2018年高考物理复习必修2 第四章 第四讲 平抛运动、圆周运动的临界问题
平抛运动的临界问题(解析版)
平抛运动临界问题平抛运动受到某种条件的限制时就构成了平抛运动的临界问题,其限制条件一般有水平位移和竖直高度两种。
求解这类问题的关键是确定临界轨迹,当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受竖直高度限制时,其临界轨迹为自抛出点到竖直高度端点的一条抛物线。
确定轨迹后再结合平抛运动的规律即可求解。
审题技巧1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。
2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。
3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。
解题技巧1. 分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界的条件。
2. 求解平抛运动中的临界问题的关键(1)确定临界状态.确定临界状态一般用极限法分析,即把平抛运动的初速度增大或减小,使临界状态呈现出来.(2)确定临界状态的运动轨迹,并画出轨迹示意图.画示意图可以使抽象的物理情景变得直观,更可以使有些隐藏于问题深处的条件暴露出来.【典例1】在某次乒乓球比赛中,乒乓球先后两次落台后恰好在等高处水平越过球网,过网时的速度方向均垂直于球网,把两次落台的乒乓球看成完全相同的两个球,球1和球2,如图所示,不计乒乓球的旋转和空气阻力,乒乓球自起跳到最高点的过程中,下列说法正确的是()A.起跳时,球1的重力功率等于球2的重力功率B.球1的速度变化率小于球2的速度变化率C.球1的飞行时间大于球2的飞行时间D.过网时球1的速度大于球2的速度【答案】AD【解析】乒乓球起跳后到最高点的过程,其逆过程可看成平抛运动。
重力的瞬时功率等于重力乘以竖直方向的速度,两球起跳后能到达的最大高度相同,由v2=2gh得,起跳时竖直方向分速度大小相等,所以两球起跳时重力功率大小相等,A 正确;速度变化率即加速度,两球在空中的加速度都等于重力加速度,所以两球的速度变化率相等,B 错误;由h =12gt 2可得两球飞行时间相同,C 错误;由题图可知,球1的水平位移较大,由x =vt 可知,运动时间相同,则球1的水平速度较大,D 正确。
平抛运动临界问题典型例题
平抛运动临界问题典型例题平抛运动是指一个物体在水平方向上以一定的初速度抛出后,在重力作用下在竖直方向上做自由落体运动的过程。
临界问题是指当物体以一定的初速度抛出时,求解它的最大高度、飞行时间以及最大水平距离等相关参数的问题。
下面是一个典型的平抛运动临界问题例题,我将从多个角度进行全面解答。
例题:一个物体以初速度v0 = 20 m/s沿着水平方向抛出,求解它的最大高度、飞行时间以及最大水平距离。
解答:1. 最大高度:在平抛运动中,物体的竖直运动与水平运动是独立的。
在竖直方向上,物体受到重力的作用,在水平方向上,物体的速度保持不变。
因此,最大高度发生在物体竖直速度为零的时刻。
首先,我们需要知道物体的竖直初速度和竖直加速度。
竖直初速度为0,竖直加速度为重力加速度g ≈ 9.8 m/s^2。
使用竖直运动的运动学公式,v = u + at,其中v为最终速度,u为初速度,a为加速度,t为时间。
将v取为0,u取为20 m/s,a取为-9.8 m/s^2,代入公式,解得t = 2.04 s。
再使用竖直运动的位移公式,s = ut + 1/2at^2,其中s为位移。
将u取为20 m/s,t取为2.04 s,a取为-9.8 m/s^2,代入公式,解得s = 20.4 m。
所以,最大高度为20.4 m。
2. 飞行时间:飞行时间是指物体从抛出到落地所经过的时间。
在平抛运动中,物体的水平速度保持不变,所以飞行时间等于物体竖直运动的时间。
根据上面的计算结果,飞行时间为2.04 s。
3. 最大水平距离:最大水平距离是指物体从抛出到落地时在水平方向上的位移。
在平抛运动中,水平方向上的速度保持不变,所以最大水平距离等于水平速度乘以飞行时间。
水平速度为20 m/s,飞行时间为2.04 s,所以最大水平距离为40.8 m。
综上所述,当一个物体以初速度v0 = 20 m/s沿着水平方向抛出时,它的最大高度为20.4 m,飞行时间为2.04 s,最大水平距离为40.8 m。
高中物理必修二圆周运动临界问题
高中物理必修二圆周运动临界问题
圆周运动是物理学中一个非常重要的概念,而临界问题是圆周运动中一个值得关注的问题。
在高中物理必修二中,圆周运动的临界问题是一个重点内容,下面就来具体了解一下。
什么是圆周运动?
