B ()2,2C ()1,1D 即点在正方形的边上运动,,,N ABCD (2,1)OM =(,)ON x y = 可知:当取到最小值时,最大,相应的cos(,)cos ,M N OM ON =<> ,OM ON <>有最大值.(,)e M N 因此,点有如下两种可能:N ①点为点,则,可得;N A (2,0)ON =cos(,)cos ,M N OM ON =<>==②点在线段上运动时,此时与同向,取,N CD ON (1,1)DC =(1,1)ON = 则cos(,)cos ,M N OM ON =<>==的最大值为.>(,)e M N 1【小问3详解】易知,则min (,)D O P (,1)P x kx k -+(,)()|||1|d O P h x x kx k ==+-+当时,,则,,满足题意;0k =(,)()|||1|d O P h x x ==+min (,)1d O P =min (,)1D O P =当时,,0k ≠1(,)()1k d O P h x x kx k x k x k -==+-+=+⋅-由分段函数性质可知,min 1(,)min (0),k d O P h h k ⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭又且时等号成(0)|1|h k =-≥11k k h k k --⎛⎫=≥ ⎪⎝⎭1k =立.综上,满足条件的直线有且只有两条,和.:1l y =y x =关键点点睛:本题第二问为代数问题,转化为几何问题,利用数形结合,易求解,第3问的关键是理解,同样是转化为代数与几何相结合的问题.min min (,)(,)d O P D O Q =。
山西省部分学校2024-2025学年高二上学期10月月考数学试题
山西省部分学校2024-2025学年高二上学期10月月考数学试题一、单选题1.已知直线l 经过A ,B 两点,则l 的倾斜角为( ) A .6π B .3π C .23π D .56π 2.已知圆C 的方程是2242110x y x y ++--=,则圆心C 的坐标是( ) A .()2,1-B .()2,1-C .()4,2-D .()4,2-3.在长方体1111ABCD A B C D -中,M 为棱1CC 的中点.若1,,AB a AD b AA c ===u u u r r u u u r r u u u r r ,则AM u u u u r等于( )A .12a b c ++r r rB .12a b c -+r r rC .111222a b c ++r r rD .111222a b c -+r r r4.两平行直线1l :20x y -=,2l :240x y -+=之间的距离为( )AB .3C D .5.曲线y =x 轴围成区域的面积为( ) A .4πB .2πC .πD .π26.已知平面α的一个法向量(1,1,2)n =-r,(0,1,2)A 是平面α内一点,(2,1,4)P 是平面α外一点,则点P 到平面α的距离是( )A .B .CD .37.在平面直角坐标系xOy 中,圆C 的方程为22430x y y +-+=,若直线1y kx =-上存在点P ,使以P 点为圆心,1为半径的圆与圆C 有公共点,则实数k 的取值范围是( )A .11,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭C .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U8.在正三棱柱111ABC A B C -中,2AB =,1AA 2BC BO =u u u r u u u r,M 为棱11B C 上的动点,N为线段AM 上的动点,且MN MOMO MA=,则线段MN 长度的最小值为( )A .2BC D二、多选题9.下列关于空间向量的命题中,是真命题的是( )A .若三个非零向量能构成空间的一个基底,则它们一定不共面B .若0a b ⋅>r r ,则a r ,b r 的夹角是锐角C .不相等的两个空间向量的模可能相等D .若a r,b r 是两个不共线的向量,且(,c a b λμλμ=+∈R r r r 且0)λμ⋅≠,则{},,a b c r r r 构成空间的一个基底10.已知直线1:30l ax y a +-=,直线2:2(1)60l x a y +--=,则( )A .当3a =时,1l 与2l 的交点为(3,0)B .直线1l 恒过点(3,0)C .若12l l ⊥,则13a =D .存在a ∈R ,使12l l ∥11.“太极图”是中国传统文化之一,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形2216x y +=,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.则下列命题正确的是( )A .黑色阴影区域在y 轴右侧部分的边界所在圆的方程为()2224x y +-= B .直线780x y -+=与白色部分有公共点C .点(),P x y 是黑色阴影部分(包括黑白交界处)中一点,则3x y -的最大值为4D .过点()3,1M 作互相垂直的直线1l 、2l ,其中1l 与圆2216x y +=交于点A 、C ,2l 与圆2216x y +=交于点B 、D ,则四边形ABCD 面积的最大值是22三、填空题12.若直线l 与直线122y x =-+垂直,且它在y 轴上的截距为4,则直线l 的方程为. 13.圆222:1O x y +=和圆()()222:4316C x y -+-=的公切线的方程为. 14.如图所示,在四棱锥P -ABCD 中,AB CD ∥,且==90BAP CDP ∠∠︒,若PA PD AB DC ===,=90APD ∠︒,则平面APB 与平面PBC 夹角的余弦值为.四、解答题15.已知直线:210l x y -+=与22:420C x y x y a +-++=e 交于A ,B 两点. (1)求线段AB 的垂直平分线的方程; (2)若AB 4=,求a 的值.16.如图所示的几何体是圆锥的一部分,其中PO 是圆锥的高,AB 是圆锥底面的一条直径,2PO =,1OA =,C 是»AB 的中点.(1)求直线BC 与PA 所成角的余弦值; (2)求直线PA 与平面PBC 所成角的正弦值.17.在平行四边形ABCD 中,()1,1A --,()1,3B ,()7,5D . (1)若圆E 过A ,B ,D 三点,求圆E 的方程; (2)过点C 作圆E 的切线,切点为M ,N ,求MN .18.如图,四边形ABCD 是直角梯形,//,,22,AB CD AB BC AB BC CD E ⊥===为BC 的中点,P 是平面ABCD 外一点,1,,PA PB PE BD M ==⊥是线段PB 上一点,三棱锥M BDE -的体积是19.(1)求证:PA ⊥平面ABCD ; (2)求二面角M DE A --的余弦值.19.已知圆C 的圆心在直线30x y -=上,与y 轴正半轴相切,且截直线:20l x y -=所得的弦长为4.(1)求圆C 的方程;(2)设点A 在圆C 上运动,点()5,1B -,M 为线段AB 上一点且满足3AM MB=,记点M 的轨迹为曲线E.①求曲线E的方程,并说明曲线E的形状;②在直线l上是否存在异于原点的定点T,使得对于E上任意一点P,PTPO为定值,若存在,求出所有满足条件的点T的坐标,若不存在,说明理由.。
河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)
高二数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:北师大版选择性必修第一册第一章,第二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A .B .C .D .2.已知双曲线的虚轴长是实轴长的3倍,则实数的值为( )A .B .C .D .3.已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为( )A .B .C .D .4.直线被圆截得的弦长为( )ABCD .5.已知抛物线的焦点为,点为抛物线上任意一点,则的最小值为( )A .1B .C .D .6.已知椭圆的离心率为,双曲线的离心率为,则( )A .B .C .D .:80l x -+=αα=120︒60︒30︒150︒221(0)1x y a a a -=>+a 1214131822124x y m m+=--y m ()2,3()3,4()()2,33,4⋃()2,426y x =+22(2)4x y ++=23y x =F P PF 43323422122:1(0)x y C a b a b +=>>1e 22222:1x y C a b-=2e 22122e e +=112e e +=22211e e =+212e e =7.在平面直角坐标系中,已知圆,若圆上存在点,使得,则正数的取值范围为( )A .B .C .D .8.已知双曲线的左、右焦点分别为,过点的直线与双曲线的右支相交于两点,,且的周长为10,则双曲线的焦距为( )A .3BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭圆的标准方程可能为( )A .B .C .D .10.如图,抛物线的焦点为,过抛物线上一点(点在第一象限)作准线的垂线,垂足为为边长为8的等边三角形.则( )A .B .C .点的坐标为D .点的坐标为11.已知双曲线的左、右焦点分别为,点为双曲线右支上的动点,过点作两渐近线的垂线,垂足分别为.若圆与双曲线的渐近线相切,则下列说法正确的是( )xOy ()222:()()(0),3,0C x a y a a a A -+-=>-C P 2PA PO =a (]0,1[]1,21,3⎡+⎣⎤⎦2222:1(0,0)x y C a b a b-=>>12,F F 2F ,A B 12224BF BF AF ==1ABF △C C C 22149x y +=22195x y +=22194x y +=22159x y +=2:2(0)C y px p =>F C P P l ,H PHF △2p =4p =P (P (222:1(0)3x y C b b-=>12,F F P C P ,A B 22(2)1x y -+=CA .双曲线的渐近线方程为B .双曲线的离心率C .当点异于双曲线的顶点时,的内切圆的圆心总在直线上D.为定值三、填空题:本题共3小题,每小题5分,共15分.12.过点且在轴、轴上截距相等的直线方程为______.13.已知是圆______.14.如图,已知椭圆的左、右焦点分别为,过椭圆左焦点的直线与椭圆相交于两点,,,则椭圆的离心率为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)已知动点到点为常数且的距离与到直线的距离相等,且点在动点的轨迹上.(1)求动点的轨迹的方程,并求的值;(2)在(1)的条件下,已知直线与轨迹交于两点,点是线段的中点,求直线的方y x =C e =P C 12PF F △x =PA PB ⋅32()3,1x y (),P m n 22:(4)(4)8C x y -+-=2222:1(0)x y C a b a b+=>>12,F F 1F C,P Q 222QF PF =21cos 4PF Q ∠=C ABC △()()()1,6,3,1,4,2A B C ---D AC BD AB P (),0(F t t 0)t >x t =-()1,1-P P C t l C ,A B ()2,1M AB l程.17.(本小题满分15分)已知点,动点满足.(1)求动点的轨迹的方程;(2)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.18.(本小题满分17分)已知双曲线的一条渐近线方程为,点在双曲线上.(1)求双曲线的标准方程;(2)过定点的动直线与双曲线的左、右两支分别交于两点,与其两条渐近线分别交于(点在点的左边)两点,证明:线段与线段的长度始终相等.19.(本小题满分17分)在平面直角坐标系中,已知椭圆,短轴长为2.(1)求椭圆的标准方程;(2)已知点分别为椭圆的左、右顶点,点为椭圆的下顶点,点为椭圆上异于椭圆顶点的动点,直线与直线相交于点,直线与直线相交于点.证明:直线与轴垂直.()()2,0,6,0O A -(),P x y 3PA PO =P C Q (),(0)Q t t t >Q y Q C t 2222:1(0,0)x y C a b a b-=>>20x y +=()1-C C ()0,1P l C ,A B ,M N M N AM BN xOy 2222:1(0)x y C a b a b+=>>C ,A B C D C P C AP BD M BP AD N MN x2024~2025学年度10月质量检测·高二数学参考答案、提示及评分细则1.C 因为直线的斜率为,由斜率和倾斜角的关系可得又,.