线性代数3-1-2(1)
线性代数疑难问题解答
线性代数疑难问题解答第一章 行列式1. 排列21)1( -n n 的逆序数是2)1(-n n ,那么如何来确定它的奇偶性?解答:我们可以看一下这个排列的奇偶性随着n 的变化情况,然后找出规律。
,1=n 2)1(-n n =0,偶排列; ,2=n 12)1(=-n n ,奇排列; ,3=n 32)1(=-n n ,奇排列; ,4=n 62)1(=-n n ,偶排列; ,5=n 102)1(=-n n ,偶排列; ,6=n 152)1(=-n n ,奇排列 可以看出,奇偶性的变化以4为周期,因此我们可以总结如下:当k n 4=或14+=k n 时, 2)1(-n n 是偶数,所以排列是偶排列,当24+=k n 或34+=k n 时, 2)1(-n n 是奇数,所以排列是奇排列.2.行列式定义最基本的有哪些?答:行列式定义最基本的有以下两种: 第一种方式:用递推的方式给出,即 当11)(⨯=a A 时,规定a =A ;当n n ij a ⨯=)(A 时,规定∑∑==+=-=nj ij ij ij ij nj ji A a M a 11)1(A其中ij M 为A 中去掉元素ij a 所在的行和列后得到的1-n 阶行列式,称为A 中元素ij a 的余子式,ij j i ij M A +-=)1(称为ij a 的代数余子式。
第二种方法:对n 阶行列式A 用所有!n 项的代数和给出,即∑-==n np p p t nnn n nna a a a a a a a a a a a A2121212222111211)1(其中n p p p ,,,21 为自然数n ,,2,1 的一个排列,t 为这个排列的逆序数 第一种方式的思想是递推,其实质也是“降阶” ,在实际计算行列式中有着重要的应用。
第二种方式的思想是对二阶、三阶行列式形式的推广,更利于理解行列式的性质。
3.行列式的主要问题是什么?答:行列式的主要问题就是计算行列式的值,其基本方法是运用行列式性质,化简所给行列式而计算之。
上海财经大学《线性代数》分章节习题及答案
第一章行列式1.1计算以下排列的逆序数,判别其奇偶性。
(1) 365247; (2) 5216743; (3) 7654321; (4) 12)1(⋅−⋅L n n ; (5) 24)22()2()12(531⋅−⋅⋅−⋅⋅L L n n n 。
1.2选择 与 ,使下列排列(1)成为奇排列;使(2)成为偶排列。
i k (1) 75132⋅⋅⋅⋅⋅⋅k i ; (2) 76532⋅⋅⋅⋅⋅⋅k i 。
1.3 写出把排列 1356742 变换成排列 4132567 的对换。
1.4 分别写出4级行列式和5级行列式中所有带有负号且包含因子的项。
2312a a 1.5 按定义计算下列行列式的值。
(1)121051103−−, (2) 430021001011002−, (3) 000100002000010L L L L L L L L L n n −。
1.6 按定义写出行列式xx x x x 111123111212−中 与 的系数。
4x 3x 1.7 按定义说明 级行列式n λλλ−−−nn n nan n a a a a a a a a a L L L L L L L 22222111211是一个关于λ 的 次多项式。
n1.8 计算下列行列式的值。
(1)3621−; (2) |2|−;(3)bia i bbi a −+;上海财经大学《线性代数》分章节习题及答案(4)λλ−−−1132; (5)θθθθsin cos cos sin −; (6) θθθθsin 0cos 010cos 0sin −;(7)691051203−; (8) 142151322−−−−; (9) 5142022000120003−−−;(10)2000130021403121; (11) 5142122000120023−−; (12)3242402052121303−−−;(13)101200211052014−−−−; (14) dc b a 000000000000。
线性代数第3章_线性方程组习题解答
习题33-1.求下列齐次线性方程组的通解:(1)⎪⎩⎪⎨⎧=--=--=+-087305302z y x z y x z y x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛-----=1440720211873153211A)(000720211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−0002720211)(000271021101行最简形矩阵C =⎪⎪⎪⎪⎭⎫ ⎝⎛−→−, 与原方程组同解的齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+=+0270211z y z x , 即⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 27211(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系T)1,27,211(--=ξ, 所以,方程组的通解为,)1,27,211(Tk k --=ξk 为任意常数. (2)⎪⎩⎪⎨⎧=+++=+++=++++086530543207224321432154321x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛=21202014101072211086530543272211A)(7000014101072211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−70000141010211201)(100000101001201行最简形矩阵C =⎪⎪⎪⎭⎫ ⎝⎛−→−,与原方程组同解的齐次线性方程组为⎪⎩⎪⎨⎧==+=++0002542431x x x x x x , 即⎪⎩⎪⎨⎧=-=--=02542431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到方程组的一个基础解系T)0,0,1,0,2(1-=ξ,T)0,1,0,1,1(2--=ξ,所以,方程组的通解为=+2211ξξk k T T k k )0,1,0,1,1()0,0,1,0,2(21--+-,21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0742420436240203543215432143215421x x x x x x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得11031112104263424247A --⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭11031022210003100000--⎛⎫⎪- ⎪−−→⎪- ⎪⎪⎝⎭)(阶梯形矩阵B =)(0000031100065011067011行最简形矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−,与原方程组同解的齐次线性方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-+03106506754532531x x x x x x x x , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=54532531316567x x x x x x x x (其中53,x x 是自由未知量), 令=T x x ),(53(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,1,1(1-=ξ,T )1,31,0,65,67(2=ξ,所以,方程组的通解为=+2211ξξk k T T k k )1,31,0,65,67()0,0,1,1,1(21+-,21,k k 为任意常数.3-2.当λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+-=++z z y x y z y x x z y x λλλ6774334 有非零解?解 原方程组等价于⎪⎩⎪⎨⎧=+-+=++-=++-0)6(707)4(303)4(z y x z y x z y x λλλ, 上述齐次线性方程组有非零解的充分必要条件是它的系数行列式0671743134=-----λλλ,即0)756(2=-+λλλ,从而当0=λ和2123±-=λ时方程组有非零解.3-3.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=++--=-+-=++-5521212432143214321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎭⎫ ⎝⎛-----=551211112111121A ⎪⎪⎪⎭⎫ ⎝⎛-−→−000001100011121B =,因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎭⎫⎝⎛-−→−000001100000121C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧==+-124321x x x x , 即⎩⎨⎧=-=124321x x x x (其中32,x x 为自由未知量), 令TT x x )0,0(),(32=,得到非齐次方程组的一个解T )1,0,0,0(0=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧=-=024321x x x x (其中32,x x 为自由未知量), 令T x x ),(32(1,0)T =,(0,1)T,得到对应齐次方程组的一个基础解系T )0,0,1,2(1=ξ,T )0,1,0,1(2-=ξ,方程组的通解为0112212(0,0,0,1)(2,1,0,0)(1,0,1,0)T T T k k k k ηηξξ=++=++-,其中21,k k 为任意常数.(2)⎪⎪⎩⎪⎪⎨⎧=+--=+--=+--=-+-810957245332231324321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=810957245113322311312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131024511B =, 因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131015801C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧-=-+-=-+3913158432431x x x x x x , 即⎩⎨⎧+--=+--=4324319133581x x x x x x (其中43,x x 为自由未知量), 令34(,)(0,0)T Tx x =,得到非齐次方程组的一个解T )0,0,3,1(0--=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧+-=+-=43243191358x x x x x x (其中43,x x 为自由未知量),令34(,)T x x =(1,0)T ,(0,1)T,得到对应齐次方程组的一个基础解系T )0,1,13,8(1--=ξ,T )1,0,9,5(2-=ξ,方程组的通解为0112212(1,3,0,0)(8,13,1,0)(5,9,0,1)T T T k k k k ηηξξ=++=--+--+-,其中21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=++=-+=-+-=-+10013212213321321321321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=101400201034101311100111132112121311A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−96000540034101311101400540034101311,因为3)(4)(=≠=A r A r ,所以方程组无解.3-4.讨论下述线性方程组中,λ取何值时有解、无解、有惟一解?并在有解时求出其解.⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ. 解 方程组的系数行列式为231211(1)3(1)3A λλλλλλλλ+=-=-++.(1)当0A ≠时,即01λλ≠≠且时,方程组有惟一解. (2)当0A =时,即01λλ=或=时, (i) 当0λ=时,原方程组为12323133200333x x x x x x x ++=⎧⎪-+=⎨⎪+=⎩, 显然无解.(ii) 当1λ=时,原方程组为⎪⎩⎪⎨⎧=++=+=++346112432131321x x x x x x x x , 对该方程组的增广矩阵A 施行行初等变换412110111011012361430000A ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()()23r A r A ==<,所以方程组有无穷多组解, 与原方程组同解的方程组为1323123x x x x +=⎧⎨-=-⎩, 即1323132x x x x =-⎧⎨=-+⎩(其中3x 为自由未知量), 令30x =,得到非齐次方程组的一个解0(1,3,0)T η=-,对应的齐次方程组(即导出方程组)为13232x x x x =-⎧⎨=⎩(其中3x 为自由未知量), 令31x =,得到对应齐次方程组的一个基础解系(1,2,1)T ξ=-,方程组的通解为0(1,3,0)(1,2,1)T T k k ηηξ=+=-+-,其中k 为任意常数.3-5.写出一个以1222341001x c c -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为通解的齐次线性方程组.