2019-2020年高考数学二轮复习专题06不等式教学案文
高考数学二轮复习不等式
(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,
2020年高考新题型专题06 不等式(解析版)
专题06 不等式多项选择题1.(2019秋•崂山区校级期末)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB 为直径作半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD,过点C作OD的垂线,垂足为E.则该图形可以完成的所有的无字证明为()A.a+b2≥√ab(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.√ab≥21a +1b(a>0,b>0)D.a2+b22≥a+b2(a≥0,b>0)【分析】直接利用射影定理和基本不等式的应用求出结果.【解答】解:根据图形,利用射影定理得:CD2=DE•OD,由于:OD≥CD,所以:a+b2≥√ab(a>0,b>0).由于CD2=AC•CB=ab,所以DE=CD 2OD =aba+b2所以由于CD≥DE,整理得:√ab≥2aba+b =21a+1b(a>0,b>0).故选:AC.2.(2019秋•胶州市期末)已知0<α<β<π2,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.k>2√2D.k+tanα≥4【分析】由题意利用韦达定理,基本不等式,得出结论.【解答】解:∵已知0<α<β<π2,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,∴tanα+tanβ=k>0,tanα•tanβ=2,∴k>2√tanα⋅tanβ=2√2,故选:BC.3.(2019秋•海南期末)下列说法中正确的有()A..不等式a+b≥2√ab恒成立B.存在a,使得不等式a+1a≤2成立C..若a,b∈(0,+∞),则ba +ab≥2D.若正实数x,y满足x+2y=1,则2x +1y≥8【分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【解答】解:不等式a+b≥2√ab恒成立的条件是a≥0,b≥0,故A不正确;当a为负数时,不等式a+1a≤2成立.故B正确;由基本不等式可知C正确;对于2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当4yx =xy,即x=12,y=14时取等号,故D正确.故选:BCD.4.(2019秋•济南期末)下列函数中,最小值为2的是()A.y=x2+2x+3B.y=e x+e﹣xC.y=sinx+1sinx ,x∈(0,π2)D.y=3x+2【分析】结合二次函数的性质可判断选项A;结合指数函数与正弦函数的性质及基本不等式的条件可判断B,C,直接利用指数函数的性质可判断D/【解答】解:y=x2+2x+3=(x+1)2+2≥2即最小值为2,符合题意;由基本不等式可得,y=e x+e﹣x≥2,即最小值为2,符合题意;由x∈(0,12π)可得sin x∈(0,1),从而可得y=sin x+1sinx>2,没有最小值,不符合题意;由指数函数的性质可知,y=3x+2>2,没有最小值,不符合题意.故选:AB.5.(2019秋•菏泽期末)在下列函数中,最小值是2的是()A.y=x+1xB.y=2x+2﹣xC.y=sinx+1sinx ,x∈(0,π2)D.y=x2﹣2x+3【分析】结合基本不等式的一正,二定三相等的条件分别检验选项ABC,结合二次函数的性质可求D.【解答】解:A:当x<0时显然不符合题意;B:由于2x>0,y=2x+2﹣x≥2,故最小值2,符合题意;C:由x∈(0,12π)可得sin x∈(0,1),y=sin x+1sinx>2,没有最小值,不符合题意;D:y=x2﹣2x+3=(x﹣1)2+2≥2即最小值2,符合题意.故选:BD.6.(2019秋•兰陵县期末)下列不等式的证明过程正确的是()A.若a<0,b<0,则ba +ab≥2√ba⋅ab=2B.若x,y∈R*,则lgx+lgy≥2√C.若x为负实数,则x+4x ≥−2√x⋅4x=−4D.若x为负实数,则2x+2−x≥2√2x⋅2−x≥2【分析】结合基本不等式的应用条件:一正,二定,三相等,对各选项进行检验判断即可.【解答】截:由a<0,b<0可得ba >0,ab>0,则由基本不等式可得,ba+ab≥2√ba⋅ab=2,故A正确;x,y∈R时,lg x,lg y有可能为0或负数,不符合基本不等式的条件,B错误;若x <0,则x +4x<0,C 错误;x <0时,2x >0,由基本不等式可得,2x +2﹣x ≥2,故D 正确. 故选:AD .7.(2019秋•淄博期末)关于x 的一元二次不等式x 2﹣6x +a ≤0(a ∈Z )的解集中有且仅有3个整数,则a 的取值可以是( ) A .6B .7C .8D .9【分析】设f (x )=x 2﹣6x +a ,画出函数图象,利用数形结合的方法得出关于a 的不等式组,从而求出a 的值.【解答】解:设f (x )=x 2﹣6x +a ,其图象是开口向上,对称轴是x =3的抛物线,如图所示;若关于x 的一元二次不等式x 2﹣6x +a ≤0的解集中有且仅有3个整数,则 {f(2)≤0f(1)>0,即{4−12+a ≤01−6+a >0,解得5<a ≤8,又a ∈Z , 所以a =6,7,8. 故选:ABC .8.(2019秋•聊城期末)已知a 、b 、c 、d 是实数,则下列一定正确的有( ) A .a 2+b 2≥(a+b)22B.a+1a≥2C.若1a >1b,则a<bD.若a<b<0,c<d<0,则ac>bd【分析】结合基本不等式及不等式的性质检验各选项即可判断.【解答】解:由于2(a2+b2)﹣(a+b)2=a2+b2﹣2ab=(a﹣b)2≥0,故a2+b2≥12(a+b)2,故A正确;B中,当a=﹣1时显然不成立,B错误;C中:a=1,b=﹣1显然有1a >1b,但a>b,C错误;D中:若a<b<0,c<d<0,则﹣a>﹣b>0,﹣c>﹣d>0,则根据不等式的性质可知ac>bd>0,故D正确.故选:AD.9.(2019秋•日照期末)若a,b为正数,则()A.2aba+b≥√abB.当1a +1b=2时,a+b≥2C.当a+b=1a +1b时,a+b≥2D.当a+b=1时,a21+a +b21+b≥13【分析】结合基本不等式及公式的变形形式对各选项进行检验即可判断.【解答】解:对A,因为a+b≥2√ab,所以2aba+b≤√ab,当a=b时取等号,A错误;对B,12(a+b)(1a+1b)=12(2+ba+ab)≥12(2+2√ba⋅ab)=2,当a=b时取等号,正确;对C,a+b=1a +1b=a+bab,则ab=1,a+b≥2√ab=2,当a=b=1时取等号,正确;对D,(a 21+a +b21+b)(1+a+1+b)=a2+b2+b2(1+a)1+b+a2(1+b)1+a≥a2+b2+2ab=(a+b)2=1,当a=b=12时取等号,正确.故选:BCD.10.(2019秋•南通期末)对于给定的实数a,关于实数x的一元二次不等式a(x﹣a)(x+1)>0的解集可能为()A.∅B.(﹣1,a)C.(a,﹣1)D.(﹣∞,﹣1)(a,+∞)【分析】根据函数y=a(x﹣a)(x+1)的图象和性质,对a进行讨论,解不等式即可.【解答】解:对于a(x﹣a)(x+1)>0,当a>0时,y=a(x﹣a)(x+1)开口向上,与x轴的交点为a,﹣1,故不等式的解集为x∈(﹣∞,﹣1,)∪(a,+∞);当a<0时,y=a(x﹣a)(x+1)开口向下,若a=﹣1,不等式解集为∅;若﹣1<a<0,不等式的解集为(﹣1,a),若a<﹣1,不等式的解集为(a,﹣1),综上,ABCD都成立,故选:ABCD.11.(2019秋•启东市校级期末)在下列函数中,最小值是2的函数有()A.f(x)=x2+1x2B.f(x)=cosx+1cosx (0<x<π2)C.f(x)=2√x2+3D.f(x)=3x+43x−2【分析】利用基本不等式即可判断出结果,但一定要注意验证等号是否能够成立.【解答】解:对于选项A:∵x2>0,∴由基本不等式可得x2+1x2≥2,当且仅当x2=1x2,即x=1或﹣1时,等号成立,故选项A正确;对于选项B:∵0<x<π2,∴0<cos x<1,由基本不等式可得cos x+1cosx≥2,当且仅当cos x=1cosx,即cos x=1时,等号成立,但是cos x取不到1,所以等号不能成立,故选项B不正确;对于选项C:由基本不等式可得f(x)=2√x2+3=(√x2+3)2√x2+3=√x2+3√x2+3≥2,当且仅当√x2+3=√x2+3,即x2=﹣2时,等号成立,显然不可能取到,故选项C不正确;对于选项D:∵3x>0,∴由基本不等式可得f(x)=3x+43x −2≥2√4−2=2,当且仅当3x=43x,即x=log32时,等号成立,故选项D正确.故选:AD .12.(2019秋•海淀区校级期末)不等式组{x +y ≥1x −2y ≤4的解集记为D ,下列四个命题中真命题是( )A .∀(x ,y )∈D ,x +2y ≥﹣2B .∃(x ,y )∈D ,x +2y ≥2C .∀(x ,y )∈D ,x +2y ≤3D .∃(x ,y )∈D ,x +2y ≤﹣1【分析】作出不等式组{x +y ≥1x −2y ≤4的表示的区域D ,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D 为直线x +y =1与x ﹣2y =4相交的上部角型区域,A :区域D 在x +2y ≥﹣2 区域的上方,故:∀(x ,y )∈D ,x +2y ≥﹣2成立;B :在直线x +2y =2的右上方和区域D 重叠的区域内,∃(x ,y )∈D ,x +2y ≥2,故p 2:∃(x ,y )∈D ,x +2y ≥2正确;C :由图知,区域D 有部分在直线x +2y =3的上方,因此p 3:∀(x ,y )∈D ,x +2y ≤3错误;D :x +2y ≤﹣1的区域(左下方的虚线区域)恒在区域D 下方,故p 4:∃(x ,y )∈D ,x +2y ≤﹣1错误; 故选:AB .13.(2019秋•葫芦岛月考)已知正数a ,b 满足a +b =4,ab 的最大值为t ,不等式x 2+3x ﹣t <0的解集为M ,则( ) A .t =2B .t =4C .M ={x |﹣4<x <l }D .M ={x |﹣l <x <4}【分析】由基本不等式ab ≤(a+b 2)2,可求ab 的最大值,然后解二次不等式求解M ,结合选项即可判断.【解答】解:∵正数a ,b 满足a +b =4, 则ab ≤(a+b 2)2=4,即ab 的最大值为t =4,而x2+3x﹣4<0的解集为M=(﹣4,1).故选:BC.14.(2019秋•昆山市期中)下列函数中,最小值是2√2的有()A.y=x+2x B.y=√x√xC.y=x2+2x2+4+4D.y=e x+2e﹣x【分析】利用基本不等式的使用法则:“一正二定三相等”即可判断出正误.【解答】解:A.x<0时,y<0,无最小值.B.y=√x√x≥2√2,当且仅当x=√2时取等号,正确.C.y=x2+2x2+4+4≥2√(x2+4)(2x2+4)=2√2,当且仅当x2+4=2x2+4时,等号成立,显然不可能取到,故选项C不正确;D.y=e x+2e﹣x≥2√e x⋅2e−x=2√2,当且仅当x=0时取等号,正确.故选:BD.15.(2019秋•薛城区校级期中)设a>1,b>1,且ab﹣(a+b)=1,那么()A.a+b有最小值2(√2+1)B.a+b有最大值(√2+1)2C.ab有最大值3+2√2.D.ab有最小值3+2√2.【分析】根据a>1,b>1,即可得出a+b≥2√ab,从而得出ab−2√ab≥1,进而得出√ab≥√2+1,从而得出ab有最小值3+2√2;同样的方法可得出ab≤(a+b2)2,从而得出(a+b)2﹣4(a+b)≥4,进而解出a+b≥2(√2+1),即得出a+b的最小值为2(√2+1).【解答】解:∵a>1,b>1,∴a+b≥2√ab,当a=b时取等号,∴1=ab−(a+b)≤ab−2√ab,解得√ab≥√2+1,∴ab≥(√2+1)2=3+2√2,∴ab有最小值3+2√2;∵ab≤(a+b2)2,当a=b时取等号,∴1=ab−(a+b)≤(a+b2)2−(a+b),∴(a+b)2﹣4(a+b)≥4,∴[(a+b)﹣2]2≥8,解得a+b−2≥2√2,即a+b≥2(√2+1),∴a +b 有最小值2(√2+1). 故选:AD .16.(2019秋•北镇市校级月考)下列各小题中,最大值是12的是( ) A .y =x 2+116x 2B .y =x√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,(x >−2)【分析】利用基本不等式的性质即可判断出结论. 【解答】解:A .y 没有最大值; B .y 2=x 2(1﹣x 2)≤(x 2+1−x 22)2=14,y ≥0,∴y ≤12,当且仅当x =√22时取等号. C .x =0时,y =0.x ≠0时,y =1x 2+1x2≤12,当且仅当x =±1时取等号.D .y =x +2+4x+2−2≥2√(x +2)⋅4x+2−2=2,x >﹣2,当且仅当x =0时取等号. 故选:BC .17.(2019秋•莱州市校级月考)若正实数a ,b 满足a +b =1,则下列选项中正确的是( ) A .ab 有最大值14 B .√a +√b 有最小值√2 C .1a+1b 有最小值4D .a 2+b 2有最小值√22【分析】由a +b =1,根据2aba+b≤√ab ≤a+b 2≤√a 2+b 22逐一判断即可.【解答】解:∵a >0,b >0,且a +b =1;∴1+a +b ≥1√ab ;∴ab ≤14; ∴ab 有最大值14,∴选项A 正确;√a +√b ≥2√ab ,2√ab ≤1,∴√a +√b 的最小值不是√2,∴B 错误; 1a+1b =a+b ab=1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2≥2ab ,2ab ≤12,∴a 2+b 2的最小值不是√22,∴D 错误. 故选:AC .18.(2019秋•临沭县期末)给出下面四个推断,其中正确的为( ) A .若a ,b ∈(0,+∞),则ba +ab ≥2B .若x ,y ∈(0,+∞),则lg lg x y ≥2√lgx ⋅lgyC .若a ∈R ,a ≠0,则4a+a ≥4D .若x ,y ∈R ,xy <0,则x y +yx ≤−2【分析】根据基本不等式的应用条件一正,二定,三相等逐个判断即可.【解答】解:A 正确,∵a >0、b >0,故ba +ab ≥2√ba ⋅ab =2,当且仅当a =b 时上式取等号; B 不正确,∵lg x 和lg y 不一定是正实数,故不可用基本不等式; C 不正确,∵a <0时,则4a +a ≥4不成立;D 正确,若x ,y ∈R ,xy <0,则−xy>0,−yx>0,∴(−xy)+(−yx)≥2√(−xy)⋅(−yx)=2,则xy+yx≤−2,当且仅当x 与y 互为相反数时取等号. 故选:AD .19.(2019秋•肥城市校级月考)给出四个选项能推出1a <1b 的有( ) A .b >0>aB .0>a >bC .a >0>bD .a >b >0【分析】利用不等式的性质,代入验证即可. 【解答】解:1a<1b ⇔b−a ab<0⇔ab (a ﹣b )>0,A ,ab <0,a ﹣b <0,ab (a ﹣b )>0成立B ,ab >0,a ﹣b >0,ab (a ﹣b )>0成立C .ab <0,a ﹣b >0,ab (a ﹣b )<0,不成立,D .ab >0,a ﹣b >0,ab (a ﹣b )>0成立 故选:ABD .20.(2019秋•泰山区校级期中)设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>aB .a 2+9>6aC .(a +b )(1a+1b)≥4D .(a +1a)(b +1b)≥4【分析】设a >0,b >0,a 2+1﹣a =(a +12)2+34>0,A 成立,a 2+9﹣6a =(a ﹣3)2≥0,B 不成立,(a +b )(1a +1b )≥(1+1)2=4,故C 成立,a +1a ≥2,b +1b ≥2,故D 成立. 【解答】解:设a >0,b >0, a 2+1﹣a =(a +12)2+34>0,A 成立,a2+9﹣6a=(a﹣3)2≥0,B不成立(a+b)(1a +1b)≥(1+1)2=4,故C成立,a+1a ≥2,b+1b≥2,故D成立,故选:ACD.。
2020届高考数学二轮复习专题《用零点、极值解决不等式问题》
所以f(x)在
-∞,1-
a 3
单调递增,在
1-
a3,1+
a 3
单调递减,在
1+ a3,+∞单调递增 因为f(x)存在极值点,所以a>0,且x0≠1.