故选C .2.D,解得.3.A 若方程表示为焦点在轴上的一个椭圆,有解得.4.B 圆心,直线被圆截得的弦长为.故选B .5.D 设点的坐标为,有,故的最小值为.6.A 由,可得.7.C 设点的坐标为,有,整理为,可化为,若圆上存在这样的点,只需要圆与圆有交点,有,解得C .8.B 设,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.9.BD 由题意有,故椭圆的标准方程可能为或.10.BD 设抛物线的准线与轴的交点为,由,有:80l x +=k =tan α=0180α︒≤<︒30α=︒=18a =y 20,40,24,m m m m ->⎧⎪->⎨⎪-<-⎩23m <<()2,0-=P ()00,x y 03344PF x =+≥PF 34222222221222221,1a b b a b b e e a a a a-+==-==+22122e e +=P (),x y =22230x y x +--=22(1)4x y -+=C P C 22(1)4x y -+=22a a -≤≤+13a ≤≤+221,2,4AF m BF m BF m ===13AF m =23410m m m m +++=1m =12AF F △12BF F △224194416048c c c c +-+-+=c =3,2,5a c b ====C 22195x y +=22159x y +=C x Q 60,PHF HFO FQ p ∠=∠=︒=,有,得,点的坐标为.11.ABC 由题意得,对于选项A :双曲线的渐近线方程是,圆的圆心是,半径是1(舍去),又,故A 正确;则,离心率为B 正确;对于选项C :设的内切圆与轴相切于点,由圆的切线性质知,所以,因此内心在直线,即直线上,故C 正确;对于选项D :设,则,渐近线方程是,则为常数,故D 错误.故选ABC .12.或 设在轴、轴上的截距均为,若,即直线过原点,设直线为,代入,可得,所以直线方程为,即;若,则直线方程为,代入,则,解得,所以此时直线方程为;综上所述:所求直线方程为或.13.表示点到原点的距离,由,有的取值范围为.14设椭圆的焦距为,有,在中,由余弦定理有,有,可得,有.在中,由余弦定理有可得2,HF p HQ ==28p =4p =P (0bx ±=22(2)1x y -+=()2,01,1b ==1-1,b b y x a ===2c ==c e a ===12PF F △x M 122F M F M a -=M x a =I x a =x a ==()00,P x y 222200001,333x y x y -=-=0x ±=3440x y +-=30x y -=x y a 0a =y kx =()3,113k =13y x =30x y -=0a ≠1x ya a+=()3,1311a a+=4a =4x y +=40x y +-=30x y -=⎡⎣P O 28OC r ==OC OP OC -≤≤+OP ≤≤⎡⎣C 222,,2c PF t QF t ==112,22,43PF a t QF a t PQ a t =-=-=-2PQF △2222(43)4a t t t t -=+-45t a =21886,,555QF a PQ a PF a ===22PF Q QPF ∠=∠12PF F △2c ==c e a ==15.解:(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.解:(1)由题意知,动点的轨迹为抛物线,设抛物线的方程为,则,所以,所以抛物线的方程为,故;(2)设点的坐标分别有,可得有,可得,有,可得直线的斜率为,故直线的议程为,整理为.17.解:(1)由得,,整理得,故动点的轨迹的方程为;(2)点的坐标为且圆与轴相切,圆的半径为,圆的方程为,D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD 01(3)9y x 1+=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=P C 22(0)y px p =>12p =12p =C 2y x =124p t ==,A B ()()1122,,,x y x y 12124,2,x x y y +=⎧⎨+=⎩211222y x y x ⎧=⎨=⎩222121y y x x -=-212121112y y x x y y -==-+l 12l 11(2)2y x -=-12y x =3PA PO =229PA PO =2222(6)9(2)x y x y ⎡⎤++=-+⎣⎦22(3)9x y -+=P C 22(3)9x y -+= Q (),(0)t t t >Q y ∴Q t ∴Q 222()()x t y t t -+-=圆与圆两圆心的距离为,圆与圆有公共点,,即,解得,所以实数的取值范围是.18.(1)解:由渐近线方程的斜率为,有,可得,将点代入双曲线的方程,有,联立方程解得故双曲线的标准议程为;(2)证明:设点的坐标分别为,线段的中点的坐标为,线段的中点的坐标为.设直线的方程为,联立方程解得,联立方程解得,可得,联立方程消去后整理为,∴Q C CQ == Q C 33t CQ t ∴-≤≤+2222|3|(3)(3)t t t t -≤-+≤+012t <≤t (]0,1220x y +=12-12b a -=-2a b =()1-C 22811a b-=222,811,a b a b =⎧⎪⎨-=⎪⎩2,1,a b =⎧⎨=⎩C 2214x y -=,,,A B M N ()()()()11223344,,,,,,,x y x y x y x y AB D ()55,x y MN E ()66,x y l 1y kx =+1,1,2y kx y x =+⎧⎪⎨=-⎪⎩3221x k =-+1,1,2y kx y x =+⎧⎪⎨=⎪⎩4221x k =--5212242212141kx k k k ⎛⎫=--=- ⎪+--⎝⎭221,1,4y kx x y =+⎧⎪⎨-=⎪⎩y ()2241880k x kx -++=有,可得,由,可知线段和共中点,故有.19.(1)解:设椭圆的焦距为,由题意有:,解得故椭圆的标准方程为;(2)证明:由(1)知,点的坐标为,点的坐标为,点的坐标为,设点的坐标为(其中,),有,可得,直线的方程为,整理为,直线的方程为,整理为,直线的方程为,联立方程,解得:,故点的横坐标为,直线的方程为, 联立方程,解得:,故点的横坐标为,122841k x x k +=--62441kx k =--46x x =AB MN AM BN =C 2c 22222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩2,1,a b c ===C 2214x y +=A ()2,0-B ()2,0D ()0,1-P (),m n ()()2,00,2m ∈- 2214m n +=2244m n +=BD 121x y +=-112y x =-AD 121x y +=--112y x =--AP ()22ny x m =++()2,2112n y x m y x ⎧=+⎪⎪+⎨⎪=-⎪⎩24422m n x m n ++=-+M ()22222m n m n ++-+BP ()22ny x m =--()2,2112n y x m y x ⎧=-⎪⎪-⎨⎪=--⎪⎩42422n m x m n -+=+-N ()22222n m m n -++-又由,故点和点的横坐标相等,可得直线与轴垂直.()()()()()()22222222222222222222m n m n m n m n m n n m m n m n m n m n +++-+-+--++-+-=-++--++-()()()()()()()222222(2)4(2)42442880222222222222m n m n m n m n m n m n m n m n m n m n ⎡⎤⎡⎤+-+--+-+-⎣⎦⎣⎦====-++--++--++-M N MN x。
山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)
高二数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写济楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版选择性必修第一册第二章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B. C. D.2.已知双曲线的焦距为4,则的渐近线方程为( )A. B.C.D.3.已知椭圆与椭圆有相同的焦点,则( )A.B.C.3D.44.已知点在圆的外部,则实数的取值范围为( )A.B.C.D.5.已知点为双曲线左支上的一点,分别为的左、右焦点,则( )A.2B.4C.6D.86.已知点,若过定点的直线与线段相交,则直线的斜率的取值范围103x --=π6π32π35π6()222:11x C y a a-=>C y =y x=±y =y x =()222:1016x y C b b +=>221125x y +=b =()0,1-22220x y x my +--+=m ()3,∞-+()3,2-()()3,22,∞--⋃+()2,2-M 22:1916x y C -=12,F F C 1122MF F F MF +-=()()2,3,3,2A B ---()1,1P l AB l k是( )A.B.C.D.7.当变动时,动直线围成的封闭图形的面积为( )A.C.D.8.已知椭圆,若椭圆上的点到直线的最短距离,则长半轴长的取值范围为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若直线与直线平行,则的值可以是()A.0B.2C.D.410.已知点是椭圆上关于原点对称且不与的顶点重合的两点,分别是的左、右焦点,为原点,则( )A.的离心率为B.C.的值可以为3D.若的面积为,则11.已知点及圆,点是圆上的动点,则( )A.过原点与点的直线被圆截得的弦长为B.过点作圆的切线,则切线方程为C.当点到直线的距离最大时,过点与平行的一条直线的方程为D.过点作圆的两条切线,切点分别为,则直线的方程为(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭34,4⎡⎤-⎢⎥⎣⎦1,5∞⎛⎫+ ⎪⎝⎭3,44⎡⎤-⎢⎥⎣⎦α2cos2sin24cos x y ααα+=π2π4π()2222:10x y E a b a b +=>>E 50x y ++=a (]0,2((⎤⎦()240a x y a -++=()()222420a x a a y -+++-=a 2-,A B 22:143x y C +=C 12,F F C O C 12228AF BF +=AB 12AF F V 3212154AF AF ⋅=()4,4P 22:40C x y x +-=Q C O P C P C 3440x y -+=Q PC Q PC 240x y ---=P C ,A B AB 240x y +-=三、填空题:本题共3小题,每小题5分,共15分.12.若方程表示椭圆,则的取值范围是__________.13.已知圆与两直线都相切,且圆经过点,则圆的半径为__________.14.把放置在平面直角坐标系中,点在直线的上方,点在边上,平分,且点都在轴上,直线的斜率为,则点的坐标为__________;直线在轴上的截距为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知直线及点.(1)若与垂直的直线过点,求与的值;(2)若点与点到直线的距离相等,求的斜截式方程.16.(本小题满分15分)已知双曲线的顶点为,且过点.(1)求双曲线的标准方程;(2)过双曲线的左顶点作直线与的一条渐近线垂直,垂足为为坐标原点,求的面积.17.(本小题满分15分)已知圆经过点,且与圆相切于原点.(1)求圆的标准方程;(2)若直线不同时为0与圆交于两点,当取得最小值时,与圆交于两点,求的值.18.(本小题满分17分)已知椭圆的上顶点与左,右焦点连线的斜率之积为.(1)求椭圆的离心率;(2)已知椭圆的左、右顶点分别为,且,点是上任意一点(与不重合),直线22164x y m m +=--m C 220,220x y x y -+=++=C ()1,1C ABC V A BC ,D E BC AD ,BAC AE BC ∠⊥,A E y AD 40,y AD -+==AC3-C AB x :210l x ay a -+-=()2,2A -l 320x my -+=A m a A ()1,1B -l l ()2222:10,0x y C a b a b-=>>()(),A B -()4P C C A C ,H O OHA V 1C ()2,0-222:480C x y x y +-+=O 1C :20(,l ax by a b a b ++-=)1C ,A B AB l 2C ,C D CD ()2222:10x y C a b a b+=>>45-C C ,A B 6AB =M C ,A B分别与直线交于点为坐标原点,求.19.