解 由已知,1(2,3,1,0)Tξ=-和2(2,4,0,1)T ξ=-是齐次线性方程组AX O =的基础解系,即齐次线性方程组AX O =的基础解系所含解向量的个数为2,而未知数的个数为4,所以齐次线性方程组AX O =的系数矩阵A 的秩为422-=,故可设系数矩阵1112131421222324a a a a A a a a a ⎛⎫=⎪⎝⎭, 由AX O =可知()111121314,,,a a a a α=和()221222324,,,a a a a α=满足方程组()12342234,,,1001x x x x O -⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 即方程组123124230240x x x x x x -+=⎧⎨-++=⎩的线性无关的两个解即为12,αα,方程组的系数矩阵2310204324010111-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭,该方程组等价于134234243x x x x x x =--⎧⎨=--⎩(其中43,x x 为自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到该齐次方程组的一个基础解系1(2,1,1,0)T α=--,23(,1,0,1)2T ξ=--,故要求的齐次线性方程组为AX O =,其中211031012A --⎛⎫⎪= ⎪--⎝⎭,即12312420302x x x x x x --+=⎧⎪⎨--+=⎪⎩. 3-6.设线性方程组⎪⎩⎪⎨⎧=+++=++0022111212111n mn m m n n x a x a x a x a x a x a, 的解都是02211=+++n n x b x b x b 的解,试证Tn b b b ),,,(21 =β是向量组T n a a a ),,,(112111 =α,T n a a a ),,,(222212 =α, ,),,,(21mn m m m a a a =α的线性组合.证 把该线性方程组记为(*),由已知,方程组(*)的解都是02211=+++n n x b x b x b 的解,所以方程组(*)与方程组111122111221122000n n m m mn n n n a x a x a x a x a x a x b x b x b x ++=⎧⎪⎪⎨+++=⎪⎪+++=⎩, 同解,从而有相同的基础解系,于是二者有相同的秩,则它们系数矩阵的行向量组12,,,m ααα和12,,,,m αααβ的秩相同,故β可由12,,,m ααα线性表示.3-7.试证明:()()r AB r B =的充分必要条件是齐次线性方程组O ABX =的解都是O BX =的解.证 必要性.因为()()r AB r B =,只须证O ABX =与O BX =的基础解系相同.O ABX =与O BX =的基础解系都含有()n r B -个线性无关的解向量.又因为O BX =的解都是O ABX =得解.所以O BX =的基础解系也是O ABX =的基础解系.即O ABX =与O BX =有完全相同的解.所以O ABX =的解都是O BX =的解.充分性.因O ABX =的解都是O BX =的解,而O BX =的解都是ABX O =的解,故O ABX =与O BX =有完全相同的解,则基础解系也完全相同,故()()n r AB n r B -=-,所以()()r AB r B =.3-8.证明()1r A =的充分必要条件是存在非零列向量a 及非零行向量Tb ,使T A ab =.证 充分性.若存在列向量12m a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭及行向量()12T n b b b b =,其中,i j a b 不全为零1,,i m =,1,,j n =,则有()1111212212221212n n T n m m m m n a a b a b a b aa b a b a b A ab b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 显然矩阵A 的各行元素对应成比例,所以()1r A =.必要性.若()1r A =,则A 经过一系列的初等变换可化为标准形100000000D ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 而矩阵D 可以表示为()100100001,0,,0000D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则存在可逆矩阵P ,Q 使得1P AQ D -=,从而()11101,0,,00A PDQ P Q --⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,其中1,P Q -均可逆,记100a P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, ()11,0,,0T b Q -=,又因为P 可逆,则P 至少有一行元素不全为零,故列向量a 的分量不全为零,同理,因为1Q -可逆,所以行向量Tb 的分量不全为零.因此,存在非零列向量a 及非零行向量Tb ,使TA ab =.补充题B3-1.设A 是m n ⨯矩阵,AX O =是非其次线性方程组AX b =所对应齐次线性方程组,则下列结论正确的是( D ).(A ) 若AX O =仅有零解,则AX B =有惟一解; (B ) 若AX O =有非零解,则AX B =有无穷多个解; (C ) 若AX B =有无穷多个解,则AX O =仅有零解;(D ) 若AX B =有无穷多个解,则AX O =有非零解.B3-2.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组 (ⅰ)AX O =; (ⅱ)TA AX O =,必有( D ). (A )(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解; (B )(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解; (C )(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解; (D)(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.B3-3.设线性方程组AX B =有n 个未知量,m 个方程组,且()r A r =,则此方程组( A ).(A)r m =时,有解; (B)r n =时,有惟一解;(C)m n =时,有惟一解; (D)r n <时,有无穷多解.B3-4.讨论λ取何值时,下述方程组有解,并求解:⎪⎩⎪⎨⎧=++=++=++21λλλλλz y x z y x z y x . 解 (法一)方程组的系数行列式21111(1)(2)11A λλλλλ==-+,(1)当0A ≠时,即12λλ≠≠-且时,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2)当0A =时,即12λλ-=或=时 (i) 当λ=1时,原方程组为1x y z ++=,因为()()1r A r A ==,所以方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数. (ii) 当λ=-2时,原方程组为212224x y z x y z x y z -++=⎧⎪-+=-⎨⎪+-=⎩, 对该方程组的增广矩阵A 施行行初等变换2111112412120112112400015A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,因为()2()3r A r A =≠=,所以方程组无解.解 (法二)对该方程组的增广矩阵A 施行行初等变换2211111111111111A λλλλλλλλλλ⎛⎫⎛⎫ ⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2223110110111λλλλλλλλλ⎛⎫⎪→--- ⎪ ⎪---⎝⎭22223110110021λλλλλλλλλλλ⎛⎫ ⎪→--- ⎪⎪--+--⎝⎭2221101100(1)(2)(1)(1)B λλλλλλλλλλ⎛⎫ ⎪→---= ⎪ ⎪-+-+⎝⎭,(1)当12λλ≠≠-且时, ()()3r A r A ==,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2) 当λ=1时, ()()1r A r A ==,方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数.(3) 当λ=-2时,由B 知,()2()3r A r A =≠=,所以方程组无解.B3-5.若321,,ηηη是某齐次线性方程组的一个基础解系,证明:122331,,ηηηηηη+++也是该方程组的一个基础解系.证 设有三个数123,,k k k 使得112223331()()()0k k k ηηηηηη+++++=,则有131122233()()()0k k k k k k ηηη+++++=,因为321,,ηηη是某齐次线性方程组的一个基础解系,所以321,,ηηη线性无关,故131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩, 该方程组的系数行列式10111020011=≠, 所以该方程组只有零解.即1230k k k ===.即122331,,ηηηηηη+++线性无关. 又由齐次线性方程组的性质知122331,,ηηηηηη+++都是方程组的解.所以122331,,ηηηηηη+++构成方程组的一个基础解系.B3-6.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ξξξ是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321ξ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ξξ,求该方程组的通解.解 因为4,3n r ==,故原方程组的导出组的基础解系含有1n r -=个解向量,所以只须找出其导出组的一个非零解向量即可. 由解的性质知,1213,ξξξξ--均为导出组的解,所以1213123()()2()ξξξξξξξ-+-=-+为导出组的解,即123342()56ηξξξ⎛⎫⎪ ⎪=-+= ⎪ ⎪⎝⎭,为导出组的解.故原方程组的通解为123344556k k ξξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 为任意常数.B3-7. 设*ξ是非齐次线性方程组B AX =的一个解,r n -ηηη,,,21 是它对应的齐次线性方程组的一个基础解系,证明:(1),*ξr n -ηηη,,,21 线性无关;(2)r n -+++ηξηξηξξ*2*1**,,,, 线性无关.证 (1)反证法.设,*ξr n -ηηη,,,21 线性相关,由r n -ηηη,,,21 是对应的齐次线性方程组的一个基础解系知r n -ηηη,,,21 线性无关,故*ξ可由r n -ηηη,,,21 线性表示,即*ξ是对应的齐次线性方程组的解,与题设矛盾.故,*ξr n -ηηη,,,21 线性无关.(2)反证法.设r n -+++ηξηξηξξ*2*1**,,,, 线性相关,则存在不全为零的数012,,,,n r k k k k -,使得****01122()()()0n r n r k k k k ξξηξηξη--+++++++=,即*0121122()0n r n r n r k k k k k k k ξηηη---++++++++=,由(1)知,,*ξr n -ηηη,,,21 线性无关,则0120n r k k k k -++++=,10k =,20k =,...,0n r k -=,从而00k =,这与012,,,,n r k k k k -不全为零矛盾,故r n -+++ηξηξηξξ*2*1**,,,, 线性无关.B3-8.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212*********, 的系数矩阵的秩等于矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121222221111211nn nn n n n n b b b b a a a b a a a b a a a 的秩,试证这个方程组有解.证 令111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212n n n n nn n a a a b a a a b A a a a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212120n n n n nn n na a ab a a a b B a a a b b b b ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 因为A 比A 多一列,B 比A 多一行,故()()()r A r A r B ≤≤,而由题设()()r A r B =,所以()()r A r A =,所以原方程组有解.B-9.设A 是n 阶方阵,*A 是A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1,01,1,n r n r nr n r A A A A 当当当. 证 若A r n =,因为0A ≠,而**AA A A A E ==,1*0n A A-=≠,故A r n *=.若1A r n =-,因为0A =,所以*AA A E O ==,又因为A AA A r r r n **≥+-,而0AA r *=,所以1A r *≤;又因为1A r n =-,所以至少有一个代数余子式0ij A ≠,从而1A r *≥,故1A r *=.若1A r n <-,则A 的任一个代数余子式0ij A =,故*0A =,所以0A r *=.B3-10.设A 是m n ⨯阶方阵,证明:AX AY =,且A r n =,则X Y =. 证 因为AX AY =,所以()A X Y O -=,又因为A r n =,所以方程组()A X Y O -=只有零解,即X Y O -=,所以X Y =.。
线性代数 3-1-齐次方程组
a2 T (a1 , a2 , , an ) 是方程组的解,则称为非零解, 也称为非零解向量。 a n
问题:除了零解外,有没有其它的解?
在什么条件下有非零解? 当齐次方程有非零解时,如何求出全部的解? 为了研究齐次线性方程组解集合的结构,我们 先来讨论这些解的性质,给出基础解系的概念。
x r 1 , x r 2 , , x n
真未知量
自由未知量
x1 , x2 , , xr 由自由未知量 xr 1 , xr 2 , , xn 惟一确定
显然: (xr 1 , x r 2 , , xn) 构成一向量空间, V
其基含有n r个向量,最简单的一组基为 : e1 , e2 , , en r 取: 0 0 x r 1 1 0 1 xr 2 0 , , 0 1 x 0 n
故 .
