高考数学二轮复习 20 数形结合思想课件 文

合集下载

例谈“数形结合”思想在高考数学中的应用

例谈“数形结合”思想在高考数学中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。

专题1 数形结合思想【高考文科数学】数学思想方法 含答案

专题1 数形结合思想【高考文科数学】数学思想方法 含答案

第二讲数形结合思想1.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2.数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3.实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1.(2013·重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ) A.52-4 B.17-1C.6-2 2 D.17答案 A解析设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=2-32+-3-42=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.2. (2011·大纲全国)已知a、b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b -c)=0,则|c|的最大值是( )A.1 B.2 C. 2 D.2 2答案 C解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln x +1, x >0.若|f (x )|≥ax ,则a的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D解析 函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1x >1或x <-1,-x -1-1≤x <1.在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k <4时有两个交点.题型一 数形结合解决方程的根的个数问题 例1 (2012·福建)对于实数a和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数.答案 ⎝ ⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧2x -1x ,x ≤0,-x -1x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3, 易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧2x -1x =14,x <0,解得x =1-34.1-34<x1<0,∴1-316<x1x2x3<0.∴反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般 地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0), 则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0. |x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎪⎨⎪⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q . 当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0,解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则ba +1的取值范围为( )A .(-∞,1)B .(-∞,1]C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围.答案 D解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式 子ba +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的斜率.而直线QA 的斜率k =1-00--1=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以P ,Q 连线的斜率的取值范围为(-2,1).故选D. 反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)a -m2+b -n2↔(a ,b )、(m ,n )之间的距离;(3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边; (4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝⎛⎭⎪⎫|3-0-1|12+-122=(2)2=2. ∴取值范围是[2,16]. 题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值. 答案 A解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值. 解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC=12|PA |·|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S四边形PACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.∴(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.典例 (12分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞); 单调减区间为(-a ,a ). [4分](2)∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1. [6分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0, 解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 结合如图所示f (x )的图象可知:m 的取值范围是(-3,1).[12分]评分细则 (1)求出f ′(x )给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒 (1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象; (2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m 的取值范围.1. 设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为( )A .1B .2C .3D .4答案 C解析 由f (-4)=f (0) 得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2. 联立两方程解得:b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,进而函数亦有3个零点.3. 若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)答案 D解析 令y =x +k ,令y =1-x 2,则x 2+y 2=1(y ≥0). 作出图象如图:而y =x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与 上述半圆只有一个公共点⇔k =2或-1≤k <1.4. 设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) A .-2 B.2-2 C .-1D .1- 2答案 D解析 由于(a -c )·(b -c )=-(a +b )·c +1,因此等价于求(a +b )·c 的最大值,这个最大值只有当向量a +b 与向量c 同向共线时取得.由于a ·b =0,故a ⊥b ,如图所示,|a +b |=2,|c |=1,当θ=0时,(a +b )·c 取最大值2,故所求的最小值为1- 2. 5. 当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)答案 B解析 由0<x ≤12,且log a x >4x>0,可得0<a <1,12由4 =log a 12可得a =22.令f (x )=4x,g (x )=log a x , 若4x<log a x ,则说明当0<x ≤12时,f (x )的图象恒在g (x )图象的下方(如图所示),此时需a >22. 综上可得a 的取值范围是⎝⎛⎭⎪⎫22,1. 6. 已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|PA |+|PM |的最小值是________. 答案5-1解析 如图,抛物线y =14x 2,即x 2=4y 的焦点F (0,1),记点P 在抛物线的准线l :y =-1上的射影为P ′,根据抛物线的定义知, |PP ′|=|PF |,则|PP ′|+|PA |=|PF |+|PA |≥|AF |=22+12=5.所以(|PA |+|PM |)min =(|PA |+|PP ′|-1)min =5-1.专题限时规范训练一、选择题1. 已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )·cos x <0的解集是( )A.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3B.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 C .(-3,-1)∪(0,1)∪(1,3)D.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪(1,3) 答案 B解析 根据对称性画出f (x )在(-3,0)上的图象如图,结合y =cos x 在(-3,0),(0,3)上函数值的正负,易知不等式f (x )cos x <0的解集是⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.2. 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C解析 a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b.则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x } (x≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C解析 画出y =2x,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数即为方程(12)x -sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y=sin x 交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴b a≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c答案 D解析 a =sin 5π7=sin ⎝⎛⎭⎪⎫π-2π7=sin 2π7,又π4<2π7<π2,可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos 2π7<sin 2π7<tan 2π7,即b <a <c .7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1C .a >1D .0<a ≤116答案 B解析 不等式x 2-log a x <0转化为x 2<log a x , 由图形知0<a <1且 (12)2≤log a 12, ∴a ≥116,故a 的取值范围为⎣⎢⎡⎭⎪⎫116,1.8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8. 二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________.答案 2解析 可行域如图所示.又y x的几何意义是可行域内的点与坐标原点连线的斜率k . 由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m的取值范围是__________. 答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x(a >0且a ≠1)和函数y =x +a .则函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,就是函数y =a x(a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k=0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间; (2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′2=0,f 2=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,2. (2)由⎩⎪⎨⎪⎧f ′-1=3-2a +b ≤2,f ′1=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1. ∴Q 点的坐标为(0,-1). 设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2, 即ba -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β).所以原点O 到直线l 的距离小于半径1,即 d =||0+0+a 32+12=|a |2<1,∴-2<a <2. 又∵α、β∈(0,2π),且α≠β. ∴直线l 不过点(1,0),即3+a ≠0.∴a ≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴kAB ·k OH =-1.∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝ ⎛⎭⎪⎫-1,32时,直线y =-a 2与三角函数y =sin(x+π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3. 当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎫32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。

高考数学理二轮专题复习典型例题在线:专题30 数形结合的思想方法

高考数学理二轮专题复习典型例题在线:专题30 数形结合的思想方法
由平面几何知识知,OA2 (1AB)2 d2,
2
即 122cos 4 d2a2c 2b2,
所以 cos2 21cos2 a2c 2b2,
命题得证.
15
(6)利用“正余弦定理”构图 例 6 求 s i n 2 2 0 c o s 2 5 0 s i n 2 0 c o s 5 0 的 值 . 解析:将原式变形为 sin2 20 sin2 40 2sin20 sin40cos120, 于是我们可联想构造一个三角形:其三个内角分 别为20、40、120,并设此三角形外接圆直径为1, 则此三角形三边长分别为sin20、sin40、sin120,
11
因为g(x)为偶函数且g(3)=0,故g(-3)=0,
从而F(-3)=F(3)=0. 作出满足条件F(x)的示意图如图所示, 由图易知,F(x)<0的解集为 (-∞,-3)∪(0,3).
点评:为什么奇函数的图象在原点两侧的单调性相 同,这就是我们成竹在胸,“胸”中有图:对奇函 数的图象特征烂熟于心;为什么在图中标了三个特 殊点:两个非F(x)图象中的点,一个F(x)图象中的点 即原点:这就是我们对奇函数性质了如指掌:
例 1求 函 数 fxx24x13x212x37
的 最 小 值 .
-
4
解析:将函数式变形,得
f x x2 4x 13 x2 12x 37
x 22 0 32 x 62 0 12,
设A2,3,B 6,1,P x,0,则上述问题转化为求
-
PA PB 的最小值,如图点A关于x轴的对称点为 C (2, 3),因为 PA PB PC PB BC 4 2,
由余弦定理可得 sin2 20 sin2 40 2sin20sin40cos120 sin2120 3 .

高中高考数学数形结合思想分析与讲解

高中高考数学数形结合思想分析与讲解

高考数学数形联合思想剖析与解说所谓数形联合,就是依据数与形之间的对应关系,经过数与形的相互转变来解决数学识题的思想,实现数形联合,常与以下内容相关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;((4)以几何元素和几何条件为背景成立起来的观点,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。

以“形”变“数” 固然形有形象、直观的长处,但在定量方面还一定借助代数的计算,特别是对于较复杂的“形”,不只要正确的把图形数字化,并且还要留意察看图形的特色,挖掘题目中的隐含条件,充足利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行剖析计算。

解题的基本思路:明确题中所给条件和所求的目标,剖析已给出的条件和所求目标的特色和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题顶用到的图形的用代数式表达出来,再依据条件和结论的联系,利用相应的公式或定理等。

“形”“数”互变“形”“数”互变是指在有些数学识题中不只是是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”相互变换,不只要想到由“形”的直观变成“数”的严实还要由“数”的严实联系到“形”的直观。

解决这种问题常常需要从已知和结论同时出发,仔细剖析找出内在的“形”“数”互变。

一般方法是看“形”思“数”、见“数”想“形”。

本质就是以“数”化“形”、以“形”变“数”的联合。

数形联合思想是一种可使复杂问题简单化、抽象问题详细化的常用的数学思想方法。

要想提高学生运用数形联合思想的能力,需要教师耐心仔细的指引学生学会联系数形联合思想、理解数形联合思想、运用数形联合思想、掌握数形联合思想。

基础自测:1.已知0 a 1,则方程 a x log a x 的实数根的个数为()A.1 个B.2 个C.3 个D.1 个或 2 个或 3 个2.设数集Mx m x m 3x n1,且 M , N 都是集合,数集 N x n4 3x 0 x 1 的子集,假如把 b a叫做会合x a x b 的“长度”,那么会合 M N 的长度的最小值为1B. 2 1 5A.3 C. D.3 12 123.若奇函数 f (x) 在 0, 上的增函数,有f ( 3) 0 ,则x x f ( x) 0 ()A. x x 3或3 x 0B. x 0 x 3或 x 3C. x x 3或x 3D. x 0 x 3或 3 x 04.当x, y知足条件x y 1时,变量u x 的取值范围是()y 3A. 3,3B. 1 , 1C. 1 , 1D. 1 , 13 3 2 3 3 2参照分析:1.分析在同一坐标系下,画出函数y=a|x|,y=|logax| 的图象,则图象有两个交点 .2.分析 由题意知 .会合 M 的“长度”为3,会合 N4的“长度”为1,而会合 {x|0 ≤ x ≤1} 的“长度”331,b为 1;设线段 AB=1 , a, a , b 可在线段44AB 上自由滑动, a , b 重叠部分的长度即为 M ∩ N.如图,明显当 a ,b 各自凑近 AB 两头时,重叠部分最短 ,其值为3 1 1 1 .4 312所以1 1 , 00 , 1.答案 Ck33综上所述,u1 ,1333.分析 由 f(x) 为奇函数且 f(-3)=0 ,得 f(3)=0.又 f(x) 在( 0,+∞ )上是增函数,据上条件做出知足题意的 y=f(x) 草图,如图,如右图中找出f(x) 与 x 异号的部分,能够看出 x · f(x) < 0 的解集为 {x|0 < x < 3 或 -3<x < 0}. 答案 D4.分析由题意在座标系下画出|x|+|y|≤ 1 的图象如右图暗影部分,①若 x=0 时, |y|≤ 1,此时 u=0; ②若 x ≠ 0 时,变量可当作点 A(0, 3)与可行域内的点 B 连线斜率 k 的 倒数 ,而 k ∈ (-∞ ,-3] ∪ [3,+ ∞),典型例题解说题型一代数问题“几何化”——以形助数【例 1】求函数 A 2m 46m 的值域。