圆周运动是指物体在圆形轨道上做匀速运动的过程。
可以用角速度ω、角度θ、角频率f等来描述圆周运动。
同时,圆周运动也常常与定向运动、匀变速运动等相结合,形成多种复杂的运动形式。
什么是圆周运动的临界问题?
圆周运动的临界问题指的是在圆周运动中,当物体受到外力影响,以至于它的圆周运动能够达到临界状态时,所需要的最小外力。
在这种情况下,物体将不再绕着圆形轨道做匀速运动,而是做向外运动或者向内运动。
如何求解圆周运动的临界问题?
求解圆周运动的临界问题,通常需要先求出物体运动的向心加速度,然后再根据牛顿第二定律,求出物体所需的最小外力F,即:
F = ma = mv/R
其中m是物体的质量,v是物体的速度,R是圆形轨道的半径。
当物体受到的外力小于等于F时,它的圆周运动将达到临界状态。
总结:
圆周运动的临界问题是高中物理必修二中的一个重点内容。
求解这种问题需要熟练掌握圆周运动的基本概念,以及牛顿第二定律的应
用。
掌握这种问题的解法,不仅能够帮助我们更好地理解圆周运动,还可以拓展我们的物理思维,提高我们的物理素养。
第四章 第四讲 平抛运动 圆周运动的临界极值问题
随堂练· 知能提升
课后练·知能提升
[跟踪训练] 1.(2017·高考全国卷Ⅱ)如图,
半圆形光滑轨道固定在水平地面上,半圆
的直径与地面垂直.一小物块以速度v从轨
道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到
轨道下端的距离与轨道半径有关,此距离最大时对应的轨道
半径为(重力加速度大小为g)(
v2 A.16g
到最大值.
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限
度的,绳子断与不断的临界条件是绳中张力等于它所能承受
的最大张力,绳子松弛的临界条件是:FT=0.
第四章
第四讲 平抛运动 圆周运动的临界极值问题
研考向·热点探究
随堂练· 知能提升
质
点的相同木块A和B放在转盘上,且 木块A、B与转盘中心在同一条直线 上,两木块用长为L的细绳连接,木块与转盘的最大静摩擦力 均为各自重力的k倍,A放在距离转轴L处,整个装置能绕通过 转盘中心的转轴O1O2转动.开始时,绳恰好伸直但无弹力, 现让该装置从静止转动,使角速度ω缓慢增大.为使细绳有弹 力,而木块A和B又能相对转盘保持静止,求角速度ω的取值 范围和细绳张力的最大值.
研考向·热点探究
随堂练· 知能提升
课后练·知能提升
[方法技巧] 极端分析法处理临界极值问题
所谓极端分析法,是指两个变量之间的关系,若是单调上升 或单调下降的函数关系,可以通过连续地改变某个变量甚至 达到变化的极端,来对另一个变量进行判断的研究方法.