由题意得f′(x0)=3(x0-1)2-a=0,即(x0-1)2=
a 3
,而f(x0)=(x0-1)3-ax0-b=(x0-
1)2(-2x0-1)-b. f(3-2x0)=(2-2x0)3-3(x0-1)2(3-2x0)-b=(x0-1)2[8-8x0-9+6x0]-b=(x0-
用零点、极值解决不等式问题
在导数的综合应用中,经常涉及到与函数零点与极值点有关的一些问题.处理这类 问题,我们需要通过零点与极值点的概念,通过构造方程或方程组,简化函数或方程的 表达式,从而解决与零极值点有关的等式与不等式问题.考查函数与方程思想,转化与 化归思想,同时考查抽象概括、综合分析问题和解决问题的能力.
明.
求得f(x)的导数,可得极值点满足的方程,运用分析法化简整理,即可得到证
已知函数f(x)=x2-x-xlnx,证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2. f(x)=x2-x-xlnx,f′(x)=2x-2-lnx. 设h(x)=2x-2-lnx,则h′(x)=2-1x. 当x∈ 0,12时,h′(x)<0;当x∈ 12,+∞时,h′(x)>0.所以h(x)在 0,12单调递减,在 12,+∞单调递增.
1)2(-2x0-1)-b
∴f(3-2x0)=f(x0)且3-2x0≠x0,由题意知,存在唯一实数x1满足f(x1)=f(x0),且
x1≠x0,因此x1=3-2x0,所以x1+2x0=3.
(2019·全国卷)已知函数f(x)=lnx-xx+ -11. (1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
2019-2020年高考数学二轮复习 专题4 不等式 第二讲 线性规划、基本不等式与不等式的证明 理
2019-2020年高考数学二轮复习 专题4 不等式 第二讲 线性规划、基本不等式与不等式的证明 理线性规划问题的解题步骤为:1.设出变量x ,y ,列出变量x ,y 的线性约束条件,确定目标函数. 2.作出可行域和目标函数值为0的直线l .3.利用直线l 确定最优解对应的点,从而求出最优解.1.基本不等式:a +b2≥ ab .(1)基本不等式成立的条件:a ,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值.两个正数的和为常数时,它们的积有最大值.2.几个重要的不等式. (1)a 2+b 2≥2ab (a ,b ∈R). (2)b a +a b ≥2(a 与b 同号).(3)a +1a≥2(a >0),a +1a≤-2(a <0).(4)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R).判断下面结论是否正确(请在括号中打“√”或“×”).(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.(×)(2)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.(√)(3)不等式组表示的平面区域是如图所示的阴影部分.(×)(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.(√)(5)若a>0,则a3+1a2的最小值为2a.(×)(6)a2+b2+c2≥ab+bc+ca(a,b,c∈R).(√)1.设x,y满足则z=x+y(B)A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值解析:画出不等式表示的平面区域,如图,由z=x+y,得y=-x+z,令z=0,画出y=-x的图象,当它的平行线经过A(2,0)时,z取得最小值,最小值为z=2,无最大值.故选B.2.(xx·天津卷)设变量x ,y 满足约束条件 则目标函数z =x +6y的最大值为(C )A .3B .4C .18D .40解析:由题意作出不等式组表示的平面区域如图阴影部分所示.作直线x +6y =0并向右上平移,由图可知,过点A (0,3)时z =x +6y 取得最大值,最大值为18.3.若x >0,则x +2x 的最小值为22.解析:∵x >0⇒x +2x≥22,当且仅当x =2x⇒x =2时取等号.4.(xx·天津卷)已知a >0,b >0,ab =8,则当a 的值为4时,log 2a ·log 2(2b )取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b )=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a )=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b )取得最大值4.一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则有(A ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x )D .不能确定f (x )与g (x )的大小关系解析:∵f (x )-g (x )=x 2-2x +2=(x -1)2+1>0. ∴f (x )>g (x ).2.(xx·福建卷)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于(C ) A .2 B .3 C .4 D .5解析:将(1,1)代入直线x a +y b=1,得1a +1b=1,a >0,b >0,故a +b =(a +b )(1a +1b )=2+b a +ab≥2+2=4,等号当且仅当a =b 时取到,故选C.3.若a >b >0,c <d <0,则一定有(B ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d解析:∵c <d <0,∴-c >-d >0,-1d >-1c >0.又a >b >0,∴-a d >-b c >0,∴ad<bc.故选B. 4.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为(A )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)解析:因为-4≤|x +3|-|x -1|≤4,对|x +3|-|x -1|≤a 2-3a 对任意x 恒成立,所以a 2-3a ≥4,解得a ≥4或a ≤-1.5.(xx·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为(D )A .0B .1 C.32D .2解析:作出不等式组所表示的平面区域,如下图.作直线x +2y =0,向右上平移,当直线过点A (0,1)时,z =x +2y 取最大值,即z max=0+2×1=2.6. (xx·福建卷)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(C )A .80元B .120元C .160元D .240元解析:设长方体底面边长分别为x ,y ,则y =4x,所以容器总造价为z =2(x +y )×10+20xy =20⎝⎛⎭⎪⎫x +4x +80,由基本不等式得,z =20⎝ ⎛⎭⎪⎫x +4x +80≥160,当且仅当底面为边长为2的正方形时,总造价最低.故选C.二、填空题7.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为22.解析:x 2+2y 2≥2x 2·2y 2=22·(xy )2=2 2.当且仅当x 2=2y 2时等号成立.8.(xx·新课标Ⅰ卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为3.解析:画出可行域如图阴影所示,∵ y x表示过点(x ,y )与原点(0,0)的直线的斜率,∴ 点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴ A (1,3). ∴ y x的最大值为3. 三、解答题9.若对一切x >2均有不等式x 2-2x -8≥(m +2)x -m -15成立,求实数m 的取值范围. 解析:由x 2-2x -8≥(m +2)x -m -15, 得x 2-4x +7≥m (x -1),∴对一切x >2均有不等式x 2-4x +7x -1≥m 成立.∴m 应小于或等于f (x )=x 2-4x +7x -1(x >2)的最小值.又f (x )=x 2-4x +7x -1=(x -1)+4x -1-2≥2(x -1)·4x -1-2=2, 当且仅当x -1=4x -1,即x =3时等号成立. ∴f (x )min =f (3)=2.故m 的取值范围为(-∞,2].10.某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的,是面积为200平方米的十字形地带.计划在正方MNPQ 上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.(1)设总造价是S 元,AD 长为x 米,试建立S 关于x 的函数关系式; (2)当x 为何值时,S 最小?并求出最小值.解析:(1)设AM =y ,则x 2+4xy =200. ∴y =50x -x 4.∴S =4 200x 2+210×4×xy +80×4×12y 2=4 000x 2+4×105×1x 2+38 000(x >0).(2)S =4 000x 2+4×105×1x2+38 000≥24 000x 2×400 000x2+38 000=118 000, 当且仅当x =10时等号成立,即x =10米时,S 有最小值118 000元.。
2019年高考数学考纲解读与热点难点突破专题06不等式与线性规划热点难点突破文含解析
不等式与线性规划1.若a >b ,则下列不等式成立的是( ) A .ln a >ln b B .0.3a>0.3bC .a >bD.3a >3b解析 因为a >b ,而对数函数要求真数为正数,所以ln a >ln b 不成立; 因为y =0.3x是减函数,又a >b ,则0.3a<0.3b,故B 错; 当a >b >0时,a >b ,则a >b ,故C 错;y =x 在(-∞,+∞)是增函数,又a >b ,则a >b ,即3a >3b 成立,选D.答案 D2.设a =lg e ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析 0<lg e<1,即0<a <1,b =(lg e)2=a 2<a ,c =lg e =12lg e =12a <a , 又b =(lg e)2<lg 10lg e =12lg e =c ,因此a >c >b .故选B. 答案 B3.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( ) A .-1<a <1 B .0<a <2 C .-12<a <32D .-32<a <124.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2}B .{x |-2<x <2}C .{x |x <0或x >4}D .{x |0<x <4}解析 由题意可知f (-x )=f (x ),即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2).又函数在(0,+∞)上单调递增,所以a >0.f (2-x )>0,即ax (x -4)>0,解得x <0或x >4.故选C.答案 C5.已知点A (-2,0),点M (x ,y )为平面区域⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0上的一个动点,则|AM |的最小值是( )A .5B .3C .22D.655解析 不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0表示的平面区域如图,结合图象可知|AM |的最小值为点A 到直线2x +y -2=0的距离,即|AM |min =|2×(-2)+0-2|5=655.答案 D6.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k的值为( )A .1B .2C .3D .4解析 不等式组表示的可行域如图,A (1,2),B (1,-1),C (3,0)∵目标函数z =kx -y 的最小值为0,∴目标函数z =kx -y 的最小值可能在A 或B 时取得;∴①若在A 上取得,则k -2=0,则k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0=6,成立; ②若在B 上取得,则k +1=0,则k =-1,此时,z =-x -y ,在B 点取得的应是最大值, 故不成立,∴k =2,故答案为B.答案 B7.已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1) 解析 由f (x )>0得32x-(k +1)·3x+2>0, 解得k +1<3x+23x, 而3x+23x ≥22(当且仅当3x=23x,即x =log 32时,等号成立),∴k +1<22,即k <22-1. 答案 B8.已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a +1c +c +1a的最小值为( ) A .4 B .42 C .8 D .82解析 ∵f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞), ∴a >0且Δ=4-4ac =0.∴c =1a,∴a +1c +c +1a =a +11a+1a +1a =⎝⎛⎭⎪⎫a2+1a2+⎝ ⎛⎭⎪⎫a +1a ≥4(当且仅当a =1时取等号), ∴a +1c +c +1a的最小值为4,故选A. 答案 A9.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2n C.n2+n +22D .n 2+n +1解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n2+n +22个区域,选C.答案 C10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③ D .③④⑤11.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( ) A.c a <b a B.b -a c >0 C.b2c <a2cD.a -cac<0 解析:∵c <b <a 且ac <0,∴c <0,a >0,∴c a <b a ,b -a c >0,a -cac <0,但b 2与a 2的关系不确定,故b2c <a2c 不一定成立.答案:C12.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎪⎨⎪⎧b a =-12-13,-1a =-12×⎝ ⎛⎭⎪⎫-13,即⎩⎪⎨⎪⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-b a x -1>0,即-16x 2+56x -1>0,解得2<x <3.答案:A13.若正数x ,y 满足x +y =1,且1x +ay ≥4对任意的x ,y ∈(0,1)恒成立,则a 的取值范围是( )A .(0,4]B .[4,+∞)C .(0,1]D .[1,+∞)解析:正数x ,y 满足x +y =1,当a >0时,1x +a y =(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2y x ·axy=1+a +2a ,当且仅当y =a x 时取等号,因为1x +ay≥4对任意的x ,y ∈(0,1)恒成立,∴1+a +2a ≥4,解得a ≥1,∴a 的取值范围是[1,+∞).当a ≤0时显然不满足题意,故选D.答案:D14.已知函数f (x )=ax 2+bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (-x )的图象可以为( )解析:由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0), ∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 答案:B15.设a ,b ∈R ,且a +b =3,则2a+2b的最小值是( ) A .6 B .4 2 C .2 2 D .2 6解析:2a +2b ≥22a +b =223=42,当且仅当2a =2b,a +b =3,即a =b =32时,等号成立.故选B.答案:B16.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y≥0x -y≥02x -y -2≥0,则z =y -1x +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤-1,13B.⎣⎢⎡⎦⎥⎤-12,13C.⎣⎢⎡⎭⎪⎫-12,+∞D.⎣⎢⎡⎭⎪⎫-12,1 解析:由题知可行域如图阴影部分所示,∴z =y -1x +1的取值范围为[k MA,1),即⎣⎢⎡⎭⎪⎫-12,1.答案:D17.设a ,b 为实数,则“a <1b 或b <1a ”是“0<ab <1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:充分条件可举反例,令a =b =-10,此时a <1b ,b <1a ,但ab =100>1,所以“a <1b 或b <1a ”不是“0<ab <1”的充分条件.反之,a ,b 为实数,当0<ab <1时,说明a ,b 同号.若a >0,b >0,则a <1b 或b <1a ;若a <0,b <0,则a >1b 或b >1a .所以“a <1b 或b <1a ”不是“0<ab <1”的必要条件.综上可知“a <1b 或b <1a ”是“0<ab <1”的既不充分也不必要条件. 答案:D18.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( )A .-3B .2C .3D .8解析:y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0.所以由基本不等式,得y =x+1+9x +1-5≥2+9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3. 答案:C19.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥1x -y≥-12x -y≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .[-4,2] B .(-4,2) C .[-4,1] D .(-4,1)解析:作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B.答案:B20.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D .(-∞,-1) 解析:x 2+ax -2>0,即ax >2-x 2. ∵x ∈[1,5],∴a >2x-x 成立.∴a >⎝ ⎛⎭⎪⎫2x -x min .又函数f (x )=2x -x 在[1,5]上是减函数, ∴⎝ ⎛⎭⎪⎫2x -x min =25-5=-235,∴a >-235.故选A.答案:A21.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2. 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以n m >0,mn >0.由均值不等式,可得n m +mn≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:222.设P (x ,y )是函数y =2x (x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 223.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,y≥x,3x +2y≤15,则w =4x ·2y的最大值是________.24.已知函数f (x )=⎩⎪⎨⎪⎧-x2+x ,x≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。
高考数学二轮复习7大专题汇总
高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。
这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。
一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。
不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。
自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。
专题二:数列。
以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。
向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。
大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。
此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。