即 r 11 r 2 2 n n r .
所以 1 , , n r 是齐次线性方程组解空间的一个基, 也就是一组基础解系. 说明 1.解空间的基不是唯一的,但所含向量个数相 等,都等于 n - r(A). 2.若 1 , 2 , , n r 是 Ax 0 的基础解系,则 x k11 k2 2 kn r n r . 其通解为 其中k1 , k 2 ,, k n r 是任意常数. 3 当r(A)=n 时方程组只有零解故没有基础解
由于与都是方程Ax 0的解,而Ax 0又等价于
方程组
x1 c11 xr 1 c1,n r xn x c x c r 1 r 1 r ,n r xn r
【知识】线性代数第3章知识梳理
【关键字】知识本章结构常用方法:1、矩阵化等价标准形,求出矩阵的秩,则标准形2、求矩阵的逆3、消元法求线性方程组的解增广矩阵行最简阶梯4、求矩阵的秩5、判断向量能否由向量组线性表示以为列向量的矩阵行最简阶梯6、求向量组的秩和一个极大无关组,并将其它向量用该极大无关组线性表示以为列向量的矩阵行最简阶梯7、用根底解系表示(非)齐次线性方程组的全部解增广矩阵行最简阶梯一、用消元法求解非齐次线性方程组1、,进而求出和2、观察和的关系:(1) ,方程组无解;(2) ,方程组有解:①、,方程组有唯一解;②、,方程组有无穷多个解.3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。
定理3.1线性方程组有解,且当时方程组有唯一解;当,方程组有无穷多个解.二、用消元法求解齐次线性方程组:1、,进而求出;2、观察:(1) ,方程组有唯一解,即只有零解;(2) ,方程组有无穷多个解,即有非零解;3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。
定理3.2齐次方程组有非零解推论当,即当方程个数小于未知元个数时,齐次线性方程组有非零解三、维向量的概念及线性运算(看作特殊的矩阵)书P121-123四、向量与向量组的线性组合(向量由向量组线性表示)对非齐次线性方程组,设,,则线性方程组可表示,从而.定义3.5 (P124)对于给定向量,如果存在一组数,使成立,则称向量是向量组的线性组合,或称向量可由向量组线性表示。
线性组合的判别定理设向量,向量,则五、向量组的线性相关性对齐次线性方程组,设,,则齐次线性方程组可表示为.它一定有零解,考虑其是否有非零解:定义3.7(P128)对于向量组,如果存在一组不全为零的数使成立,则称向量组线性相关;否则称向量组线性无关.注:(1)线性无关.(2)一个零向量线性相关;一个非零向量线性无关.(3)包含零向量的任何向量组都是线性相关的.(4)仅含两个向量的向量组线性相关的充分必要条件是这两个向量的分量对应成比例。
《线性代数》课后习题答案
第一章 行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ⊆,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ⊄。
(反证法)如果)()(q Q p Q ⊆,则q b a p Q b a +=⇒∈∃,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
如果0=a ,则2qb p =,这与q p ,是互异素数矛盾。
大学高等数学及线性代数课件3-1
§1 矩阵的初等变换
定理1:(只记结论)
⎛ Er O ⎞ 设 A是m × n阶矩阵,则 A ~ ⎜ ⎜ O O ⎟ ,其中0 ≤ r ≤ min(m, n), ⎟ ⎝ ⎠ m×n ⎛ Er O ⎞ ⎜ ⎜ O O ⎟ 称为A的标准形或叫等价标准形。 ⎟ 这是个什么类 ⎝ ⎠ m×n 型的矩阵呢? 注释:所有n阶可逆方阵A的标准形都是n阶单位阵En
只能施行初等行变换
(
A
−1
)
只能用初等 列变换
⎛ A⎞ ⎛ E ⎞ ⎜ ⎟ → L → ⎜ −1 ⎟ ⎜E⎟ ⎜A ⎟ ⎝ ⎠ ⎝ ⎠
⎛ 1 2 3⎞ ⎟ ⎜ 例:设 A = ⎜ 2 2 1 ⎟, 求 A−1. ⎜ 3 4 3⎟ ⎠ ⎝
【1】此方法只能用初等行 变换!! 【2】若不知A是否可逆, 仍可用上述方法做,只要 矩阵[A E]左子块出现一 行(列)的元素全为零, 则A不可逆。
这三个 矩阵既 可理解 为行变 换,又 可理解 为列变 换得到 的。
定理: 设A是n × s阶矩阵; B是m × n阶矩阵;则 [1]E (i, j ) A表示互换 A的第 i, j行; BE (i, j ) 表示互换 B的第 i, j列; [ 2]E (i ( k )) A表示 A的第 i行乘以 k ( ≠ 0); BE (i ( k )) 表示 B的第 i列乘以 k ( ≠ 0); [3]E (ij ( k )) A表示 A的第 j行的 k倍加到第 i行; BE (ij ( k )) 表示 B的第 i列的 k倍加到第 j列.
⎛1 ⎞ ⎜ ⎟ ⎜ O ⎟ ⎛1 ⎜ ⎜ ⎟ 1 ⎜ ⎟ ⎜ 0 L 1 ⎜ ⎟ ⎜ ⎜ ⎟ 1 ⎜ ⎜ ⎟ E(i(k)) = ⎜ ⎟ E(i, j) = ⎜ M O M ⎜ ⎟ ⎜ 1 ⎜ ⎟ ⎜ ⎜ ⎟ 1 L 0 ⎜ ⎜ ⎟ 1 ⎜ ⎟ ⎜ ⎜ ⎟ ⎝ O ⎜ ⎟ ⎜ 1⎟ ⎝ ⎠
线性代数课本第三章习题详细答案
第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。
第三章基本数值计算方法一
1.0000 0 0 -1.6757 1.0676
U0
0 1.0000
0
-1.8378
-1.2162
,
0 0 1.0000 0.9820 0.3018
0
0
0
0
0
这个最简行阶梯形式说明原 来的方程组是欠定的。
欠定方程组解的特点
它等价于下列方程组:
x1
-1.6757 x4 = 1.0676
1
0
3
0
0
(柠檬酸)x1
1 1
,(小苏打)x2
8 6
(, 碳酸钠)x3
0 6
,
(水)x4
2 0
,
(二氧化碳)x5
0 1
,
3
8
7
1
2
• 按四种元素左右平衡列出四个方程,得:
1 0 3 0 0 0
1
1
x1
8
6
x2
0 6
x3
2 0
x4
0 1
x5
0 0
Ax
=
b
=
0
3
8
7
1
2
0
化学方程配平程序
X4 = 8.66
为什么要提出这种新的计算方法?
把上例中第四个方程改为:
4x1 + 2x2 + 7x3 -778/222 x4 877 / 222
,求其解。
解:输入新参数
A=[6,1,6,-6;1,-1,9,9;-2,4,0,4;4,2,7,-778/222];
b=[7;5;-7;877/222]; 键入U=rref([A,b]),得到
4x1 + 2x2 + 7x3 -5x4 9
《线性代数》课件第3章
定义1.4对于一组m × n矩阵A1,..., At和数c1,...,ct , 矩阵 c1A1 + + ctAt
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a 21
am1
a12 a 22
am 2
a 1n a 2n
amn
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
称为S
上一个m
×
n矩阵,通常简记为
(aij
) m
×n
或
(aij
).
一个n × n矩阵称为n阶矩阵或n阶方阵.在一个n阶矩阵中,从
左上角至右下角的一串元素a11, a22 ,..., ann称为矩阵的对角线.
+
a2
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 1 0
0
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
+
+
an
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 0
0 1
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
= a 1ε1 + a 2ε2 +
+ anen .
§3.2 矩阵的乘法
( ) ( ) 定义2.1(矩阵的乘法)设A = aij 是一个m×n矩阵, B = bij 是一个
1. 把A整个分成一块,此时A就是一个1×1的分快矩阵;
2. 把A的每一行(列)或若干行(列)看成一块.比如,把A按列分
线性代数第三章
一、 引例ຫໍສະໝຸດ 例 求解线性方程组 2 x1 − x2 − x3 + x4 = 2 , x + x − 2x + x = 4 , 1 2 3 4 4 x1 − 6 x2 + 2 x3 − 2 x4 = 4, 3x1 + 6 x2 − 9 x3 + 7 x4 = 9.
解
(1) ①↔② ③÷2
1 2 1 0 0 0 − 1 3 0 0 0 5
1 3 0 − 2 0 0 0 0 1 4 0 0 0 0 3 0 0 1 3 0 1 0 0 0
2. 重要结论 定理 每一个矩阵都可以经过单纯的初等行
变换化为行阶梯形矩阵. 变换化为行阶梯形矩阵.
二、 初等变换的定义
定义1 下面三种变换称为矩阵的初等行变换 定义1 下面三种变换称为矩阵的初等行变换: 初等行变换:
(i) 对调两行(对调 i, j 两行, 记作 ri ↔ rj ); 对调两行( 两行, (ii) 以数 k ≠ 0 乘以某一行中的所有元素 (第 i 行乘以 k , 记作 ri × k ); (iii) 把某一行所有元素的 k倍加到另一行对应 的元素上去 (第 j 行的 k倍加到第 i 行上,记作 ri +krj). 行上,
五、行最简形矩阵和标准形矩阵
定义 一个行阶梯矩阵若满足
(1) 每个非零行的第一个非零元素为 1 ; (2) 每个非零行的第一个非零元素所在列 的其它元素全为零, 的其它元素全为零, 则称之为行最简形矩阵.