第四章
第四讲 平抛运动 圆周运动的临界极值问题
研考向·热点探究
第四章
第四讲 平抛运动 圆周运动的临界极值问题
研考向·热点探究
随堂练· 知能提升
平抛运动、圆周运动的临界问题:水平面内圆周运动的临界问题-高三物理一轮总复习课件
=AB,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形
OAB 始终在竖直平面内,若转动过程 OB、AB 两绳始终处于拉直状态,则
下列说法正确的是( )
A.OB
绳的拉力范围为
0~
3 3 mg
B.OB
绳的拉力范围为
33mg~2
3
3 mg
C.AB
绳的拉力范围为
33mg~2
3
3 mg
D.AB
绳的拉力范围为
第四章 曲线运动 万有引力与航天
热点突破:
水平面内圆周运动 的临界问题
1.热点透析 2.典例剖析 3.规律方法 4.跟踪训练
1.热点透析
题
水平面内圆周运动的临界极值问题
型 分
1.与摩擦力有关的临界问题
类 2.与弹力有关的临界问题
1.与摩擦力有关的临界极值问题 物体间恰好不发生相对滑动的临界条件是物体间恰好达到最 大静摩擦力,如果只是摩擦力提供向心力,则有Ffm=mv2/r, 静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他
2. 典例剖析
【例 2】如图示,水平转台上放有质量均为 m 的两个小 物块 A、B,A 离转轴中心的距离为 L,A、B 间用长为 L 的细线相连。开始时,A、B 与轴心在同一直线上, 细线刚好被拉直,A、B 与水平转台间的动摩擦因数均 为 μ,最大静摩擦力等于滑动摩擦力,求: (1)当转台的角速度达到多大时细线上开始出现张力? (2)当转台的角速度达到多大时 A 物块开始滑动?
0~2
3 3 mg
审 题 设 疑
1.转速为零时,OA、AB拉力大小各怎样? 2.随转速增大,OA、AB绳拉力大小如何变化? 3.当转速增大到某值时,两绳拉力会有何突变?
(完整版)圆周运动中的临界问题
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为o30与o45,问球的角速度在什么范围内,两绳始终张紧,当角速度为s rad /3时,上、下两绳拉力分别为多大?2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。
(2/10s m g =)3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即rvm mg 20=,gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。
(1)0v v = (刚好到最高点,轻绳无拉力)(2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
2018届二轮复习平抛运动、圆周运动的临界问题课件(37张)
热点一
[典例1] (2015· 高考全国卷Ⅰ)一带有乒乓球发射机的乒乓球台如图 所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机 安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发
针对训练
射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大 小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就 能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )
答案:ABD
热点二
2-2.[绳子张力的临界问题] (多选)(2017· 河南八市质检)质量为m的 小球由轻绳a和b分别系于一轻质细杆的A点和B点,如图所示,绳a 与水平方向成θ角,绳b在水平方向且长为l,当轻杆绕轴AB以角速度
题组突破
ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确 的是( ) A.a绳的张力不可能为零 B.a绳的张力随角速度的增大而增大 C.当角速度ω> gcot θ l ,b绳将出现弹力
针对训练
发射机正对右侧台面的某个角发射,乒乓球恰好到达角上时,发射 速度最大.由平抛运动规律得 1 立解得v2= 2 1 2 L2 1 L12+ 2=v2t′,3h= gt′2,联 2 2 g h <v<
4L12+L22g L1 .即速度v的最大取值范围为 6h 4
4L12+L22g ,选项D正确,选项A、B、C错误. [答案] 6h
D.若b绳突然被剪断,则a绳的弹力一定发生变化
热点二
解析:对小球受力分析可得a绳的弹力在竖直方向的分力平衡了小 球的重力,解得FTa= mg ,为定值,A正确,B错误;当FTacos θ sin θ
题组突破
=mω2l⇒ω=
gcot θ l 时,b绳的弹力为零,若角速度大于该值,
物理人教版高中必修2园周运动的临界问题
竖直平面内的圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
临界问题的分析方法:首先明确物理过程,正确对研究对象进行受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找出临界值。