空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。
专题五:分析几何。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三
第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。
二轮复习专题目录
二轮复习专题目录
专题00 高效二轮复习从提高数学阅读理解能力开始
专题01 集合背景下的数学问题
专题02 一元二次不等式问题
专题03 基本不等式问题
专题04 三角化简与求值
专题05 三角函数图像与性质
专题06 平面向量的线性运算
专题07 平面向量的数量积
专题08 二次函数问题
专题09 函数的简单性质及其应用
专题10 导数及其应用
专题11 函数与方程问题
专题12 函数综合问题
专题13 等差数列与等比数列
专题14 数列的性质及其应用
专题15 数列中的探究性问题
专题16 立体几何中的证明问题
专题17 直线、圆及圆锥曲线方程
专题18 点、线、圆的位置关系
专题19 解析几何中的定点、定直线、定圆问题
专题20 解析几何中的定值和最值问题
专题21 变换视角处理代数与几何问题
专题22 数学模型及其应用
专题23 分类讨论思想。
高考数学二轮复习 专题06 三角函数的图像与性质讲学案 文-人教版高三全册数学学案
专题06 三角函数的图像与性质1.三角函数y =A sin (ωx +φ)( A >0,ω>0)的图象变换,周期及单调性是高考热点.2.备考时应掌握y =sin x ,y =cos x ,y =tan x 的图象与性质,并熟练掌握函数y =A sin (ωx +φ)(A >0,ω>0)的值域、单调性、周期性等.1.任意角和弧度制(1)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.(2)把长度等于半径长的弧所对的圆心角叫做1弧度的角. (3)弧长公式:l =|α|r ,扇形的面积公式:S =12lr =12|α|r 2.2.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0). (2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 3.诱导公式公式一sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α公式二sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α公式三sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α4.同角三角函数基本关系式sin2α+cos2α=1,tanα=sinαcosα(cosα≠0).5.正弦、余弦、正切函数的性质对称性对称中心:(kπ,0)(k∈Z).对称轴:x =π2+kπ(k∈Z)对称中心:(π2+kπ,0)(k∈Z). 对称轴:x =kπ(k∈Z)对称中心:(kπ2,0)(k∈Z)6.函数y =A sin(ωx +φ)的图象 (1)“五点法”作图设z =ωx +φ,令z =0、π2、π、3π2、2π,求出x 的值与相应的y 的值,描点连线可得.考点一 三角函数图象及其变换例1、(1)(2016·高考全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎪⎫2x -π6 B .y =2sin ⎝⎛⎭⎪⎫2x -π3C .y =2sin ⎝⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3【答案】A且2×π3+φ=2k π+π2(k ∈Z),故φ=2k π-π6(k ∈Z),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.优解:代入特殊点检验排除. 当x =π3,y =2时,排除B ,D.当x =-π6,y =-2时,排除C ,故选A.(2)(2016·高考全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.【答案】23π【解析】通解:化简后平移函数y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的图象可由函数y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度得到.【方法规律】1.已知图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法 (1)求A ,B ,已知函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,已知函数的周期T ,则ω=2πT.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知),或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间还是下降区间).②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点⎝ ⎛⎭⎪⎫-φω,0作为突破口,具体如下:“第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.2.三角函数图象平移问题处理策略(1)看平移要求:首先要看题目要求由哪个函数平移得到哪个函数,这是判断移动方向的关键点; (2)看左右移动方向,左“+”右“-”;(3)看移动单位:在函数y =A sin(ωx +φ)中,周期变换和相位变换都是沿x 轴方向的,所以ω和φ之间有一定的关系,φ是初相,再经过ω的压缩,最后移动的单位是⎪⎪⎪⎪⎪⎪φω.【变式探究】1.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z,故选D.考点二 三角函数性质及应用例2、(1)(2016·高考全国卷Ⅱ)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z)B .x =k π2+π6(k ∈Z) C .x =k π2-π12(k ∈Z) D .x =k π2+π12(k ∈Z) 【答案】B【解析】通解:写出解析式求对称轴.函数y =2sin 2x 的图象向左平移π12个单位长度,得到的图象对应的函数表达式为y =2sin 2⎝ ⎛⎭⎪⎫x +π12,令2⎝ ⎛⎭⎪⎫x +π12=k π+π2(k ∈Z),解得x =k π2+π6(k ∈Z),所以所求对称轴的方程为x =k π2+π6(k ∈Z),故选B.优解:由对称轴平移得对称轴.y =2sin 2x 的对称轴为x =π4+k 2π,向左平移π12个单位长度得x =π4-π12+k 2π=k π2+π6.(k ∈Z),故选B.(2)(2016·高考全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B【方法技巧】 求解三角函数的性质问题的常用方法及技巧 1.求单调区间的两种方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ)(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间.2.判断对称中心与对称轴:利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.三角函数的周期的求法 (1)定义法;(2)公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. (3)利用图象.【变式探究】设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增考点三 三角函数的图象与性质的综合应用例3、已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫ωx +π6cos ωx (0<ω<2),且f (x )的图象过点⎝ ⎛⎭⎪⎫5π12,32. (1)求ω的值及函数f (x )的最小正周期;(2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎝ ⎛⎭⎪⎫α2=536,求cos ⎝ ⎛⎭⎪⎫2α-π3的值.解:(1)f (x )=23sin ⎝ ⎛⎭⎪⎫ωx +π6cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin 2ωx +32cos 2ωx +32【方法技巧】三角函数解析式化简的基本思路1.将“sin x cos x ”化为12sin 2x ,将sin 2x 或cos 2x 降幂.2.函数解析式成为“a sin x +b cos x ”后,利用辅助角公式化为a 2+b 2sin(x +φ),⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2.3.利用整体思想,对于a 2+b 2sin(ωx +φ)型的三角函数. 视“ωx +φ”为整体,利用sin x 的性质来求解.【变式探究】已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+1112π=5912π.1.(2017·高考全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15【解析】选A.解法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A.解法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6 =15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A.2.(2017·高考全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.【2017课标3,文6】函数1ππ()sin()cos()536f x x x =++-的最大值为( )A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 函数的最大值为65.所以选A.1.【2016高考新课标3文数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A )31010 (B )1010(C )1010 (D )31010【答案】C2.【2016高考新课标2文数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.3.【2016高考新课标3文数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.【2016年高考四川文数】22cossin 88ππ-= .【答案】2【解析】由二倍角公式得22cossin 88ππ-=cos42=π5.【2016年高考四川文数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 6.【2016高考新课标2文数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B7.【2016年高考北京文数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.32t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 8.【2016高考新课标3文数】函数sin 3y x x =-的图像可由函数sin 3y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π 【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 9.【2016高考浙江文数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B10.【2016高考山东文数】函数f (x )=3sin x +cos x )3x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B【解析】()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 11.【2016年高考四川文数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 12.【2016高考新课标2文数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B13.【2016年高考北京文数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.32t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 14.【2016高考新课标3文数】函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π 【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 15.【2016高考新课标3文数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A 310 (B 10(C )1010 (D )31010【答案】C16.【2016高考新课标2文数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.17.【2016高考新课标3文数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【2015高考新课标1,文2】o o o o sin 20cos10cos160sin10- =( )(A )3-(B 3(C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =osin30=12,故选D. 【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 【2015高考福建,文19】已知函数f()x 的图像是由函数()cos g x x 的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2个单位长度.(Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m 在[0,2)内有两个不同的解,.(1)求实数m 的取值范围; (2)证明:22cos )1.5m ( 【答案】(Ⅰ) f()2sin x x ,(kZ).2xk;(Ⅱ)(1)(5,5);(2)详见解析.【解析】解法一:(1)将()cos g x x 的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到当1m<5时,+=2(),2();2当5<m<1时, 3+=2(),32();2所以2222cos )cos 2()2sin ()12()1 1.55m m (【2015高考山东,文16】设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫==⎪⎝⎭,求ABC ∆面积的最大值. 【答案】(I )单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(II )ABC ∆ 23+ 【解析】(I )由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=- sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【2015高考重庆,文9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由已知,3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C . 【2015高考山东,文3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【2015高考新课标1,文8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.1. 【2014高考湖南卷第9题】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( )A.56x π=B.712x π=C.3x π=D.6x π= 【答案】A【考点定位】三角函数图像、辅助角公式2. 【2014高考江苏卷第5题】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 .【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角. 3. 【2014辽宁高考文第9题】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 【答案】B【考点定位】函数sin()yA x ωϕ=+的性质.4. 【2014四川高考文第3题】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A.【考点定位】三角函数图象的变换.5. 【2014全国1高考文第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )POAM【答案】CPOAMD POAM D【考点定位】解直角三角形、三角函数的图象.6. 【2014高考北卷文第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 .【答案】π【解析】由)(x f 在区间]2,6[ππ上具有单调性,且)6()2(ππf f -=知,函数)(x f 的对称中心为)0,3(π,由)32()2(ππf f =知函数)(x f 的对称轴为直线127)322(21πππ=+=x ,设函数)(x f 的最小正周期为T ,所以,6221ππ-≥T ,即32π≥T ,所以43127T =-ππ,解得π=T . 【考点定位】函数)sin()(ϕω+=x A x f 的对称性、周期性, 7. 【2014高考安徽卷文第11题】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.【答案】83π【考点定位】三角函数的平移、三角函数恒等变换与图象性质.8. 【2014浙江高考文第4题】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】D【解析】sin 3cos3234y x x x π⎛⎫=+=+ ⎪⎝⎭,故只需将23y x =向左平移4π个单位.【考点定位】三角函数化简,图像平移.9. 【2014陕西高考文第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π【答案】B【解析】由周期公式2T w π=,又2w =,所以函数()cos(2)6f x x π=-的周期22T ππ==,故选B . 【考点定位】三角函数的最小正周期.10. 【2014大纲高考文第16题】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .【答案】(],2-∞.【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫'=-+=-+=-+∈ ⎪⎝⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【考点定位】三角函数的单调性11. 【2014高考江西文第16题】已知函数()sin()cos(2)f xx a x θθ=+++,其中,(,)22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1. (2)1.6a πθ=-⎧⎪⎨=-⎪⎩【考点定位】三角函数性质12. (2014·福建卷)已知函数f(x)=2cos x(sin x +cos x). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x)的最小正周期及单调递增区间.【解析】思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ-3π8≤x≤kπ+π8,k∈Z.思路二 先应用和差倍半的三角函数公式化简函数f(x)=2sin xcos x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.[]由2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ-3π8≤x≤kπ+π8,k∈Z.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π.由2k π-π2≤2x+π4≤2kπ+π2,k∈Z,得k π-3π8≤x≤kπ+π8,k∈Z,所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-3π8,kπ+π8,k∈Z.13. (2014·北京卷)函数f(x)=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f(x)的最小正周期及图中x 0、y 0的值; (2)求f(x)在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.。