定义 如果一个矩阵的左上角为单位矩阵, 如果一个矩阵的左上角为单位矩阵,
其它位置的元素都为零, 其它位置的元素都为零, 则称这个矩阵为标准形
如果矩阵 A 经有限次初等列变换变成矩阵 B , 就称
线性代数3-1
0 0
1 0
0 1
0 0
0
0
A4
0 0 0 0 0
1 0 0 0 0
:c4
4 c1
0
c5
5 c1
0
1 0
0 1
0 0
0
0
A5
0 0 0 0 0
§1 矩阵的初等变换
定义:矩阵A3和 A4都称为行阶梯形矩阵,其 特点是:可画出一条阶梯线,线的下方全 为0 ; 每个台阶只有一行,台阶数即是非 零行的行数,阶梯线的竖线(每段竖线的 长度为一行)后面的第一个元素为非零 元,也就是非零行的第一个非零元.
(1) 变换ri↔rj 的逆变换就是其本身ri↔rj ; (2)变换ri×k的逆变换为ri÷k ;
(3)变换ri+krj的逆变换为ri- krj .
§1 矩阵的初等变换
定义:如果矩阵A经过有限次初等行变换变成
矩阵B,就称矩阵A与B行等价,记作
A
r
~
B
;
定义:如果矩阵A经过有限次初等列变换变成
矩阵B,就称矩阵A与B列等价,记作
§1 矩阵的初等变换
主要内容: 一、矩阵的初等行变换 二、矩阵的初等变换 三、矩阵之间等价 四、行阶梯形矩阵 五、行最简形矩阵 六、初等矩阵 七、三种初等变换对应着三种初等矩阵 八、初等矩阵的相关定理
§1 矩阵的初等变换
分析:用消元法解下列方程组的过程.
引例 求解线性方程组
2 x1 x2 x3 x4 2, 1
4
x1 x2 2 x3 x1 6 x2 2 x3
x4 2 x4
线性代数3
证明 充分性 设 1 , 2 , , m 中有一个向量(比如 m )
能由其余向量线性表示. 即有
m 11 2 2 m1 m1
故 11 22 m1 m1 1am 0 因 1 , 2 , , m1 , 1 这 m 个数不全为0,
证 方法1 设有x1, x2 , x3使
x1b1 x2b2 x3b3 0
即 x1(1 2 ) x2 (2 3 ) x3(3 1) 0,
亦即 ( x1 x3 )1 ( x1 x2 )2 ( x2 x3 )3 0,
因
1,
2,
线性无关,故有
3
x1 x3 0, x1 x2 0,
,cn )
(1,2 ,
,
s
)
b21 bs1
b22 bs 2
b2n bsn
同时,C的行向量组能由B的行向量组线性表示, A
为这一表示的系数矩阵:
T 1
a11
a12
T 2
T m
a21 am1
a22 am2
a1s 1T
a2s ams
T 2
sT
结 论 : 若 向 量 组A可 由 向 量 组B线 性 表 示 , 向 量 组B
0 1 0 2 k 0 0 s 0
其中k可以是任意不为零的数,即该向量组线性相关
5.对 于 含 有 两 个 向 量 的 向量 组, 它 线 性 相 关 的 充要条件是两向量的分量对应成比例,几何意义 是两向量共线;三个向量相关的几何意义是三向 量共面.
例6 已知向量组1 ,2 ,3 线性无关, b1 1 2 , b2 2 3 , b3 3 1 , 试证b1 , b2 , b3线性无关.
线性代数重要定理
=( a1 , a2 ,..., an )
有时,向量也可以写成一列:
a1 a 2 = an
称为列向量。 二、把分量全是零的向量,称为零向量,记作 0,即 0=(0,0,...,0) 把向量( - a1 ,-a2 ,...,-an )称为向量 =( a1 , a2 ,..., an )的负向量,记作- ,即 - =( - a1 ,-a2 ,...,-an ) 三、设向量 =( a1 , a2 ,..., an )和向量 (b1 , b2 ,..., bn ) ,如果它们对应的分量均相等,即
k1 1, k 2 k3 ... k m 0 ,于是 1, k 2 ,..., k m 是一组不全为 0 的数,从而有 k11 k 2 2 ... k m m 1 1 0 2 ... 0 m 0 ,
因此向量组 1 , 2 ,..., m 线性相关。 十一、两个向量线性相关的充分必要条件是它们的各对应分量成比例。 十二、如果一个向量组的一部分向量线性相关,则整个向量组就线性相关。 十三、如果一个向量组线性无关,那么它的任意一个部分分向量也线性无关。 十四、设向量 1 , 2 ,..., m 线性无关, 若添加向量β后所得向量组 1 , 2 ,..., m , 线性相关, 则β可由 1 , 2 ,..., m 线性表示。 十五、设
ai bi
(i=1,2,...,n),
则称这两个向量相等,记作 =β。 n 维向量之间的基本关系是以向量的加法和数量乘法来表示的。 四、设向量 = ( a1 , a2 ,..., an ) 和向量 (b1 , b2 ,..., bn ) , 则向量 ( a1 b1 , a2 b2 ,..., an bn ) 称为向量 和β的和,记作 +β,即
王晓峰著《线性代数》习题解答
王晓峰著《线性代数》习题解答第一章1. 解下列方程组, 并在直角坐标系中作出图示.1)⎩⎨⎧=-=+21y x y x ;2)⎩⎨⎧=+=+5331y x y x ; 3)⎩⎨⎧=-=-2221y x y x .解: 1) 将第一个方程减去第二个方程, 得2y =-1, y =-1/2, 再代入第个方程解得x =1+1/2=3/2,⎪⎭⎫ ⎝⎛-21,23方程有唯一解.2) 将第二个方程除以3得35=+y x , 与第一个方程相比较知此方程组为矛盾方程组, 无解,3) 将第2个方程除以2, 可以得到第一个方程, 令y =t 为任意实数, 则x =1+t , 方程组的解集.2. 用Gauss 消元法解下列线性方程组.1)⎪⎩⎪⎨⎧-=-+=++-=-+333693132472321321321x x x x x x x x x2)⎩⎨⎧-=-+=+-223252321321x x x x x x3)⎪⎪⎩⎪⎪⎨⎧=+-=-=--=+54212302433214243241x x x x x x x x x x4)⎪⎩⎪⎨⎧=++=-+=+033803403232132121x x x x x x x x解: 1) 对增广矩阵进行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000751010301)2(000075104721)3/1(12115302115304721)3()2(333693131124721123323121r r r r r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=10-3t , x 2=5t -7, 方程有无穷多解, 解集为(10-3t , 5t -7, t ).2) 对增广矩阵进行变换:⎥⎦⎤⎢⎣⎡--−−−→−+⨯⎥⎦⎤⎢⎣⎡---−−−→−⨯⎥⎦⎤⎢⎣⎡---−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---121001012121025218/1816802521)3(2123252112221r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=-t , x 2=2t -1,解集为(-t , 2t -1, t ).3) 对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−→−+-⨯+⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----−−−−→−+-⨯+⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----−−−−→−⨯-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−+⨯+⨯↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----11000101001001010001)3()32()35()43(34340003235100313201043001)7(461370032351003641043001)12/1()1(613700820120036410430012336410120300112043001)2(50412120300112043001142434443233242324241r r r r r r r r r r r r r r r r r r r r r方程有唯一解x 1=x 2=x 3=x 4=1.4) 此为齐次方程, 对系数矩阵进行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−+⨯+⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003000211)6/1(6001301021)3(390130032)4()2(3381340321323312323121r r r r r r r r r r r r r可知方程有唯一零解x 1=x 2=x 3=0.3. 确定下列线性方程组中k 的值满足所要求的解的个数. 1) 无解: 2) 有唯一解:⎩⎨⎧=++=++;486362z y x kz y x⎩⎨⎧-=-=+123214y x y kx3) 有无穷多解:⎪⎩⎪⎨⎧=+-=++=++12524z y x z y x kz y x解:1) 对增广矩阵作变换:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡143800621)3(486362121k k r r k因此, 要使方程组无解, 须使8-3k =0, 解得k =8/3, 即当k 取值为8/3时, 方程无解. 2) 对增广矩阵作变换:⎥⎥⎦⎤⎢⎢⎣⎡++--−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡--−−−→−↔⎥⎦⎤⎢⎣⎡--14612301232)2(141123212321412121k k r kr k r r k因此, 如要方程组有唯一解, 必须有0123≠+k , 即32-≠k . 3) 对增广矩阵作变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0440*******1331301110411)1()1(11215121411323121kkk r r k k k r r r r k因此, 如要方程组有无穷多解, 必须4-4k =0, 即当k =1时, 方程组才有无穷多解.4. 证明: 如果对所有的实数x 均有ax 2+bx +c =0, 那么a =b =c =0.证: 既然对所有的实数x 都有ax 2+bx +c =0成立, 那么具体地分别取x =0, x =1, x =2代入上式也成立, 则有⎪⎩⎪⎨⎧=++=++=02400c b a c b a c , 这是关于a ,b ,c 的齐次线性方程组, 对其系数矩阵作变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→−↔↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100320111)4(100124111124111100213221r r r r r r看出此方程只有唯一零解, 因此有a =b =c =0.5. 讨论以下述阶梯矩阵为增广矩阵的线性方程组是否有解; 如有解区分是唯一解还是无穷多解.1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---0000320003212)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--410030201231 3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00004000320040214)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0000010013201021 解: 1) 方程组有一个自由变元x 2, 因此方程组有无穷多解. 2) 方程组的三个变元均为首项变元, 因此方程组有唯一解. 3) 第三个方程0=4说明此方程无解.4) 方程组的三个变元均为首项变元, 因此方程组有唯一解.6. 对给定方程组的增广矩阵施行行初等变换求解线性方程组..1)⎪⎩⎪⎨⎧=-=+-=+-3284432253y x y x y x 2)⎩⎨⎧=--+=--+302859322207124w z y x w z y x 3)⎪⎩⎪⎨⎧=+-+=--+=+-+222242*********w z y x w z y x w z y x 解: 1) 对增广矩阵进行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---781007231032811974190723103281)28/1(74190922803281)3()3(2253443328132814432253322312113r r r r r r r r r方程组无解.2) 对增广矩阵进行变换⎥⎦⎤⎢⎣⎡--−−−−→−+⨯⎥⎥⎦⎤⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⨯⎥⎦⎤⎢⎣⎡----5452100100960317/4545210021154731422713410021154731)3(302859321154731)4/1(302859322207124122211r r r r r r可以看出y 和w 为自由变元, 则令y =s , w =t , s 与t 为任意常数, 则x =100-3s +96t , z =54+52t . 方程的解集表示为(100-3s +96t , s , 54+52t , t ). 3) 对增广矩阵进行变换()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-−−−−−→−+⨯⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000100021021211)2/1(2/1)2(04002000212121211)4()2(2222411112212121211222242121212111111212232312121r r r r r r r r r r r 可知y 与z 为自由变元, 令y =s , z =t , s 与t 均为任意实数, 则,212121=+-=w t s x , 方程组的解集为⎪⎭⎫ ⎝⎛+-0,,,212121t s t s7. 对给定齐次线性方程组的系数矩阵施行行初等变换求解下列方程组.1) ⎪⎩⎪⎨⎧=-+=+=+-02020z y x yx z y x 2)⎪⎩⎪⎨⎧=+-=+-=+++0202202w z y w y x w z y x解: 1) 对系数矩阵作初等变换.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−→−+-⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001)3/1()3/2()5/3(350032103101)2(320321011131320230111)1()2(21101211113233321223121r r r r r r r r r r r r r r方程只有零解, x =y =z =0.2) 对系数矩阵作初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110000102001)2()2/1(11002/12/1100201)3/1()2/1(3300112002012)1(114011201121112011401121)1(11202021112113233232123221r r r r r r r r r r r r r r因此, w 为自由变元, 令w =t 为任意实数, 则x =-2t , y =0, z =t , 方程组的解集为 (2t , 0, t , t ).8. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--32223411121α求α的值使得此方程组有唯一解.