2011届高考数学二轮复习考点突破课件:第20讲 数形结合思想

2011届高考数学二轮复习考点突破课件:第20讲 数形结合思想

4.在运用数形结合思想分析问题和解决问题时,需做到以下四点: .在运用数形结合思想分析问题和解决问题时,需做到以下四点: (1)要彻底明白一些概念和运算的几何意义以及曲线的代数特征; 要彻底明白一些概念和运算的几何意义以及曲线的代数特征; 要彻底明白一些概念和运算的几何意义以及曲线的代数特征 (2)要恰当设参,合理用参,建立关系,做好转化; 要恰当设参,合理用参,建立关系,做好转化; 要恰当设参 (3)要正确确定参数的取值范围,以防重复和遗漏; 要正确确定参数的取值范围,以防重复和遗漏; 要正确确定参数的取值范围 (4)精心联想“数”与“形”,使一些较难解决的代数问题几何化,几 精心联想“ 精心联想 使一些较难解决的代数问题几何化, 何问 题代数化,以便于问题求解. 题代数化,以便于问题求解. 很多数学概念都具有明显的几何意义,善于利用这些几何意义, 很多数学概念都具有明显的几何意义,善于利用这些几何意义,往往 能收到事半功倍的效果. 能收到事半功倍的效果.
题型一 函数与不等式问题中的数形结合
已知: 满足下面关系. 【例 1】 (1)已知:函数 f(x)满足下面关系. 】 已知 满足下面关系 ①f(x+1)=f(x-1); + = - ; ②当 x∈[-1,1]时,f(x)=x2. ∈- 时 = 则方程 f(x)=lg x 解的个数是 = A.5 . B.7 . C.9 . D.10 . ( )
2.数形结合思想解决的问题常有以下几种: .数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围; 构建函数模型并结合其图象求参数的取值范围; 构建函数模型并结合其图象求参数的取值范围 (2)构建函数模型并结合其图象研究方程根的范围; 构建函数模型并结合其图象研究方程根的范围; 构建函数模型并结合其图象研究方程根的范围 (3)构建函数模型并结合其图象研究量与量之间的大小关系; 构建函数模型并结合其图象研究量与量之间的大小关系; 构建函数模型并结合其图象研究量与量之间的大小关系 (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等 构建函数模型并结合其几何意义研究函数的最值问题和证明不等 式; (5)构建立体几何模型研究代数问题; 构建立体几何模型研究代数问题; 构建立体几何模型研究代数问题 (6)构建解析几何中的斜率、截距、距离等模型研究最值问题; 构建解析几何中的斜率、截距、距离等模型研究最值问题; 构建解析几何中的斜率 (7)构建方程模型,求根的个数; 构建方程模型,求根的个数; 构建方程模型 (8)研究图形的形状、位置关系、性质等. 研究图形的形状、位置关系、性质等. 研究图形的形,-1 B.-2,- ∪(0,1)∪2 ,3 ∪