高考数学 专题06 确定抽象函数单调性解函数不等式黄金解题模板-人教版高三全册数学试题
专题06 确定抽象函数单调性解函数不等式【高考地位】函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。
而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。
因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。
【方法点评】确定抽象函数单调性解函数不等式使用情景:几类特殊函数类型解题模板:第一步 (定性)确定函数)(x f 在给定区间上的单调性和奇偶性; 第二步 (转化)将函数不等式转化为)()(N f M f <的形式;第三步 (去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步 (求解)解不等式或不等式组确定解集;第五步 (反思)反思回顾,查看关键点,易错点及解题规X.例 1 已知函数()f x 是定义在R 上的奇函数,若对于任意给定的实数12,x x ,且12x x ≠,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()()1120x f x +-<的解集为__________.【答案】11,2⎛⎫- ⎪⎝⎭. 例2.已知定义为R 的函数()f x 满足下列条件:①对任意的实数,x y 都有:()()()1f x y f x f y +=+-;②当0x >时,()1f x >.(1)求()0f ;(2)求证:()f x 在R 上增函数;(3)若()67,3f a =≤-,关于x 的不等式()()223f ax f x x -+-<对任意[)1,x ∈-+∞恒成立,某某数a 的取值X 围.【答案】(1)()01f =;(2)证明见解析;(3)(]5,3--.即()2130x a x -++>在[)1,x ∈-+∞上恒成立,令()()213g x x a x =-++,即()min 0g x >成立即可.①当112a +<-,即3a <-时,()g x 在[)1,x ∈-+∞上单调递增, 则()()()min 11130g x g a =-=+++>解得5a >-,所以53a -<<-,②当112a +≥-即3a ≥-时,有()()2min 111130222a a a g x g a +++⎛⎫⎛⎫==-++> ⎪ ⎪⎝⎭⎝⎭解得231231a -<<,而2313-<-,所以3231a -≤<, 综上,实数a 的取值X 围是(]5,3-- 【变式演练1】设奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-.当[1,1]x ∈-时,函数2()21f x t at ≤-+,对一切[1,1]a ∈-恒成立,则实数t 的取值X 围为( ) A.22t -≤≤ B.2t ≤-或2t ≥ C.0t ≤或2t ≥ D.2t ≤-或2t ≥或0t = 【答案】D 【解析】试题分析:由奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-,所以在区间[1,1]x ∈-的最大值为1,所以2121t at ≤-+当0t =时显然成立,当0t ≠时,则220t at -≥成立,又[1,1]a ∈-,令()22,[1,1]g a at t a =-∈-,当0t >时,()g a 是减函数,故令()10g ≥,解得2t ≥;当0t <时,()g a 是增函数,故令()10g -≥,解得2t ≤-,综上所述,2t ≥或2t ≤-或0t =,故选D. 考点:函数的单调性与函数的奇偶性的应用.【变式演练2】已知定义在R 上的函数()f x 为增函数,当121x x +=时,不等式()()()()1201f x f f x f +>+恒成立,则实数1x 的取值X 围是( )A. (),0-∞B. 10,2⎛⎫ ⎪⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ()1,+∞ 【答案】D【变式演练3】定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间(0,)+∞上的递增函数.(1)求(1),(1)f f -的值; (2)求证:()()f x f x -=; (3)解不等式1(2)()02f f x +-≤.【答案】(1)(1)0f =,(1)0f -=;(2)证明见解析;(3)⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡1,2121,0 .考点:抽象函数及应用.【变式演练4】定义在(1,1)-上的函数()f x 满足下列条件:①对任意,(1,1)x y ∈-,都有()()()1x yf x f y f x y++=++;②当(1,0)x ∈-时,有()0f x >,求证:(1)()f x 是奇函数; (2)()f x 是单调递减函数; (3)21111()()()()1119553f f f f n n +++>++,其中*n N ∈. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)由奇函数的定义及特殊值0)0(=f 即可证明;(2)由单调性的定义,做差证明;(3)先由题(3)211()1(3)(2)23()[][]1155(2)(3)11()23n n n n f f f n n n n n n +-+-+++==++++-+-++ 1111()()()()2323f f f f n n n n =+-=-++++∴2111()()()111955f f f n n +++++111111[()()][()()][()()]344523f f f f f f n n =-+-++-++ 1111()()()()3333f f f f n n =-=+-++∵1013n <<+,∴1()03f n ->+,∴111()()()333f f f n +->+.故21111()()()()1119553f f f f n n +++>++.考点:1.抽象函数;2.函数的单调性,奇偶性;3.数列求和. 【高考再现】1.【2017全国卷一理】函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值X 围是()A .[]22-,B .[]11-,C .[]04,D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 【解析】又()f x 在()-∞+∞,单调递减 【解析】121x ∴--≤≤3x ∴1≤≤ 故选D2.【2017某某理】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C3. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点:函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.4.【2015高考,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是()A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.5. 【2014高考某某版理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =【答案】D6. 【2014某某理12】已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12B .14C .12πD .18【答案】B 【解析】考点:1.抽象函数问题;2.绝对值不等式.【名师点睛】本题考查抽象函数问题、绝对值不等式、函数的最值等.解答本题的关键,是利用分类讨论思想、转化与化归思想,逐步转化成不含绝对值的式子,得出结论.本题属于能力题,中等难度.在考查抽象函数问题、绝对值不等式、函数的最值等基础知识的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.7. 【2016高考某某理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->,则a 的取值X 围是______.【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化. 【反馈练习】1. 【2017-2018学年某某省某某市高一上学期第一次联考数学试题】函数()y f x =在R 上为增函数,且()()29f m f m >+,则实数m 的取值X 围是( )A. ()9+∞,B. [)9+∞,C. (),9-∞-D. (]9-∞, 【答案】A2.【2018届某某省某某市第一中学高三10月调研数学(理)试题】设奇函数()f x 在()0,+∞上为增函数,且()20f =,则不等式()()0f x f x x--<的解集为()A. ()()2,02,-⋃+∞B. ()(),20,2-∞-⋃C. ()(),22,-∞-⋃+∞D. ()()2,00,2-⋃【答案】D 【解析】函数()f x 为奇函数,则()()f x f x -=-,()()0f x f x x--<,化为()20f x x<,等价于()0xf x <,当0x >时,解得02x <<,当0x <时,20x -<<,不等式的解集为:()()2,00,2-⋃,选D.3.【2018届某某省某某市第一中学高三上学期第三次考试数学(文)试题】已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的取值X 围是( )A. B. C. D.【答案】C4.【2017届某某市滨海新区高三上学期八校联考(理科)数学试卷】已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x -<-,记()0.20.24.14.1f a =, ()2.12.10.40.4f b =,()0.20.2log 4.1log 4.1f c =,则()A. a c b <<B. a b c <<C. c b a <<D. b c a << 【答案】A【解析】设120x x << ,则()()()()122112120f x f x x f x x f x x x ->⇒>所以函数()()f x g x x=在()0,+∞上单调递减,因为()f x 是定义在R 上的奇函数,所以()g x 是定义在R上的偶函数,因此()0.20.24.14.1f a =()()0.24.11gg =<, ()2.12.10.40.4f b =()()()2.120.40.40.5gg g =>> ,()0.20.2log 4.1log 4.1f c =()()()0.251log 4.1log 4.11,2g g g g ⎛⎫⎛⎫==∈ ⎪ ⎪⎝⎭⎝⎭,即a c b << ,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行 5.【2017届某某省高三教育质量诊断性联合考试数学(文)试卷】已知定义在R 上的奇函数()f x 在[)0,+∞上递减,若()()321f x x a f x -+<+对[]1,2x ∈-恒成立,则a 的取值X 围为( ) A. ()3,-+∞ B. (),3-∞- C. ()3,+∞ D. (),3-∞ 【答案】C7.【2018届某某省六校高三上学期第五次联考理数试卷】已知函数是上的奇函数,当时为减函数,且,则=( ) A. B.C.D.【答案】A【解析】∵奇函数满足f (2)=0, ∴f (−2)=−f (2)=0.对于{x |f (x −2)>0},当x −2>0时,f (x −2)>0=f (2), ∵x ∈(0,+∞)时,f (x )为减函数, ∴0<x −2<2, ∴2<x <4.当x −2<0时,不等式化为f (x −2)<0=f (−2), ∵当x ∈(0,+∞)时,f (x )为减函数, ∴函数f (x )在(−∞,0)上单调递减, ∴−2<x −2<0,∴0<x <2.综上可得:不等式的解集为{x ∣∣0<x <2或2<x <4} 故选D. 8.【2017—2018学年某某省某某市邗江区公道中学高一数学第二次学情测试题】()f x 是定义在R 上的偶函数,且对任意的(]0a b ∈-∞,,,当a b ≠时,都有()()0f a f b a b->-.若()()121f m f m +<-,则实数m 的取值X 围为_________. 【答案】(0,2)9. 【2017届某某省某某师X 大学附属中学高三高考模拟考试二数学试题】已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时,()()1f x x x =-.则关于m 的不等式()()2110f m f m -+-<的解集为__________. 【答案】[)0,1【解析】当0x >时,则()()()0,11x f x x x x x -<-=---=+,即()()1f x x x -=+,所以()()1f x x x =-+,结合图像可知:函数在[]1,1-单调递减,所以不等式()()2110f m f m -+-<可化为2220{111 111m m m m -->-≤-≤-≤-≤,解之得01m ≤<,应填答案[)0,1。
2014年高考数学二轮复习精品资料-高效整合篇专题06 不等式(文)(教学案)
一.考场传真1. 【2013年普通高等学校统一考试试题大纲全国文科】不等式222x -<的解集是( ) (A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,22.【2013年普通高等学校招生全国统一考试(北京卷)文】设,,a b c R ∈,且a b >,则( )(A )ac bc > (B )11a b < (C )22a b > (D )33a b >3. 【2013年全国高考统一考试天津数学(文)卷】设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件 (D) 既不充分也不必要条件4. 【2013年普通高等学校招生全国统一考试(安徽卷文科)】若非负数变量,x y满足约束条件124x y x y -≥-⎧⎨+≤⎩,则x y +的最大值为__________.5.【2013年普通高等学校统一考试江苏卷】抛物线2y x =在1x =处的切线与两坐标轴围成的三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内任意一点,则2x y +的取值范围是.直线经过(0,1)B -,2u x y =+取得最大值,即min 2u =-. 故2x y +的取值范围是1[2,]2-.6.【2013年全国高考统一考试天津数学(文)卷】设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为( )(A) -7 (B) -4 (C) 1(D) 27.【2013年普通高等学校招生全国统一考试(四川卷)文科】若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A )48 (B )30 (C )24 (D )168.【2013年普通高等学校招生全国统一考试(湖北卷)文科】某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元9.【2013年全国高考统一考试天津数学(文)卷】 设a + b = 2, b >0, 则1||2||a a b的最小值为 .二.高考研究I.考纲要求:1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
2020届高考数学二轮复习专题《利用基本不等式求代数式的最值问题》
(2)已知正数 a,b 满足 a+b+1a+9b=10,则 a+b 的取值范围是________. [2,8]
令 a+b=t,则1a+9b=10-t,那么(a+b)1a+9b=10t-t2=10+ba+9ba≥16,得 到不等式 t2-10t+16≤0,解得 2≤t≤8,即 a+b 的取值范围是[2,8].
3(当且仅当 2
xy=
6 时,即 xy
xy=3,
且 x+2y=5 时,即xy= =31
x=2 或y=32
时,等号成立).故(x+1)(x2yy+1)的最小值为 4 3.
若正数 a,b 满足1a+1b=1,则a-4 1+b1-61的最小值为________. 16
因为 a>0,b>0,1a+1b=1,所以 a+b=ab, 则a-4 1+b1-61=4((ba--11))+1(6b(-a-1)1)=a4bb-+(1a6+a- b)+201=4b+16a-20. 又 4b+16a=4(b+4a)1a+1b=20+4×ba+4ba≥20+4×2× ba·4ba=36, 当且仅当ba=4ba且1a+1b=1,即 a=32,b=3 时取等号,所以a-4 1+b1-61≥36-20=16.
令 a= 1-x,b= x+3,则 a2+b2=4.
又由-1≤x≤3 可知 a,b∈[0,2].由(a+4b)2=a2+a22+abb+2 b2=1+a22+abb2,
当 ab=0 时,a+b=2;当 ab≠0,(a+4b)2=1+a22+abb2=1+ab+2 ab,由ba+ab≥2 得 1<(a+4b)2≤2,
二元变量最值问题的求解方法并不仅限于用基本不等式,大致有如下的三种方 法: 1 化为一元用函数. 2 保留二元用不等式. 3 引入第三元用线性规划(或其它的几何意义).
专题06 方程与不等式的实际运用【考点精讲】
解:(1) 5+3=21+3=8, 5313 是“ 共生数” ,
6+7=13 24+3=14,
6437 不是“ 共生数” . (2)设“共生数” n 的千位上的数字为a, 则十位上的数字为2a, 设百位上的数字为b, 个位上的数字为c, 1 a < 5, 0 b 9,0 c 9, 且 a,b,c 为整数, 所以: n 1000a 100b 20a c 1020a 100b c, 由“共生数”的定义可得: a c 22a b,
程是( B ) A. 0.631 x 0.68 B. 0.631 x2 0.68 C. 0.631 2x 0.68 D. 0.631 2x2 0.68
【例9】(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全 国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方 面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参 观人数10万人,5月份接待参观人数增加到12.1万人. (1)求这两个月参观人数的月平均增长率; (2)按照这个增长率,预计6月份的参观人数是多少?
即 y 0.85 ,
答:甲工程队后期每天至少施工 0.85千米.
【例4】(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚 到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回 家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少 用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍. (1)求小刚跑步的平均速度; (2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校? 请说明理由.
a b 3,
此时: n 1227, F n 1227 409 ,而 4+0+9=13 不为偶数,舍去,
专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【原卷版】