解: 对增方矩阵求初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−→−+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--420034601121126034601121)2(32223411121323121αααr r r r r r因此, 此方程组要有唯一解, 就必须满足α+2≠0, 即α≠-2.9. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0410*******β1) 此方程有可能无解吗? 说明你的理由. 2) β取何值时方程组有无穷多解?解: 1) 此方程一定有解, 因为此方程是齐次方程, 至少有零解. 2) 对此增广矩阵做初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−++⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0500011001216016001100121204103520121323121βββr r r r r r因此, 只有当β+5=0, 即β=-5时,方程才有无穷多解.10. 求λ的值使得下述方程组有非零解.⎩⎨⎧=-+-=+-0)2(0)2(y x y x λλ 解: 对系数矩阵作初等行变换:⎥⎦⎤⎢⎣⎡+---−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---−−−→−↔⎥⎦⎤⎢⎣⎡---1)2(021)2(1221211222121λλλλλλλr r r r因此, 要使方程有非零解, 必须有(λ-2)2+1=0, 但(λ-2)2+1≥0对λ取任何实数值总是成立, 因此必有(λ-2)2+1≠0, 因此, 无论λ取什么值此方程组都不会有非零解.11. 求出下列电路网络中电流I 1,I 2,I 3的值.解: 根据基尔霍夫定律可得如下方程组:⎪⎩⎪⎨⎧=+=+=+-52384202132321I I I I I I I 对增广矩阵做初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-13/1510013/2201013/7001)3()2(13/1510042104301)13/1(151300421043011)5(535042100111)2/1()3(502384200111132331232231r r r r r r r rr r r r最后得I 1=7/13, I 2=22/13, I 3=15/1312. 一城市局部交通流如图所示.(单位: 辆/小时)51) 建立数学模型2) 要控制x 2至多200辆/小时, 并且x 3至多50辆小时是可行的吗? 解: 1} 将上图的四个结点命名为A , B , C , D , 如下图所示:5则每一个结点流入的车流总和与流出的车流总和应当一样, 这样这四个结点可列出四个方程如下:⎪⎪⎩⎪⎪⎨⎧=+=++-=-+=+D x x C x x x Bx x x A x x 3502001503005453243121对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---−−−−→−++-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--000000350110002001011050010101)1()1(35011000350110001500111015001101)1()1(35011000200101101500111030000011)1(350110002001011015001101300000111323431232221r r r r r r r r r r r r r可见x 3和x 5为自由变量, 因此令x 3=s , x 5=t , 其中s ,t 为任意正整数(车流量不可能为负值), 则可得x 1=500-s -t , x 2=s +t -200, x 4=350-t .2) 令x 2=200, x 3=s =50, 代入上面的x 2的表达式, 得200=50+t -200, 求出t =350, 则x 1=500-s -t =100, x 4=0, 是可行的.13. 在应用三的货物交换经济模型中, 如果交换系统由下表给出, 试确定农作物的价值x 1, 农具及工具的价值x 2, 织物的价值x 3的比值.313131313131313131CM F C M F解: 根据上表可得关于x 1, x 2,x 3的三个齐次方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+-=++-032313103132310313132321321321x x x x x x x x x对系数矩阵做行初等变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⨯⨯⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---0001101012000110121)3/1(1330330121)1(221111212133332313131323131313212232312121321r r r r r r r r r r r r r r可见方程有非零解, x 3为自由变量, 令x 3=t 为任意正实数, 则有x 1=x 2=x 3=t , 即三种价值的比值为1:1:1.第二章1. 1. 写出下列方程组的矩阵形式:1) x 1-2x 2+5x 3=-1;2) ⎩⎨⎧=+=-1223231x x x x 3) ⎪⎩⎪⎨⎧=-=+=++002045z x z y z y x 解:1) []15,2,1321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-x x x ; 2)⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡12110102321x x x ;3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000101120415z y x2. 设⎥⎦⎤⎢⎣⎡=212121A , ⎥⎦⎤⎢⎣⎡--=212234B求: 1) 3A -2B ;2) 若X 满足A T +X T =B T , 求X .. 解: 1)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-10110105)4(623)4(64366834244686363632122342212121323B A2)因X 满足A T +X T =B T , 等号两边同时转置, 有 A +X =B ,等号两边同时减去A , 得 X =B -A , 因此有⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-=404113221122122314212121212234A B X3. 计算下列矩阵的乘积:1)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-213121; 2) []214321-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡; 3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-103110021212321; 4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡011011120101130213 解:1)[]1211231213121=⨯+⨯+⨯-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯-⨯⨯-⨯⨯-⨯⨯-⨯=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8463422124)1(423)1(322)1(221)1(12143213)⎥⎦⎤⎢⎣⎡---==⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯-⨯+⨯+⨯-⨯+⨯+⨯--⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-1341410)1(21102021122320112)1(312010312213302111031100212123214)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⨯+-⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯+⨯-⨯--⨯+⨯⨯+-⨯+⨯⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡83)2(1)2(310)2(2)2(11322113021300)1(11101)1(21001)1(011130213011011120101130213 4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=201210003,310120101B A求: 1) (A +B )(A -B );2) A 2-B 2.比较1)和2)的结果, 可得出什么结论? 解: 1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+567063519111110102511330104)201210003310120101)(201210003310120101())((B A B A2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-655142418405612009105055041120121000320121000331012010131012010122B A 可得出的结论: 大家知道, 在代数公式上有a 2-b 2=(a +b )(a -b ), 而将此公式中的a 和b 换成矩阵A 与B , 就不一定成立了, 这是因为矩阵乘法一般不满足交换律, 即一般AB ≠BA , 当然也就有A 2-B 2≠(A +B )(A -B ).5. 已知矩阵A ,B ,C , 求矩阵X ,Y 使其满足下列方程:⎩⎨⎧+=+=-T B A Y X CY X )(2解: 将此方程编上号, 用类似解线性方程组一样的办法来解,⎩⎨⎧+=+=-)2()()1(2T B A Y X C Y X将方程(1)的左边和(2)的左边和左边相加, 右边和右边相加, 等号还是成立, 得: 3X =C +(A +B )T 两边同乘1/3, 得TB AC X )(3131++=(3)(2)式等号两边都加上X , 得 Y =(A +B )T -X (4) 将(3)式代入到(4)式, 得CB A B AC B A Y T T T 31)(32)(3131)(-+=+--+=因此⎪⎩⎪⎨⎧-+=++=CB A YC B A X T T T T 3132323131316. 如矩阵AB =BA , 则称A 与B 可交换, 试证:1) 如果B 1, B 2都与A 可交换, 那么B 1+B 2, B 1B 2, 也与A 可交换; 2) 如果B 与A 可交换, 那么B 的k (k >0)次幂B k 也与A 可交换. 证: 1) 因B 1, B 2都与A 可交换, 即AB 1=B 1A , AB 2=B 2A , 则 (B 1+B 2)A =B 1A +B 2A =AB 1+AB 2=A (B 1+B 2) 即B 1+B 2与A 可交换. 而且(B 1B 2)A =B 1(B 2A )=B 1(AB 2)=(B 1A )B 2=(AB 1)B 2=A (B 1B 2), 因此B 1B 2与A 可交换.2)因B 与A 可交换, 即AB =BA , 则用归纳法, 当k =1时, 有B 1=B , 结论显然成立. 假设当k =m 时假设成立, 即AB m =B m A , 则当k =m +1时, 有AB m +1=AB m B =B m AB =B m BA =B m +1A , 结论也成立.7. 如矩阵A =A T , 则称A 为对称矩阵.设A ,B 都是n 阶对称矩阵, 证明AB 是对称矩阵的充分必要条件是AB =BA . 证: 已知A =A T , B =B T ,充分性: 假设AB =BA , 则(AB )T =B T A T =BA =AB , 因此AB 为对称矩阵. 必要性: 如果AB 为对称矩阵, 即(AB )T =AB , 则因 (AB )T =B T A T =BA , 可得BA =AB . 8. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A21其中a i ≠a j , 当i ≠j (i , j = 1,2, …, n ). 试证: 与A 可交换的矩阵一定是对角矩阵. 证:假设矩阵B ={b ij }n 与A 可交换, 即有BA =AB , 而BA 相乘得到的矩阵为B 的第j 列所有元素都乘上a j 得到的矩阵, AB 相乘得到的矩阵为B 的第i 行元素都乘上a i 得到的矩阵. 即BA ={a j b ij }n , AB ={a i b ij }n , 但对于任给的i ,j ,i ≠j , 因AB =BA , 因此有a j b ij =a i b ij , 因a i ≠a j , 所以必有b ij =0, 即B 只能是对角矩阵.9. 检验以下两个矩阵是否互为可逆矩阵?⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000210012100121,1000210032104321B A解: 计算AB 和BA 如下:410000100001000011100012)2(1110013)2(21112)2(111014)2(31213)2(21112)2(11110002100121001211000210032104321I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯+⨯⨯+-⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41000010000100001110001)2(211100112)2(311)2(21110213)2(41112)2(311)2(21111000210032104321100021********21I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯-+⨯⨯⨯+⨯-+⨯⨯-+⨯⨯⨯+⨯-+⨯⨯+⨯-+⨯⨯-+⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=因此A 与B 确实互为逆矩阵.10. 设A ,B ,C 为n 阶方阵, 且C 非奇异, 满足C -1AC =B , 求证B m =C -1A m C (m 为正整数). 证: 用归纳法, 当m =1时条件已经成立为C -1AC =B , 假设当m =k 时, 命题成立, 即有 B k =C -1A k C , 则当m =k +1时, 有B k +1= B k B =C -1A k CC -1AC = C -1A k (CC -1)AC = C -1A k IAC = C -1A k AC = C -1A k +1C , 命题得证.11. 若n 阶矩阵A 满足A 2-2A -4I =0, 试证A +I 可逆, 并求(A +I )-1. 证: 将A 2-2A -4I =0改写为A 2-2A -3I =I ,先解一元二次方程组x 2-2x -3=0, 根据公式a acb b x 2422,1-±-=其中a =1, b =-2, c =-3, 则⎩⎨⎧-=+±=13212422,1x , 因此可将多项式x 2-2x -3因式分解为x 2-2x -3=(x -3)(x +1), 那么, 根据矩阵相乘相加的性质也就能将A 2-2A -3I 因式分解为 A 2-2A -3I =(A -3I )(A +I )=(A +I )(A -3I ), 因此我们有(A -3I )(A +I )=(A +I )(A -3I )=I , 即A +I 与A -3I 互为逆矩阵, (A +I )-1=A -3I .12. 