(本小题满分17分)已知点是平面内不同的两点,若点满足,且,则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.,MA MB :5l x =,,P Q O OP OQ ⋅,A B P (0PAPBλλ=>1)λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()()()2,0,,2A B a b a -≠-(),A B λ221240x y x +-+=,,a b λQ (),A B OQ O 0,b λ==,a μ(),A B μ参考答案1.A 直线,所以其倾斜角为.故选A.2.D 由题意可知,所以,所以双曲线的渐近线方程为.故选D.3.C 因为椭圆与㮁圆有相同的焦点.所以,解得或(舍去).故选C.4.C 由题意可知解得或.故选C.5.B 因为为双曲线左支上的一点,分别为的左、右焦点,所以,故,由于,所以.故选B6.A 直线过定点,且直线与线段相交,由图象知,或,则紏率的取值范围是.故选A 7.D 方程可化为变动时,点到该直线的距离,则该直线是圆的切线,所以动直线围成的封闭图形的面积是圆的面积,面积为.故选D.103x --=π6214a +=23a =22213x C y -=y x =()22221016x y C b b +=>221125x y +=216125b -=-3b =3b =-222(1)20,(2)420,m m ⎧-++>⎨-+-⨯>⎩32m -<<-2m >M 22:1916x y C -=12,F F C 212MF MF a -=112222MF F F MF c a +-=-3,4,5a b c ====1122221064MF F F MF c a +-=-=-= l ()312131,1,4,21314PA PA P k k ----==-==--- AB ∴34k …4k -…k (]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭2cos2sin24cos x a y a a +=()2cos2sin22,x a y a α-+=()2,02d ==22(2)4x y -+=2cos2sin24cos x y ααα+=22(2)4x y -+=4π8.C 设直线与,则的方程为,由整理,得,因为上的点到直线的最短,所以,整理得,由椭圆的离心,可知,所以,所以,则,所以.故选C.9.AB 因为两直线平行,由斜率相等得,所以或,解得或0或,当时两直线重合,舍去.故选.10.AD 对于A ,椭圆中,,离心率为,A 正确;对于B.由对称性可得,所以,B 错误;对于C ,设且,则,故,所以C 错误;对于D ,不妨设在第一象限,,则,是,则,则,故,故D 正确.故选AD.11.ACD 圆的标准方程为,圆的半径,对于,直线的方程为0,点到直线,所以直线被圆截得的弦长为正确;对于,圆的过点的切线斜率存在时,设其方程为,即,,解得,此时切线方程为,另一条切线是斜率不存在的切线错误;对于C ,当点到直线的距离最大时,过点与平行的一条直线,即为与直线距离为2的图的切线,直线的斜率为2,设该切线方程为,则正确;对于D ,设,,可得切线的方程分别为l 50x y ++=l 30x y ++=22221,30,x y ab x y ⎧+=⎪⎨⎪++=⎩()2222222690a b x a x a a b +++-=E 50x y ++=()()422222Δ36490a a baa b =-+-…2290a b +-…E 22112b a -=2212b a =221902a a +-…26a …0a <…222424a a a a ---=-++20a -=2244a a ++=2a =2-2a =-AB 22:143x y C +=2,1a b c ===12c a =21BF AF =222124AF BF AF AF a +=+==(),,B m n n <<0n ≠22143m n +=)2OB ===()24,AB OB =∈A ()00,A x y 12013222AF F S c y =⋅⋅=V 032y =31,2A ⎛⎫⎪⎝⎭21335,4222AF AF ==-=12154AF AF ⋅=C ()22(2) 4.2,0x y C -+=C 2r =A OP x y -=C OP OP C A =B C P ()44y k x -=-440kx y k --+=234k =3440x y -+=4,x B =Q PC Q PC PC C PC 20x y t -+=2,4t =-±(11,A x y ()22,B x y ,PA PB,将代入两方程得,所以者在直线上,所以直线的方程为,即,D 正确.故选ACD.12.且且也给分) 由题意得,且6—,所以且,所以实数的取值范围是.易知直线与关于轴对称或关于对称,又当圆心在上时,该圆不存在,所以圆的圆心在轴上,设圆的方程为,由题意可知,,整理得,解得或,当时,,当时,.14.(2分)(3分) 直线的方程与直线联立得,因为直线的斜率为3,所以直线的方程为,由,得直线的斜率为0,由,得,所以直线的方程为,与联立得.设直线与轴交于点,点关于直线的对称点为,则点在直线上,所以.联立解得代入,得,所以直线在轴上的截距为15.解:(1)因为直线过点,所以,解得,因为与垂直,()()11122220,20x x y y x x x x y y x x +-+=+-+=()4,4P ()()11122244240,44240x y x x y x +-+=+-+=()()1122,,,A x y B x y ()44240x y x +-+=AB ()44240x y x +-+=240x y +-=()()4,55,6{|46m m ⋃<<5},46m m ≠<<5m ≠60,40m m ->->4m m ≠-46m <<5m ≠m ()()4,55,6⋃220x y -+=220x y ++=x 2x =-2x =-C x C 222()x a y r -+==22730a a -+=12a =3a =12a =r =3a =r =(1,1)AE 0x =AD 40y -+=()0,4A AC -AC 34y x =-+AE BC ⊥BC AD =AD 3AE =BC 1y =34y x =-+()1,1C AB x (),0F t F AD (),G a b G AC b a t =-402b -+=122,a tb ⎧=--⎪⎪⎨⎪=+⎪⎩34y x =-+t =AB x 320x my -+=()2,2A -6220m --+=2m =-3220x y ++=l所以.(2)解法一,若点与点到直线的距离相等,则直线与的斜率相等或的中点在上,又直钱的斜率为的中点坐标为,所以或.解得或.当时,的斜截式方程为,当时,的斜截式方程为.解法二:因为点与点到直线的距离相等,.解得,当时,的斜截式方程为,当时,的斜截式方程为.16.解:(1)因为双曲线的顶点为,且过点,所以,且,解得的标准方程为.(2)由双曲线方程,得渐近线方程为,,又,所以所以.123,32a a ==A()1,1B -l AB l AB l AB ()211,21AB --=---11,22⎛⎫- ⎪⎝⎭11a =-1121022a a --+-=1a =-1a =1a =-l 3y x =-+1a =l 1y x =+A ()1,1B -l =1a =±1a =-l 3y x =-+1a =l 1y x =+()2222:10,0x y C a b a b-=>>()(),A B -()4P a =2254161a b -=a b ==C 221188x y -=221188x y -=230x y ±=,OH HA OA ⊥=OH =11542213OHA S OH HA =⨯⨯==V17.解:(1)因为圆与图相切,且点在圆的外部,所以圆与圆外切,则三点共线,图化为.所以圆心,故圆心在直线上.设圆的标准方程为,又圆过原点,则,圆经过点,则,解得,故圆的标准方程为.(2)由(1)可知,圆的圆心坐标为,由直线化为,所以直线恒过点,易知点在圆的内部,设点到直线的距离为,则,要使取得最小值,则取得最大值,所以,此时.所以,则直线的方程为,即.又圆心到直线的距离,所以.18.解:(1)椭圆的上顶点的坐标为,左、右焦点的坐标分别为,由题意可知,即,1C 2C ()2,0-2C 1C 2C 12,,C O C 222:480C x y x y +-+=22(2)(4)20x y -++=()22,4C -1C 2y x =-1C 222()(2)x t y t r -++=1C ()0,0O 225r r =1C ()2,0-222(2)(02)5t t t --++=1t =-1C 22(1)(2)5x y ++-=1C ()1,2-:20l ax by a b ++-=()()210a x b y ++-=L ()2,1P -P 1C 1C l d AB ==AB d 1PC l ⊥121112PC k -==-+1t k =-l ()12y x -=-+10x y ++=2C 10x y ++=d 'CD ==C ()0,b ()(),0,,0c c -45b b c c ⎛⎫⋅-=- ⎪⎝⎭2245b c =又,所以,即的离心率.(2)由,得,即,所以椭圆的方程为.设,则,即,又,则,因为直线分别与直线交于点,所以,所以.19.(1)解:因为以为“稳点”的一阿波罗尼斯圆的方程为,设是该圆上任意一点,则,所以,因为为常数,所以,且,所以.(2)解:由(1)知,设,由,所以,,監理得,即,所以,222a b c =+2295a c =225,9c ca a ==C e =6AB =26a =3,2a c b ===C 22194x y +=()00,M x y 2200194x y +=22003649x y -=()()3,0,3,0A B -()()0000:3,:333y yMA y x MB y x x x =+=-+-,MA MB :5L x =,P Q 0000825,,5,33y y P Q x x ⎛⎫⎛⎫⎪ ⎪+-⎝⎭⎝⎭()()220000220000163648216641615,5,2525253399999x y y y OP OQ x x x x -⎛⎫⎛⎫⋅=⋅=+=+=-= ⎪ ⎪+---⎝⎭⎝⎭(),A B λ221240x y x +-+=(),P x y 22124x y x +=-22222222222222||(2)4416||()()22(122)24PA x y x y x xPB x a y b x y ax by a b a x by a b +++++===-+-+--++--+-+22||||PA PB 2λ2240,0a b b -+==2a ≠-2,0,a b λ====()()2,0,2,0A B -(),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--…42890x x --…()()22190x x +-…209x ……由,得,即的取值范围是.(3)证明:若,则以一阿波罗尼斯圆的方程为,整理得,该圆关于点对称.由点关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称OQ ==209r ……13OQ ……OQ []1,30b =(),A B 2222(2)2()x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()()2,0,,0A B a -2,02a -⎛⎫ ⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-,a μ(),A B μ。
四川省成都2024-2025学年高二上学期10月月考试题 数学含答案
成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。
四川省南充2024-2025学年高二上学期10月月考数学试题含答案
南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
甘肃省兰州第一中学2024-2025学年高二上学期10月月考数学试题)(含答案)