【热点聚焦】函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x ∈[0,2]与函数f(x)=|x|,x∈[-2,0].2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.常见函数定义域的求法类型x满足的条件n f x(n∈N*)f(x)≥02()(n∈N*)f(x)有意义21()n f x1与[f(x)]0f(x)≠0f x()log a f(x)(a>0且a≠1)f(x)>0a f(x)(a>0且a≠1)f(x)有意义tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( ) A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)2【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .222⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4B .3C .2D .1【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313xf x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2B .[]1,3C .[]0,2D .[]2,3【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__.【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x a f x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y x3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4D .[]0,44.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,45.(2022·江西·高三阶段练习(文))函数()s 2π2inx f x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1]B .(﹣1,12)C .[﹣1,12)D .(0,1)7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mx f x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .210.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____.13.(2023·全国·高三专题练习)已知函数()121xf x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 四、填空题14.(2022·全国·高三专题练习)函数()02112y x x x =++-的定义域是________.15.(2022·上海闵行·二模)已知函数()()41log 42xf x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;16.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1af x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞; ②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增: ④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__.。
高考数学复习考点题型解题技巧专题讲解06 函数图像辨析
高考数学复习考点题型解题技巧专题讲解 第6讲 函数图像识别辨析专项突破高考定位函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已经成为各省市高考命题的一个热点。
在高考中经常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。
考点解析(1)知图选式的方法 (2)知式选图的方法(3)同一坐标系中辨析不同函数图像的方法(4)解决需要我们利用图像所提供的信息来分析解决问题这类题目的常用方法 定性分析法,也就是通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征来分析解决问题;定量计算法,也就是通过定量的计算来分析解决问题;函数模型法,也就是由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 题型解析类型一、由解析式判定图像例1-1(含参型).(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是()A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 知式选图的方法(1)从函数的定义域,判断图像左右的位置;从函数的值域,判断图像上下的位置; (2)从函数的单调性(有时可借助导数判断),判断图像的变化趋势; (3)从函数的奇偶性,判断图像的对称性; (4)从函数的周期性,判断图像的循环往复; (5)从函数的极值点判断函数图像的拐点.练.(2021•重庆模拟)函数()(kx f x e lnx k =⋅为常数)的图象可能是()A .B .C .D .【解答】解:令()0kx f x e lnx =⋅=,解得1x =,即函数()f x 有且只有一个零点,故D 不可能,()(1)kxe f x kxlnx x'=+,令y xlnx =,则1y lnx '=+,令0y '>,则1x e>,即函数y 在1(e,)+∞上单调递增,令0y '<,则1x e<,即函数y 在1(0,)e上单调递减,∴当1x e =时,y 取得最小值,为1e -,即1[xlnx e∈-,)+∞,且0x →时,0xlnx →,x →+∞时,xlnx →+∞,故当0k e 剟时,()0f x '…,()f x 单调递增,选项A 可能,当k e >时,()f x '存在两个零点1x ,2x ,且12101x x e<<<<,()f x ∴在1(0,)x 和2(x ,)+∞上单调递增,在1(x ,2)x 上单调递减,选项B 可能,当0k <时,()f x '存在唯一零点0x ,且01x >,()f x ∴在0(0,)x 上单调递增,在0(x ,)+∞上单调递减,选项C 可能,故选:ABC . 练.函数()mf x x x=-(其中m ∈R )的图像不可能是() A . B .C .D .【答案】C【解析】易见,0(),0m x x m xf x x m x x x x ⎧->⎪⎪=-=⎨⎪--<⎪⎩,① 当0m =时()=f x x ()0x ≠,图像如A 选项;②当0m >时,0x >时()m f x x x =-,易见,my x y x==-在()0,+?递增,得()f x 在()0,+?递增; 0x <时()m f x x x =--,令x t -=,得(),0mf t t t t=+>为对勾函数, 所以()f t在)+∞递增,(递减,所以根据复合函数单调性得()f x在(,-∞递减,()递增,图像为D ; ③当0m <时,0x <时()m f x x x =--,易见,my x y x=-=-在(),0-?递减,故()f x 在(),0-?递减;0x >时()m m f x x x x x-=-=+为对勾函数, 所以()f x在(递减,)+∞递增,图像为B. 因此,图像不可能是C. 故选:C. 【点睛】本题考查了利用对勾函数单调性来判断函数的图像,属于中档题.例1-2(原导混合型)(2021·重庆市南坪中学校高二月考)函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为()A .B .C .D .【答案】A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误,故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. .同一坐标系中辨析不同函数图像的方法解决此类问题时,常先假定其中一个函数的图像是正确的,然后再验证另一个函数图像是否符合要求,逐项进行验证排查.练.函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为()A .①④B .②③C .③④D .①②③【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+. 由①②中函数()g x 的图象得0ac bc >⎧⎨<⎩, 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a <,所以()f x 的图象开口向下,此时①②均不符合要求; 若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->,又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得0ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->,又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求;若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .类型二、由图像判定解析式例2-1(2019·甘肃·兰州五十一中高一期中)若函数()y f x =的图象如图所示,则函数()f x 的解析式可以为()A .21()xf x x+=B .()2ln 2()x f x x+=C .33()xf x x+= D .ln ()x f x x=【答案】A 【分析】根据函数图象的基本特征,利用函数定义域、值域、奇偶性等排除可得答案. 【详解】选项B 根据图象可知:函数是非奇非偶函数,B 排除; 选项C 根据图象x 趋向于-∞,函数值为负,与C 矛盾故排除; 选项D 函数图象在第三象限,0x <,与D 的定义域矛盾,故排除; 由此可得只有选项A 正确; 故选:A. 【点睛】本题考查函数图象判断解析式,此类问题主要利用排除法,排除的依据为函数的基本要素和基本性质,如定义域、值域、零点、特殊点、奇偶性、单调性等,属于中等题. 例2-2.函数y =f (x )的图象如图所示,则函数y =f (x )的解析式可能为()A .ln 1xy x =+ B .cos 1xy x =+ C .1xe y x =+D .1x y x =+【答案】C【分析】结合函数的图象,从函数的定义域,0x =和0x >时判断.【详解】由()y f x =图象得函数的定义域为{}1,x x x ≠-∈R ∣,排除A ;由()00f >,排除D ;由0x >时,()0f x >,排除B .故选:C.例2-3(2020·浙江·台州市黄岩中学高三月考)某函数的部分图像如下图,则下列函数中可作为该函数的解析式的是()A .sin 2sin 2xxy e =B .cos2cos 2xxy e =C .cos2cos 2xx y e =D .cos cos xxy e =【答案】C 【分析】利用函数值恒大于等于0,排除选项A 、B 、D ,则答案可得.【详解】当x ∈R 时,函数值恒大于等于0,而A 选项中,当,02x π⎛⎫∈- ⎪⎝⎭时,sin 2sin 20xxy e=<,故排除A ;当x ∈R 时,函数值恒大于等于0,而B 选项中,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,cos2cos20x xy e =<,故排除B ;当x ∈R 时,函数值恒大于等于0,而D 选项中,当3,22x ππ⎛⎫∈ ⎪⎝⎭时,cos cos 0x xy e =<,故排除D ; 因此,C 选项正确; 故选:C . 【点睛】本题考查由函数图象判断函数的解析式,考查运算求解能力、数形结合思想,体现了数学运算的核心素养,破解此类问题的技巧:一是活用性质,常利用函数的单调性与奇偶性来排除不适合的选项;二是利用特殊点排除不适合的选项,从而得出合适的选项.本题属于中等题.例2-4(2019·全国·高三月考(理))已知函数()y f x =图象如下,则函数解析式可以为()A .()()()sin 2ln 1f x x x π=+B .()()2sin 222xxx x f x π-=-C .()()()sin 222x x f x x π-=-D .()()()sin 222x x f x x π-=+【答案】C 【分析】根据图象可知函数()y f x =为偶函数,且定义域为R ,然后分析各选项中各函数的定义域与奇偶性,结合排除法可得出正确选项. 【详解】由图象可知,函数()y f x =的定义域为R ,且为偶函数.对于A 选项,()()()sin 2ln 1f x x x π=+的定义域为{|0}x x ≠,不合乎题意; 对于B 选项,令220xx--≠,得0x ≠,则函数()()2sin 222xxx x f x π-=-的定义域不为R ,不合乎题意;对于C 选项,函数()()()sin 222x x f x x π-=-的定义域为R ,且()()()()()()sin 222sin 222x x x x f x x x f x ππ---=--=-=,该函数为偶函数,合乎题意; 对于D 选项,函数()()()sin 222x x f x x π-=+的定义域为R ,且()()()()()()sin 222sin 222x x x x f x x x f x ππ---=-+=-+=-,该函数为奇函数,不合乎题意. 故选:C. 【点睛】本题考查根据函数图象选择解析式,一般要分析函数的定义域、奇偶性、单调性、零点与函数值符号,结合排除法求解,考查推理能力,属于中等题. 总结:知图选式的方法(1)从图像的左右、上下分布,观察函数的定义域、值域 (2)从图像的变化趋势,观察函数的单调性;(3)从图像的对称性方面,观察函数的奇偶性; (4)从图像的循环往复,观察函数的周期性.类型三、读图提取性质求参例3-1.若函数()2()mx f x e n =-的大致图象如图所示,则()A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 【分析】 令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断. 【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x mn =>, 当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C ,故选:B练.已知常数a 、b 、R c ∈,函数()2bx cf x x a+=-的图象如图所示,则a 、b 、c 的大小关系用“<”可以表示为_______.【答案】b c a <<【解析】若0a <,则函数()f x 的定义域为R ,不合乎题意, 若0a =,则函数()2bx cf x x +=的定义域为{}0x x ≠,不合乎题意,若0a >,则函数()2bx cf x x+=的定义域为{x x ≠,合乎题意. 由图可知()00c f a==-,可得0c =,则()2bx f x x a =-,当0x <<20x a -<,则20x x a <-,则()20bxf x x a=>-,所以0b <. 因此,b c a <<. 故答案为:b c a <<.例3-2.(2021·全国·高三专题练习)已知函数()()4cos xx f ex ωϕ+=(0ω>,0ϕπ<<)的部分图象如图所示,则ωϕ=()A .12B .1C .2D .2π【答案】C 【分析】由函数零点代入解析式待定系数ϕ、ω. 【详解】由图象可知,由(0)0f =得cos 0ϕ=,又0ϕπ<<,解得2ϕπ=.则()4cos 4sin 2x xx x ee f x πωω⎛⎫+ ⎪⎝⎭==-, 法一:由(1)0f =得sin 0ω=,解得()k k Z ωπ=∈, 又当(0,1)x ∈,(0,)x ωω∈时,恒有()0f x <, 即sin 0x ω>恒成立,故0ωπ<≤,1k ∴=,即ωπ=,则2ωϕ=. 法二:由sin 0x ω=,解得()k x k Z πω=∈,故两相邻零点的距离为πω,由图象可知1πω=,则ωπ=,则2ωϕ=. 故选:C. 【点睛】已知函数图象待定解析式,一是从函数的特征点入手,代入点的坐标从而待定系数,如函数的零点、极值点、与纵轴的交点、已知横纵坐标的点等等;二是从函数的特征量入手,找到等量(不等量)关系待定系数(范围),如函数的周期、对称轴、切线斜率、图象上两点间的距离、相关直线所成角等等. 练.已知函数sin()()xx f x a ωϕπ+=(0,0,)a R ωϕπ><<∈,在[]3,3-的大致图象如图所示,则a ω可取A .2πB .πC .2πD .4π【答案】B【解析】()f x 为[]3,3-上的偶函数,而x y a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k Z πϕπ=+∈. 因为0ϕπ<<,故2ϕπ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a a π==,所以12a =. 综上()21k aωπ=+,k ∈N ,故选B .类型四、实际情景提取图像例4-1.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,12l l //,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于点E 、D ,设弧FG 的长为x (0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是()A .B .C .D .【答案】D【解析】依题意,正ABC 的高为1,则其边长BC =,如图,连接OF ,OG ,过O 作ON ⊥l 1于N ,交l 于点M ,过E 作EH ⊥l 1于H ,因OF =1,弧FG 的长为x (0)x π<<,则F O G x ∠=,又12////l l l ,即有1122FON FOG x ∠=∠=,于是得cos cos 2xOM OF FON =⋅∠=,1cos 2x EH MN ON OM ==-=-,2cos )sin 6032EH xEB ==-,因此,2cos )22x xy EB BC CD EB BC =++=+=-=,即()2xf x=,0πx<<,显然()f x在(0,)π上单调递增,且图象是曲线,排除选项A,B,而2312432fππ⎛⎫==<=⎪⎝⎭⎭,C选项不满足,D选项符合要求,所以函数()y f x=的图像大致是选项D.故选:D练.已知P是圆22(1)1x y-+=上异于坐标原点O的任意一点,直线OP的倾斜角为θ,若||OP d=,则函数()d fθ=的大致图象是A.B.C.D.【答案】D【解析】π2cos,[0,)2π2cos,(,π)2dθθθθ⎧∈⎪⎪=⎨⎪-∈⎪⎩,所以对应图象是D练。
专题06三点共线-2020年高考数学多题一解篇(文理通用)(解析版)
2020年高考数学二轮复习微专题(文理通用)多题一解之三点共线篇【知识储备】 1、共线向量定理:向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa 。
2、A ,B ,C 三点共线,O 为A ,B ,C 所在直线外一点,则OA →=λOB →+μOC →且λ+μ=1。
特别,当A 为线段BC 中点时,OA →=12OB →+12OC →。
3.向量共线的坐标表示:若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0。
提示:a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0。
【走进高考】【例】【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uuu r ,120F B F B ⋅=u u u r u u u u r,则C 的离心率为____.【答案】2【解析】法一:由1F A AB =uuu r uuu r可得1,,F A B 三点共线且A 为线段1F B 的中点,由题意知F 1,F 2的坐标分别为(,0),(,0)-c c ,设A 点的坐标为(,)-b x x a ,B 点的坐标为11(,)x y ,由1F A AB =uuu r uuu r 可得11(,(,)=)+--+b bx c x x x y x a a, 解得B 点的坐标为2(2,)+-b x c x a ,所以1222=(22,),2,()+-=-u u u r u u u u r b bF B x c x F B x x a a,又120F B F B ⋅=u u u r u u u u r , 则有22242(22)0++=b x x c x a(1),又2=(2)-⨯+b bx x c a a 可得4=-c x ,代入(1)式得223=b a ,∴该双曲线的离心率为2c e a ====. 法二:如图,由1,F A AB =u u u r u u u r得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120F B F B ⋅=u u u r u u u u r,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=o又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为221()1(3)2c bea a==+=+=.【名师点睛】本题结合平面向量考查双曲线的渐近线和离心率,渗透了逻辑推理、直观想象和数学运算素养,采取几何法,利用数形结合思想解题.解答本题时,通过向量关系得到1F A AB=和1OA F A⊥,从而可以得到1AOB AOF∠=∠,再结合双曲线的渐近线可得21,BOF AOF∠=∠进而得到2160,BOF AOF BOA∠=∠=∠=o从而由tan603ba=︒=可求离心率.【例】【2019年高考全国Ⅰ卷理数】已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3AP PB=u u u r u u u r,求|AB|.【答案】(1)3728y x=-;(2413【解析】设直线()()11223:,,,,2l y x t A x y B x y=+.(1)由题设得3,04F⎛⎫⎪⎝⎭,故123||||2AF BF x x+=++,由题设可得1252x x+=.由2323y x ty x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t+-+=,则1212(1)9tx x-+=-.从而12(1)592t--=,得78t=-.所以l的方程为3728y x=-.(2)法一:由题意设P点的坐标为(,0)x,则1122=(,),,()--=-u u u r u u u rAP x x y PB x x y,由3AP PB=u u u r u u u r可得123y y=-.由2323y x ty x⎧=+⎪⎨⎪=⎩,可得2220y y t-+=.所以122y y+=.从而2232y y-+=,故211,3y y=-=.代入C 的方程得1213,3x x ==.故||AB =.法二:过A 点、B 点分别向x 轴作垂线,垂足分别为M ,N ,易知AMP BNP ∆≈∆,由3AP PB =u u u r u u u r可得123y y =-.下同法一。