1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2v m Rv 临界(2)小球能过最高点条件:v(当v(3)不能过最高点条件:v(实际上球还没有到最高点时,就脱离了轨道)2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况 (注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
)(1)小球能最高点的临界条件:v = 0,F = mg (F 为支持力)(2)当0< vF 随v 增大而减小,且mg > F > 0(F 为支持力) (3)当v=F =0(4)当vF 随v 增大而增大,且F >0(F 为拉力) 【案例剖析】例1.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,图6-11-1a b图6-11-2 b再给小球一水平初速度0v ,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是 ( )A .球过最高点时,速度为零B .球过最高点时,绳的拉力为mgC .开始运动时,绳的拉力为2v m LD解析:开始运动时,由小球受的重力mg 和绳的拉力F 的合力提供向心力,即20v F mg m L-=,20v F m mg L=+,可见C 不正确;小球刚好过最高点时,绳拉力为0,2v mg m L =,v =以,A 、B 、C 均不正确。
故选:D例2:如图6-11-3所示,一轻杆一端固定质量为m 的小球,以另一端 O 为圆心,使小球做半径为R 的圆周运动,以下说法正确的是 ( )A .球过最高点时,杆所受的弹力可以等于零B.球过最高点时,最小速度为C .球过最高点时,杆对球的弹力一定与球的重力方向相反D .球过最高点时,杆对球的弹力可以与球的重力反向,此时重力一定大于杆对球的弹力 解析:小球用轻杆支持过最高点时,0v =临,故B不正确;当v =时,F= 0故A 正确。
物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)
尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。
双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。
下面分三类情况进行分析。
[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。
若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。
【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。
(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。
(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。
[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。
一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。
高考物理一轮复习:平抛运动和圆周运动部分 圆周运动的临界问题
C.
是b开始滑动的临界角速度
D.
时,a所受摩擦力的大小为kmg
提示:静摩擦力大小有范围。分析同时刻ab的受力情况时需考虑它们所需向心力 的大小关系。
例题——静摩擦力产生的临界问题
解析因圆盘从静止开始绕轴缓慢加速转动,在某一时刻,木块随圆盘转动时, 其受到的静摩擦力的方向指向转轴,两木块转动过程中角速度相等,则由牛顿 第二定律可得Ff=m R,由于小木块b的轨道半径大于a的轨道半径,故b做 圆周运动需要的向心力较大,选项B错误;因为两木块的最大静摩擦力相等, 故b一定比a先开始滑动,选项A正确;
提示:AB两物体的向心力由摩擦力和绳子拉力的合力提供。
例题——静摩擦力产生的临界问题
解:AB都做匀速圆周运动,合外力提供向心力,则
对A有:
对B有:
,
当角速度较小时,静摩擦力可以提供向心力,这时,绳子拉力为零,AB所受摩
擦力都指向圆心,随着角速度增大,A先达到最大静摩擦力,绳子开始拉直且
有作用力,所以A的摩擦力方向一定指向圆心,此时B还没有达到最大静摩擦力
知识梳理
水平面上圆周运动的临界问题 静摩擦力大小有范围,方向可以改变。
如图,物块a放在水平转动的圆盘上,随圆盘一起做匀速圆周运动。试分析随着 圆盘角速度ω的增加,a的运动状态及对应的受力情况。(最大静摩擦力等于滑 动摩擦力)
ω较小时,静摩擦力提供向心力 ω增大到某一时刻,静摩擦力达到最大
ω继续增大,静摩擦力已不能提供其所需的 向心力,物块将开始发生滑动,做离心运动 。
提示:静摩擦力大小有范围。分析同时刻AB的受力情况时需 考虑它们所需向心力的大小关系。
例题——静摩擦力产生的临界问题
解析假设轮盘乙的半径为R,由题意可知两轮盘边缘的线速度大小相等,有ω甲·3R =ω乙R,得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A、B的角速度之比为 1∶3,A正确;滑块相对轮盘滑动前,根据an= r得A、B的向心加速度之比为 aA∶aB=2∶9,B正确;据题意可得滑块A、B的最大静摩擦力分别为FfA=μmAg, FfB=μmBg,最大静摩擦力之比为FfA∶FfB=mA∶mB,滑块相对轮盘滑动前所受的 静摩擦力之比为FfA′∶FfB′=(mAaA)∶(mBaB)=mA∶(4.5mB),综上分析可得滑块B先 达到最大静摩擦力,先开始滑动,C正确,D错误.