甘肃省兰州第一中学2024-2025学年高二上学期10月月考数学试题说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第I 卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求.)1.已知直线的倾斜角为,方向向量,则( )B.C.2.已知等比数列的前项和为,且,则( )A.4B.3C.2D.13.过点且与直线垂直的直线方程是( )A. B. C. D.4.已知数列满足,则( )A. B. C. D.5.如图所示,直线与的图象可能是( )A. B.C. D.6.点到直线的距离最大时,其最大值以及此时的直线方程分别为( )l 30︒(3,)a y =y =32{}n a n n S 22nn S λ=⋅-λ=(0,1)210x y -+=210x y -+=220x y +-=220x y +-=210x y --={}n a ()*111,,41nn n a a a n a +==∈+N na=1n a n=121n a n =-2143n n a n -=-143n a n =-1:0l ax y b ++=2:0(0,)l bx y a ab a b -+=≠≠(2,1)P --:(13)(1)240(R)l x y λλλλ+++--=∈250x y +-=40x y +-=7.已知等比数列有项,,所有奇数项的和为85,所有偶数项的和为42,则( )A.2B.3C.4D.58.已知两点,直线与线段AB 有公共点,则实数的取值范围是( )A. B. C. D.二、多项选择题:(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)9.已知直线,则下列结论正确的是( )A.直线的一个法向量为 B.若直线,则C.点到直线的距离是2D.过与直线10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫作三角形数.设第个三角形数为,则下面结论正确的是( )A. B. C.1024是三角形数D.11.已知数列的各项均为正数,其前项和满足,则( )A. B.为等比数列C.为递减数列 D.中存在小于的项第II 卷(非选择题)二、填空题(本大题共3小题,每小题5分,共15分)12.经过两直线与的交点,且在两坐标轴上的截距互为相反数的直线方程是_________.13.在数列中,,求的通项公式____________.14.设,过定点的动直线和过定点的动直线交于点则的最大值____________.四、解答题(本大题共5小题,共计77分.解答时应写出文字说明、证明过程或演算步骤.)15.(13分)已知直线与直线.(1)当为何值时,与平行,并求与的距离;310x y -+=310x y -+={}n a 21n +11a =n =(1,2),(3,1)A B -:10l ax y a ---=a 1,[1,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦1,14⎡⎤-⎢⎥⎣⎦3,12⎡⎤-⎢⎥⎣⎦3,[1,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦:10l y -+=l :10m x +=l m⊥l l 40y --=n n a 1(2)n n a a n n --=≥20210a =123111121n n a a a a n ++++=+ {}n a n n S 4(1,2,)n n a S n ⋅== 21a =-{}n a {}n a {}n a 110000210x y +-=20x y --={}n a 23135213n a a a na n ++++=- {}n a R m ∈A 10x my ++=B 230mx y m --+=(,),P x y ||||PA PB ⋅1:(4)(6)160l m x m y +++-=2:6(1)80l x m y +--=m 1l 2l 1l 2l(2)当为何值时,与垂直.16.(15分)数列满足.(1)求数列的通项公式;(2),求数列的前项和.17.(15分)已知直线,点.求:(1)直线关于点对称的直线的方程;(2)直线关于直线的对称直线的方程.18.(17分)已知直线.(1)求证:直线过定点;(2)若直线不经过第二象限,求实数的取值范围;(3)若直线与两坐标轴的正半轴围成的三角形面积最小,求的方程.19.(17分)定义:从数列中随机抽取项按照项数从小到大的顺序依次记为,将它们组成一个项数为的新数列,其中,若数列为递增数列,则称数列是数列的“项递衍生列”;(1)已知数列满足,数列是的“3项递增衍生列”,写出所有满足条件的(2)已知数列是项数为的等比数列,其中,若数列为1,16,81,求证:数列不是数列的“3项递增衍生列”;(3)已知首项为1的等差数列的项数为14,且,数列是数列的“项递增衍生列”,其中.若在数列中任意抽取3项,且均不构成等差数列,求的最大值.m 1l 2l {}n a *111,34,n n a a a n +==+∈N {}n a ()()232log 2n n n b a a =++{}n b n n T :2310l x y -+=(1,2)A --l (1,2)A --l ':3260m x y --=l m ':(1)(23)1l a y a x -=-+l l a l l {}n a m ()1212,,,m k k k m a a a k k k <<< m {}n b (1,2,,)i i k b a i m == {}n b {}n b {}n a m {}n a 42,1,3,52,2,4,6n n n n a n -=⎧⎪=⎨⎪=⎩{}n b {}n a {};n b {}n a m 3m ≥{}n b {}n b {}n a {}n a 141105ii a==∑{}n b {}n a m 114m ≤≤{}n b m兰州一中2024-2025-1学期10月月考高二数学答案一、单项选择题(本大题共8小题,每小题5分,共40分)1.A2.C3.B4.D5.C6.A7.B 8.D二、多项选择题:(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)9.CD10.ABD11.ACD三、填空题(本大题共3小题,每小题5分,共15分)12.或13.14.9四、解答题(本大题共5小题,共计77分.解答时应写出文字说明、证明过程或演算步骤.)15.【详解】(1)由直线与平行,则,解得,所以此时直线,………………………………………………………5分所以与……………………………………………………………………8分(2)由直线与垂直,则,解得或-9.………………………13分16.【详解】(1)数列满足,整理得,又,即,所以数列是以3为首项,3为公比的等比数列.故,得………………………………………………………………………6分(2)由于,所以,所以①,②,①-②得:,所以……………………………………………………………………………………15分17.【详解】(1)设为上任意一点,0x y +=20x y --=()213n n a n N +-=∈1l 2l (1)(4)6(6)6(16)(8)(4)m m m m -+=+⎧⎨⨯-≠-⨯+⎩5m =-124:160,:03l x y l x y -+=--=1l 2l 1l 2l 6(4)(6)(1)0m m m +++-=2m =-111,34n n a a a +==+()*1232,n n a a n ++=+∈N 123a +=1232n n a a ++=+{}2n a +12333n n n a -+=⋅=32n n a =-32n n a =-()()232log 29nn n n b a a n =++=⋅219299nn T n =⋅+⋅++⋅ 231919299n n T n +=⋅+⋅++⋅ ()()121199189999991n nn n n T n n ++--=+++-⋅=-⋅- 198196464n n n T +-=+⋅(,)Q x y l '则关于点的对称点为,因为在直线上,所以,即直线的方程为.…………………………………………………………………………7分(2)在直线上取一点,如,则关于直线的对称点必在上,设对称点为,则,解得,即,设与的交点为,则由,解得,即,又经过点,故,所以直线的方程为,即.………………………………………15分18.【详解】1)由,即,则,解得,所以直线过定点;(2)如图所示,结合图像可知,当时,直线斜率不存在,方程为,不经过第二象限,成立;当时,直线斜率存在,方程为,(,)Q x y (1,2)A --(2,4)Q x y '----Q 'l 2(2)3(4)10x y -----+=l '2390x y --=m (2,0)M (2,0)M l m '(,)M a b '2023*********a b b a ++⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪-⎩6133013a b ⎧=⎪⎪⎨⎪=⎪⎩630,1313M '⎛⎫ ⎪⎝⎭m l N 23103260x y x y -+=⎧⎨--=⎩43x y =⎧⎨=⎩m '303913646413m k '-=-m '93(4)46y x -=-9461020x y -+=:(1)(23)1l a y a x -=-+(2)310a x y x y --++=20310x y x y -=⎧⎨-++=⎩12x y =⎧⎨=⎩(1,2)1a =1x =1a ≠23111a y x a a -=+--又直线不经过第二象限,则,解得;综上所述…………………………………………………………………………………9分(3)已知直线,且由题意知,令,得,得,令,得,得,则,所以当时,s 取最小值,此时直线的方程为,即.……………………………17分19.【详解】(1)由题意得,数列为1,8,3,4,5,2,若是数列的“3项递增衍生列”,且则为1,3,4或1,3,5或1,4,5或3,4,5.…………………………………………………………………3分(2)设等比数列的公比为q.假设数列是数列的“3项递增衍生列”,则存在,使,所以,则,所以.因为,所以为有理数,但为无理数,所以(*)式不可能成立.综上,数列不是数列的“3项递增衍生列”.……………………………………………………………9分(3)设等差数列的公差为.由,又,所以,故数列为.2301101a a a -⎧>⎪⎪-⎨⎪≤⎪-⎩1a <1a ≤;:(1)(23)1l a y a x -=-+1a ≠0x =101y a =>-1a >0y =1032x a =>-32a <22111112132410651444S a a a a a =⨯⨯==---+-⎛⎫--+⎪⎝⎭54a =l 55123144y x ⎛⎫⎛⎫-=⨯-+⎪ ⎪⎝⎭⎝⎭240x y +-=1345<<<1231k k k m ≤<<≤1231,16,81k k k a a a ===31212131,k k k k k k k k a a a a q --==312116,81k k k k q q --==||3116221||log 81log 81log 3(*)log 16q q k k k k -===-*2131,k k k k --∈N 3121k k k k --2log 3d 14111491105ii aa d ==+=∑11a =1d =1,2,3,4,5,,14…令,因为数列中各项均为正整数,故;(若,则,成等差数列)同理,且,所以,同理,且,所以,这与已知条件矛盾,所以,此时可以构造数列为1,2,4,5,10,11,13,14,其中任意三项均不构成等差数列.综上所述,的最大值为8. ……………………………………………………………………17分i i k b a =313k k a a -≥312k k a a -=123,,k k k a a a 533k k a a -≥5331k k k k a a a a -≠-513k k a a -≥957k k a a -≥9551k k k k a a a a -≠-9115k k a a -≥8i k ≤m。
山西省山西大学附属中学校2024-2025学年高二10月月考数学试题