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。

2025届高考数学二轮复习导数经典技巧与方法第12讲数形结合与巧用放缩法含解析

2025届高考数学二轮复习导数经典技巧与方法第12讲数形结合与巧用放缩法含解析

第12讲数形结合与巧用放缩法学问与方法数形结合思想就是依据试题中给出的条件和结论,考虑几何含义来证明不等式.若想要运用好数形结合思想,必需敏捷地把抽象笼统的数量关系式与直观明白的图形结合起来,然后在几何与代数的背景下找寻解题的突破口.数形结合有两种状况:一是以数解形,二是以形助数,而通常状况下我们是以形助数来解题,所谓“以形助数”就是构造出与题意相吻合的图形,并通过图象的性质来帮助解决“数”的问题.典型例题f2−ff有两个极值点f1,f2(e为自然对数的底数). 【例1】已知函数f(f)=e f−12(1)求实数f的取值范围;(2)求证:f(f1)+f(f2)>2.f2−ff,则f′(f)=e f−f−f,【解析】(1)由于f(f)=e f−12设f(f)=f′(f)=e f−f−f,则f′(f)=e f−1.令f′(f)=e f−1=0,解得f=0.所以当f∈(−∞,0)时,f′(f)<0;当f∈(0,+∞)时,f′(f)>0.所以f(f)min=f(0)=1−f.(1)当f⩽1时,f(f)=f′(f)⩾0,所以函数f(f)单调递增,没有极值点;(2)当f>1时,f(f)min=1−f<0,且当f→−∞时,f(f)→+∞;当f→+∞时,f(f)→+∞.此时,f(f)=f′(f)=e f−f−f有两个零点f1,f2,不妨设f1<f2,则f1<0<f2−ff有两个极值点时,实数f的取值范围是(1,+∞); f2,所以函数f(f)=e f−12(2)由(1)知,f1,f2为f(f)=0的两个实数根,f1<0<f2,f(f)在(−∞,0)上单调递减.下面先证f1<−f2<0,只需证f(−f2)<f(f1)=0.由于f(f2)=e f2−f2−f=0,得f=e f2−f2,所以f(−f2)=e−f2+f2−f=e−f2−e f2+2f2.−e f+2<0,设f(f)=e−f−e f+2f(f>0),则f′(f)=−1e f所以f(f)在(0,+∞)上单调递减,所以f(f)<f(0)=0,f(f2)=f(−f2)<0,所以f1<−f2<0.由于函数f(f)在(f1,0)上也单调递减,所以f(f1)>f(−f2).要证f(f1)+f(f2)>2,只需证f(−f2)+f(f2)>2,即证e f2+e−f2−f22−2>0.设函数f(f)=e f+e−f−f2−2,f∈(0,+∞),则f′(f)=e f−e−f−2f.设f(f)=f′(f)=e f−e−f−2f,则f′(f)=e f+e−f−2>0,所以f(f)在(0,+∞)上单调递增,f(f)>f(0)=0,即f′(f)>0.所以f(f)在(0,+∞)上单调递增,f(f)>f(0)=0.故当f∈(0,+∞)时,e f+e−f−f2−2>0,则e f2+e−f2−f22−2>0,所以f(−f2)+f(f2)>2,亦即f(f1)+f(f2)>2.【点睛】第一问函数f(f)有两个极值点实质上就是其导数f′(f)有两个零点,亦即函数f=e f与直线f=f+f有两个交点,如图所示,明显实数f的取值范围是(1,+∞).其次问是极值点偏移问题的泛化,是拐点的偏移,依旧可以运用极值点偏移问题的有关方法来解决.只不过须要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的f1<−f2<0,假如“脑中有'形'”,如图所示,并不难得出.【例2】已知函数f(f)=e f−ff2,且曲线f=f(f)在点f=1处的切线与直线f+ (f−2)f=0垂直.(1)求函数f(f)的单调区间;(2)求证:f>0时,e f−ex−1⩾f(ln⁡f−1).【解析】(1)由f(f)=e f−ff2,得f′(f)=e f−2ff.因为曲线f=f(f)在点f=1处的切线与直线f+(e−2)f=0垂直,所以f′(1)=e−2f=e−2,所以f=1,即f(f)=e f−f2,f′(f)=e f−2f.令f(f)=e f−2f,则f′(f)=e f−2,f′(ln⁡2)=0.所以f∈(−∞,ln⁡2)时,f′(f)<0,f(f)单调递减;f∈(ln⁡2,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)min=f(ln⁡2)=2−2ln⁡2>0,所以f′(f)>0,f(f)单调递增.即f(f)的单调递增区间为(−∞,+∞),无递减区间;(2)由(1)知f(f)=e f−f2,f(1)=e−1,所以f=(f)在f=1处的切线为f−(e−1)=(e−2)(f−1),即f=(e−2)f+1. 令f(f)=e f−f2−(e−2)f−1,则f′(f)=e f−2f−(e−2)=e f−e−2(f−1),且f′(1)=0,f′′(f)=e f−2,f ∈(−∞,ln ⁡2)时,f ′′(f )<0,f ′(f )单调递减; f ∈(ln ⁡2,+∞)时,f ′′(f )>0,f ′(f )单调递增.因为f ′(1)=0,所以f ′(f )min =f ′(ln ⁡2)=4−e −2ln ⁡2<0, 因为f ′(0)=3−e >0,所以存在f 0∈(0,1),使f ∈(0,f 0)时,f ′(f )>0,f (f )单调递增;f ∈(f 0,1)时,f ′(f )<0,f (f )单调递减; f ∈(1,+∞)时,f ′(f )>0,f (f )单调递增.又f (0)=f (1)=0,所以f >0时,f (f )⩾0,即e f −f 2−(e −2)f −1⩾0,所以e f −(e −2)f −1⩾f 2. 今f f (f )=ln ⁡f −f ,则f ′(f )=1f −1=1−ff.所以f ∈(0,1)时,f ′(f )>0,f (f )单调递增;f ∈(1,+∞)时,f ′(f )<0,f (f )单调递减,所以f (f )⩽f (1)=−1,即ln ⁡f +1⩽f ,因为f >0,所以f (ln ⁡f +1)⩽f 2,所以f >0时,e f −(e −2)f −1⩾f (ln ⁡f +1), 即f >0时,e f −e f −1⩾f (ln ⁡f −1).强化训练1.若关于f 的不等式f −ff >e f (2f −1)(f >−1)有且仅有两个整数解,则实数f 的取值范围为 A.(−34,53e 2] B.(−1,−32e ]C.(−32e ,−53e 2]D.(−34,−53e 2]【答案】C【解析】设f (f )=f −ff ,f (f )=e f (2f −1), 不等式f −ff >e f (2f −1)(f >−1)即f (f )>f (f ),f ′(f )=e f (2f +1),由f ′(f )>0得f >−12,由f ′(f )<0得f <−12, f (f )在(−∞,−12)单调递减,在(−12,+∞)单调递增.作出f (f )的图象如图所示,直线f (f )=f −ff 过定点(1,0).若不等式f (f )>f (f )有且仅有两个整数解,则这两个整数只能是0和−1,所以{f (−1)>f (−1),f (−2)⩽f (−2),得−32e <f ⩽−53e 2,实数f 的取值范围是(−32e ,−53e 2],故选:f .2.已知关于f 的不等式|ln ⁡f +f −4e f|>ff 的解集中只有两个整数,则实数f 的取值范围为()A.(ln ⁡22f 4,2−ln ⁡22f 2] B.[ln ⁡3−13f 3,2−ln ⁡22f 2) C.[ln ⁡3+13f 3,2−ln ⁡22f 2)D.(ln ⁡3+13e 3,2−ln ⁡22e 2)【答案】A【解析】依题意,f <|ln ⁡f +f −4|f e f=|ln ⁡f +f −4f e f|,令f (f )=ln ⁡f +f −4f e f,则f ′(f )=−(f +1)(ln ⁡f +f −5)f 2f f,令f (f )=ln ⁡f +f −5,则f ′(f )=1f +1>0,则f (f )在(0,+∞)上单调递增, 又f (3)=ln ⁡3−2<0,f (4)=ln ⁡4−1>0,所以存在f ∈(3,4),使得f (f )=0,所以f ∈(0,f ),f (f )<0即f ′(f )>0,f (f )在(0,f )单调递增,当f ∈(f ,+∞),f (f )>0,即f ′(f )<0,f (f )在(f ,+∞)单调递减, 因为f (1)=−3e <0,f (2)=ln ⁡2−22e 2<0,f (3)=ln ⁡3−12e 3>0,且当f >3时,f (f )>0, 又|f (1)|=3e ,|f (2)|=2−ln ⁡22e 2>|f (3)|=ln ⁡3−12e 3,|f (4)|=ln ⁡22e 4>|f (3)|,故要使不等式|ln ⁡f +f −4e f|>ff 的解集中只有两个整数,f 的取值范围应为ln ⁡22e 4<f ⩽2−ln ⁡22e 2.故选:f .3.已知函数f (f )=ln ⁡f +12f 2+ff (f ∈f ),f (f )=e f +32f 2−f .(1)探讨f (f )的单调性;(2)定义:对于函数f (f ),若存在f 0,使f (f 0)=f 0成立,则称f 0为函数f (f )的不动点.假如函数f (f )=f (f )−f (f )存在不动点,求实数f 的取值范围. 【解析】(1)f (f )的定义域为(0,+∞),f ′(f )=f 2+ff +1f(f >0),对于函数f =f 2+ff +1,(1)当Δ=f 2−4⩽0时,即−2⩽f ⩽2时,f 2+ff +1⩾0在f >0恒成立. 所以f ′(f )=f 2+ff +1f⩾0在(0,+∞)恒成立.所以f (f )在(0,+∞)为增函数; (2)当Δ>0,即f <−2或f >2时, 当f <−2时,由f ′(f )>0, 得f <−f −√f 2−42或f >−f +√f 2−42,0<−f −√f 2−42<−f +√f 2−42,所以f (f )在(0,−f −√f 2−42)上递增, 在(−f −√f 2−42,−f +√f 2−42)上递减.在(−f +√f 2−42,+∞)上递增;当f >2时,由f ′(f )=f 2+ff +1f>0在(0,+∞)恒成立,所以f (f )在(0,+∞)为增函数. 综上:当f <−2时,f (f )在(0,−f −√f 2−42)上为增函数,在(−f −√f 2−42,−f +√f 2−42)上为减函数,在(−f +√f 2−42,+∞)上为增函数;当f ⩾−2时,f (f )在(0,+∞)上为增函数.(2)f (f )=f (f )−f (f )=ln ⁡f −f 2+ff +f −e f (f >0), 因为f (f )存在不动点,所以方程f (f )=f 有实数根,即f =e f −ln ⁡f +f 2f有解,令f (f )=e f +f 2−ln ⁡ff(f >0),f ′(f )=f f (f −1)+ln ⁡f +(f +1)(f −1)f 2=(f f +f +1)(f −1)+ln ⁡ff 2,令f ′(f )=0,得f =1,当f ∈(0,1)时,f ′(f )<0,f (f )单调递减; 当f ∈(1,+∞)时,f ′(f )>0,f (f )单调递增;所以f (f )⩾f (1)=e +1,当f ⩾e +1时,f (f )有不动点,所以f 的范围为[e +1,+∞). 【点睛】导数式含参数时,如何探讨参数范围而确定到数值的正负是解决这类题的难点,般采纳求根法和图像法.(1)对函数f (f )求导,结合二次函数的性质探讨f 的范围,即可推断f (f )的单调性;(2)由f (f )存在不动点,得到f (f )=f 有实数根,即f =e f −ln ⁡f +f 2f有解,构造函数令f (f )=e f +f 2−ln ⁡ff(f >0),通过求导即可推断f (f )的单调性,从而得到f (f )的取值范围,即可得到f 的范围.巧用放缩法学问与方法放缩法就是针对不等式的结构特征,运用不等式的性质,将不等式的一边或两边进行放大或缩小,也就是对代数式进行恰到好处的变形,使问题便于解决.放缩法大致分为以下几类:1.将代数式中的分母和分子同时扩大和缩小;2.利用均值不等式或其它的不等式放缩数式;3.也可以在不等式两边同时加上或减去某一项;4.可以把代数式中的一些项进行分解再重新组合,这样就可以消去一些项便于求解,这也是我们常用的裂项法.导数的解答题中,常常会用到一些不等式进行放缩,主要分为五类:1.切线不等式(1)e f⩾f+1;(2)ln⁡f⩽f−1;(3)e f⩾e f;(4)ln⁡f⩽1e f;(5)ln⁡f⩾1−1f.2.与三角有关的一些不等式(1)当f⩾0时,sin⁡f⩽f,cos⁡f⩾1−f22;(2)当0⩽f⩽f2时,cos⁡f⩽1−f24;(3)当0<f<f2时,sin⁡f<f<fff⁡f;(4)当0<f⩽f2时,sin⁡ff⩾2f.3.一些常见不等式(略微提高)(1)当f>1时,f2−1f2+1<2(f−1)f+1<ff⁡f<√f√f<12(f−1f);(2)当0<f<1时,12(f−1f)<√f√f<ff⁡f<2(f−1)f+1<f2−1f2+1;(3)对数平均不等式:∀f1>f2>0,√f1f2<f1−f2ln⁡f1−ln⁡f2<f1+f22.4.一些不常见的不等式(1)当f>0时,e f>1+f+12f2;(2)当0<f<1时,ln⁡1+f1−f >2f+23f3;当−1<f<0时,ln⁡1+f1−f<2f+23f3.5.间或用上的不等式当f>1,f∈N∗,f>−1时,则:(1+f)f⩾1+ff,(1+f)1f⩽1+1ff.(当且仅当f=0时等号成立.)在解答导数问题时,我们常常运用到函数的切线、割线靠近进行放缩,两个常用的结论为ln⁡f⩽f−1(当且仅当f=1时取等号),e f⩾f+1(当且仅当f=0时取等号),借助这两个结论可以将超越函数放缩成一次函数.针对高考压轴导数问题,放缩法可以起到很好的效果.