2018届高考物理(人教新课标)总复习课件:4-2抛体运动(35PPT)
1.一个人水平拋出一小球,球离手时的初速度为 v0,落地时的 速度是 vt,空气阻力忽略不计,下列哪个图象正确表示了速度矢量 变化的过程( )
答案:B
二、类平拋运动的分析 1.类平拋运动的受力特点 物体所受合力为恒力,且与初速度的方向垂直. 2.类平拋运动的运动特点 在初速度 v0 方向做匀速直线运动,在合外力方向做初速度为零 F合 的匀加速直线运动,加速度 a= . m
【解析】
(1)运动员在竖直方向做自由落体运动,
1 2 gt2 有 Lsin 37° = gt ,L= =75 m. 2 2sin 37° (2)设运动员离开 O 点时的速度为 v0, 运动员在水平方向的分运 动为匀速直线运动,有 Lcos 37° =v0t, Lcos 37° 即 v0= =20 m/s. t (3)解法一:运动员的平拋运动可分解为沿斜面方向的匀加速运 动(初速度为 v0cos 37° 、加速度为 gsin 37° )和垂直斜面方向的类竖直 上拋运动(初速度为 v0sin 37° 、加速度为 gcos 37° ). 当垂直斜面方向的速度减为零时,运动员离斜坡距离最远,有 v0sin 37° =gcos 37° · t,解得 t=1.5 s.
【解析】
若 v 太大,小球落在马路外边,因此,球落在马路
上,v 的最大值 vmax 为球落在马路最右侧 A 点时的平拋初速度,如 图所示,小球做平拋运动,设运动时间为 t1. 则小球的水平位移:L+x=vmaxt1,小球 1 2 的竖直位移:H= gt1 2 解以上两式得 vmax=(L+x) g =13 m/s. 2H
2 2 2 (1)合速度: v= v2 方向与水平方向夹角为 θ, x+vy = v0+gt ,
vy gt 则 tan θ= = . v0 v0 (2)合位移:s= x +y = y gt 角为 α,则 tan α=x= . 2v0
平抛运动的临界问题
平抛运动的临界问题平抛运动的临界问题,解决这类问题有三点: 1.是明确运动平抛运动的基本性质公式; 基本规律及公式:① 速度:0v v x =,gt v y =合速度 22y x v v v +=方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =xy2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
2.是确定临界状态;3.是确定临界轨迹——在轨迹示意图寻找出几何关系。
模型讲解:(排球不触网且不越界问题)模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。
问题:标准排球场场总长为l 1=18m ,宽l 2=9m 女排网高h=如上图所示。
若运动员在3m 线上方水平击球,则认为排球做类平抛运动。
分析方法:设击球高度为H ,击球后球的速度水平为v 0。
当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。
当击球点高度为h 时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所示。
如图(a )、(b)当击球点高度为H 一定时,要不越界,需飞行的水平距离m m l l 12321=+〈 由于时,不越界。
因此,m gHv l gt H t v l 12221020〈===结论:① 若H 一定时,则v 0越大越易越界,要不越界,需H ggHv 2122120=<② 若v 0一定时,则H 越大越易越界,越不越界,需00022722144212v gv g v g H ==< 如图(c )要不触网,则需 竖直高度:221gt h H >- 水平距离:m t v 30=以上二式联立得:0229v t h H >-结论:1) 若H 一定(()一定h H -)时,则v 0越小,越易触网。
圆周运动的临界问题结论总结
圆周运动的临界问题结论总结圆周运动的临界问题结论总结1. 引言:圆周运动是物理学中的一个重要问题,涉及到质点在圆周轨道上运动的临界条件和相关结论。
通过对圆周运动的深入研究和分析,我们可以更好地理解质点运动的性质以及相应的临界条件。
2. 圆周运动的基本定义和参数:圆周运动是指质点沿着固定半径的圆周轨道做匀速运动。
它的参数包括半径r、角速度ω和线速度v等。
圆周运动的关键特征是质点受到向心力的作用,它的大小与质点的质量m、角速度ω和半径r有关,即F = mω²r。