山西大学附属中学2024~2025学年第一学期高二10月月考(总第二次)数 学 试 题考试时间:120分钟 满分:150分一、选择题(本小题8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有2.已知向量,若,则( )A . B. C . D .3.已知直线:与直线:,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在空间四边形中,若分别是的中点,是上的5.如图,在圆锥SO 中,AB 是底面圆的直径,, D ,E分别为SO,SB 的中点,点C 是底面圆周上一点(不同于A ,B )且,则直线AD 与直线CE 所成角的余弦值为( )6.已知直线过点,且为其一个方向向量,则点到直线的距离为( )7.已知两点,若直线与线段有公共点,则的取值范围为( )A .B .C .D .8.已知点P 和非零实数,若两条不同的直线,均过点P ,且斜率之积为,则称直(,2,1),(2,4,2)a x b =-=- //a b x =1-15-51l 2y x a =-+2l ()222y a x =-+1a =-12l l //OABC ,E F ,AB BC H EF O 2AB SO ==OC AB ⊥l (2,3,1)A (1,1,1)a = (4,3,2)P l ()()1,5,0,0A B -:22l y kx k =-+AB k (][),11,-∞-+∞ (][],10,1-∞- [][)1,01,-+∞ []1,1-λ1l 2l λ项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列说法中不正确的是( )A. 若直线的倾斜角越大,则直线的斜率就越大B. 若直线过点,且它的倾斜角为,则这条直线必过点C. 过两点的直线的方程为D. 直线在在y 轴上的截距为10.在空间直角坐标系中,点,,,下列结论正确的有()A .B .向量与的夹角的余弦值为C .点关于轴的对称点坐标为D .向量在11.如图,在三棱锥中,,,为的中点,点是棱上一动点,则下列结论正确的是( )A. 三棱锥B. 若为棱的中点,则异面直线与C. 若与平面所成角的正弦值为,则二面角D. 的取值范围为三、填空题(12.已知点在13.直线的一个方向向量为,且经过点,则直线的一般式方程为 . 14.在棱长为1的正方体中,为棱上一点,且,为正方形内一动点(含边界),若且与平面所成的角最大时,线段的长度为 .(1,2)45︒(3,4)()()1122,,,x y x y 112121y y x x y y x x --=--2y kx =-2Oxyz (0,0,0)O (2,1,1)A --(3,4,5)B AB =OA OB A z OA OB -P ABC AB BC ==BA BC ⊥2PA PB PC ===O AC M -P ABC 1M BC PM AB PC PAM 12M PA C --PM MA +4⎤⎥⎦P 12OP OA mOB =+ 1111ABCD A B C D -P 1BB 12B P PB =Q 11BB C C 1D Q =1D Q 1A PD 1A Q(1)若直线不经过第四象限,求的取值范围;(2)若直线交轴负半轴于点,交轴正半轴于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.l k l x A y B O AOB V S S l18.(本小题满分17分)已知在四棱锥中,底面是边长为4的正方形,是正三角形,点分别是的中点,平面.(1)求证:;(2)求点B 到平面的距离;(3)在线段上是否存在点N ,使得直线与平面所成角的正弦值为在,求线段的长度;若不存在,说明理由.19.分)已知的正四面体,设的四个顶点到平面的距离所构成的集合为,若中元素的个数为,则称为的阶等距平面,为的阶等距集.(1)若为的1阶等距平面且1阶等距集为,求的所有可能值以及相应的的个数;(2)已知为的4阶等距平面,且点与点分别位于的两侧. 是否存在,使的4阶等距集为,其中点到的距离为?若存在,求平面与夹角的余弦值;若不存在,说明理由. P ABCD -ABCD PAD △,,,E F M O ,,,PC PD BC AD ⊥PO ABCD EF PA ⊥EFM PA MN EFM PN ΩABCD ΩαM M k αΩk M Ωk αΩ{}a a αβΩA ,,B C D ββΩ{},2,3,4b b b b A βb BCD β。
山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(含答案)
山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线,若,则( )A.-1或2B.1C.1或-2D.-22.过点的直线与线段MN 相交,,则的斜率的取值范围为( )A.B.C.或D.或3.在三棱柱中,记,点满足,则( )A. B. C. D.4.已知点关于直线对称,则对称点的坐标为( )A. B. C. D.5.已知向量,若共面,则( )A.4B.2C.3D.16.点到直线的距离最大时,其最大值以及此时的直线方程分别为( )7.下列命题中正确的是( )A.点关于平面对称的点的坐标是B.若直线的方向向量为,平面的法向量为,则C.若直线的方向向量与平面的法向量的夹角为,则直线与平面所成的角为12:20,:2(1)20l ax y l x a y +-=+++=12//l l a =(3,3)P l (2,3),(3,2)M N ---l k 1665k ≤≤566k ≤≤65k ≤6k ≥16k ≤65k ≥111ABC A B C -1,,AA a AB b AC c === P 12BP PC =AP = 121333a b c -+ 212333a b c ++212333a b c +-121333a b c ++(2,1)P -10x y -+=(0,1)-(0,2)-(1,1)-(2,1)-(2,1,3),(1,4,2),(1,3,)a b c λ=-=--=,,a b c λ=(2,1)P --:(13)(1)240(R)l x y λλλλ+++--=∈310x y -+=40x y +-=250x y +-=310x y -+=(3,2,1)M yOz (3,2,1)--l (1,1,2)e =- α(6,4,1)m =-l α⊥l α120︒l α30︒D.已知为空间任意一点,四点共面,且任意三点不共线,若,则8.在空间直角坐标系中,,点在平面ABC 内,则当|OH |取最小时,点的坐标是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量,则( )A.若,则B.若,则C.若,则D.若,则向量在向量上的投影向量10.下列说法正确的是( )A.直线的倾斜角的取值范围是B.“”是“直线与直线互相垂直”的充要条件C.过点且在轴,轴截距相等的直线方程为D.经过平面内任意相异两点的直线都可以用方程.11.已知正方体的棱长为1,E 为线段的中点,点和点分别满足,其中,则下列说法正确的是( )A.平面AECB.AP 与平面所成角的取值范围为C.D.点到直线的距离的最小值为三、填空题:本题共3小题,每小题5分,共15分.O ,,,A B C P 12OP mOA OB OC =-+12m =-O xyz -(1,0,0),(0,2,0),(0,0,2)A B C H H 211,,333⎛⎫ ⎪⎝⎭(2,1,1)(2,1,1),(1,,2)a x b y ==-1,24x y ==-ab ‖1,1x y ==a b⊥1,12x y ==cos ,a b <>= 1,12x y ==ab 112,,333c ⎛⎫=- ⎪⎝⎭sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭1a =-210a x y -+=20x ay --=(1,2)P x y 30x y +-=()()1122,,,x y x y ()()()()211211x x y y y y x x --=--表示1111ABCD A B C D -1B C F P 11111,D F D C D P D B λμ==,[0,1]λμ∈BP ⊥11BDD B 45,60︒︒⎡⎤⎣⎦PE PF +P 1B C PE =12.在直线上求一点,使它到直线的距离等于原点到的距离,则此点的坐标为________________.13.已知空间向量两两夹角为,且,则__________________.14.如图,两条异面直线a,b 所成的角为,在直线a,b 上分别取点,和点A,F,使,且.已知,则线段的长为_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,三棱柱中,底面边长和侧棱长都等于1,.(1)设,用向量表示,(2)并求出的长度;(3)求异面直线与所成角的余弦值.16.(15分)已知点,_________________,从条件①、条件②、条件③中选择一个作为已知条件补充在横线处,并作答(1)求直线的方程;(2)求直线关于直线的对称直线的方程条件①:点关于直线的对称点的坐标为;条件②:点的坐标为,直线过点且与直线PM 平行;210x y -+=:320l x y +-=l ,,a b c 60︒||||||1a b c === |2|a b c -+= θA 'E AA a '⊥AA b '⊥,,A Em AF n EF l '===AA '111ABC A B C -1160BAA CAA ︒∠=∠=1,,AA a AB b AC c === ,,a b c1BC 1BC 1AB 1BC (1,3)P 1l 2:250l x y +-=1l P 1l 1P (1,1)-M (6,2)-1l (2,4)-条件③:点N 的坐标为,直线过点且与直线PN 垂直.注:如果选择多个条件分别解答,按第一个解答计分.17.(15分)已知直线.(1)若坐标原点到直线,求的值;(2)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程.18.(17分)如图,在四棱锥中,底面ABCD ,底面ABCD 为直角梯形,,分别为线段AD,DC,PB 的中点.(1)证明:平面PEF//平面GAC ;(2)求直线GC 与平面PCD 所成角的正弦值.19.(17分)如图1所示中,分别为PA,PB 中点.将沿DC 向平面ABCD上方翻折至图2所示的位置,使得。
江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)
2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,直线过定点,且与线段相交,则直线的斜率的取值范围是( )A B. C. 或 D. 或2. 若圆与圆相切,则()A. 6B. 3或6C. 9D. 3或93. 已知直线,,则过和的交点且与直线垂直的直线方程为( )A. B. C. D.4. 若点在圆内,则直线与圆C 的位置关系为( )A. 相交B. 相切C. 相离D. 不能确定5. 圆心为,且与直线相切的圆的方程为( )A. B. C. D.6. 已知圆上有四个点到直线的距离等于1,则实数的取值范围为( )A. B. C. D.7. 已知圆关于直线对称,则实数( ).()()2,02,3A B 、l ()1,2P AB l k 21k -≤≤112k -≤≤12k ≤-1k ≥2k ≤-1k ≥()2221:(4)0O x y r r ++=>222:(2)9O x y -+=r =1:10l x y -+=2:210l x y --=1l 2l 3450x y +-=3410x y --=3410x y -+=4310x y --=4310x y -+=(),P a b221Cx y +=:1ax by +=(2,1)M -2+1=0x y -22(2)(1)5x y -+-=22(2)(1)5x y -++=22(2)(1)25x y -++=22(2)(1)25x y -+-=224x y +=y x b =+b ()2,2-(()1--()1,1-22:330C x y mx y +-++=:0l mx y m +-=m =A 1或 B. 1 C. 3 D. 或38. 若圆与圆交于两点,则的最大值为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.9. 若直线与圆交于两点,则( )A. 圆的圆心坐标为B. 圆的半径为3C. 当时,直线倾斜角为D. 的取值范围是10. 已知点在上,点,,则( )A. 点到直线的距离最大值是B. 满足的点有2个C. 过直线上任意一点作的两条切线,切点分别为,则直线过定点D. 的最小值为11. 设直线系(其中均为参数,),则下列命题中是真命题的是()A. 当时,存在一个圆与直线系中所有直线都相切B. 当时,若存在一点,使其到直线系中所有直线的距离不小于1,则C. 存在,使直线系中所有直线恒过定点,且不过第三象限D. 当时,坐标原点到直线系中所有直线的距离最大值为1三、填空题:本题共3小题,每小题5分,共15分..的3-1-22:(cos )(sin )1(02π)M x y θθθ-+-=≤<22:240N x y x y +--=A B 、tan ANB ∠344543:2cos 0l x y θ-⋅=22:10E x y +--=,A B E ()-E 1cos 2θ=l π4AB ⎡⎢⎣P 22:4O x y +=e ()3,0A ()0,4B P AB 125AP BP ⊥P AB O e ,M N MN 4,13⎛⎫ ⎪⎝⎭2PA PB +:cos sin 1m n M x y θθ+=,,m n θ{}02π,,1,2m n θ≤≤∈1,1m n ==M 2,1m n ==(),0A a M 0a ≤,m n M m n =M12. 已知直线,圆,写出满足“对于直线上任意一点,在圆上总存在点使得”的的一个值______.13. 已知二次函数与轴交于两点,点,圆过三点,存在一条定直线被圆截得弦长为定值,则该定值为__________.14. 如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B 两点)上的一个动点,,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知直线与直线.