运用放缩法须要较高的拆分组合技巧,肯定要点睛意同向传递,还要把握好放缩的“尺度”,否则将达不到预期的目的,或者会得出错误的结论.典型例题指数放缩【例1】已知函数f(f)=f e f+2f−1(其中常数e=2.71828⋯,是自然对数的底数).(1)探讨f(f)的单调性;(2)证明:对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.【解析】(1)求导,得f′(f)=f e f+2.当f⩾0时,f′(f)>0,f(f)在R上单调递增;当f<0时,令f′(f)=0,得f=ln⁡(−2f).当f∈(−∞,ln⁡(−2f))时,f′(f)>0,f(f)单调递增;当f∈(ln⁡(−2f),+∞)时,f′(f)<0,f(f)单调递减.综上,当f⩾0时,f(f)在R上单调递增;当f<0时,f(f)在(−∞,ln⁡(−2f ))上单调递增,在(ln⁡(−2f),+∞)上单调递减.(2)解法1:指对处理技巧fe f型当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f e f−f2+(2−f e)f−1⩾0,即1−f2−(2−f e)f+1f e f⩾0,令f(f)=1−f2−(2−f e)f+1f e f,则f′(f)=(f−1)(f+f e−3)f e f,(f)当f⩾3e时,令f′(f)=0,得f=1,故当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞),f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即f(f)⩾(f+f e)f.(ii)当1⩽f<3e吋,令f′(f)=0,得f=1,或f=3−f e.当f∈(0,3−f e),(1,+∞),f′(f)>0,f(f)单调递增;当f∈(3−f e,1),f′(f)<0,f(f)单调递减.又f(0)=1−1f⩾0,f(1)=0,故此时f(f)⩾0,即f(f)⩾(f+f e)f. 综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.解法2:指对处理技巧e ff+主元放缩当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f(e f−e f)−(f−1)2⩾0,即证e ff −ff−1ff+2f−e⩾0,令f(f)=e ff −ff−1ff+2f−e,则f′(f)=(f−1)(f e f−f−1)ff2,当f⩾1时,f e f−f−1⩾e f−f−1,当且仅当f=1时等号成立, 令f(f)=e f−f−1,则f′(f)=e f−1>0在(0,+∞)上恒成立,故f(f)单调递增,f(f)>f(0)=0,f′(f)=0,则f=1, 所以f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即e ff −ff−1ff+2f−e⩾0,即f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.解法3:干脆探讨法当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f(e f−e f)−(f−1)2⩾0,令f(f)=f e f−f2+(2−f e)f−1,则f′(f)=f e f−2f−(f e−2),因此f′′(f)=f e f−2在(0,+∞)上单调递增.(f)当f⩾2时,f′′(f)>0在(0,+∞)上恒成立,故f′(f)单调递增,又f′(1)=0,故当f∈(0,1)时,f′(f)<0,f(f)单调递减,当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即f(f)⩾(f+f e)f.当1⩽f<2时,令f′′(f)=0,得f=ln⁡2f∈(0,1).当f∈(0,ln⁡2f),f′′(f)<0,f′(f)单调递减;当f∈(ln⁡2f,+∞),f′′(f)>0,f′(f)单调递增.(ii)当2e−1⩽f<2时,f′(0)=f(1−e)+2⩽0,又f′(1)=0,f′(ln⁡2f)<f′(1)=0,故当f∈(0,1)时,f′(f)<0,f(f)单调递减; 当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即f(f)⩾(f+f e)f.(iii)当1⩽f<2e−1时,则f′(0)=f(1−e)+2>0,又f′(ln⁡2f )<f′(1)=0,故存在唯一f0∈(0,ln⁡2f),使得f(f0)=0,当f∈(0,f0),(1,+∞)时,f′(f)>0,f(f)单调递增;当f∈(f0,1)时,f′(f)<0,f(f)单调递减.又f(0)=f−1⩾0,f(1)=0.故此时f(f)⩾0,即f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.解法4:主元放缩+指数放缩法当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f(e f−e f)−(f−1)2⩾0,令f(f)=e f−e f,则f′(f)=e f−e,令f′(f)=0,得f=1.当f∈(−∞,1),f′(f)<0,f(f)单调递减;当f∈(1,+∞),f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即e f−e f⩾0,当且仅当f=1时等号成立,故f(e f−e f)⩾e f−ex,当且仅当f=1,f=1时等号成立;要证f(e f−e f)−(f−1)2⩾0,只须要证e f−e f−(f−1)2⩾0.策略一:干脆探讨法令f(f)=e f−e f−(f−1)2(f>0),则f′(f)=e f−e−2(f−1),f′′(f)=e f−2,令f′′(f)=0,得f=ln⁡2.当f∈(0,ln⁡2)时,f′′(f)<0,f′(f)单调递减;当f∈(ln⁡2,+∞)时,f′′(f)>0,f′(f)单调递增.又f′(0)=3−e>0,f′(1)=0,f′(ln⁡2)<0,因此存在唯一f0∈(0,ln⁡2),使得f′(f0)=0.当f∈(0,f0)时,f′(f)>0,f(f)单调递增;当f∈(f0,1),f′(f)<0,f(f)单调递减.又f(0)=0,f(1)=0,故此时f(f)⩾0恒成立,即f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.策略二:指数处理,同解法1即证1−e f+(f−1)2e f ⩾0,令f(f)=1−e f+(f−1)2e f,则f′(f)=(f−1)(f+e−3)e f,令f′(f)=0,得f=1,或f=3−e.当f∈(0,3−e),(1,+∞)时,f′(f)>0,f(f)单调递增;当f∈(3−e,1)时,f′(f)<0,f(f)单调递减.又f(0)=0,f(1)=0,故此时f(f)⩾0,即f(f)⩾(f+f e)f. 综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.策略三:指对处理,同解法2即证e ff −f−1f+2−e⩾0,令f(f)=e ff −f−1f+2−e,则f′(f)=(f−1)(e f−f−1)f2.令f(f)=e f−f−1,则f′(f)=e f−1>0在(0,+∞)上恒成立,故f(f)单调递增, 从而f(f)>f(0)=0,令f′(f)=0,则f=1.当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.所以f(f)⩾f(1)=0,即e ff −f−1f+2−e⩾0,从而f(f)⩾(f+f e)f.综上,对随意的f⩾1,当f>0时,f(f)⩾(f+f e)f.【点睛】本题的第(2)问是一道开放性较强的试题,可以从多角度入手分析.当f⩾1,f>0时,要证f(f)⩾(f+f e)f,即f e f−f2+(2−f e)f−1⩾0,视察此时含有指数项f e f,也含有二次项,干脆探讨至少要求两次导数才便于探究(解法2),结合指对处理技巧,可考虑同时除以f e f,这样求导后就只须要探讨二次型函数即可.即证f(f)=1−f2−(2−f e)f+1f e f⩾0,求导后分耇竕是可因式分解的二次函数,且两根易求,分别为f=1与f=3−f e.但对于f=3−f e是否在区间(0,+∞)内不能确定,因此须要进行探讨.解法1采纳的是整理为fe f 型函数,解法2则是整理为eff型的函数,解法2采纳的是干脆探讨.对于解法4,视察到所证不等式中含有e f与ex,即可联想到e f⩾e f,为此将待证式整理成f(e f−ex)−(f−1)2⩾0,借助e f⩾ex,只须要证明e f−ex−(f−1)2⩾0即可.接下来的证明与前述含参探讨的情形大同小异,可干脆探讨,也可采纳指对处理对数放缩【例2】已知函数f(f)=f−1ln⁡f.(1)求函数f(f)的单调区间;(2)证明:在f>12且f≠1时,f(f)<f2+34恒成立.【解析】(1)f′(f)=ln⁡f−1+1 f(ln⁡f)2(f>0,且f≠1),令f(f)=ln⁡f−1+1f ,则f′(f)=1f−1f2=f−1f2,当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增;故f(f)>f(1)=0,即f′(f)>0恒成立,故f(f)在(0,1),(1,+∞)上单调递增.综上,f(f)的单调递增区间为(0,1),(1,+∞),无单调递减区间.(2)解法1:放缩法今f(f)=f−1−ln⁡f(f>0),则f′(f)=f−1f,当f∈(0,1),f′(f)<0,f(f)单调递减;当f∈(1,+∞),f′(f)>0,f(f)单调递增. 故f(f)⩾f(1)=0,即f−1⩾ln⁡f,当且仅当f=1时等号成立.因此,当f∈(12,1),f−1>ff⁡f,则f−1ln⁡f<1,而此时f2+34>1,所以f−1ln⁡f<f2+34;另一方面,f∈(1,+∞),由(1)可知ln⁡f>1−1f,因此f−1ln⁡f <f−11−1f=f,而f2+34−f>0在(1,+∞)恒成立,故f2+34>f>f−1ln⁡f成立.综上,不等式f−1ln⁡f <f2+34在f>12,且f≠1时恒成立.解法2:等价变形当f∈(12,1)时,即证f−1f2+34>ff⁡f;当f∈(1,+∞),即证f−1f2+34<ff⁡f;令f(f)=f−1f2+34−ln⁡f(f>12,且f≠1),则f′(f)=f 2+34−2f(f−1)(f2+34)2−1f=−f4+f3−12f2−34f+916f(f2+34)2,令f(f)=f4+f3−12f2−34f+916 ,则f′(f)=4f3+3f2−f−34=4f2(f+34)−(f+34)=(f+34)(4f2−1)>0,故f(f)单调递增,f(f)>f(12)=14>0,故f′(f)<0,所以f(f)单调递减,而f(1)=0,故当f∈(12,1)时,f(f)>0,即f−1f2+34>ff⁡f;当f∈(1,+∞)时,f(f)<0,即f−1f2+34<ff⁡f.综上,不等式f−1ln⁡f <f2+34在f>12且f≠1时成立.指对混合放缩【例3】已知函数f(f)=e f.(1)探讨函数f(f)=f(ff)−f−f的单调性;(2)证明:f(f)+ln⁡f+3f >√f.【解析】(1)f(f)=f(ff)−f−f=e ff−f−f,f′(f)=f e ff−1,(1)若f⩽0时,f′(f)<0,f(f)在R上单调递减;(2)若f>0时,当f<−1fln⁡f时,f′(f)<0,f(f)单调递减;当f>−1fln⁡f时,f′(f)>0,f(f)单调递增;综上若f⩽0时,f(f)在R上单调递减;若f>0时,f(f)在(−∞,−1f ln⁡f)上单调递减;在(−1fln⁡f,+∞)上单调递增;(2)证明:要证f(f)+ln⁡f+3f >√f,只需证f(ln⁡f+e f)−4√f+3>0,由(1)可知当f=1时,e f−f−1⩾0,即e f⩾f+1,当f+1>0时,上式两边取以e为底的对数,可得ln⁡(f+1)⩽f(f>−1),用f−1代替f可得ln⁡f⩽f−1(f>0),又可得ln⁡1f ⩽1f−1(f>0),所以ln⁡f⩾1−1f(f>0),所以f(ln⁡f+e f)−4√f+3>f(1−1f+f+1)−4√f+3=f2+2f+2−4√f=(f+1)2−4√f+1⩾(2√f)2−4√f+1=(2√f−1)2⩾0,从而不等式f(f)+ln⁡f+3f >√f成立.【例4】已知函数f(f)=e f−ff2,f(f)=f ln⁡f−f2+(e−1)f+1,且曲线f= f(f)在f=1处的切线方程为f=ff+1.(1)求f,f的值;(2)求函数f(f)在[0,1]上的最小值;(3)证明:当f>0时,f(f)⩽f(f).【解析】(1)f=1,f=e−2.(2)f(f)min=1;(3)即证:e f+(1−e)f−f ln⁡f−1⩾0,因为f(0)=1,且曲线f=f(f)在f=1处的切线方程为f=(e−2)f+1,故可揣测:当f>0且f≠1时,f(f)的图象恒在切线f=(e−2)f+1的上方.下面证明:当f>0时,f(f)⩾(e−2)f+1.解法1:设f(f)=f(f)−(e−2)f−1(f>0),则f′(f)=e f−2f−(e−2),今f(f)=f′(f),f′(f)=e f−2,当f∈(0,ln⁡2)时,f′(f)<0,f′(f)单调递减;当f∈(ln⁡2,+∞)时,f′(f)>0,f′(f)单调递增.又f′(0)=3−e>0,f′(1)=0,0<ff⁡2<1,f′(ln⁡2)<0所以,存在f0∈(0,1),使得f′(f0)=0.当f∈(0,f0)∪(1,+∞)时,f′(f)>0;当f∈(f0,1),f′(f)<0;故f(f)在(0,f0)上单调递增,在(f0,1)上单调递减,在(1,+∞)上单调递增.又f(0)=f(1)=0,所以f(f)=e f−f2−(e−2)f−1⩾0,当且仅当f=1时取等号.故e f+(2−e)f−1f⩾f(f>0).由(2)知,e f⩾f+1,故f⩾ln⁡(f+1),所以f−1⩾ln⁡f,当且仅当f=1时取等号.