高考数学专项复习专题二一元二次函数一元二次函数方程和不等式
专题二一元二次函数、方程和不等式06 等式性质与不等式性质题型一由不等式性质比较数(式)大小题型二作差法比较代数式大小题型三作商法比较代数式大小题型四由不等式性质证明不等式题型五利用不等式求值或取值范围07 基本不等式(1)题型一由基本不等式比较大小题型二由基本不等式证明不等关系题型三基本不等式求积的最大值题型四基本不等式求和的最小值题型五二次与二次(或一次)的商式的最值问题07 基本不等式(2)题型一条件等式求最值题型二基本不等式的恒成立问题题型三对勾函数求最值题型四基本不等式的应用08 二次函数与一元二次方程、不等式(1)题型一解含有参数的一元二次不等式题型二由一元二次不等式的解确定参数题型三一元二次方程根的分布问题题型四一元二次不等式与二次函数、一元二次方程的关系08 二次函数与一元二次方程、不等式(2)题型一 一元二次不等式在实数集上恒成立问题 题型二 一元二次不等式其他恒成立问题 题型三 一元二次不等式有解问题 题型四 一元二次不等式的应用一元二次函数、方程和不等式讲义§2.1等式性质与不等式性质 1.作差法比较大小0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=.2.不等式的基本性质(1)(对称性)a b b a >⇔> (2)(传递性),a b b c a c >>⇒> (3)(可加性)a b a c b c >⇔+>+(4)(可乘性),0a b c ac bc >>⇒>;,0a b c ac bc ><⇒< (5)(同向可加性),a b c d a c b d >>⇒+>+ (6)(正数同向可乘性)0,0a b c d ac bd >>>>⇒> (7)(正数乘方法则)0(,1)n n a b a b n N n >>⇒>∈>且 §2.2基本不等式① 重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式: ()2222()()a b a b a b R +≥+∈,② 基本不等式:2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥; 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要满足条件:“一正.二定.三相等”. §2.3二次函数与一元二次方程.不等式b06 等式性质与不等式性质题型一 由不等式性质比较数(式)大小1.若a b <,d c <,且()()0c a c b --<,()()0d a d b -->,则a ,b ,c ,d 的大小关系是( ) A .d a c b <<< B .a c b d <<< C .a d b c <<< D .a d c b <<<【答案】A【解析】因为()()0c a c b --<,a b <,所以a c b <<,因为()()0d a d b -->,a b <,所以d a <或d b >,而a c b <<,d c <,所以d a <. 所以d a c b <<<. 故选:A .2.已知,,R a b c ∈,下列命题为真命题的是( ) A .若a b >,则22ac bc > B .若a b >,c d >,则a d b c ->- C .若a b >,c d >,则ac bd > D .若22a b >,且0ab <则11a b< 【答案】B【解析】:A 若,0a b c >=则220ac bc ==,A 不正确;B :因为a b >,c d >,则c d -<-,所以a d b c ->-,故B 正确;C :当0b c ==时,可得不等式不成立,故C 不正确.D :若3,2a b ==-,满足条件,但11a b>,所以D 不正确. 故选:B .3.已知,,a b c ∈R ,若a b c >>,且230a b c ++=,则下列不等关系正确的是( ) A .ac bc < B .a b c b >C .c c a c b c>-- D .()2a bc abc +>+【答案】ACD【解析】230a b c ++=,a b c >>,0c ∴<,0a >, 对于A ,a b >,0c <,ac bc ∴<,A 正确;对于B ,当0b =时,满足a b c >>,此时0a b c b ==,B 错误; 对于C ,a b c >>,0a c b c ∴->->,11a cbc ∴<--,又0c <,c c a c b c∴>--,C 正确; 对于D ,a b >,0a b ∴->,()()a a b c a b ∴->-,即2a ab ac bc ->-,整理可得:故选:ACD.4.已知g b 糖水中含有g a 糖(0b a >>),若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大),根据这个事实,下列不等式中一定成立的有( ) A .a a m b b m+<+B .22mm a m a b m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313ba -<- 【答案】ABD【解析】对于A ,由题意可知a a mb b m+<+,正确; 对于B ,因为2mm <,所以2222m mm ma m a m m ab m b m m b +++-+<=+++-+,正确; 对于C ,22a m a m m a mb m b m m b m ++++<=++++即()()()()22a m b m a m b m ++<++,错误; 对于D ,1122131131311333b b b b a --+<==<--+,正确. 故选:ABD5.已知1m n >>,则下列不等式中一定成立的是( ) A .11+>+m n n mB .->-m n m nC .3322+>m n mnD .3322+>m n m n【答案】ABC【解析】对于A 项,11111,,m n m n n m n m>>>∴+>+,故A 正确; 对于B 项,()()22222220m nm nmn n n n ---=->-=,结合0,0m n m n ->->可得->-m n m n ,故B 正确;对于C 项,()()323222222()()m mn n mn m m n n n m m n m mn n -+-=-+-=-+-,222220,0m mn n m n n m n +->+->->,即3322+>m n mn ,故C 正确;对于D 项,当3,2m n ==时,33227835236m n m n +=+=<=,故D 错误; 故选:ABC题型二 作差法比较代数式大小1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b< 【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误.而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.2.设2243P a a =-+,()()13Q a a =--,a ∈R ,则有( ) A .P Q ≥ B .P Q > C .P Q < D .P Q ≤【答案】A【解析】解:∵ ()()22214330P a a Q a a a -=-+---=≥,∵ P Q ≥. 故选:A.3.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B【答案】B 【解析】()2234A B a ab ab b-=+--22a ab b =-+223204b a b ⎛⎫=-+ ⎪⎝⎭≥,A B ∴≥.故选:B4.已知a b c d ,,,均为实数,下列命题正确的有( ) A .若0ab >,0bc ad ->,则0c da b ->B .若0ab >,0c da b ->,则0bc ad ->C .若0bc ad ->,0c da b->,则0ab >D .如果0a b >>,0c d >>,则bc bd > 【答案】ABCD【解析】对于A ,因为0ab >,0bc ad ->,所以0c d bc ada b ab --=>,故A 正确; 对于B ,因为0ab >,又0c d a b ->,即0bc adab ->,所以0bc ad ->,故B 正确; 对于C ,因为0bc ad ->,又0c d a b ->,即0bc adab->,所以0ab >,故C 正确; 对于D ,因为0a b >>,0c d >>,,所以bc bd >,故D 正确. 故选:ABCD5.已知221110,1,1,,a A a B a C D -<<=+=-==,则,,,A B C D 的大小关系是________.(用“>”连【答案】C A B D >>> 【解析】由题意不妨取14a =-,这时171544,,,161635A B C D ====. 由此猜测:C A B D >>>下面给出证明:()()2221324111111a a a a a C A a a a a⎡⎤⎛⎫-++⎢⎥ ⎪-++⎝⎭⎢⎥⎣⎦-=-+==+++, 又21310,0,0,24a a a C A ⎛⎫+>->++>∴> ⎪⎝⎭222(1)(1)20A B a a a A B -=-=>∴>+-,,()2221512411111a a a a a B D a a a a⎡⎤⎛⎫--⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦-=--==---. 又∵102a -<<,10a ∴->,又∵22151150,24224a B D ⎛⎫⎛⎫--<---<∴> ⎪ ⎪⎝⎭⎝⎭,综上所述,C A B D >>>. 故答案为:C A B D >>>.6.现有A B C D 、、、四个长方体容器,A B 、的底面积均为2x ,高分别为,x y ;C D 、的底面积均为2y ,高也分别为x y 、 (其中x y ≠),现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x 与y 大小的情况下有没有必胜的方案?若有的话,有几种? 【答案】未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案.【解析】由条件得3223,,,,A B C D V x V x y V xy V y ====,则()()()()()23223A B C D V V V V x x y xy y x y x y +-+=+-+=+-当x y >时, A B C D V V V V +>+,当x y <时, A B C D V V V V +<+()()()()()322322A C B D V V V V x xy x y y x y x y +-+=+-+=+-当x y >时, A C B D V V V V +>+,当x y <时, A C B D V V V V +<+()()()()()233220A D B C V V V V x y x y xy x y x y +-+=+-+=-+>所以未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案. 题型三 作商法比较代数式大小(2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110xx x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭.∵当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ∵当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且ab 时,a b b a a b a b >.2.已知0a >,0b >,试比较+a b 与a b b a+的大小; 【答案】a ba bb a++(当且仅当a b =时取等号) 【解析】方法一:由题意()()()a b a b a b a a b b a b b a a b ba ab ab--+--⎛⎫+-+==⎪⋅⎝⎭()()2a ba bab+-=,因为0a >,0b >,所以0a b +>,()20a b-≥,0ab >,所以()()20a ba bab+-≥,当且仅当a b =时等号成立,所以a ba b b a+≤+(当且仅当a b =时取等号). 方法二:由()()()()a b a b a b aba ab b a b ab ba ab ab ab a bab a b +++-++-===+++()2a babab-+==()211a b ab-+,当且仅当a b =时等号成立,所以a ba bb a++(当且仅当a b =时取等号). 3.设,a b R +∈,试比较a b a b 与b a a b 的大小. 【答案】当a b =时两者相等;当a b 时a b b a a b a b >.【解析】依题意,,a b R +∈,当ab 时,a ba b b a a b a a b b -⎛⎫= ⎪⎝⎭:当0a b >>时,1,0a a b b >->,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭;当0b a >>时,01,0b a b a <<-<,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭.故当ab 时,1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭,即a b b a a b a b >.4.(1)设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小;(2)已知a ,b ,c ∵{正实数},且a 2+b 2=c 2,当n ∵N ,n >2时比较c n 与a n +b n 的大小. 【答案】(1)(x 2+y 2)(x -y )>(x 2-y 2)(x +y );(2)a n +b n <c n . 【解析】(1)(x 2+y 2)(x -y )-(x 2-y 2)(x +y )()()()222x y x y x y ⎡⎤=-+-+⎣⎦()()2x y xy =-⨯-因为0x y <<, 则0,20x y xy -<-<, 故()()20x y xy -⨯->, 即(x 2+y 2)(x -y )-(x 2-y 2)(x +y )>0 (x 2+y 2)(x -y )>(x 2-y 2)(x +y ).(2)∵a ,b ,c ∵{正实数},∵a n ,b n ,c n >0.而n n n a b c +=n na b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∵a 2+b 2=c 2,则22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1,∵0<a c <1,0<bc<1. ∵n ∵N ,n >2,∵2na a c c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,2nb bc c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭. ∵n n n a b c +=n n a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭<22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1. ∵a n +b n <c n .1.设a ,b 为正实数,则下列命题中是真命题的是( ) A .若221a b -=,则1a b -< B .若111b a-=,则1a b -<C .若1a b -=,则1a b -<D .若1a ,1b ,则1a b ab --【答案】AD【解析】对于A 选项,由a ,b 为正实数,且221a b -=,可得1a b a b-=+,所以0a b ->, 所以0a b >>, 若1a b -≥,则11a b≥+,可得1a b +≤,这与0a b a b +>->矛盾,故1a b -<成立,所以A 中命题为真命题;对于B 选项,取5a =,56b =,则111b a -=,但5516a b -=->,所以B 中命题为假命题;对于C 选项,取4a =,1b =,则1a b -=,但31a b -=>,所以C 中命题为假命题;对于D 选项,由1,1a b ≤≤,则()()()()2222222211110a b ab a b a b a b---=+--=--,即()()221a b ab -≤-,可得1a b ab --,所以D 中命题为真命题.故选AD.2.已知三个不等式:0,0,0c dab bc ad a b>->->(其中a b c d ,,,均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成正确命题的个数是______. 【答案】3【解析】若0,0ab bc ad >->成立,不等式0bc ab ->两边同除以ab 可得0c da b->,即0,0c dab bc ad a b>->⇒->; 若0,0c d ab a b >->成立,不等式0c da b ->两边同乘ab ,可得0bc ad ->,即0,00c dab bc ad a b>->⇒->;若0c d a b ->,0bc ad ->成立,则0c d bc ada b ab --=>,又0bc ad ->,则0ab >, 即0c da b->,00bc ad ab ->⇒>. 综上可知,以三个不等式中任意两个为条件都可推出第三个不等式成立,故可组成的正确命题有3个.故答案为:3.3.设n N ∈,1n >,1A n n =--,1B n n =+-,试比较A 与B 的大小. 【答案】A B >【解析】()()11111111n n n n n n A n n n n n n --+---=--===+-+-,同理可得11B n n=++,n N ∈,1n >,所以11n n n n +-<++,则1111n n n n>+-++,因此,A B >,故答案为A B >. 3.若0a b >>,0c d <<,||||b c > (1)求证:0b c +>; (2)求证:22()()b c a da cb d ++<--; (3)在(2)中的不等式中,能否找到一个代数式,满足2()bc a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d +++<<---.【解析】(1)因为||||b c >,且0,0b c ><,所以b c >-,所以0b c +>.(2)因为0c d <<,所以0c d ->->.又因为 0a b >>,所以由同向不等式的相加性可将以上两式相加得0a c b d ->->.所以22()()0a c b d ->->. 所以22110()()a c b d <<--,因为,a b d c >>,所以由同向不等式的相加性可将以上两式相加得a d b c +>+. 所以0a d b c +>+>,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d ++<--.(3)因为0b c +>,22110()()a c b d <<--, 所以22()()b c b ca cb d ++<--,因为0b c a d <+<+,210()b d >-,所以22()()b c a db d b d ++<--,所以222()()()b c b c a da cb d b d +++<<---. 所以在(2)中的不等式中,能找到一个代数式2()b cb d +-满足题意.4.设绝对值小于1的全体实数构成集合S ,在S 中定义一种运算“*”,使得*1a ba b ab+=+,求证:如果a ,b S ∈,那么*a b S ∈. 【答案】证明见解析【解析】由题意,绝对值小于1的全体实数构成集合S ,因为a S ∈,b S ∈,所以1a <,1b <,可得21a <,21b <, 则210b ->,210a -<,所以()()22110ba--<,即222210a b a b +--<,所以2222212a b ab ab a b ++<++,即()()221a b ab +<+,所以()()2211a b ab +<+,即11a bab+<+,所以*a b S ∈. 5.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证xx a+>y y b +. 【答案】见解析【解析】,,,a b x y 都是正数,且1a >1b,x >y ,,x y a b a b x y∴>∴<, 故11a b x y +<+,即0x a y b x y ++<<, x yx a y b∴>++. 题型五 利用不等式求值或取值范围1.实数x ,y ,z 满足0x y z ++=,0xyz >,若111T x y z=++,则( ) A .0T > B .0T < C .0T =D .0T ≥【答案】B【解析】因为0x y z ++=且0xyz >,所以不妨设0x >,则0y <,0z <, 则()2y x z xz xy yz xz y xzT xyz xyz xyz++++-+===. 因为0x >,0z <,所以0xz <,又20y -<, 所以20y xz -+<,又0xyz >,所以0T <. 故选:B.2.设实数,x y 满足01xy <<且01x y xy <+<+,那么,x y 的取值范围是 A .1x >且1y > B .01x <<且1y < C .01x <<且01y << D .1x >且01y << 【答案】C【解析】∵1x y xy +<+, ∵10,x xy y -+-< ∵()110,x y y -+-<∵()()110,x y --< ∵()()110,x y -->∵1x >,1y >或1x <,1y <.