(1)若,求m 的值;(2)若点在直线上,直线过点P ,且在两坐标轴上的截距之和为0,求直线的方程.16. 已知:及经过点的直线.(1)当平分时,求直线的方程;(2)当与相切时,求直线的方程.17. 如图,已知,直线.(1)若直线等分的面积,求直线的一般式方程;(2)若,李老师站在点用激光笔照出一束光线,依次由(反射点为)、(反射点为)反射后,光斑落在点,求入射光线的直线方程.的:1l x my =--22:6890O x y x y ++++=l A O B π2ABO ∠=m ()()223411y x m x m m =+---∈R x ,A B ()1,3CG ,,A B C l G ,3,2PB AB AB PB ⊥==1)3AP BA QC +⋅(()1:280l m x my ++-=2:40,R l mx y m +-=∈12l l //()1,P m 2l l l C e ()()22124x y -+-=()1,1P --l l C e l l C el (()(),0,0,12,0A BC (():20l k x y k k +--=∈R l ABC Vl (2,P P BC K AC I P PK18. 已知圆与直线相切于点,圆心在轴上.(1)求圆的标准方程;(2)若直线与圆交于两点,当数的值;(3)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积为,求的最大值.19. 在数学中,广义距离是泛函分析中最基本概念之一.对平面直角坐标系中两个点和,记,称为点与点之间的“距离”,其中表示中较大者.(1)计算点和点之间的“距离”;(2)设是平面中一定点,.我们把平面上到点的“距离”为的所有点构成的集合叫做以点为圆心,以为半径的“圆”.求以原点为圆心,以为半径的“圆”的面积;(3)证明:对任意点.的M 340x -+=(M x M ()()():21174l m x m y m m +++=+∈R M ,P Q PQ =m M x M ,A B O ,OA OB 8x =,C D ,OAB OCD V V 12,S S 12S S ()111,P x y ()222,P x y 1212121212max ,11tx x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭12t PP 1P 2P t -{}max ,p q ,p q ()1,2P ()2,4Q t -()000,P x y 0r >0P t -r 0P r t -O 12t -()()()111222333131223,,,,,,t t t P x y P x y P x y PP PP P P ≤+2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】BC【10题答案】【答案】BCD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1(答案不唯一)【13题答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)或【16题答案】【答案】(1) (2)或.【17题答案】【答案】(1; (2).【18题答案】【答案】(1) (2). (3).【19题答案】【答案】(1); (2)4;(3)证明见解析.3--1m =-10x y -+=20x y -=3210x y -+=1x =-51270x y --=170y +-=2100x -=22(4)16x y -+=23m =-1423。
黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案
哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(答案在最后)(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)1.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点坐标是()A.()2,1,4-- B.()2,1,4 C.()2,1,4--- D.()2,1,4-2.若向量{}123,,e e e 是空间中的一个基底,那么对任意一个空间向量a,存在唯一的有序实数组(),,x y z ,使得:123a xe ye ze =++ ,我们把有序实数组(),,x y z 叫做基底{}123,,e e e 下向量a 的斜坐标.设向量p 在基底{},,a b c 下的斜坐标为()1,2,3-,则向量p 在基底{},,a b a b c +-下的斜坐标为()A.13,,322⎛⎫--⎪⎝⎭B.13,,322⎛⎫-- ⎪⎝⎭ C.13,,322⎛⎫-⎪⎝⎭ D.13,,322⎛⎫-⎪⎝⎭3.已知两条直线12:410,:20l ax y l x ay +-=++=,则“2a =”是“12l l //”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知平面α的一个法向量(2,2,1)n =--,点()1,3,0A -在平面α内,若点()2,1,P z -到α的距离为103,则z =()A.16B.4- C.4或16- D.4-或165.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是()A.[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦B.(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C.3,44⎡⎤-⎢⎥⎣⎦D.34,4⎡⎤-⎢⎣⎦6.直线l 过点()2,3A ,则直线l 与x 轴、y 轴的正半轴围成的三角形的面积最小值为()A.9B.12C.18D.247.如图,在平行六面体ABCD A B C D -''''中,5,3,7AB AD AA ='==,60BAD ∠=︒,45BAA DAA ''∠=∠=︒,则AC '的长为()A. B.C.D.8.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A. B.C. D.2+二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)9.下列命题中正确的是()A.若向量,a b 满足0a b ⋅<,则向量,a b 的夹角是钝角B.若,,OA OB OC 是空间的一组基底,且232OD OA OB OC =-+,则,,,A B C D 四点共面C.若向量{},,a b c 是空间的一个基底,若向量m a c =+,则{},,a b m 也是空间的一个基底D.若直线l 的方向向量为(1,0,3)e = ,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的余弦值为5510.以下四个命题为真命题的是()A.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B.直线()cos 20R x θθ+=∈的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎢⎣⎦⎣⎭C.直线10x y +-=与直线2210x y ++=D.直线()()()1213m x m y m m -+-=-∈R 恒过定点()5,2-11.如图,在多面体ABCDES 中,SA ⊥平面ABCD ,四边形ABCD 是正方形,且//DE SA ,22SA AB DE ===,,M N 分别是线段,BC SB 的中点,Q 是线段DC 上的一个动点(含端点,D C ),则下列说法正确的是()A.不存在点Q ,使得NQ SB⊥B.存在点Q ,使得异面直线NQ 与SA 所成的角为60o C.三棱锥Q AMN -体积的最大值是23D.当点Q 自D 向C 处运动时,直线DC 与平面QMN 所成的角逐渐增大第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)12.已知()()()1,1,0,0,3,0,2,2,2A B C ,则向量AB 在AC上的投影向量的坐标是______.13.当点()2,1P --到直线l :()()()131240x y λλλλ+++--=∈R 距离的最大值时,直线l 的一般式方程是______.14.离散曲率是刻画空间弯曲性的重要指标.设P 为多面体Γ的一个顶点,定义多面体Γ在点P 处的离散曲率为()122311112πP k k k Q PQ Q PQ Q PQ Q PQ -∅=-∠+∠++∠+∠ ,其中i Q (1i =,2,……,k ,3k ≥)为多面体Γ的所有与点P 相邻的顶点,且平面12Q PQ ,平面23Q PQ ,…,平面1k k Q PQ -和平面1k Q PQ 为多面体Γ的所有以P 为公共点的面.如图,四棱锥S ABCD -的底面ABCD 是边长为2的菱形,且2AC =,顶点S 在底面的射影O 为AC 的中点.若该四棱锥在S 处的离散曲率13S ∅=,则直线OS 与平面SAB 所成角的正弦值为___________.四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)15.已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.16.已知ABC V 的顶点()1,2,A AB 边上的中线CM 所在直线的方程为210,x y ABC +-=∠的平分线BH 所在直线的方程为y x =.(1)求直线BC 的方程和点C 的坐标;(2)求ABC V 的面积.17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB .(2)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.已知两个非零向量a ,b ,在空间任取一点O ,作OA a = ,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b <> .定义a 与b 的“向量积”为:a b ⨯是一个向量,它与向量a ,b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,4DP DA ==,E 为AD 上一点,AD BP ⨯=.(1)求AB 的长;(2)若E 为AD 的中点,求二面角P EB A --的余弦值;19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点,(1)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(2)设P AM D --的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM 和平面PBC 夹角余弦值的最小值.哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】B二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】CD第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)【12题答案】【答案】111,,663⎛⎫ ⎪⎝⎭【13题答案】【答案】3250x y +-=【14题答案】【答案】1323-四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)【15题答案】【答案】(1)14a =-或73a =-(2)370x y -=或120x y -+=【16题答案】【答案】(1)2310x y --=,51(,)77,(2)107.【17题答案】【答案】(1)证明见解析;(2)存在,AM AP 的值为14.【18题答案】【答案】(1)2(2)13-【19题答案】【答案】(1)π6;(2)11。
辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考试题 数学含答案
滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题(答案在最后)命题人:(时间:120分钟,满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,在四面体A -BCD 中,点E 是CD 的中点,记AB a = ,AC b =,ADc =,则BE 等于()A.1122a b c-++ B.1122a b c-+C.1122a b c -+D.1122a b c-++2.若平面α的法向量为μ,直线l 的方向向量为v,直线l 与平面α的夹角为θ,则下列关系式成立的是()A.cos ||||v v μθμ⋅=B.||cos ||||v v μθμ⋅= C.sin |||v v μθμ⋅= ∣D.||sin ||||v v μθμ⋅=3.若直线AB 的一个法向量是)1a =-,则该直线的倾斜角为()A.30oB.60oC.120D.1504.已知空间向量()()1,1,2,1,2,1a b =-=- ,则向量a在向量b 上的投影向量是()A.()1,1,1- B.555,,663⎛⎫-⎪⎝⎭ C.555,,636⎛⎫-⎪⎝⎭ D.111,,424⎛⎫-⎪⎝⎭5.设P 是120 的二面角l αβ--内一点,PA α⊥,PB β⊥,A 、B 是垂足,4PA =,3PB =,则AB 的长度为()A. B.5C.D.6.对于空间一点O 和不共线三点,,A B C ,且有2OP PA OB OC =-+,则()A .,,,O A B C 四点共面B.,,,P A B C 四点共面C.,,,O P B C 四点共面D.,,,,O P A B C 五点共面7.将正方形ABCD 沿对角线BD 折成直二面角,下列结论不正确的是()A.AC BD⊥B.AB ,CD 所成角为60︒C.ADC △为等边三角形D.AB 与平面BCD 所成角为60︒8.正方形11ABB A 的边长为12,其内有两点,P Q ,点P 到边111,AA A B 的距离分别为3,2,点Q 到边1,BB AB 的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得AB 和11A B 重合.则此时两点,P Q 间的距离为()A.πB.π C.π D.π二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.9.下列说法中,正确的有()A.直线()32y ax a a =-+∈R 必过定点()3,2B.方程0Ax By C ++=是直线的一般式方程C.直线10x ++=的斜率为D.点()5,3-到直线20y +=的距离为110.已知空间单位向量,,i j k两两垂直,则下列结论正确的是()A.向量i j + 与k j -共线B.问量i j k ++C.{},,i j i j k +-可以构成空间的一个基底D.向量i j k ++ 和k 夹角的余弦值为3311.如图,已知正六棱柱ABCDEF A B C D E F ''''''-的底面边长为2,所有顶点均在球O 的球面上,则下列说法错误的是()A.直线DE '与直线AF '异面B.若M 是侧棱CC '上的动点,则AM MD '+C.直线AF '与平面DFE '所成角的正弦值为3D.球O 的表面积为18π第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知点()1,2A -关于直线y kx b =+对称的点是()1,6B --,则直线y kx b =+在x 轴上的截距是__________.13.若三条直线2,3,100y x x y mx ny =+=++=相交于同一点,则点(),m n 到原点的距离的最小值为__________.14.已知正三棱柱ABC A B C '''-的底面边长为2,点P 是其表面上的动点,该棱柱内切球的一条直径是MN ,则PM PN ⋅的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.16.如图,在四面体ABCD 中,AD ⊥面,2,BCD AD M =是AD 的中点,P 是BM 的中点,点Q 在棱AC 上,且3AQ QC =.请建立适当的空间直角坐标系,证明://PQ 面BCD .17.如图所示,平行六面体1111ABCD A B C D -中,111ππ1,2,,23AB AD AA BAD BAA DAA ===∠=∠=∠=.(1)用向量1,,AB AD AA 表示向量1BD,并求1BD ;(2)求1cos ,BD AC.18.如图,在五棱锥P ABCDE -中,PA ⊥平面,,,ABCDE AB CD AC ED AE BC ∥∥∥,45,24ABC AB BC AE ∠=︒===、三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC :(2)求直线PB 与平面PCD 所成角的大小;19.如图,在三棱柱111ABC A B C -中,棱1,AC CC 的中点分别为1,,D E C 在平面ABC 内的射影为D ,ABC V 是边长为2的等边三角形,且12AA =,点F 在棱11B C 上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:(1)若点F 为棱11B C 的中点,求点F 到平面BDE 的距离;(2)求锐二面角F BD E --的余弦值的取值范围.滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题命题人:(时间:120分钟,满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】B二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.【9题答案】【答案】AD【10题答案】【答案】BCD【11题答案】【答案】AC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】8-【13题答案】【答案】【14题答案】【答案】[]0,4四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1)2x +3y -6=0或8x +3y +12=0;(2)x -6y +6=0或x -6y -6=0.【16题答案】【答案】证明见解析【17题答案】【答案】(1)11BD AD AA AB =+- ,1BD =(2)3【18题答案】【答案】(1)证明见解析(2)6π【19题答案】【答案】(1)334(2)1,22⎡⎢⎣⎦。
2024-2025学年湖南省“名校大联考”高二上学期10月月考数学试题(含答案)
2024-2025学年湖南省“名校大联考”高二上学期10月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数z =4+ii 在复平面内对应的点位于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.已知椭圆x 2a 2+y 23=1(a > 3)的离心率为12,左、右焦点分别为F 1,F 2,A 为椭圆上除左、右顶点外的一动点,则▵AF 1F 2的面积最大为( )A. 1B.3C. 2D. 233.设a ∈R ,直线l 1:(a +1)x +y−1=0,l 2:2x +ay−(a +2)=0,则“a =1”是“l 1//l 2”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件4.若函数f (x )=(x 2+ax )3x9x +1为偶函数,则a =( )A. −1B. 0C. 1D. 35.已知点(x 0,y 0)为直线x +2y +6=0上任意一点,则(x 0+1)2+y 20的最小值是( )A.3B. 2C.5 D.66.如图,在异面直线m,n 上分别取点A,B 和C,D ,使AB =2,CD =4,BD =6,且AC ⊥m,AC ⊥n ,若<AB ,CD >=π3,则线段AC 的长为( )A. 2B. 22 C. 26 D. 67.已知点P 为椭圆x 216+y 29=1上任意一点,则点P 到直线l:x−y +9=0的距离的最小值为( )A. 25B. 4C. 23D. 228.如图所示,在四棱锥P−ABCD 中,底面ABCD 是边长为2的菱形,PA =3,∠ABC =∠BAP =π3,且cos ∠PAD =16,则cos ∠PBC =( )A. −2 77 B.2 77 C. −3 714 D.3 714二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
湖南省常德市第一中学2024-2025学年高二上学期10月月考数学试题
湖南省常德市第一中学2024-2025学年高二上学期10月月考数学试题一、单选题1.直线3210x y +-=的一个方向向量是( ) A .()2,3-B .()2,3C .()3,2-D .()3,22.已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若2156OM OA OB OC λ=++u u u u r u u u r u u u r u u u r,则A ,B ,C ,M 四点共面的充要条件是() A .1730λ=B .1330λ=C .1730λ=- D .1330λ=-3.直线l 过圆C :22650x y y +-+=的圆心,并且与直线20x y ++=垂直,则直线l 的方程为( )A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=4.在四面体P ABC 中,P A ,PB ,PC 两两垂直且相等,E 是AB 的中点,则异面直线AC 和PE 所成角为( ) A .3π B .4π C .23π D .6π 5.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,dC .6a =-,d =D .6a =,d =6.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则实数m 的值为( )A .-6或12B .-12或1C .-12或12D .0或127.空间直角坐标系O xyz -中,经过点()000,,P x y z ,且法向量为(),,m A B C =u r的平面方程为()()()0000A x x B y y C z z -+-+-=,经过点()000,,P x y z 且一个方向向量为()(),,0n μυωμυω=≠v的直线l 的方程为000x x y y z z μυω---==,阅读上面的材料并解决下面问题:现给出平面α的方程为3570x y z -+-=,经过()0,0,0的直线l 的方程为321x y z==-,则直线l 与平面a 所成角的正弦值为( )A B C D 8.已知直线l :(3)(2)20m x m y m ++---=,点()21A --,,(22)B -,,若直线l 与线段AB 相交,则m 的取值范围为( ) A .(4][4)-∞-⋃+∞,, B .(22)-,C .3[8]2-, D .(4)+∞,二、多选题9.下列说法正确的是( )A .过11(,)x y ,22(,)x y 两点的直线方程为112121y y x x y y x x --=-- B .点(0,2)关于直线1y x =+的对称点为(1,1)C .直线20x y --=与两坐标轴围成的三角形的面积是2D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-=10.已知()0,2,3A ,()2,1,6B -,()1,1,5C -,()1,2,4P ,则下列说法正确的有( )A .AB u u u r与AC u u u r 夹角的余弦为12B .ABC V 的面积为C .平面ABC 的一个法向量()1,1,1n =rD .四面体P ABC -的体积为7311.如图,在菱形ABCD 中,AB =2,∠BAD =60°,将△ABD 沿对角线BD 翻折到△PBD 位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45°B .存在某个位置,使得PB ⊥CDC .当二面角P ﹣BD ﹣C 的大小为90°时,PC =D .存在某个位置,使得B 到平面PDC三、填空题12.已知空间向量,,a b c r r r 两两夹角均为60o ,其模均为1,则2a b c +-=r r r .13.已知直线():22l y k x =-+,当k 变化时,点()1,2P -到直线l 的距离的取值范围是. 14.平面直角坐标系上有(1,1),(3,0)A B 两点,直线l 的方程为280x y +-=,直线l 上有一点P ,PA PB +最短,则P 点的坐标为 .四、解答题15.已知(),4,1a x =r ,()2,,1b y =--r ,()3,2,c z =-r ,//a b r r ,b c ⊥r r,求:(1)a r ,b r,c r ;(2)a c +r r 与b c +r r夹角的余弦值.16.已知直线:3260l x y --=.(1)若直线1l 过点()1,2M -,且1l l ⊥,求直线1l 的方程; (2)若直线,且直线2l 与直线l 之间的距离为13,求直线2l 的方程.17.已知ABC V 的顶点()2,8C -,直线AB 的方程为211y x =-+,AC 边上的高BH 所在直线的方程为320x y ++=. (1)求顶点A 和B 的坐标; (2)求ABC V 外接圆的一般方程.18.如图,在四棱锥P ABCD -中,PA ⊥面ABCD .2PA AB AD ===,四边形ABCD 满足AB AD ⊥,//BC AD ,4BC =,点M 为PC 中点,点E 为BC 边上的动点(Ⅰ)求证://DM平面PAB.(Ⅱ)是否存在点E,使得二面角P DE B--的余弦值为23?若存在,求出线段BE的长度;若不存在,说明理由.19.在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB,AD边分别在x轴、y轴的正半轴上,点A与坐标原点重合(如图所示).将矩形折叠,使点A落在线段DC上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当20k-≤时,求折痕长的最大值.。