所以e f+(2−e)f−1f⩾f⩾ln⁡f+1,即e f+(2−e)f−1f⩾ln⁡f+1.所以e f+(2−e)f−1⩾f ln⁡f+f,即e f+(1−e)f−f ln⁡f−1⩾0成立(当f=1时等号成立). 故当f>0时,f(f)⩽f(f).解法2:要证f ln⁡f−f2+(e−1)f+1⩽e f−f2,等价于证明f ln⁡f+(e−1)f+1−e f⩽0,又f>0,可转化为证明ln⁡f+e−1+1f −e ff⩽0,令f(f)=ln⁡f+e−1+1f −e ff,则f′(f)=1f−1f2−e f(f−1)f2=(f−1)(1−e f)f2,因为f>0,所以当f∈(0,1)时,f′(f)>0,f(f)单调递增;当f∈(1,+∞)时,f′(f)<0,f(f)单调递减;所以f(f)有最大值f(1)=0,故f(f)⩽0恒成立,即当f>0时,f(f)⩽f(f).三角放缩【例5】设f>0,且f≠1,函数f(f)=sin⁡ff−f sin⁡f.(1)若f(f)在区间(0,2f)上有唯一极值点f0,证明:f(f0)<fff{2ff,(1−f)f};(2)若f(f)在区间(0,2f)没有零点,求f的取值范围.【解析】(1)f′(f)=f cos⁡ff−f cos⁡f=f(cos⁡ff−cos⁡f)=−2f sin⁡f+12f sin⁡f−12f,若f>1,则f′(f)在区间(0,2f)至多有f1=2ff+1,f2=4ff+1两个变号零点,故0<f<1,令f′(f)=0,得f f=2fff+1,f f=2fff+1,其中f,f∈f,仅当f=1时,f1=2ff+1∈(0,2f),且在f1的左右两侧,导函数的值由正变负,故当0<f<1时,f(f)在区间(0,2f)有唯一极值点f0=2ff+1,此时f(f0)=sin⁡ff0−f sin⁡f0.解法1:将f0=2ff+1代入得f(f0)=sin⁡2fff+1−f sin⁡2ff+1=sin⁡2fff+1+f sin⁡(2f−2ff+1)=(1+f)sin⁡2fff+1,(1)当2ff+1⩽12,即0<f⩽13时,2ff⩽(1−f)f,由不等式f>0,fff⁡f<f知:(1+f)sin⁡2fff+1<(1+f)2fff+1=2ff;(2)当2f f +1>12,即当13<f <1时,(1−f )f <2ff ,(1+f )sin ⁡2fff +1=(1+f )sin ⁡(f −2fff +1)=(1+f )sin ⁡(1−f )ff +1,由不等式f >0,fff ⁡f <f 知:(1+f )sin ⁡2fff +1<(1+f )(1−f )ff +1=(1−f )f .由(1)(2)知f (f 0)<fff {2ff ,(1−f )f }. 解法2:由f 0=2f f +1⇒ff 0=2f −f 0,f =2ff 0−1,代入得f (f 0)=sin ⁡ff 0−f sin ⁡f 0=sin ⁡(2f −f 0)−(2ff−1)sin ⁡f 0,即f (f 0)=−2ff 0sin ⁡f 0.以下用分析法可证:f (f 0)<fff {2ff ,(1−f )f }. (2)(1)当f >1时,f (f f )=sin ⁡(f ⋅f f )−f sin ⁡f f =−f sin ⁡f f <0,f (3f 2)=sin ⁡(3ff 2)+f >0,所以f (ff )f (3f 2)<0,由零点存在性定理知,f (f )在区间(f f ,3f2)至少有一个零点; (2)当12<f <1时,f <ff<2f ,f 2<ff <f ,f <2ff <2f ,f (f f )=−f sin ⁡ff >0,f (f )=sin ⁡ff >0,f (2f )=sin ⁡2ff <0,由零点存在定理可知,f (f )在区间(f ,2f )至少有一个零点;(3)当0<f ⩽12时,f ′(f )=f cos ⁡ff −f cos ⁡f =f (cos ⁡ff −cos ⁡f ),令f (f )=cos ⁡ff −cos ⁡f ,则f ′(f )=−f sin ⁡ff +sin ⁡f , 在区间(0,f )上,cos ⁡ff >fff ⁡f ,f ′(f )>0,f (f )是增函数;在区间(f ,2f )上,f ′(f )<0,即f (f )递减,即f ′(f )递减,f ′(f )<f ′(2f )<0, 故f (f )在(0,f )上递增,在(f ,2f )上递减,又f (0)=0,f (f )=sin ⁡ff >0,f (2f )=sin ⁡2ff ⩾0,即在(f ,2f )上,f (f )>0.所以f(f)在区间(0,2f)上没有零点,满意题意.综上所述,若f(f)在区间(0,2f)没有零点,则正数f的取值范围是(0,12].含三角函数的指对放缩【例6】已知函数f(f)=e f−ff−cos⁡f,其中f∈f.(1)求证:当f⩽−1时,f(f)无极值点;(2)若函数f(f)=f(f)+ln⁡(f+1),是否存在f,使得f(f)在f=0处取得微小值?并说明理由.【解析】(1)证明:f′(f)=e f−f+sin⁡f,明显e f>0,−1⩽fff⁡f⩽1,当f⩽−1时,f f−f+sin⁡f>0−f−1⩾0,即f′(f)>0,所以函数f(f)在其定义域上为增函数,故f(f)无极值点;(2)f(f)=e f−ff−cos⁡f+ln⁡(f+1),f′(f)=e f−f+sin⁡f+1f+1,明显f=0是f(f)的微小值点的必要条件,为f′(0)=2−f=0,即f=2.此时f′(f)=e f+1f+1+sin⁡f−2,明显当f∈(0,f2)时,f′(f)=e f+1f+1+sin⁡f−2>1+f+1f+1+sin⁡f−2>fff⁡f>0,当f∈(−14,0)时,(1+f)(1−f+32f2)=1+f22(3f+1)>1,故11+f <1−f+32f2,令f(f)=(1+f+f22)e−f,则f′(f)=−f22e−f⩽0,故f(f)是减函数,故当f<0时,f(f)>f(0)=1,即e f<1+f+f22,令f(f)=sin⁡f−12f,则f′(f)=cos⁡f−12,当−1<f<0时,f′(f)>fff⁡1−12>0,故f(f)在(−1,0)单调递增,故当−1<f <0时,f (f )<f (0)=0,即sin ⁡f <12f ,故当f ∈(−14,0)时,f ′(f )=e f +1f +1+sin ⁡f −2⩽(1+f +f 22)+(1−f +32f 2)−2+f 2=2f 2+f 2<0,因此,当f =2时,f =0是f (f )的微小值点,即充分性也成立. 综上,存在f =2,使得f (f )在f =0处取得微小值.【点睛】本题第(2)问先由必要性探路可知f =2,再证明当f =2时,f =0是函数f (f )的微小值点,即证明其充分性,由此即可得出结论.【例7】已知函数f (f )=2ln ⁡(f +1)+sin ⁡f +1,函数f (f )=ff −1−ln ⁡f (f ∈R ,且f ≠0).(1)探讨函数f (f )的单调性;(2)证明:当f ⩾0时,f (f )⩽3f +1;(3)证明:当f >−1时,f (f )<(f 2+2f +2)e sin ⁡f . 【解析】(1)f (f )定义域为(0,+∞),f ′(f )=f −1f=ff −1f. 当f <0时,f ′(f )<0,则f (f )在(0,+∞)上单调递减;当f >0时,令f ′(f )>0,得f >1f,即f (f )在(1f,+∞)上单调递增;令f ′(f )<0,得0<f <1f ,得f (f )在(0,1f )上单调递减.综上所述,当f <0时,f (f )在(0,+∞)上单调递减;当f >0时,f (f )在(1f ,+∞)上单调递增,在(0,1f )上单调递减. (2)解法1:作差法+干脆求导设函数f (f )=f (f )−(3f +1),则f ′(f )=2f +1+cos ⁡f −3. 因为f ⩾0,所以2f +1∈(0,2],cos ⁡f ∈[−1,1],则f ′(f )⩽0,从而f(f)在[0,+∞)上单调递减,所以f(f)=f(f)−(3f−1)⩽f(0)=0,即f(f)⩽3f+1.解法2:常用不等式+兵分两路当f=1时,f(f)=f−1−ln⁡f,由(1)知f(f)min=f(1)=0,所以ln⁡f⩽f−1,所以2ln⁡(f+1)⩽2f.令f(f)=f−sin⁡f,则f′(f)=1−cos⁡f⩾0恒成立,又f(0)=0,所以当f⩾0时,有f(f)=f−sin⁡f⩾0,即sin⁡f⩽f.所以f(f)=2ln⁡(f+1)+sin⁡f+1⩽2f+f+1=3f+1.(3)证明:当f=1时,f(f)=f−1−ln⁡f,由(1)知f(f)min=f(1)=0,所以f⩾ln⁡f+1,当f>−1时,(f+1)2>0,(f+ 1)2f sin⁡f>0,所以(f+1)2e sin⁡f>ff⁡[(f+1)2e sin⁡f]+1=2ln⁡(f+1)+sin⁡f+1.从而(f2+2f+2)e sin⁡f>(f+1)2e sin⁡f>ff⁡[(f+1)2e sin⁡f]+1=2ln⁡(f+1)+sin⁡f+1=f(f),所以f(f)<(f2+2f+2)e sin⁡f.强化训练1.已知函数f(f)=f+fe f(f∈R)在f=0处取得极值.(1)求f,并求f(f)的单调区间;(2)证明:当0<f⩽e,f∈(1,+∞)时,f e f−2−f(f−1)ln⁡f>0.【解析】(1)f′(f)=1−f−fe f,由题意可得,f′(0)=1−f=0,故f=1,f(f)=1+fe f ,f′(f)=−fe f,由f′(f)>0可得f<0,故函数单调递增区间(−∞,0), 由f′(f)<0可得f>0,故函数单调递减区间(0,+∞),(2)证明:由(1)可知f(f)在(−∞,0)上单调递增,在(0,+∞)单调递减,故f(f)⩽f(0)=1,即f+1e f⩽1,故e f⩾f+1,所以e f−2⩾f−1,当且仅当f=2时取等号,又因为f>0,所以f e f−2⩾f(f−1),所以f e f−2−f(f−1)ln⁡f⩾f(f−1)−f(f−1)ln⁡f=(f−1)(f−f ln⁡f), 因为f>1,所以ln⁡f>0,因为0<f⩽e,所以f−f ln⁡f⩾f−eln f,令f(f)=f−eln⁡f,则f′(f)=1−ef,由f′(f)>0可得,f>f,故f(f)在(e,+∞)上单调递增,由f′(f)<0可得,f<f,故f(f)在(−∞,e)上单调递减,所以f(f)⩾f(e)=0,即f−eln f⩾0在f=e处取得等号,所以f e f−2−f(f−1)ln⁡f⩾(f−1)(f−f ln⁡f)⩾(f−1)(f−eln⁡f)⩾0, 由于取等条件不同,所以f e f−2−f(f−1)ln⁡f>0.2.已知函数f(f)=ln⁡f−fe.(1)若曲线f=f(f)存在一条切线与直线f=ff垂直,求f的取值范围.(2)证明:f(f)<f2−ln⁡f−34sin⁡f.【解析】(1)f′(f)=1f −1e.因为f(f)的定义域为(0,+∞),所以1f−1e>−1e.因为曲线f=f(f)存在一条切线与直线f=ff垂直,所以−1f >−1e,解得f<0或f>f,则f的取值范围为(−∞,0)∪(e,+∞).(2)f′(f)=1f −1e=e−ff e.当f∈(0,e)时,f′(f)>0;当f∈(e,+∞)时,f′(f)<0.所以f(f)max=f(e)=ln⁡e−ee=0.设函数f(f)=f2−ln⁡f,则f′(f)=2f−1f =2f2−1f.当f∈(0,√22)时,f′(f)<0;当f∈(√22,+∞)时,f′(f)>0.所以f(f)min=f(√22)=12−12ln⁡12=12+12ln⁡2.因为ln⁡2>ff⁡√e=12,f(f)min>34.因为34sin⁡f∈[−34,34],所以f2−ln⁡f−34sin⁡f>0.又f(f)⩽f(f)max=0,所以f(f)<f2−ln⁡f−34sin⁡f.3.已知函数f(f)=f ln⁡f+32f2−(f+1)f+f.(1)当f=3时,求f(f)的单调区间;(2)e为自然对数的底数,若f∈(3e−1,3e+1)时,f(f)⩾0恒成立,证明:f−2f+6>0.【解析】(1)当f=3时,f(f)=f ln⁡f+32f2−4f+f,则f′(f)=ln⁡f+3f−3在(0,+∞)上单调递增,又f(1)=0,故当f∈(0,1)时,f′(f)<0,f(f)单调递减;当f∈(1,+∞)时,f′(f)>0,f(f)单调递增.综上,当f=3时,f(f)的单调咸区间为(0,1),单调增区间为(1,+∞).(2)对f(f)求导,得f′(f)=ln⁡f+3f−f,知f′(f)在(0,+∞)上单调递增.因为f∈(3e −1,3e+1),故f′(1e)=3e−1−f<0,f′(e)=3e+1−f>0,故存在唯一f0∈(1e,e),使得f′(f0)=0,即ln⁡f0+3f0−f=0,所以f=ln⁡f0+3f0.当f∈(0,f0)时,f′(f)<0,f(f)单调递减; 当f∈(f0,+∞)时,f′(f)>0,f(f)单调递增.又f(f)⩾0,故f(f)min=f(f0)=f0ln⁡f0+32f2−(f+1)f0+f⩾0,即f0ln⁡f0+32f2−(ln⁡f0+3f0+1)f0+f=−32f2−f0+f⩾0在f0∈(1e,e)上恒成立.令f(f)=−32f2−f+f,则f(f)在(1e,e)上单调递减,故只需f(e)=−32e2−e+f⩾0,即f⩾32e2+e,故f−2f+6⩾32e2+e−6e−2+6=32e2−5e+4>0,从而得证.解法2:转化为关于f0的函数所以f⩾32f2+f0,则f−2f+6⩾32f2+f0−2(ln⁡f0+3f0)+6=32f2−5f0−2ln⁡f0+6,令f(f)=32f2−5f−2ln⁡f+6(1e<f<f),则f′(f)=3f−5−2f =3f2−5f−2f=(3f+1)(f−2)f,令f′(f0)=0,得f=2.当f∈(1e,2),f′(f)<0,f(f)单调递减;当f∈(2,e)时,f′(f)>0,f(f)单调递增.故f(f)min=f(2)=32×4−10−2ln⁡2+6=2(1−ln⁡2)>0,即f−2f+6>0,从而不等式得证.。