证明: 如果A =AB , 但B 不是单位矩阵, 则A 必为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则对于A =AB 两边同时左乘A -1, 得 A -1A =A -1AB , 即I =B , 这与B 不是单位矩阵相矛盾, 因此A 必为奇异矩阵.13. 判别下列矩阵是否初等矩阵?1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020001, 2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100201, 4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100410001 解: 1) 是初等矩阵P (2(-2)),2) 是初等矩阵P (1,3), 3) 不是初等矩阵,4) 是初等矩阵P (3(-4), 2).14. 求3阶方阵A 满足⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211555a a a a a a a a a a a a a a a a a a a a a A解: 从等式看出A 左乘一矩阵相当于对此矩阵作初等行变换r 3×(-5)+r 1, 因此A 为一相应的初等矩阵, 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=100010501)1),5(3(P A15. 设A ,B ,C 均为n 阶可逆矩阵, 且ABC =I , 证明BCA =I证: 因B ,C 为可逆矩阵, 则BC 也是可逆矩阵, 且(BC )-1=C -1B -1, 因ABC =I , 对此等式两边右乘(BC )-1, 即ABC (BC )-1=I (BC )-1, 因为BC (BC )-1=I , 因此上式化简为A =(BC )-1, 因此当然有 BCA =BC (BC )-1=I .16. 设A ,B 均为n 阶方阵, 且)(21I B A +=, 证明: A 2=A 的充分必要条件是B 2=I .证: 充分性: 假设B 2=I , 则A IB I B I B B I B A =+=+=++=+=)(21)22(41)2(41)(41222必要性: 如果A 2=A , 则有)2(41)(41)(2122I B B I B I B ++=+=+等式两边乘4得I B B I B ++=+2222,等式两边同时减去2B +I 得 B 2=I 证毕.17. 如果n 阶矩阵A 满足A 2=A , 且A ≠I , 则A 为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则上式两边左乘(或者右乘)A -1, 得 AAA -1=AA -1, 即A =I , 但这与A ≠I 相矛盾, 因此A 的逆不存在, 即A 为奇异矩阵.18. 求下列矩阵的逆矩阵:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=285421122A ; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1111111111111111A 3)),,2,1,0(000000000000121n i a a a a a A i n n=≠⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-解: 用对[A |I ]进行行初等变换为[I |A -1]的办法来求:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100285001122010421100285010421001122]|[21r r I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯11390002196003/13/111)3/1()3(15018180021960010421)5()2(12323121r r r r r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+9/19/13/11006/16/13/10109/19/23/20019/16/11139001120609/19/23/2001)9/1(321323r r r r r r 因此, 最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-9/19/13/16/16/13/19/19/23/21A 2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=10001111010011110010111100011111]|[I A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+-⨯+-⨯+-⨯10010220010120200011220000011111)1()1()1(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−↔1001022000112200010120200001111123r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−−→−+⨯+-⨯11002200001122000101202002/102/10101)2/1()1(1242r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+⨯+-⨯11114000001122000101202002/12/1010012/1)1(1343r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−→−+⨯+⨯+⨯111140002/12/12/12/102002/12/12/12/100204/14/14/14/100012/12/14/1342414r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−⨯-⨯-⨯4/14/14/14/110004/14/14/14/101004/14/14/14/100104/14/14/14/100014/1)2/1()2/1(432r r r 因此有A A 414/14/14/14/14/14/14/14/14/14/14/14/14/14/14/14/11=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-3)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-10000000000010000001000]|[121n n a a aa I A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−↔↔↔----01000000100000001000100000012121211n n n n n n a a a a r r r r r r ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−⨯⨯⨯--0/1010000/100100000/10010/1000001/1/1/11211121n n n n n a a a a a r a r a r因此, 最后得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--0/10000/10000/1/10001211n n a a a a A19. 解下列矩阵方程, 求出未知矩阵X .1) ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡12643152X 2) ⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--132321433312120X解: 令⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=12643152B A , 则要解的方程为AX =B将方程两边左乘上A 的逆A -1, 可得A -1AX =A -1B , 即 X =A -1B 下面求A -1:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡−−−→−↔⎥⎦⎤⎢⎣⎡=21101031)2(0152103110310152]|[2121r r r r I A⎥⎦⎤⎢⎣⎡--−−−→−-⨯+⨯21105301)1(3212r r r 因此有⎥⎦⎤⎢⎣⎡--=-21531A 因此⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--==-80232126421531B A X 2) 令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=132321433312120B A 则矩阵方程为XA =B设A 的逆存在为A -1, 则方程两边右乘A -1, 得XAA -1=BA -1,即X =BA -1 下面求A -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10043300112002/102/32/112/1100433010312001120|121r r r I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−⨯+⨯12/302/12/30002/12/11002/102/32/112/13231r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−−→−+-⨯+⨯12/34/34/100002/12/11002/14/14/701)2/3(2/13212r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯463100002/12/11002/14/14/701)4(3r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+-⨯4631002310107115001)4/7()2/1(1323r r r r因此,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-46323171151A 最后得⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎦⎤⎢⎣⎡-==-47411246323171151323211BA X20. 求矩阵X 满足AX =A +2X , 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410011103A解: 将方程两边减去2X , 得AX -2X =A因2X =2IX , 因此上面的方程可以从右边提取公因子X , 得 (A -2I )X =A假设A -2I 可逆, 则方程两边同时左乘(A -2I )-1, 得(A -2I )-1(A -2I )X =(A -2I )-1A , 即X =(A -2I )-1A设B =A -2I , 则X =B -1A , 而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210011101200020002410011103B 下面用行初等变换求B 的逆B -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100210011110001101)1(100210010011001101|21r r I B⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯+⨯111100122010112001)1()1(111100011110001101)1(11323232r r r r r r r则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1111221121B最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-3222342254100111031111221121A B X 验算:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+1054459341364446844104100111032X A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10544593413322234225410011103AX21. 利用分块的方法, 求下列矩阵的乘积:1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100110201110021; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d d c c b b a a00000010001010001000000解:1) 将乘积分块为[]⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2|100110201110021I C B A其中[]10,201102,101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C B A[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡30111220110210001020110210101|22BI AC I C B A2) 将乘积分块为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡22222220000001000110001000000dI O cI I bI I O aI d d c c b b a a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+=bd c bd c ac a ac a I bd c I acI aI 010*******)(2222第三章1. 计算下列行列式:1) 4321; 2) 22b b a a ; 3) 7040-解: 1) 26432414321-=-=⨯-⨯=;2) )(2222a b ab b a ab b b a a -=-=;3) 0)4(0707040=-⨯-⨯=-.2. 计算下列三阶行列式:1)241130421--; 2) 320001753-; 3) b a c a c b cb a 解: 1) 将行列式按第一列展开81021342124131241130421=+-=⨯-⨯-=-- 2) 将行列式按第二行展开172353275320001753=⨯-⨯==- 3)3333333c b a abc c b a abc abc abc b a c a c b cb a ---=---++=3. 计算下列行列式:1)000000005544332222211111b a b a b a e d c b a e d c b a ;2)x yy x y x y x D n 0000000000=;3) f e d c b a 0000000000解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得nn n n n y x y x y x y y x y x y x x D 11)1(0000000)1(0000000++-+=-+=3) 先对第一列展开, 然后对第二列展开, 得abdfbadf fe dbafe dab D -=-=-=-=000004. 