又∵01xy <<,0x y +>,∵01x <<,01y <<. 故选C.3.设实数x ,y 满足238xy ≤≤,249x y ≤≤,求34x y的最大值. 【答案】27【解析】令()3224mn x x xy y y ⎛⎫=⋅ ⎪⎝⎭,则3422m n n m x y x y -+-⋅=⋅,所以2324m n n m +=⎧⎨-=-⎩,解得2,1m n ==-,所以()232124x x xy y y -⎛⎫=⋅ ⎪⎝⎭,由题意得2249,38x xy y≤≤≤≤, 所以2221111681,83x y xy ⎛⎫≤≤≤≤ ⎪⎝⎭,所以()[]2321242,27x x xy y y -⎛⎫=⋅∈ ⎪⎝⎭.故34x y 的最大值为27. 故答案为:274.若108a b -<<<,求a b +的取值范围. 【答案】018a b <+<【解析】当0a ≥时有08a ≤<,08b <<,故016a b <+<,即0616a <+<; 当0a <时,100a -<<,故010a <-<,因为108b -<<所以1018a b -<-+< 又a b <,所以018a b <-+<,即018a b <+<. 综上018a b <+<.5.已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ 【答案】137x y ≤-≤【解析】令3()()x y s x y t x y -=++- ()()s t x s t y =++-则31s t s t +=⎧⎨-=-⎩, 12s t =⎧∴⎨=⎩, 又11x y -≤+≤∵ 13x y ≤-≤, 22()6x y ∴≤-≤⋯∵∴∵+∵得137x y ≤-≤.07 基本不等式(1)题型一 由基本不等式比较大小 1.设b aM a b=+,其中a ,b 是正实数,且a b ,242N x x =-+-,则M 与N 的大小关系是( ).A .M N ≥B .M N >C .M N <D .M N ≤【答案】B【解析】∵a ,b 都是正实数,且a b ,∵22b a b a M a b a b=+>⋅=,即2M >, 又∵()2242442N x x x x =-+-=--++,()2222x =--+≤,即2N ≤,∵M N >, 故选B.2.已知0a >,0b >,2a b A +=,B ab =,2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤ B .A C B ≤≤ C .B C A ≤≤ D .C B A ≤≤【答案】D【解析】由于0a >,0b >,故2a b ab +≥,则2a bab +≥,即A B ≥, 结合02a b ab +<≤可得:12a bab ≥+,两边乘以ab 可得:2ab ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选D .3.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥C .2216a b +≥D .228a b +≥【答案】ABD【解析】A .因为4a b +=,所以24ab ≤,所以4ab ≤,取等号时2a b ==,故正确; B .因为1141a b a b ab ab++==≥,取等号时2a b ==,故正确; C .因为22222228a b a b a b ++≥⋅==,取等号时2a b ==,故错误;D .因为2222a b a b++≥,所以228a b +≥,取等号时2a b ==,故正确. 故选:ABD.4.设0a >,0b >,下列不等式恒成立的是( ). A .21a a +>B .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .()114a b a b ⎛⎫++≥ ⎪⎝⎭D .296a a +>E.若111a b+=,则4ab ≤【答案】ABC【解析】解:对于选项A ,由于22131024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴21a a +>,故A 恒成立;对于选项B ,由于12a a+≥,12b b +≥,∴114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当1a b ==时,等号成立,故B 恒成立;对于选项C ,由于2a b ab +≥,1112a b ab+≥,∴()114a b a b ⎛⎫++≥ ⎪⎝⎭,当且仅当a b =时,等号成立,故C 恒成立;对于选项D ,当3a =时,296a a +=,故D 不恒成立; 对于选项E ,111a b +=,∴111112a b a b=+≥⨯,∴4ab ≥,当且仅当2a b ==时,等号成立.故E 不恒成立,即不等式恒成立的是ABC , 故选ABC.题型二 由基本不等式证明不等关系1.若0x >,0y >,4x y +≤,则下列不等式中成立的是( ) A .114x y ≤+ B .111x y+≥C .2xy ≥D .11xy≥ 【答案】B【解析】对于A ,因为4x y +≤,所以114x y ≥+,所以A 不正确; 对于B ,若0,0x y >>,设,04x y a a +=<≤,得1x ya+=,所以11111114()2(22)1y x x y x y a x y a x y a a ⎛⎫⎛⎫+=++=++≥+=≥ ⎪ ⎪⎝⎭⎝⎭当且仅当2x y ==时,等号成立,所以B 正确;对于C ,因为0,0x y >>,由4x y +≤,所以42x y xy ≥+≥,即2xy ≤,当且仅当2x y ==时,等号成立,所以C 不正确;对于D ,由上面可知2xy ≤,则4xy ≤,得114xy ≥,所以D 不正确; 故选:B2.已知a,b,c 均为正实数,且a+b+c=1,求证:(1a -1)(1b -1)(1c-1)≥8.【答案】证明见解析【解析】主要考查不等关系与基本不等式.证明:因为a, b, c (0,),∈+∞且a+b+c=1,所以111(1)(1)(1)()()()2)22)8.a b c a a b c b a b c c a b c a b c b c a c b a a a b b c c b c a c b aa ab bc c ++-++-++----=⋅⋅=+++≥⨯⨯⨯⨯⨯=. 3.已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c>9.【答案】证明见解析【解析】∵a ,b ,c ∵R +,且a +b +c =1,∵1a +1b +1c =a b c a b c a b c a b c++++++++ , =3+b a +c a +a b +c b +a c +b c =3+⎛⎫+ ⎪⎝⎭b a a b +⎛⎫+ ⎪⎝⎭c a a c +⎛⎫+ ⎪⎝⎭c b b c ,≥3+2b a a b ⋅+2⋅c aa c +2⋅cb b c=3+2+2+2=9. 当且仅当a =b =c 时取等号, 所以1a +1b +1c>9.4.已知0a >,0b >,1a b +=,求证:11254a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【答案】见解析 【解析】()()()22222211254112541254a b a b ab a b a b ab a b ⎛⎫⎛⎫++⇔++⇔+++ ⎪⎪⎝⎭⎝⎭ 2243380(41)(8)0a b ab ab ab ⇔-+⇔--1a b +=,2212a b ab ∴+=-.104ab<,410ab ∴-,80ab -<. ∵(41)(8)0ab ab --成立,故原不等式成立.5.已知0,0,0a b c >>>,求证:32c a b a b b c a c +++++. 【答案】见解析【解析】设,,a b x b c y c a z +=+=+=,则0,0,0x y z >>>, 且()()22x y z z x ya abc b c y +++-=++-+=-=. 同理,,22x y z y z xb c +-+-==. 所以原不等式的左边222y z x z x y x y zx y z+-+-+-=++ 1322y x zx z y x y x z y z ⎡⎤⎛⎫⎛⎫⎛⎫=+++++-⎢ ⎪⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦133(222)222≥⨯++-=. 当且仅当,x y z x y x x z ==,且z yy z=,即,x y z a b c ====时,等号成立. 题型三 基本不等式求积的最大值1.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为( )(单位:cm 2).A .8B .10C .16D .20【答案】C【解析】设BC =x ,连结OC ,得OB =216x -,所以AB =2216x -, 所以矩形ABCD 面积S =2216x x -,x ∵(0,4), S =2()22222162161616x x x x x x -=-≤+-= . 即x 2=16﹣x 2,即x =22时取等号,此时max 16y =故选:C2.已知,a b 为正数,2247a b +=,则21a b +的最大值为( ) A .7B .3C .22D .2【答案】D【解析】222211411212222a b a b a b ⎛⎫+++=⨯+≤= ⎪⎝⎭,当且仅当2241a b =+时,取得最大值.故选:D3.(1)已知x ,y R +∈,求x y x y++的最大值;(2)求满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值,并说明理由. 【答案】(1)2 (2)2.见解析【解析】(1)∵x ,y R +∈,∵22212x y x y xy xyx y x y x y ⎛⎫+++==+≤ ⎪ ⎪+++⎝⎭, 当且仅当x y =时,对等号, ∵当x y =时,x y x y++的最大值为2.(2)∵a ,b R +∈,∵设0a m =>,0b n =>,2a m =,2b n =, ∵22222m n mn mn +≥=,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值, ∵222224242m n k m n k m n k mn +≥+≥=, ∵222k ≤,解得2k ≤,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值为2. 4.我们学习了二元基本不等式:设0a >,0b >,2a bab +≥,当且仅当a b =时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值. (1)对于三元基本不等式请猜想:设0,0,c 0,3a b ca b ≥ 当且仅当a b c ==时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设0,0,0,a b c >>>求证:2229a b ca b c abc(3)利用(1)猜想的三元基本不等式求最值:设0,0,c 0,1,a b a b c 求111a b c 的最大值.【答案】(1)33a b cabc (2)证明见解析(3)827 【解析】(1)通过类比,可以得到当0a >,0b >,0c >时33a b c abc ,当且仅当a b c ==时,等号成立;(2)证明:0a >,0b >,0c >,由(1)可得22232223a b c a b c ++≥,∴22233222333333a b c a b c a b c abca b c abc()()2229a b c a b c abc ∴++++≥(3)解:由(1)可得,33a b c abc ++⎛⎫≥ ⎪⎝⎭,即33a b c abc ++⎛⎫≤ ⎪⎝⎭,由题,已知0a >,0b >,0c >,1a b c ++=,10a b c ∴-=+>,10b a c -=+>,10c a b -=+>,∴33322811133327b ca ca ba b c b c a c a ba b c ∴当且仅当b c a c a b +=+=+,即a b c ==时取等,即111a b c 的最大值为8275.设∵ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且C =3π,a +b =λ,若∵ABC 面积的最大值为93,求λ的值. 【答案】 12 【解析】S ∵ABC =12absin C =34ab , 根据基本不等式2224a b ab λ+⎛⎫≤= ⎪⎝⎭ , 当且仅当a=b 时,等号成立, ∵S ∵ABC =34ab≤34·223216a b λ+⎛⎫= ⎪⎝⎭,令2316λ=93,解得λ=12. 题型四 基本不等式求和的最小值1.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是_______. 【答案】6【解析】由xy +x -y -10=0,得101y x y +=+=91,111y y ++>+, 故()99121611x y y y y y +=++≥⋅+=++,当且仅当911y y =++,即y =2时,等号成立. 故答案为:6.2.若0a b +≠,则2221()a b a b +++的最小值为________.【答案】2【解析】由于()222222222a b a b a b ab a b +++⎛⎫≤≤⇒+≥ ⎪⎝⎭, 所以()()222222211122()2()2()a b a b a b a b a b a b ++++≥+≥⋅=+++,当且仅当a b =且()2212()a b a b +=+时等号成立, 即()34144222a b a b a b a b a b -=⎧=⎧⎪⎪⇒⇒==⎨⎨+=⎪⎪+=⎩⎩时等号成立. 所以2221()a b a b +++的最小值为2.故答案为:23.已知ab >0,则()()22222424541ab a b ab +++++的最小值为_____.【答案】4.【解析】解:根据题意,ab >0,故22224244a b a b ab +≥⨯=,当且仅当a =2b 时等号成立,则原式()()()22222224245(4)245(41)4414141ab a b ab ab ab ab ab ab ++++++++=≥==+++44141ab ab +++,又由ab >0,则4ab +1>1, 则有44141ab ab ++≥+()424141ab ab +⨯=+4,当且仅当4ab +1=2,即4ab =1时等号成立,综合可得:()()22222424541ab a b ab +++++的最小值为4,当且仅当a =2b 12=时等号成立 故答案为:4.4.设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值为__________. 【答案】4【解析】因为0a b c >>>,所以()222221111210251025()a ac c a a ac c ab a a b ab a a b ++-+=+⎡⎤⎢⎥⎣⎦++-+-- ()()()()222222222211445 55204 2a a c a a c a a c a b a b a a b a b ⎡⎤⎢⎥⎛⎫=++-≥++-=++-≥⋅+=-+-⎣⎦⎪⎝⎭,当且仅当252a b c === 时取等号,此时221121025()a ac c ab a a b ++-+-的最小值为4. 故答案为:4.题型五 二次与二次(或一次)的商式的最值问题1.若41x -<<,则当22222x x x -+-取最大值时x 的值为( )A .3-B .2-C .1-D .0【答案】D【解析】变形,可得()()()()222112221111222121221x x x x x x x x x x -+-+-++-===+----,41x -<<,510x ∴-<-<,原式()()()11111121221221221x x x x x x ⎡⎤---=+=-+≤-⋅=-⎢⎥---⎣⎦, 当且仅当()11221x x -=-,即0x =时取等号,因此,22222x x x -+-取最大值时0x =. 故选:D.2.(1)若,0x y >,且280x y xy +-=,求x y +的最小值;(2)若41x -<<,求22222x x x -+-的最大值.【答案】(1)18;(2)-1.【解析】(1)由280x y xy +-=,得821x y+=,()828210y x x y x y x y x y ⎛⎫+=++=++ ⎪⎝⎭8210218y xx y ≥+⋅=,当且仅当212x y ==时取等号故当212x y ==,x y +取最小值18.(2)若41x -<<,则()2221112221x x x x x -+⎡⎤=--+⎢⎥--⎣⎦()1121x x-+≥-当且仅当0x =时取等号 ()111121x x ⎡⎤∴--+≤-⎢⎥-⎣⎦.即若41x -<<,22222x x x -+-的最大值为1-.3.(1)求当0x >时,2342x x y x ++=的最小值;(2)求当1x >时,221x y x +=-的最小值.【答案】(1)72;(2)232+.【解析】(1)当0x >时,234322372222222x x x x x x x ++=++≥⋅+=,当且仅当2x =时等号成立,所以当0x >时,函数2342x x y x++=的最小值为72;(2)()22112312111xxy x x x x -+⎡⎤+⎣⎦===-++---, 当1x >时,10x ->,所以()32122321y x x ≥-⋅+=+-, 当且仅当311x x -=-,即在13x =+时等号成立, 所以,当1x >时,221x y x +=-的最小值为232+.4.若,,x y z 均为正实数,则222xy yzx y z +++的最大值是_______.【答案】22【解析】因为,,x y z 均为正实数,所以2222222()11(2)2xy yz xy yzx y y x z y z ++=+++++ 22222()2222xy yzxy yz xy yz x y y z ++≤==+⋅+⋅⋅, 当且仅当2222x y y z ⎧=⎪⎪⎨⎪=⎪⎩,即22x z y ==时等号成立.故答案为:22. 、专题7 基本不等式(2)题型一 条件等式求最值1.已知0<a <1,0<b <1,且44430ab a b --+=,则12a b+的最小值是______.【答案】4243+【解析】已知01,01a b <<<<,由44430ab a b --+=得44441ab a b --+=,即1(1)(1)4a b --=, 令()()10,1,10,1,41x a y b xy =-∈=-∈=, 所以()10,14y x =∈,所以1,14x ⎛⎫∈ ⎪⎝⎭, 故12121218111114114x a b x y xx x x+=+=+=+------()()12421422224441141444134441x x x x x x x x ⎛⎫⎡⎤=++=++=++-+- ⎪⎣⎦------⎝⎭ ()()()()4412444412441242264434441344413x x x x x x x x ⎡⎤----=+++≥+⋅=+⎢⎥----⎣⎦, 当且仅当()()4412444441x x xx --=--即3224x -=时,取等号. 故答案为:4243+. 2.已知正实数x ,y 满足14xy <,且2441y y xy x ++=,则13x y x+-的最小值为______. 【答案】22【解析】解:正实数x ,y 满足14xy <,且2441y y xy x++= 所以21442y y xy x +--=,即()42y x y x y x +-+=,也即()142x y y x ⎛⎫+-= ⎪⎝⎭ 则()1123422x y y x y x y x x x y+-=-++=++≥+ 当且仅当()2142x y x y x y y x ⎧+=⎪+⎪⎨⎛⎫⎪+-= ⎪⎪⎝⎭⎩,即2142x y y x ⎧+=⎪⎨-=⎪⎩,则5234832348x y ⎧-=⎪⎪⎨+⎪=⎪⎩时取等号,此时1711164xy -=<,所以取得最小值22. 故答案为:22.3.已知0a >,0b >,1c >且1a b +=,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值为______. 【答案】422+【解析】因为0a >,0b >,1a b +=,所以222221()22a a a b a b ab ab ab ab +++++==222222ab abab+≥=+,又1c >,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭2221c c ≥+- =122(c 1)21c ⎡⎤-++≥⎢⎥-⎣⎦1222(1)24221c c ⎡⎤-⋅+=+⎢⎥-⎣⎦,其中等号成立的条件:当且仅当222112(1)1a b a b c c ⎧⎪=⎪+=⎨⎪⎪-=-⎩,解得21a =-,22b =-,212c =+,所以21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值是422+. 故答案为:422+.4.若正实数a ,b 满足()2261a b ab +=+,则21aba b ++的最大值为______.【答案】16【解析】()()()221621216a b ab a b a b ab +-=⇒+++-= ,即21216ab a b a b +-=++又()22236323224a b ab a b a b +⎛⎫=⋅⋅≤=+ ⎪⎝⎭,等号成立的条件为2a b = ,原式整理为()()()2223212244a b a b a b +≤++⇒+≤ ,即022a b <+≤ ,那么2121121666ab a b a b +--=≤=++,所以21ab a b ++ 的最大值是16.5.