高考数学文(二轮复习)课件 函数与方程思想

高考数学文(二轮复习)课件 函数与方程思想

(2)方程的思想,就是分析数学问题中变量间的等量关系, 建立方程或方程组,或者构造方程,通过解方程或方程组,或 者运用方程的性质去分析、转化问题,使问题获得解决.方程 的教学是对方程概念的本质认识,用于指导解题就是善于利用 方程或方程组的观点观察处理问题.方程思想是动中求静,研 究运动中的等量关系.
函数的主干知识、 函数的综合应用以及函数与方程思想的考 查一直是高考的重点内容之一.高考试题中,既有灵活多变的客 观性小题,又有一定能力要求的主观性大题,难度有易有难,可 以说是贯穿了数学高考整份试卷,高考中所占比重比较大.
(1)对于函数与方程思想, 在解题中要善于挖掘题目中的隐含 条件, 构造出函数解析式和妙用函数与方程的相互转化的关系是 应用函数与方程思想解题的关键. (2)当问题中出现多个变量时, 往往要利用等量关系减少变量 的个数, 如果最后能把其中一个变量表示成关于另一个变量的表 达式,那么就可有研究函数的方法将问题解决.
[回访名题] x2 若点O和点F(-2,0)分别是双曲线 a2 -y2=1(a>0)的中心和左 →· → 的取值范围为 焦点,点P为双曲线右支上的任意一点,则 OP FP ( ) A.[3-2 3,+∞)
7 C.-4,+∞ NhomakorabeaB.[3+2 3,+∞)
7 D.4,+∞
答案:B
解析:因为F(-2,0)是已知双曲线的左焦点,所以a2+1=
2 x 4,即a2=3,所以双曲线方程为 3 -y2=1.设点P(x0,y0),则有 2 x20 x → 0 2 3 -y0 =1(x0≥ 3),解得y20= 3 -1(x0≥ 3),因为 FP =(x0+
(4)解析几何中的许多问题,例如直线与二次曲线的位置关 系问题,需要通过解二元方程组才能解决,这都涉及二次方程 与二次函数的有关理论. (5)立体几何中有关线段的长、面积、体积的计算,经常需 要运用列方程或建立函数表达式的方法加以解决.

高考数学“数形结合”解题思想方法、知识点及题型整理

高考数学“数形结合”解题思想方法、知识点及题型整理

高考数学总复习第三讲:数形结合一、专题概述 ---什么是数形结合的思想数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.二、例题分析1.善于观察图形,以揭示图形中蕴含的数量关系.观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.例1.函数的图象的一条对称轴方程是:(A)(B)(C)(D)分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:,其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.例2.问:圆上到直线的距离为的点共有几个?分析由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.将圆方程变形为:,知其圆心是C(-1,-2),半径,而圆心到定直线L的距离为,由此判定平行于直线L且距离为的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.3.切实把握“数”与“形”的对应关系,以图识性以性识图.数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相成,相互转化.例3.判定下列图中,哪个是表示函数图象.分析由=,可知函数是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().分析由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).例5.若复数z满足,且,则在复平面上对应点的图形面积是多少?分析满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)因此所求图形的面积为:4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.例6.已知C<0,试比较的大小.分析这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:例7 解不等式解法一(用代数方法求解),此不等式等价于:解得故原不等式的解集是解法二 (采用图象法) 设即对应的曲线是以为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象是一直线.(如图) 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.例8 讨论方程的实数解的个数.分析:作出函数的图象,保留其位于x 轴上方的部分,将位于x 轴下方的部分沿x 轴翻折到x 轴上方,便可得到函数的图象.(如图)再讨论它与直线y=a 的交点个数即可. ∴当a <0时,解的个数是0;当a=0时或a >4时,解的个数是2;当0<a <4时,解的个数是4;当a=4时,解的个数是3.9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()(A)1个(B)2个(C)3个(D)4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例10.设点P(x,y)在曲线上移动,求的最大值和最小值.解曲线是中心在(3,3),长轴为,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)消去y得解得:故的最大值为,最小值为例11.求函数(其中a,b,c是正常数)的最小值.分析采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则其中的等号在P为线段AB与x轴的交点外,即时成立.故y的最小值为例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.分析在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决.解,设R点对应的复数为:,P点对应的复数为则故即由点在椭圆上可知有:整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.三解题训练1.求下列方程实根的个数:(1)(2)(3)2.无论m取任何实数值,方程的实根个数都是()(A)1个(B)2个(C)3个(D)不确定3.已知函数的图象如右图则()(A)b∈(-∞,0)(B)b∈(0,1)(C)b∈(1,2) (D)b∈(2,+ ∞)4.不等式的解集是()(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式一定有解,则a的取值范围是()(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1]6.解下列不等式:(1)(2)7.复平面内点A、B分别对应复数2,2+i,向量绕点A逆时针方向旋转至向量,则点C对应的复数是_______.8.若复数z满足|z|<2,则arg(z-4)的最大值为___________9.若复数z满足10.函数的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两定点的坐标是( )(A)(–,–)(,)(B)(–,)(,–)(C)(–2,2)(2,2)(D)(2,–2)(–2,2)11.曲线与直线的交点个数是().(A)0(B)1 (C)2(D)312.曲线与直线有两个交点,则实数k的取值是()(A)(B)(C)(D)13.已知集合,满足,求实数b的取值范围.14.函数的值域是()(A)(B)(C)(D)四、练习答案1.(1)2个(2)63个(3)2个提示:分别作出两个函数的图象,看交点的个数.2.B、提示:注意到方程右式,是过定点(,0)的直线系.3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形学习好资料欢迎下载f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而可知b=-3a<0,故选(A)4.A5.A6.(可以利用图象法求解)(1)x≤-1或0<x≤3(2)x≤-17.18.210°9.10.A11.D 提示:在曲线方程中,分x≥0或x<0两种情形讨论,作出图形即可.12.C13.14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=k AB,而A点为圆x2+y2=1上的动点。

专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件

专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件
目录
|技法点拨| 此题是一道典型的求离心率的题目,一般需要通过a,b,c之间的关系, 得出关于a,c的方程,经过恒等变形就可以求出离心率.
目录
在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知△ABC 的面积为
3 15,b-c=2,cos A=-14,则 a=____8____.
目录
构造函数关系解决问题 在高考试题中,综合问题的比较大小、求最值等,一般均需利用构 造函数法才能完成.如何正确的构造出恰当的函数,是解决此类问题的 关键,因此充分挖掘原问题的条件与结论间的隐含关系,通过类比、联 想、抽象、概括等手段,构造出恰当的函数,在此基础上利用函数思想 和方法使原问题获解,这是函数思想解题的更高层次的体现.
目录
|技法点拨| 挖掘、提炼多变元问题中变元间的相互依存、相互制约的关系,反客为 主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解, 是解题人思维品质高的表现.本题主客换位后,利用新建函数 y=x1+ln x 的 单调性巧妙地求出实数 k 的取值范围.此法也叫主元法.
目录
已知函数 f(x)=33xx- +11+x+sin x,若存在 x∈[-2,1],使得 f(x2+x)+f(x-k) <0 成立,则实数 k 的取值范围是__(_-__1_,__+__∞__)__. 解析:由题意知,函数f(x)的定义域为R,且f(x)是奇函数. 又 f′(x)=(2l3nx+3·1)3x2+1+cos x>0 在 x∈[-2,1]上恒成立,函数 f(x)在 x∈[- 2,1]上单调递增.若存在 x∈[-2,1],使得 f(x2+x)+f(x-k)<0 成立,则 f(x2+x)<-f(x-k)⇒f(x2+x)<f(k-x)⇒x2+x<k-x,故问题转化为存在 x∈[-2,1],k>x2+2x,即 k>(x2+2x)min,当 x∈[-2,1]时,y=x2+2x= (x+1)2-1 的最小值为-1.故实数 k 的取值范围是(-1,+∞).

2020高考数学(文)二轮专题课件:大题考法课立体几何

2020高考数学(文)二轮专题课件:大题考法课立体几何

解:(1)证明:由题知,BD=AD=4 2,又 AB=8,∴AB2=AD2 +BD2,∴BD⊥AD. ∵平面 PAD⊥平面 ABCD,且两平面的交线是 AD,BD⊂平面 ABCD,BD⊥AD,∴BD⊥平面 PAD,又 BD⊂平面 MBD,∴ 平面 MBD⊥平面 PAD.
(2)过点 P 作 PO⊥AD 交 AD 于点 O,则 PO⊥平面 ABD,∴点
知 A1B1 綊 DC,可得 B1C 綊 A1D,故 ME 綊
ND,因此四边形 MNDE 为平行四边形,所以 MN∥ED.
又 MN⊄平面 C1DE,扣 1 分.
[微点提醒]
[微点提醒]
加红处若漏掉 MN⊄ 平面 C1DE,扣 1 分.
❶转化:线线平行⇒线面平行 MN∥ED⇒MN∥平面 C1DE.
(2)存在一个常数 m= 23,使得平面 PED⊥ 平面 PAB,理由如下: 要使平面 PED⊥平面 PAB,只需 AB⊥DE, 因为 AB=AD=2,∠DAB=30°, 所以 AE=ADcos 30°= 3, 又因为 PD⊥平面 ABCD,PD⊥AB,PD∩DE=D, 所以 AB⊥平面 PDE, 因为 AB⊂平面 PAB,所以平面 PDE⊥平面 PAB, 所以 m=AAEB= 23.
(2)取 CG 的中点 M,连接 EM,DM. 因为 AB∥DE,AB⊥平面 BCGE,所以 DE⊥平面 BCGE, 所以 DE⊥CG. 因为四边形 BCGE 是菱形,且∠EBC=60°, 所以 EM⊥CG, 又 DE∩EM=E,所以 CG⊥平面 DEM. 所以 DM⊥CG. 在 Rt△DEM 中,DE=1,EM= 3, 故 DM=2. 所以四边形 ACGD 的面积为 4.
[微点提醒]
[关键步骤]
加红处只作 CH⊥C1E,不进行证 明 CH⊥平面 C1DE 的扣 2 分.