利用行列式的性质计算下列行列式1) 2605232112131412-; 2)ef cf bf de cd bd ae ac ab ---;3) 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a解: 下面都将所求行列式的值设为D .1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得abcdef abcdef adfbce ef cfbfde cd bd ae ac ab 4020200111111111111=-=---=---3) 将第2,3,4列都展开, 并统统减去第1列, 得9644129644129644129644122222++++++++++++=d d d d c c c cb b b b a a a a D 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得62126212621262122222=++++=d d c cb b a a D5. 把下列行列式化为上三角形行列式, 并计算其值1) 1502321353140422-----; 2) 2164729541732152-----解:1)121034805350024211203840553004221)2/3(2150232135314042232413121------↔=-----+⨯+⨯+⨯=-----c c r r r r r r 131002050021102042101300520001210024258535034801210024243423242---↔=--+⨯+⨯=-----↔=c c r r r r r r270)27(512270002050021102042)2(43-=-⨯⨯⨯=----+-⨯=r r2)0210311061202251)1()2(12461759243712251216472954173215241312113----+-⨯+-⨯+⨯=------↔=-----r r r r r r c c93000030031102251133000300311022511)2(021061203110225143423232-=--+⨯=--+⨯+-⨯=---↔=r r r r r r r r6. 计算下列n 阶行列式1) 12125431432321-n n n2) a bbba b a解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为)1(21321+=++++n n n , 将此公因式提出, 因此有121125411431321)1(21-+=n nn n D再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得11111111111111111)1(21111011101110321)1(21-----+=--+=n n n n n n n n n n n n D 1)1(21)()1)(1(21)000000111111111)(1(21----+=---++=n n n n n n n n nn n2) 此题和第3题的2)一样, 因此有n n nb a D 1)1(+-+=7. 证明下列行列式1) ))()((111a c c b b a ab ca bc c b a ---=2) nb a n ab a ba b b a b a ba )(222-=证: 1)=----=----+-⨯+-⨯=)()()()(001)1()1(1113221c a b b a c ac a b c a b b a c bc a c a b a c c cc ab ca bc c b a))()(())()((11))((a c c b b a b c c a b a b c c a b a ---=---=----=2) 用归纳法, 设D n 为所求行列式值, 当n =1时,221b a a b ba D -==, 等式成立. 假设当n =k 时假设成立, 即有kk b a k aba b a b b a ba ba D )(222-==当n =k +1时,按第一列展开=+=+221k aba b ab b a b a ba D k=+++=1212k aba b b a ba b bk aa bab ba ba a12222222222)()()()(+-=--=-=-=k kk k k b a b a b a b a D D b D a证毕.8. 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210111302A 的伴随矩阵A *, 并求A -1. 解:31130,32130,12111312111=-==--==--=A A A 11132,42032,22011322212=-=-=-==--=A A A 2112,21002,11011332313-=-=-=-==-=A A A因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221142331332313322212312111*A A A A A A A A A A A 的行列式为5132012||131312121111=⨯+⨯+⨯=++=A a A a A a A 因此有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==-22114233151||1*1A A A9. 设A 为三阶方阵, A *是A 的伴随矩阵, 且|A |=1/2, 求行列式|(3A )-1-2A *|的值.解: 因11**121||,||1---===A A A A A A A , 以及1131)3(--=A A , 还有2||1||1==-A A ,则27162278||32|32||31||2)3(|13111*1-=⨯-=⎪⎭⎫⎝⎛-=-=-=------A A A A A A10. 设A 为n 阶可逆阵, A 2=|A |I , 证明: A 的伴随矩阵A *=A . 证: 因A 可逆, 则在等式A 2=|A |I 两边乘A -1, 得A =|A |A -1, 即A A A ||11=-, 而因为*1||1A A A =-, 所以有A =A *, 证毕.11. 用克莱姆法则解下列方程组.(1) ⎪⎩⎪⎨⎧=+-=++=++10329253142321321321x x x x x x x x x(2) ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++24324322256511322121432143214321x x x x x x x x x x x x x x x x解: (1) 方程的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113215421A , 常数向量T ]102931[=β, 则求A 的逆矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10311700151890001421)3()5(1001130102150014213121r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯103117009/19/5210001421)9/1(2r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯19/79/830009/19/521009/29/10017)2(3212r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯3/127/727/810009/19/521009/29/10013/13r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯3/127/727/81003/227/1127/101009/29/1001)2(23r r 因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-3/127/727/83/227/1127/109/29/11A则方程的解X 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-5431029313/127/727/83/227/1127/109/29/11321βA x x x X即x 1=3,x 2=4,x 3=5.(2) 方程的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43114312251151132A , 常数向量[]T 2226=β先求A 的逆A -1:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10004311010043120001511320010251110004311010043120010251100015113221r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯+-⨯10102200012007100021111000102511)1()2()2(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+⨯+-⨯101022000141160000211110003114011)1(3212r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯↔014116002/102/1011000021111000311401)2/1(343r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯311150002/102/1011002/102/512010201150016)1()4(332313r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯5/35/15/15/110002/102/1011002/102/51201020115001)5/1(4r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯5/35/15/15/1100010/15/110/75/1010010/75/210/295/70010110000011)2()5(342414r r r r r r 因此有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=-5/35/15/15/110/15/110/75/110/75/210/295/711001A则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-002022265/35/15/15/110/15/110/75/110/75/210/295/7110014321βA x x x x X 即x 1=0, x 2=2, x 3=0, x 4=0.12. 如果齐次线性方程组有非零解, k 应取什么值?⎪⎩⎪⎨⎧=-+=-+=++-0)4(20)6(2022)5(z k x y k x z y x k解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=k kk A 402062225要使方程组有非零解, 必须有det(A )=0.而k k k k kr r rr k kk A ---+--+⨯+-⨯=---=402242242252)2(402062225)det(2321k kk k r r rr k kk --+---+⨯+-⨯=-----=4022121005)2(2)2(402212225)2(1213)8)(5)(2(80061020122402212201)5)(2(3121----=---+⨯+⨯=-----=k k k kr r rr k k k因此, 只有当k =5或者k =2或者k =8时, 此方程组才有非零解.13. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ 有非零解?解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1211111μμλA , 要使方程组有非零解, 必须det(A )=0,而012101111)1()1(1211111)det(3121----+-⨯+-⨯==μλμλλμμλr r rr Aμλμμλμλμλ)1(12111)1(121113-=---=----=列展开按第因此, 只有当λ=1或者μ=0时, 方程组才有非零解.第四章1. 设α1=(1,1,1), α2=(-1,2,1), α3=(2,3,4), 求β=3α1+2α2-α3解: β=3α1+2α2-α3=3(1,1,1)+2(-1,2,1)-(2,3,4)=(3,3,3)+(-2,4,2)-(2,3,4) =(3-2-2, 3+4-3, 3+2-4)=(-1, 4, 1)2. 设3(α1-α)+2(α2+α)=5(α3+α), 求α, 其中α1=(2,5,1,3), α2=(10,1,5,10), α3=(4,1,-1,1) 解: 将上述方程整理: 3α1-3α+2α2+2α=5α3+5α -3α+2α-5α=-3α1-2α2+5α3 (-3+2-5)α=-3α1-2α2+5α3 -6α=-3α1-2α2+5α3 最后得)4,3,2,1()6531023,653521,653125,3103101()65,65,65,310()310,35,31,310()23,21,25,1()1,1,1,4(65)10,5,1,10(31)3,1,5,2(21653121321=-+++-+-+=--+=--+=-+=αααα3. 设R 为全体实数的集合, 并且设}0,,,|),,,({11211=++∈==n n n x x R x x x x x X V 满足, }1,,,|),,,({11212=++∈==n n n x x R x x x x x X V 满足.问V 1,V 2是否向量空间? 为什么?解: (一般的技巧: 凡是对R n 作一个齐次线性方程的约束的集合都是向量子空间, 而作非齐次线性方程的约束的集合则因为它不穿过原点, 就不是向量子空间).V 1是向量空间, 且是R n 的向量子空间, 因为nR V ⊂1, 而任给R k V Y X ∈∈,,1, 设0),,,,(0),,,,(121121=+==++=n n n n y y y y y Y x x x x x X则令),,,(2211n n y x y x y x Y X Z +++=+= ,则因=++++++=+++n n n y x y x y x z z z 221121011=+++++=n n y y x x , 则1V Y X ∈+,因为),,,(21n kx kx kx kX =, 而0)(11=++=++n n x x k kx kx 则1V kX ∈,因此, V 1是R n 的向量子空间.而V 2不是向量空间, 是因为1000≠+++ , 零向量O 不属于V 2, 2V O ∉.4. 试证: 由)1,1,1(),1,1,0(),1,0,0(321===ααα所生成的向量空间就是R 3证: 因为3321),,(R Span ⊂ααα, 只须证),,(3213αααSpan R ⊂, 任给3321),,(R d d d D ∈=, 试求实数x 1,x 2,x 3使。
线性代数与解析几何 课后答案 (代万基 廉庆荣)第三章书后习题
A 不可逆。
将 AB=O 转置,得 B A O 。同理可证,B 不可逆
T T
(4)证:由 A AB B O ,得 ( A B) B A2 , A B B A2 .由 A 可逆,
2 2
得 A 0, A ( 1) A 0, 所以 A B 0, B 0 ,因而 A B 和 B 都可逆.
1
1
A, ( A1 ) A1 ( A1 )1 A
1
A, 结论正确。
(10)证: ( AB) AB ( AB)
A B B1 A1 ( B B1 )( A A1 ) B A .