求下列函数的最值(1)求函数22(1)1x y x x +=>-的最小值.(2)若正数x ,y 满足35x y xy +=,求34x y +的最小值. 【答案】(1)223+;(2)5.【解析】(1)2(1)2(1)33(1)223211x x y x x x -+-+==-+++--,当且仅当2(1)3x -=即31x =+时等号成立,故函数y 的最小值为223+.(2)由35x y xy +=得13155y x+=, 则1331213133634(34)()2555555525x y x y x y y x y x +=++=+++=, 当且仅当12355y x x y =,即12y =,1x =时等号成立, 故34x y +的最小值为5.题型二 基本不等式的恒成立问题1.已知a ,b 为正实数,且23a b ab +=,若0a b c +-≥对于满足条件的a 、b 恒成立,则c 的取值范围为.( ) A .2213c c ⎧⎫⎪⎪≤+⎨⎬⎪⎪⎩⎭B .322c c ⎧⎫≤+⎨⎬⎩⎭C .{}6c c ≤D .{}322c c ≤+【答案】A【解析】将23a b ab +=变形为213a b+=,所以()()11121223322132333a b a a b a b b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭, 当且仅当2a b =时,即632,333a b =-=-时取等号.0a b c +-≥恒成立等价于c a b ≤+恒成立,即()min c a b ≤+,所以2213c ≤+故选:A .2.已知x 、y 都为正数,且4x y +=,若不等式14m x y +>恒成立,则实数m 的取值范围是________.【答案】94m ∴< 【解析】x 、y 都为正数,且4x y +=,由基本不等式得()14144x y x y x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭445259y x y xx y x y=++≥⋅+=,即1494x y +≥,当且仅当2y x =时,等号成立,所以,14x y +的最小值为94,94m ∴<.3.已知正实数x ,y 满足2520x y +=. (1)求xy 的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围. 【答案】(1)10;(2)9122m -≤≤.【解析】(1)2025225x y x y =+≥⋅,解得10xy ≤, 当且仅当5x =,2y =取等号, ∵xy 最大值为10. (2)101555592104421042101041x y y x y x x x x y x y y y ⎛⎫⎛⎫++=++≥+⋅= ⎪⎪⎝⎭⎝⎭+=, 当且仅当203x =,43y =取等号, ∵2944m m +≤,解得9122m -≤≤. 4.设a b c >>,且11ma b b c a c+≥---恒成立,求实数m 的取值范围. 【答案】4m ∴≤ 【解析】由a b c >>知0a b ->,0b c ->,0a c ->. ∴原不等式等价于a c a cm a b b c--+≥--.要使原不等式恒成立,只需a c a ca b b c--+--的最小值不小于m 即可. ()()()()2224a b b c a b b c a c a c b c a b b c a ba b b c a b b c a b b c a b b c-+--+-------∴+=+=++≥+⋅=-------- 当且仅当b c a ba b b c--=--,即2b a c =+时,等号成立. 4m ∴≤5.已知16k >,若对任意正数x ,y ,不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】12k k ⎧⎫⎨⎬⎩⎭【解析】∵0x >,0y >,∵不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立等价于1322x y k ky x ⎛⎫-+ ⎪⎝⎭恒成立.又16k >,∵1132322x y k k k k y x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(当且仅当132k x ky ⎛⎫-= ⎪⎝⎭时,等号成立),∵12322k k ⎛⎫- ⎪⎝⎭,解得13k -(舍去)或12k ,∵实数k 的取值范围为12k k ⎧⎫⎨⎬⎩⎭.题型三 对勾函数求最值1.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174- B .最小值174-C .最大值174D .最小值174【答案】D【解析】设a x =-,b y =-,则0a >,0b >.由12a b ab +=≥得14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立.综上可得,1xy xy +有最小值174. 故选D .2.已知52x ≥,则24524x x y x -+=-有( )A .最大值52B.最小值54C .最大值1D.最小值1【答案】D【解析】解:由522x≥>得,()()()2221451121242222xx xy xx x x-+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当122xx-=-,即3x=时,等号成立,故选:D.题型四基本不等式的应用1.某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则()A.2a bx+=B.2a bx+≤C.2a bx+>D.2a bx+≥【答案】B【解析】解:由题意得,2(1)(1)(1)A a b A x++=+,则2(1)(1)(1)a b x++=+,因为211(1)(1)2a ba b+++⎛⎫++≤ ⎪⎝⎭,所以21122a b a bx++++≤=+,所以2a bx+≤,当且仅当a b=时取等号,故选:B2.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB上取一点C,使得AC a=,BC b=,过点C作CD AB⊥交圆周于D,连接OD.作CE OD⊥交OD于E.由CD DE可以证明的不等式为()A.2(0,0)abab a ba b>>+B.(0,0)2a bab a b+>>C.22(0,0)22a b a ba b++>>D.222(0,0)a b ab a b+>>【答案】A【解析】解:由射影定理可知2CD DE OD=,即222DC ab abDEa bOD a b===++,由DC DE得2ababa b+,故选:A.。
专题06 超越不等式(方程)型-2021年高考数学复习压轴题解法分析与强化训练附真题及解析
专题06 超越不等式(方程)型[真题再现]例1 (2020·南京三模·20改编)已知函数2e ()xf x x ax a=-+(a ∈R),其中e 为自然对数的底数,若函数()f x 的定义域为R ,且(2)()f f a >,求a 的取值范围.【答案】(2,4)【解析】由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4.方法1(讨论单调性)由f (x )=e x x 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2. ①当a =2时,f (2)=f (a ),不符题意.②当0<a <2时,因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减,所以f (a )>f (2),不符题意.③当2<a <4时,因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减,所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4).方法2(转化为解超越不等式,先猜根再使用单调性)由f (2)>f (a ),得e 24-a >e a a. 因为0<a <4,所以不等式可化为e 2>e a a(4-a ). 设函数g (x )=e x x(4-x )-e 2, 0<x <4. 因为g'(x )=e x·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减. 又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a 的取值范围为(2,4).例2 (2016·宿迁三校学情调研·14)已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x )<0的x 的取值范围为 .【答案】()0,1【解析】易得f (1)=f (e)=0 ∵1(1)()1e x e f x x x---'=-= ∴当(0,1)x e ∈-时,()0f x '<,()f x 在(0,1)e -单减;当(1,)x e ∈-+∞时,()0f x '>,()f x 在(1,)e -+∞单增∴()0f x <的解集是1x e <<令1x e e <<,得01x <<,故f (e x )<0的x 的取值范围为()0,1.例3 (2020·扬州五月测试·20改编)不等式1ln 0x x x --≤的解集是 . 【答案】(0,1]【解法一】显然1x =是方程1ln 0x x x--=一个根 令1()ln f x x x x=--,则22222111112()10x x x f x x x x x ⎛⎫-+ ⎪-+⎝⎭'=+-==> 故()f x 在(0,)+∞单增,且(1)0f =所以不等式1ln 0x x x--≤的解集是(0,1]. 【解法二】1ln 0x x x --≤变形为1ln x x x-≤ 设1()f x x x=-,()ln g x x = 而1()f x x x=-在(0,)+∞单减,()ln g x x =在(0,)+∞单增,且图象均过(1,0) 所以不等式1ln 0x x x --≤的解集是(0,1]. 例4340x +=的根是 .【答案】43-【分析】利用“同构”构造函数,再利用函数的单调性.【解析】原方程可化为()()331123230x x x x+++++++=设3()f x x x=+,易得其为R上的单增奇函数所以()()1230x x+++=,43x=-即为所求.[强化训练]1.(2020·北京·6)已知函数()21xf x x=--,则不等式()0f x>的解集是().A. (1,1)- B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞【答案】D【分析】作出函数2xy=和1y x=+的图象,观察图象可得结果.【解析】因为()21xf x x=--,所以()0f x>等价于21x x>+,在同一直角坐标系中作出2xy=和1y x=+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x>+的解为0x<或1x>.所以不等式()0f x>的解集为:()(),01,-∞⋃+∞.2.关于的不等式的解集为___________.【答案】[1,)+∞x2ln10x x+-≥3. 方程e eln e 0x x x +-=的根是___________.【答案】1【解析】设()e eln x x x x e ϕ=+-,则e ()(1)e 0x x x xϕ'=++>,所以()x ϕ单调递增, 因为(1)0ϕ=,所以1x =.4.已知α、β分别是方程510x x ++=、10x +=的根,则α+β的值是 . 【答案】-15.已知实数x 、y 满足(1x y =,则2234662020x xy y x y ----+的值是 .【答案】2020【提示】两边取自然对数得((ln ln 0x y +++=设(()ln f x x =+,则易得其为R 上的单增奇函数所以0x y +=,故2234662020()(4)6()20202020x xy y x y x y x y x y ----+=+--++=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学二轮复习专题06不等式教学案文一.考场传真1. 【2013年普通高等学校统一考试试题大纲全国文科】不等式222x -<的解集是( ) (A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,22.【2013年普通高等学校招生全国统一考试(北京卷)文】设,,a b c R ∈,且a b >,则( )(A )ac bc > (B )11a b < (C )22a b > (D )33a b >3. 【2013年全国高考统一考试天津数学(文)卷】设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件 (D) 既不充分也不必要条件4. 【2013年普通高等学校招生全国统一考试(安徽卷文科)】若非负数变量,x y满足约束条件124x y x y -≥-⎧⎨+≤⎩,则x y +的最大值为__________.5.【2013年普通高等学校统一考试江苏卷】抛物线2y x =在1x =处的切线与两坐标轴围成的三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内任意一点,则2x y +的取值范围是.直线经过(0,1)B -,2u x y =+取得最大值,即min 2u =-. 故2x y +的取值范围是1[2,]2-.6.【2013年全国高考统一考试天津数学(文)卷】设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为( )(A) -7 (B) -4 (C) 1(D) 27.【2013年普通高等学校招生全国统一考试(四川卷)文科】若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A )48 (B )30 (C )24 (D )168.【2013年普通高等学校招生全国统一考试(湖北卷)文科】某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元9.【2013年全国高考统一考试天津数学(文)卷】 设a + b = 2, b >0, 则1||2||a a b的最小值为 .二.高考研究I.考纲要求:1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.II.命题规律不等式是中学数学的主体内容之一, 是进一步学习高等数学的基础知识和重要工具, 因而是数学高考命制能力题的重要版块. 在近年来的高考数学中,有关不等式的试题都占有较大的比重. 不仅考查有关不等式的基础知识、基本技能、基本思想方法,而且注重考查逻辑思维能力、运算能力以及分析问题和解决问题的能力. 在题型上, 选择题、填空题主要考查不等式的性质、解简单不等式、简单线性规划的应用、简单转化求参数范围、比较大小等;解答题主要考查基本不等式的应用、最值型综合题以及实际应用题等. 试题常常是寓解不等式、求参数范围于函数、数列、复数、三角、解析几何、立体几何、实际应用等问题之中, 知识覆盖面广、综合性强、思维力度大、能力要求高, 是高考数学思想、数学方法、考能力、考素质的主阵地. 从近几年数学试题得到启示:涉及不等式解法的题目,往往较为容易;对简单线性规划的应用的考查,不但具有连续性,而且其题型规律易于把握;对基本不等式的考查,较多的寓于综合题目之中.通过第二轮的专题复习,应注意在巩固基础知识、基本方法的基础上,强化记忆,熟化常见题型的解法,提升综合应用不等式解题的能力.一.基础知识整合超越式分式整式(高次)整式(低次)一次不等式.其中准确熟练求解一元二次(一次)不等式是解其他不等式的基础,这体现了5.平面区域的确定方法是“直线定界,特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.确定平面区域中单个变量的范围、整点个数等,只需把区域画出来,结合图形通过计算解决.6.线性目标函数z ax by+=在y轴上的截距,把目标函数化为=+中的z不是直线ax by zy=x+a z b b 可知z b是直线ax by z +=在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.二.高频考点突破考点一 不等式的解法【例1】【2012年高考重庆卷文科2】不等式102x x -<+ 的解集是为 (A )(1,)+∞ (B ) (,2)-∞- (C )(-2,1)(D )(,2)-∞-∪(1,)+∞【规律方法】理解保持同解变形是解不等式应遵循的基本原则.转化的方法是: 超越式分式整式(高次)整式(低次)一次(或二次)不等式.其中准确熟练求解一元二次(一次)不等式是解其他不等式的基础.【举一反三】【2012年高考江西卷文科11】 不等式的解集是___________.考点2 简单线性规划的应用【例2】【广东省广州市越秀区2014届高三上学期摸底考试】已知实数,x y 满足143x y +≤,则z x y =-的最大值是 .【规律方法】这是简单线性规划的应用的基本题型.基本思路是:画、移、解、代.技巧是:往往在“角点”处取得最值,直接代入点的坐标即可.需特别注意的是目标函数中y的系数正负不同时,其取得最值的情况与“纵截距”的大小相反.注意理解目标函数的几何意义. 【举一反三】【2013年普通高等学校招生全国统一考试(陕西卷)】若点(x, y)位于曲线=-与y=2所围成的封闭区域, 则2x-y的最小值为 .y x|1|考点3 简单线性规划“逆向”问题,确定参数取值(范围)【例3】【2013年普通高等学校统一考试试题新课标Ⅱ数学卷】已知a >0,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a= (A) (B) (C)1(D)2【规律方法】尝试画出“可行域”,通过平移直线确认“最优解”,建立参数的方程(不等式组).【举一反三】【2013年普通高等学校招生全国统一考试数学浙江】设y kx z +=,其中实数yx ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.考点4 基本不等式的应用【例4】【2013年普通高等学校统一考试天津卷】设a + b = 2, b >0, 则当a = 时, 1||2||a a b取得最小值.【规律方法】应用基本不等式,应注意“一正、二定、三相等”,缺一不可.灵活的通过“拆、凑、代(换)”,创造应用不等式的条件,是解答此类问题的技巧;忽视等号成立的条件,是常见错误之一.【举一反三】【2013年普通高等学校招生全国统一考试(山东卷)文科】 设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,2x y z +-的最大值为( ) A.0 B.98 C.2 D.94考点5 不等式的综合应用【例5】【广东省汕头四中2014届高三第一次月考数学(文)】(1)不等式22214x a x ax ->++对一切∈x R 恒成立,求实数a 的取值范围; (2)已知)(x f 是定义在(,0)(0,)-∞+∞上的奇函数,当(0,)x ∈+∞时,()2ln ,()f x ax x a R =+∈,求)(x f 的解析式.【规律方法】应用不等式研究函数问题,往往是起点较高,落点较低.解题过程中,注意处处应用转化与化归思想,化生为熟、化难为易、化繁为简,是解决问题的基本方法.【举一反三】【2014届山西省山西大学附中高三第一学期8月月考】已知函数(I)若不等式的解集为,求实数的值;(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.三.错混辨析1.简单线性规划问题,扩大(缩小)可行域的范围.【例1】已知1x y2,-的范围.≤+≤求4x2y≤≤-且2x y4,画出可行域如图所示,2.简单线性规划问题,理解题意错误.【例2】已知,求22x y的最值.此时22z=+=(-3)2+22=13,x y3.应用基本不等式,忽视等号成立的条件【例3】 已知:a 0 , b 0 , a b 1,>>+=求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.1. 【安徽省池州一中2014届高三第一次月考数学(文)】已知函数 2 0()20x x f x x x +≤⎧=⎨-+>⎩,则不等式2()f x x ≥的解集为( )A . [11]-,B . [22]-,C . [21]-,D . [12]-,2.【2014届山东省潍坊一中高三10月份阶段检测】设满足约束条件.若目标函数的最大值为1,则的最小值为 .时取等号,所以的最小值为.3.【2014届山东省潍坊一中高三10月份阶段检测】设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且. (1)若点的坐标为(-),求的值;(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.4. 【2014届河南省安阳市高三上学期调研测试】已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.5. 【浙江省绍兴市第一中学2014届高三上学期回头考】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近视地表示为80004852+-=x x y ,已知此生产线的年产量最大为210吨. (Ⅰ) 求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(Ⅱ)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?。