高考数学 数形结合的思想

高考数学  数形结合的思想

高考数学 数形结合的思想数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞. 数缺形时少直观, 形少数时难入微.”.把数量关系的研究转化为图形性质的研究,或者把 图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。

数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。

在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。

考试中心对考试大纲的说明中强调:“在高考中,充分利用选择题和填空题的题型特点,为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系转化为直观的几何图形问题来解决的意识,而在解答题中,考虑到推理论证的严密性,对数量关系问题的研究仍突出代数的方法而不提倡使用几何的方法,解答题中对数形结合思想的考查以由‘形’到‘数’的转化为主。

”【分析及解】如果采用代数运算,则无所适从,如果画出单调函数()x f y =的示意图象,由()()()()βαf f x f x f -<-21可断定横坐标为βα,的点,至少有一个在横坐标为21,x x 的点的外部,因而0<λ,应选(A ).【分析及解】这是一道函数,数列,函数图象综合在一起的选择题,需要通过数列的性质(A ) (B) (C) (D)研究函数图象的特征.实际上,只要设y a x a n n ==+1,,则有)(x f y =且x y >,并对所有*∈N n 都成立,因此选(A).【分析及解】本题大部分考生都是用三角恒等变形和正弦定理通过一定量的计算来完成,但是注意到数形结合,可以很快解决问题.为此,延长CA 到D ,使ABAD =,则 AC AB CD +=,,6CBD B π∠=∠+,6π=∠D由正弦定理⎪⎭⎫ ⎝⎛++=6sin sin πB AC AB D BC ,即 ⎪⎭⎫ ⎝⎛+=+6sin 6πB AC AB ,由此,选(C).【分析及解】画出函数()x f 的图像,该图像关于对称,且()0≥x f ,令()t x f =,若0)()(2=++c x bf x f 有7个不同实数解,则方程02=++c bt t 有2个不同实数解,且为一正根,一零根.因此, 0<b 且0=c ,故选(C).【例3】 (2005年,江苏卷,5)△ABC 中,,3,3A BC π==则△ABC 的周长为( ).(A )43sin()33B π++ (B )43sin()36B π++ (C )6sin()33B π++ (D )6sin()36B π++ 【例4】(2005年,上海卷)设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )(A) 0<b 且0>c ( B)0>b 且0<c(C)0<b 且0=c (D)0≥b 且0=c【分析及解】本题给出了y =sin nx 在[0,nπ]上的面积为n 2,需要由此类比y =sin3x 在[0,32π]上的面积及y =sin (3x -π)+1在[3π,34π]上的面积,这需要寻求相似性,,其思维的依据就是已知条件给出的面积的定义和已知函数的面积,因此要研究这个已知条件,要注意已知条件所给出的是半个周期的面积,而第(1)问则是3=n 时一个周期的面积=34,第(2)问又是y =sin3x 经过平移和翻转后一个半周期的面积,画出y =sin (3 x -π)+1在[3π,34π]上图像,就可以容易地得出答案32+π.【例5】(2005年,湖南卷,理15)设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积,已知函数y =sin nx 在[0,n π]上的面积为n2(n ∈N *), (i )y =sin3x 在[0,32π]上的面积为 ; (ii )y =sin (3 x -π)+1在[3π,34π]上的面积为 .。

高考数学二轮复习 考点二十算法与框图课件 理

高考数学二轮复习 考点二十算法与框图课件 理

揭秘解题绝招
试题体验应用
限时规范训练
类型一 类型二 类型五 类型四 类型三
第六页,共22页。
考题 ●解法类编
类型二 求运算计数(jì shù)变量
例题(lìtí)精编
例 2:(2013·高考天津卷)阅读 如图所示的程序框图,运行相应 的程序,则输出 n 的值为( ) A.7 B.6 C.5 D.4
例题(lìtí)精编
例 3:(2013·高考福建卷)阅读如图
所示的程序框图,运行相应的程
序.如果输入某个正整数 n 后,
输出的 S∈(10,20),那么 n 的值
为( )
A.3
B.4
C.5
D.6
考题解法类编
揭秘解题绝招
通性通法 名师推荐 探究演练
【解析】先读出框图的计算功能,再结合等比
数列求和公式求解.框图功能为求和,
例题(lìtí)精编
例 1:(2013·高考辽宁卷)
执行如图所示的程序框图,
若输入 n=8,
则输出 S=( )
A.49
B.67
C.89
D.1101
考题解法类编
揭秘解题绝招
通性通法 创新发现 探究演练
试题体验应用
第三页,共22页。
限时规范训练
类型一 类型二 类型五 类型四 类型三
考题 ●解法类编
类型(lèixíng)一 求运算输出结果
例题(lìtí)精编
例 3:(2013·高考福建卷)阅读如图
所示的程序框图,运行相应的程
序.如果输入某个正整数 n 后,
输出的 S∈(10,20),那么 n 的值
为( )
A.3
B.4
C.5
D.6

高考数学文(二轮复习)课件《集合与常用逻辑用语》

高考数学文(二轮复习)课件《集合与常用逻辑用语》

4.(2014· 辽宁高考)设 a,b,c 是非零向量.已知命题 p:若 a· b=0,b· c=0,则 a· c=0;命题 q:若 a∥b,b∥c,则 a∥c. 则下列命题中真命题是( A.p∨q C.(綈 p)∧(綈 q)
答案:A
)
B.p∧q D.p∨(綈 q)
解析:对于命题 p:因为 a· b=0,b· c=0,所以 a,b 与 b,c 的夹角都为 90° ,但 a,c 的夹角可以为 0° 或 180° ,故 a· c≠0, 所以命题 p 是假命题;对于命题 q:a∥b,b∥c 说明 a,b 与 b, c 都共线,可以得到 a,c 的方向相同或相反,故 a∥c,所以命 题 q 是真命题.选项 A 中,p∨q 是真命题,故 A 正确;选项 B 中,p∧q 是假命题,故 B 错误;选项 C 中,綈 p 是真命题,綈
{x|0<x<1},故选 D.
[易错指导]
在解此类题目时要注意等号能否取到.
(1)认清集合元素的属性, 明确元素代表的意义, 并化简集合. (2)依据集合元素的不同属性采用不同的方法求解, 此时常用 到以下技巧: ①若已知的集合是不等式的解集,用数轴求解; ②若已知的集合是点集,用数形结合法求解; ③若已知的集合是抽象集合或整数集,用 Venn 图求解.
题和逆否命题、逆命题和否命题是等价的,而且命题之间的关系 是相互的.
(3)充要条件:若 p⇒q,则 p 是 q 的充分条件,q 是 p 的必要 条件;若 p⇔q,则 p,q 互为充要条件. 2.活用四个公式与结论 (1)运算性质及重要结论: ①A∪A=A,A∪∅=A,A∪B=B∪A. ②A∩A=A,A∩∅=∅,A∩B=B∩A. ③A∩(∁UA)=∅,A∪(∁UA)=U.
2.(2014· 广东高考)在△ABC 中,角 A,B,C 所对应的边 分别为 a,b,c,则“a≤b”是“sin A≤sin B”的( A.充分必要条件 C.必要非充分条件

江苏省2014年高考数学(文)二轮复习简易通配套课件:2-1 函数与方程思想、数形结合思想

江苏省2014年高考数学(文)二轮复习简易通配套课件:2-1 函数与方程思想、数形结合思想

如图所示,由图象可知,0<a<1, 1<b<10,10<c<12. ∵f(a)=f(b), ∴|lg a|=|lg b|. 1 1 即lg a=lg ,a= . b b 则ab=1. 所以abc=c∈(10,12). 答案 (1)2 (2)(10,12)
y [规律方法] (1)挖掘代数式 的几何意义,完成图形语言,符号语 x 言转化是解第(1)题的关键. (2)画出函数图象是一项基本技能,要求从画准确图开始(列表、 描点、连线),达到根据函数性质及关键点、线快速画草图的水 平,最后能够看着函数想出图象.
2 4k 2 k -1 , 2 即M 2 . 2k +1 2k +1
y=2kx-1 由 2 2 x + 2 y =2
,得(1+4k2)x2-4kx=0,
解得xN=
4k 4k2+1
4k ,yM=2k· 4k2+1
-1=
4k2-1 4k2+1
,即
2 4k 4 k -1 , 2 N 2 . 4k +1 4k +1
• [规律方法] 关于定点、定值问题,一般来 说,从两个方面来解决问题;(1)从特殊入 手,求出定点(定值),再证明这个点(值)与 变量无关;(2)直接推理计算,并在计算过 程中消去变量,从而得到定点(值).
• 二、数形结合思想 • [思想概述] • 数形结合思想的实质是把抽象的数学 语言与直观的图形语言有机结合,达到抽 象思维和形象思维的和谐统一.通过对规 范图形或示意图形的观察分析,化抽象为 直观,化直观为精确,从而使问题得到解 决.
∴c=1. a3 1 又∵公比q=a =3, 2
1 21n-1 所以an=- 3 =-23n,n∈N*. 3
因此,数列{an}是递增数列, 2 ∴n=1时,an有最小值a1=- . 3 答案 (1)15 2 (2)-3

(统考版)2023高考数学二轮专题复习:集合、复数与常用逻辑用语课件

(统考版)2023高考数学二轮专题复习:集合、复数与常用逻辑用语课件
1−i 2
zത 2+i 3+4i
解析:因为z=2+ =2+
=2-i,所以തz=2+i,则 = =
,所以复
1+i
2
z 2−i
5
zത
数 在复平面内所对应的点在第一象限.z zത=(2-i)(2+i)=4-i2=5,则选项A,
z
C,D正确,选项B错误.故选B.
练后领悟
1.复数的概念及运算问题的解题技巧
(1)与复数有关的代数式为纯虚数的问题,可设为mi(m∈R且m≠0),
(4)A∩ B=A⇔A⊆B,A∪ B=A⇔B⊆A.
考点二
复数——求实、虚部是根本
考点二
复数——求实、虚部是根本
导向性
原则性
考查数学运算,逻辑推理核心素养.
主干知识、必考点、注意概念要点.
1.[2022·湖南高一期中]已知复数z=m+i(m∈R),则“|z|>
“m>3”的(
)
A.充分不必要条件
B.充要条件
D.若复数z在复平面内对应的点在角α的终边上,则sin
答案:D
2 5
α=
5
)
3.[2022·河南新乡高二期中]若复数z在复平面内对应的点位于第二
象限,则(
)
A.z2不可能为纯虚数
B.z2在复平面内对应的点可能位于第二象限
C.z2在复平面内对应的点一定位于第三象限
D.z2在复平面内对应的点可能位于第四象限
中有3个元素,则集合B为{1,2,3}的非空真子集,有23-2=6种取法;此时共
有1×6=6种取法;综上所述:不同的取法共有9+15+6=30种.
故选C.
练后领悟
1.解决集合问题的三个注意点