(11)注:在本题中,没告诉 A 可逆。 证:记 B kA,
ka11
因为 Bij ( 1)
i j
ka1, j 1
ka1, j 1
ka1n kai 1,n kai 1,n kann
kai 1,1 kai 1,1 kan1
kai 1, j 1 kai 1, j 1 kai 1, j 1 kai 1, j 1 kan , j 1 kan , j 1
0 2 1 ( E B) ( E A ) 2 2 2 0 2
1
1
0 . 0 3
1
(2)解:由已知,得 ( A E ) BA 4 E , B 4( A E ) A ,
6 0 0 B 4 6 0 . 4 2 5
B 将 A 分块为 A T 0
a1n C , 其中 B 为 A 的左上角 n 1 阶子矩阵,C . ann an 1,n
由 A 可逆知, B 也可逆, ann 0. 由归纳法假设可知,B 为上三角形矩阵.因为 A 为上三角形矩阵,结论正确.
线性代数课件3-1
k1α 1 + k 2α 2 + L + k mα m = 0.
中至少有一个不为0, 因 k1 , k 2 , L , k m 中至少有一个不为 , 不妨设 k1 ≠ 0,则有 k1α 1 + k 2α 2 + L + k mα m = 0.
k2 k3 km α 1 = − α 2 + − α 3 + L + − α m . k1 k1 k1
即 ⇒
故ε 1 , ε
(k 1
k2 L kn ) = 0
k1 = k 2 = L = k n = 0
2
, L , ε n 线性无关.
易知:任一 维向量可由 维单位坐标向量组线性表示 任一n维向量可由n维单位坐标向量组线性表示 维单位坐标向量组线性表示. 任一
例2 讨论向量组线性相关性
α1 = (1 1 1),α 2 = ( 0 2 5 ),α 3 = (1 3 6 )
T m
α αT 2
T 1
α
α
T i
T m
的行向量组. 向量组 α , α , …,α 称为矩阵 的行向量组. , 称为矩阵A的行向量组
反之, 反之,由有限个向量所组成的向量组可以构 成一个矩阵. 成一个矩阵 m个n维列向量所组成的向量组α1 , α 2 ,L, α m ,
构成一个n × m矩阵
A = (α1,α2 ,Lαm) ,
a m)
a m = λ1α 1 + λ 2α 2 + L + λ m −1α m −1
故
λ1α 1 + λ 2α 2 + L + λ m −1α m −1 + (− 1)a m = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证:设有 x 1 , x 2 , x 3 使 x 1 b1 x 2 b 2 x 3 b 3 0 .
即 x( 1 2) x 2 ( 2 3 ) x 3 ( 3 1 ) 0 , 1
亦即 ( x 1 x 3 ) 1 ( x 1 x 2 ) 2 ( x 2 x 3 ) 3 0 ,
因 1, 2, 3 线性无关,故有
x1 x 3 0, x1 x 2 0, x 2 x 3 0.
由于此方程组的系数行 1 1 0
故方程组只有零解 b1 , b 2 , b 3 线性无关 .
列式 1 0 2 0 1
0 1 1
x 1 x 2 x 3 0,所以 向量组
2
, , n )
1 0 E 0
0 1 0
0 0 e 1 1 n n
e2
en
AX B 1 2 n 1 x1 2 x 2 n x n .
2, 3, 4 线性无关矛盾!
复习向量间的线性关系 一、线性组合:定义、判定法(解非齐次线性方程组) 二、线性相关性:定义、判定法(解齐次线性方程组) 三、线性相关性质: 1.单个向量:零向量相关;非零向量无关。
T
注意: 1行向量和列向量总被看作是两个不同的向量; 2行向量和列向量都按照矩阵的运算法则进行运算;
3当没有明确说明是行向量还是列向量时,都当作 列向量.
向量与矩阵的联系:
a 11 a 21 A a m1 a 12 a 22 am2 a1n 1 a 2n 2 ( 1, a mn m
成立,则称 是 1, 2 , , n 的一个线性组合; 或称 可由
1, 2 , , n 线性表示(表出)。
即方程组x1 1 x2 2 xn n 有解.
k1 , k 2 , , k n .
例 设 将 表示为向量组 1 , 2 , 3 的线性组合。 解 令 k 1 1 k 2 2 k 3 3 ,
三、性质
定理1 (相关性与线性组合间的关系)
1, 2 , , m ( m 2 ) 线性相关的充要条件是
其中至少有一个向量可由其余m-1个向量表示。 证: 如果在m个向量 1 , 2 , , m 中,有一个向量是 其余m-1个向量的线性组合,不妨设
1 k 2 2 k m m
k m 1 km
m 1 .
定理2(向量个数增减) 若向量组中有部分向量相关,则整个向量组相关; 若向量组无关,则它的任何部分向量组都无关。 定理3(向量分量增减) 若向量组相关,则去掉一些分量后的向量组仍相关; 若向量组无关,则增加一些分量后的向量组仍无关。
例 设向量
1 2 2 3 1 1 0 0 1 1 , 2 0 , 3 0 , 1 1 0 1 0 0 0 0 1 0 1 0 0
例 O n 是 1, 2 , , n 的一个线性组合;
n 0 1 0 2 0 n
(齐次方程组至少有一个零解)
n ( a 1 , a 2 , , a n) 是 e1 , e 2, , e n 的线性组合;
T
n a 1e1 a 2 e 2 a n e n
注 5 . 对于含有两个向量的向 充要条件是两向量的分 是两向量共线;三个向 量共面 .
组是线性相关的
量组 , 它线性相关的 义 向
量对应成比例,几何意 量相关的几何意义是三
证明:
1 k 2 1 k 2 0.
判断向量组的线性相关性 T T T 1 1, 3, 5 , 2 1,1, 0 , 3 1,1, 5 . 解: 设 k k k 0, 则有 另解 1 1 2 2 3 3
所 以 , 1 , 2 , 3线 性 相 关 .
n维单位向量组 e 1 , e 2, , e n 必线性 无关
。
例2
已知向量组 1 , 2 , 3 线性无关 , b1 1 2 ,
b 2 2 3 , b 3 3 1 , 试证 b1 , b 2 , b 3 线性无关 .
则向量组 1 , 2 , 3 线性无关。
3 2 2 0 0 0 1 0 1 0 , 2 1 , 3 0 , 1 4 3 0 1 1 0
齐次线性方程组
定义 对于n维向量组 1, 2 , , m ,
若存在一组不全为零的数 k 1 , k 2 , , k m , 使得 k11 k2 2 km m 0
成立,则称 1, 2 , , m 线性相关;
否则,称 1, 2 , , m
则有不全为零的系数 1 , k 2 , , k m , 使
1 k 2 2 k m m 0。
反之,假定 k 1 1 k 2 2 k m m 0 中的系数不全为零,不妨设 km≠ 0,则有
m
k1 km
1
k2 km
2
k1 ( 1 , 2 , 3 ) k 2 , k3
即
1 0 0
0 1 0
1 k1 1 1 k2 2 , 1 k3 3
求解得 k 1 2 , k 2 1 , k 3 3 , 故 2 1 2 3 3 .
解:( 1 )由 2 , 3 , 4 线性无关 , 知 2 , 3
线性无关 ( 性质 )。 再由 1 , 2 , 3 线性相关,即知
1 可由 2, 3 唯一线性表示
(2)
( 定理 );
不能! 否则,由( 1),即知 4 可只由
2 , 3 线性表示。 而这显然与
第三章 向量组与向量空间
§ 3.1 向量组的线性相关性 §3.2 向量组的极大线性无关组 §3.3 向 量 空 间 §3.4 内积与向量组的正交化
定义:有序数组( a 1 , a 2 , , a n) 称为一个n维向量. 维向量写成一行,称为行向量,也就是行 T T T T 矩阵,通常用 a , b , , 等表示,如:
例 设向量
则向量组 1 , 2 , 3 线性无关。
定理4(相关性与唯一线性表示)
若 1, 2, r 线性无关, 1, 2, r , 线性相关,
则 可由 1, 2, r 唯一线性表示。
证(Ⅰ) 已知 1 , 2 , 3 , 线性相关,有 若 k 0, k 1 1 k 2 2 k r r 0, 则 由题设得,k 1 k 2 k r 0,
1, 2, r 线性无关, k i l i 0, i 1, r 。 2
例
已知向量组
1, 2, 3 线性相关, 2, 3, 4
1) 1 可否由 2 , 3 线性表示,
线性无关,问:(
为什么?( 2) 4 是否可由 1, 2, 3 线性表示? 为什么?
向量本身是独立于矩阵之外的,它有自己的一套完整
的内容体系,具有自己独特的一些性质。
特殊向量: 零向量:
O n ( 0 ,0 , ,0 )
T n
负向量: ( a 1 , a 2 , , a n )
T T
T
n维单位向量组(e为基本向量):
e 1 ( 1 , 0 , , 0 ) , e 2 ( 0 ,1 , , 0 ) , , e n ( 0 , 0 , ,1 )
方程组的向量式:
x1 x2 B xn
a 11 x 1 a 12 x 2 a 1 n x n b 1 , a 21 x 1 a 22 x 2 a 2 n x n b 2 , a m 1 x 1 a m 2 x 2 a mn x n b m .
n
a
n
T
( a 1 , a 2 , , a n )
维向量写成一列,称为列向量,也就是列 a 1 矩阵,通常用 a ,b, , 等表示,如: a2 a n 维向量没有直观的几何形象. n 3 时,
an 但事实上, 前面虽然已将向量作为了矩阵的一种特例,
k1 3 k1 5k 1 k2 k2 k3 k3 5k3 0 0 0
例1
1 3 5
1 1 0
1 1 0 5
解 得 : k 2 =-2k 1 ,k 3 =-k 1 .
方 程 组 有 非 零 解 (1, 2, 1) .
T
方 程 组 有 非 零 解.
代入 1 式,产生矛盾。故 k 0。 则….
k 1 1 k 2 2 k r r k 0
(1)
(Ⅱ)设 k 1 1 k r r l 1 1 l r r r
0
k
i 1
i
l i i
T T T T
称 是 1, 2 , 3 的一个线性组合; 或称 可由 1, 2 , 3 线性表示(表出)。
定义:对于n维向量 1, 2 , , n ,
若存在一组数 k 1 , k 2 , , k n , 使得