广东省深圳市龙岗区广东实验中学深圳学校2024-2025学年高二上学期10月月考数学试题(含解析)
2024-2025学年秋季学期高二年级第一次段考数学试题2024.10本试卷分选择题和非选择题两部分,共4页,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答题卡上作答,答案必须写在答题卡各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
第一部分 选择题(共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.点关于平面对称的点的坐标是( )A. B. C. D.2.直线过点,且纵截距为横截距的两倍,则直线的方程是( )A. B.C.或 D.或3.已知直线,直线,若,则与的距离为()4.已知空间向量,,则在的投影向量( )A. B.C. D.5.已知向量,,且平面,平面,若平面与平面的夹角的余弦的值为( )(3,8,5)P --xOy (3,8,5)--(3,8,5)-(3,8,5)(3,8,5)--l (1,2)l 20x y -=240x y +-=20x y -=240x y +-=20x y -=220x y +-=1:20l x y -=2:30l x ay --=12//l l 1l 2l (1,3,2)a =r (2,1,2)b =r a r b r c =r(2,1,2)(6,3,6)(1,2,1)m =-r (,1,)n t t =-r m ⊥r αn ⊥rβαβtA.或 B.或1 C.或2 D.6.在三棱锥中,是的重心,是上的一点,且,若,则( )A.B.C.D.17.经过直线和的交点,且倾斜角是直线的倾斜角的两倍的直线方程为()A. B. C. D.8.如图,在棱长为1的正方体中,,,若平面,则线段的长度的最小值为( )A.B.二、多选题:本题共3小题,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省民乐县第一中学2016-2017学年高二数学10月月考试题 理第I 卷 选择题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.命题“若x 2<1,则-1<x <1”的逆否命题是( )A .若x 2≥1,则x ≥1,或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1,或x <-1,则x 2>1 D .若x ≥1,或x ≤-1,则x 2≥1 2.“tan α=1”是“α=π4”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.在△ABC 中,已知(a +c )(a -c )=b 2+bc ,则A 等于( )A .30°B .60°C .120°D .150°4.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为( )A.54B.32C.22D.125.在△ABC 中,a =2,b =3,C =135°,则△ABC 的面积等于( )A.322B .32C .3D.3326.在△ABC 中,b =3,c =3,B =30°,则a 的值为( )A. 3 B .23 C.3或2 3D .27.若a <1,b >1,那么下列命题中正确的是( )A.1a >1bB.b a>1C .a 2<b 2D .ab <a +b -18.不等式ax 2+5x +c >0的解集为{x |13<x <12},则a ,c 的值为( )A .a =6,c =1B .a =-6,c =-1C .a =1,c =1D .a =-1,c =-69.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且b 2=ac ,则B 的取值范围是( )A .(0,π3]B .[π3,π]C .(0,π6]D .[π6,π)10.设S n 是等差数列{a n }的前n 项和,若a 7a 4=2,则S 13S 7的值为( ) A.1314 B .2 C.713D.26711.已知不等式(x +y )(1x +ay)≥9对任意正实数x 、y 恒成立,则正数a 的最小值是( )A .2B .4C .6D .812.已知a >0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)第II 卷 非选择题二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.椭圆x 2m +y 24=1的焦距是2,则m 的值是________.14.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为________________. 15.条件p :1-x <0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围是________.16.已知p :x 2-x ≥6,q :x ∈Z.若“p ∧q ”“非q ”都是假命题,则x 的值组成的集合为________. 三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)解不等式组⎩⎪⎨⎪⎧3x -2x -6≤1,2x 2-x -1>0.18.(本小题满分12分)已知关于x ,y 的二元一次不等式组⎩⎪⎨⎪⎧x +2y ≤4,x -y ≤1,x +2≥0(1)求函数u =3x -y 的最大值和最小值; (2)求函数z =x +2y +2的最大值和最小值.19.(本小题满分12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .20.(本小题满分12分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知m =(cos C 2,sin C 2),n =(cos C 2,-sin C 2),且m ·n =12.(1)求角C ;(2)若c =72,△ABC 的面积S =332,求a +b 的值.21.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab,(1)求sin Csin A的值;(2)若cos B =14,b =2,求△ABC 的面积S .22.(本小题满分12分)已知函数f (x )=x3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *).(1)证明数列{1a n}是等差数列,并求出数列{a n }的通项公式;(2)记S n =a 1a 2+a 2a 3+…+a n a n +1,求S n .民乐一中2016—2017学年第一学期高二年级第一次月考理科数学试题参考答案一、选择题(本大题共12小题,每小题5分,共60分)1 2 3 4 5 6 7 8 9 10 11 12 DBCBACDBADBC二、填空题(本大题共4小题,每小题5分,共20分)13、3或5 14、x 216+y 212=1 15、(-∞,1) 16、{-1,0,1,2}三、解答题 17、解:3x -2x -6≤1⇒2x +4x -6≤0⇒x ∈[-2,6), 2x 2-x -1>0⇒(2x +1)(x -1)>0 ⇒x ∈(-∞,-12)∪(1,+∞),所以,原不等式组的解为x ∈[-2,-12)∪(1,6).18、解:(1)作出二元一次不等式组⎩⎪⎨⎪⎧x +2y ≤4,x -y ≤1,x +2≥0.表示的平面区域,如图所示.由u =3x -y ,得y =3x -u ,得到斜率为3,在y 轴上的截距为-u ,随u 变化的一组平行线,由图可知,当直线经过可行域上的C 点时,截距-u 最大,即u 最小. 解方程组⎩⎪⎨⎪⎧ x +2y =4,x +2=0,得C (-2,3),∴u min =3×(-2)-3=-9.当直线经过可行域上的B 点时,截距-u 最小,即u 最大,解方程组⎩⎪⎨⎪⎧x +2y =4,x -y =1,得B (2,1),∴u max =3×2-1=5.∴u =3x -y 的最大值是5,最小值是-9.(2)作出二元一次不等式组⎩⎪⎨⎪⎧x +2y ≤4,x -y ≤1,x +2≥0表示的平面区域,如图所示.由z =x +2y +2,得y =-12x +12z -1,得到斜率为-12,在y 轴上的截距为12z -1,且随z 变化的一组平行线.由图可知,当直线经过可行域上的A 点时,截距12z -1最小,即z 最小,解方程组⎩⎪⎨⎪⎧x +2=0,x -y =1,得A (-2,-3),∴z min =-2+2×(-3)+2=-6.当直线y =-12x +12z -1与直线x +2y =4重合时,截距12z -1最大,即z 最大,∴z max =x +2y +2=4+2=6.∴z =x +2y +2的最大值是6,最小值是-6.19、解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N *).(2)S n =21-2n1-2+n ×1+n n -12×2=2n +1+n 2-2.20、解:(1)依题知得m ·n =cos 2C 2-sin 2C 2=12.也就是cos C =12,又0<C <π,所以C =π3.(2)S =12ab sin C =34ab ,且S =332,所以ab =6.c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =(a +b )2-18,且c =72,所以(a +b )2-18=494,即a +b =112.21、解:(1)法一:在△ABC 中,由cos A -2cos C cos B =2c -ab及正弦定理可得cos A -2cos C cos B =2sin C -sin Asin B,即cos A sin B -2cos C sin B =2sin C cos B -sin A cos B . 则cos A sin B +sin A cos B =2sin C cos B +2cos C sin B ,即sin(A +B )=2sin(C +B ),而A +B +C =π, 则sin C =2sin A ,即sin Csin A=2.法二:在△ABC 中,由cos A -2cos C cos B =2c -ab可得b cos A -2b cos C =2c cos B -a cos B由余弦定理可得b 2+c 2-a 22c -a 2+b 2-c 2a =a 2+c 2-b 2a -a 2+c 2-b 22c, 整理可得c =2a ,由正弦定理可得sin C sin A =c a =2.法三:利用教材习题结论解题,在△ABC 中有结论a =b cos C +c cos B ,b =c cos A +a cos C , c =a cos B +b cos A .由cos A -2cos C cos B =2c -a b可得b cos A -2b cos C =2c cos B -a cos B ,即b cos A +a cos B =2c cos B +2b cos C ,则c =2a , 由正弦定理可得sin C sin A =c a =2.(2)由c =2a 及cos B =14,b =2可得4=c 2+a 2-2ac cos B =4a 2+a 2-a 2=4a 2, 则a =1,c =2.∴S =12ac sin B =12×1×2×1-cos 2B =154.22、解:(1)由已知,得a n +1=a n3a n +1. ∴1a n +1=1a n +3. 即1a n +1-1a n=3.∴数列{1a n}是首项1a 1=1,公差d =3的等差数列.∴1a n=1+(n -1)×3=3n -2,∴a n =13n -2(n ∈N *). (2)∵a n a n +1=13n -23n +1=13(13n -2-13n +1),∴S n =a 1a 2+a 2a 3+…+a n a n +1=13[(1-14)+(14-17)+…+(13n -2-13n +1)] =13(1-13n +1)=n 3n +1.。