2023年高考数学填选压轴题专题20 用数形结合法求解零点问题

2023年高考数学填选压轴题专题20 用数形结合法求解零点问题

专题20 用数形结合法求解零点问题【方法点拨】1.函数的零点的实质就是函数图象与x 轴交点的横坐标,解决实际问题时,往往需分离函数,将零点个数问题转化为两个函数图象交点个数问题,将零点所在区间问题,转化为交点的横坐标所在区间问题.2.分离函数的基本策略是:一静一动,一直一曲,动直线、静曲线,要把构造“好函数”作为第一要务.3.作图时要注意运用导数等相关知识分析函数的单调性、奇偶性、以及关键点线(如渐进线),以保证图像的准确.【典型题示例】例1 已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2g x f x kx x =-- (k R ∈)恰有4个零点,则k 的取值范围是( ) A. 1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B. 1,(0,22)2⎛⎫-∞- ⎪⎝⎭C. (,0)(0,22)-∞D. (,0)(22,)-∞+∞【答案】D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.点评:本题是一道由函数零点个数求参数的取值范围的问题,其基本思路是运用图象,将零点个数问题转化为两函数图象交点个数,考查函数与方程的应用、数形结合思想、转化与化归思想、导数知识、一元二次方程、极值不等式、特值等进行分析求参数的范围.例2 已知函数()2e 143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩,,若函数()()2g x f x k x =-+有三个零点,则实数k的取值范围是__________.【答案】151e 0,,15e 3⎛⎫⎛⎤⎪ ⎥ ⎪⎝⎦⎝⎭ 【解析】作()2e ,143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩与2y k x =+图象,由243(2),0,2x x k x k x -+-=+>>-得2222(1)(44)430k x k x k ++-++=由2222(44)4(1)(43)0k k k ∆=--++=得2101515k k k =>∴=,对应图中分界线①; 由(2),0,2y k x k x =+>>-过点(1,)e 得3ek =,对应图中分界线②; 当(2),0,2y k x k x =+>>-与x y e =相切于00(,)x x e 时,因为e xy '=,所以0001(2)01,x k e k x k x k e==+>∴=-=,对应图中分界线③;因为函数()()2g x f x k x =-+有三个零点,所以实数k的取值范围是1e ,e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 故答案为:1e 0,,15e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 例3 已知函数与的零点分别为 和.若,则实数的取值范围是 .【答案】(),1-∞-【分析】将问题转化为函数y m =与函数1()1h x x x =--和1()ln 2e x x x =-交点的大小问题,作出函数图像,观察图像可得结果.【解析】由2()(1)10f x x m x =-+-=,得11m x x=--, 对于函数1()1h x x x=--,在()0,∞+上单调递增,在(),0-∞上单调递减, 由()ln 220g x x x m =--=,得1ln 2m x x =-,对于1()ln 2e x x x =-,'112122x y x x -=-=得1ln 2y x x =-在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,最大值为111ln 222-,其图像如图, 2()(1)1f x x m x =-+-()ln 22g x x x m =--12x x ,34x x ,1324x x x x <<<m令111ln 2x x x x --=-得(1,1)A -, 要1324x x x x <<<,则直线y m =要在A 点下方,1m ∴<-,∴实数的取值范围是(,1)-∞-.例4 已知函数22(1), 0()2, 0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是 . 【答案】(27,+∞)【分析】由()()()g x f x f x =-+知,()()()g x f x f x =-+是偶函数,研究“一半”,问题转化为22(), 0k g x x k x x =+->有且仅有两个不同的零点,分离函数得()21210x x k x=-+>,两边均为基本初等函数,当曲线在一点相切时,两曲线只有一个交点,利用导数知识求出切点坐标,当抛物线开口变大,即函数值小于切点的纵坐标即可. 【解析】易知()()()g x f x f x =-+是偶函数,问题可转化为22(), 0kg x x k x x=+->有且仅有两个不同的零点. 分离函数得()21210x x k x=-+>,由图形易知k >0, 问题进一步转化为()21210y x y x k x==-+>、有两个交点问题.先考察两曲线相切时的“临界状态”,此时,两曲线只有一个交点m所以当21133k ⨯<时,即k >27时,上述两个函数图象有两个交点 综上所述,实数k 的取值范围是(27,+∞). 点评:1.本题解法较多,但利用“形”最简单,只要函数分离的恰当,这种题实现“分分钟”解决也是可及的.2.有关函数零点的问题解法灵活,综合考察函数的图象与性质、导数的几何意义、分离函数的意识、分离参数的意识等,综合性强,较难把握.3.利用“数学结合法”求解零点问题的要点有二.一是分离函数,基本策略是“一静一动、一直一曲,动直线、定曲线”,函数最好是基本初等函数;二是求解过程中的“临界状态”的确定,若是一直一曲,一般相切是“临界状态”,若是两曲,一般公切是“临界状态”(曲线的凸凹性相反,即曲线在公切线的两侧)例5 已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 .【答案】2(,)4e -∞-【解析】2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,是偶函数,问题转化为2=0x e mx +,即2=x e mx -(0x >)有两个零点易知0m <,两边均为曲线,较难求解.两边取自然对数,()=ln 2ln x m x -+,即()ln 2ln x m x --= 问题即为:()()ln g x x m =--与()2ln h x x =有两个交点先考察直线y x b =+与()2ln h x x =相切,即只有一点交点的“临界状态” 设切点为00(,2ln )x x ,则002()1h x x '==,解得02x =,此时切点为(2,2ln 2)代入2ln22b =-再求()()ln g x x m =--与()2ln h x x =有两个交点时,m 的取值范围 由图象知,当()()ln g x x m =--在直线y x b =+下方时,满足题意 故()ln 2ln 22m b --<=-,解之得24e m <-,此时也符合0m <所以实数m 的取值范围是2(,)4e -∞-.点评:取对数的目的在于“化双曲为一直一曲”,简化了运算、难度,取对数不影响零点的个数. 例6 若函数3||()2x f x kx x =-+有三个不同的零点,则实数k 的取值范围为 . 【答案】 27(,)32-∞-⋃+∞(0,) 【分析】本题的难点是“分离函数”,函数分离的是否恰当、易于进一步解题,是分离时应综合考虑的重要因素,也是学生数学素养、能力的综合体现.本例中,可将已知变形为下列多种形式:3||2x kx x =+2||(2)x kx x x =+、3||(2)x k x x=+,31(2)x x k x +=,···,但利用31(2)x x k x +=较简单. 【解析】易知0是函数3||()2x f x kx x =-+一个的零点, 当x ≠0时,3||()02x f x kx x =-=+可化为31(2)x x k x +=,考虑1y k=与3(2)()x x g x x +=有且只有两个非的取值范围是 .【答案】()4ln 2,ln(e 1)2+-【分析】从结构上看,首先考虑“对化指”,方程24242ln(e1)2e1e0x x x a x a --+-+=+-⇔+-=,属于复合函数的零点问题,内函数是指数型,外函数是二次函数.设242()e 1ex x a h x -+-=+-,x R ∈,则()h x 为偶函数,研究 “一半”, 令2ex t -=,x >0,则关于t 的方程2e 10at t -+=在(2e -,+∞)内有两个不相等的实根,分离参数,利用“形”立得. 【解析】方程24242()()ln(e 1)2e1e0x x x a f x g x x a --+-=⇔+=+-⇔+-=令242()e1ex x a h x -+-=+-,x R ∈,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e x x a h x -+-=+-,x >0有两个零点,令2ex t -=,x >0,则关于t 的方程2e 10at t -+=,即1e at t=+在(2e -,+∞)内有两个不相等的实根,结合函数1y t t=+,2e t ->的图像,得222e e e a -<<+,即4ln 2ln(e 1)2a <<+-,则实数a 的取值范围是()4ln 2,ln(e 1)2+-.【巩固训练】1.已知函数22()(21)(31)(2)(2)xx f x a a e a x e x =---+++有四个零点,则实数a 的取值范围是__________.A. 1,12⎛⎫⎪⎝⎭ B. 11,2e +⎛⎫ ⎪⎝⎭C. 11,22e +⎛⎫⎪⎝⎭ D. 11,11,22e +⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数21,0()1,02x xx x x f x e e x x ⎧++≥⎪=⎨+<⎪⎩,()xg x me =(其中m 是非零实数),若函数()y f x =与函数()y g x =的图象有且仅有两个交点,则m 的取值范围为 .3.已知函数32ln ,0(),0e x xf x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____.4.已知e 为自然对数的底数,若方程|xlnx —ex +e |=mx 在区间[e1,e 2]上有三个不同实数根,则实数m 的取值范围是________. 5.已知关于x 的方程2x kx x =-有三个不同的实数解,则实数k 的取值范围是______6.已知关于x 的方程33kx x x =+有三个不同的实数解,则实数k 的取值范围是 .7. 若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为____________.8. 若函数有两个零点,则实数的取值范围是 . 9.已知函数()2x f x e x a =-+有零点,则实数a 的取值范围是____________. 10. 已知函数()f x ax =,ln ()x g x x =,其中a 为实数.若关于x 的方程()()f x g x =在1,e e ⎡⎤⎢⎥⎣⎦上有两个实数解,则实数a 的取值范围为 .11. 已知函数32, 0(), 0ax x x f x x x ⎧++<⎪=⎨>⎪⎩,若函数()(1)(1)g x f x f x =-+-有且仅有四个不同的零点,则实数a 的取值范围是 . 12.已知函数3()f x x a a x=--+,,若关于的方程()2f x =有且仅有三个不同的实根,且它们成等差数列,则实数取值的集合为 .()(0a 1)xf x a x a a =--≠>),且a a R ∈x a【答案与提示】1.【答案】 D【提示】()(2)(21)(2)x xf x ae x a e x ⎡⎤⎡⎤=-+--+⎣⎦⎣⎦,根据对称性,只需考察1(2)x e x a=+有两个零点,得0a e <<,故有002121a e a e a a <<⎧⎪<-<⎨⎪≠-*⎩,前两者是保证两方程各自有两解,这里(*)易漏,它是保证两方程解不相同的.2.【答案】⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫ ⎝⎛e 3,121,0【提示】转化为函数21,0()11,02xx x x e F x x x ⎧++≥⎪⎪=⎨⎪+<⎪⎩与函数()G x m =的图象有且仅有两个交点最简.3.【答案】(0,1){2}-【提示】易知0是其中一个零点,问题转化为y a =与函数22ln ,0()1,0e xx x k x x x⎧>⎪⎪=⎨⎪+<有两个不同的零点.4.【答案】1eln ex ex,问题转化为)yf 与m 的图象在区间[e1,e 2]上有三个交点.∵221(e x ef x xx x, ∴当1(,)xe e时,()0f x ,()f x 减;当2(,)x e e 时,()0f x ,()f x 增.故当x e 时,()f x 取得极小值,且20e .又(1)f 210e e ,21()20f e e e作出()y f x 的图象,由图象知实数m 的取值范围是:12,2ee e).5.【答案】102k <<【解析】1,021,02,0x x k x x R x ⎧>⎪-⎪⎪=-<⎨-⎪=⎪⎪⎩,画图得出k 的取值范围.6.【答案】0>k 或41-<k . 【提示】参见例6.思路二:(半分)32, 0t at t t -=-->12.【答案】95⎧⎪-⎨⎪⎪⎩⎭【提示】变形为3=+3x a a x -+转化为y x a a =-+与3=+3y x有且仅有三个不同的交点,而函数y x a a =-+的图象是定点在直线y x =上、开口向上的V 形折线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档