3. 圆周运动的临界条件:圆周运动会出现临界情况,当质点的向心力等于或超过受力的上限时,圆周运动将发生变化。
这个临界条件可以用一个重要的方程来表示:F = mv²/r = mω²r。
当F > mω²r时,质点将脱离圆周轨道,产生离心力;当F = mω²r时,质点保持在圆周轨道上做匀速运动,达到临界情况。
4. 圆周运动的结论总结:通过对圆周运动的分析,我们可以得出以下结论:4.1 向心力是使质点保持在圆周轨道上运动的重要力量,它提供了质点的必要的向心加速度,进而产生了向心力。
4.2 圆周运动的临界条件是质点所受向心力等于或超过受力上限,当向心力小于受力上限时,质点无法保持在圆周轨道上做匀速运动。
4.3 圆周运动的临界条件方程为F = mω²r,其中F是向心力,m是质点的质量,ω是角速度,r是运动半径。
4.4 圆周运动的临界条件可以帮助我们计算或推导质点的角速度、线速度、运动半径等参数,从而更加深入地了解质点运动的性质。
5. 我的个人观点和理解:圆周运动的临界问题是一个非常有趣且重要的物理学问题。
通过对临界条件的研究和理解,我们可以更好地把握物体在圆周轨道上运动时的行为特征,推导出相关的运动参数,并进行定量分析。
这样,我们可以更深入、全面地了解物体运动的规律和特点,为实际问题的解决提供有力支持。
高考物理一轮总复习第四章第四讲平抛运动圆周运动的临界问题练习含解析
平抛运动、圆周运动的临界问题[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为3 2(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( C )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M 与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l <R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( D )A.μM-m gmlB.μM-m gMlC.μM+m gMlD.μM+m gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( B )A.二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心解析:大圆盘和小圆盘边缘上的线速度大小相等,当小圆盘以角速度ω转动时,大圆盘以ω2转动;两物块做圆周运动的半径相等,但是角速度不同,则线速度大小不等,A 错误;根据v =ωr 知,大圆盘以ω2转动,则小物块甲受到的摩擦力f =m ⎝ ⎛⎭⎪⎫ω22R =14mω2R ,B 正确;根据μmg =mω2r 知,临界角速度ω=μgr,两物块的半径相等,知临界角速度相等,在角速度ω逐渐增大的过程中,ω大=12ω小,可知物块乙先滑动,C 错误;在角速度ω逐渐增大的过程中,甲乙的线速度逐渐增大,根据动能定理知,摩擦力对两物块均做正功,可知摩擦力一定有沿线速度方向的分力,所以物块受到的摩擦力的方向一定不是指向圆心,D 错误. 4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( A )A.76R B .52R C .5RD .7R解析:设OP 之间的距离为h ,则A 下落的高度为h -12R ,A 随圆轮运动的线速度为12ωR ,设A 下落的时间为t 1,水平位移为s ,则有:在竖直方向上有:h -12R =12gt 21在水平方向上有: s =12ωRt 1B 下落的高度为h -R ,B 随圆轮运动的线速度为ωR ,设B 下落的时间为t 2,水平位移也为s ,则有:在竖直方向上有:h -R =12gt 22在水平方向上有:s =ωRt 2联立上式解得:h =76R选项A 正确,B 、C 、D 错误.5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( AC )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( BC )A .小球通过最高点时的最小速度v min =g R +rB .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球过最高点时可能受到外壁对其向下的压力或内壁对其向上的支持力,类似于轻杆端点的小球过最高点,则其通过最高点的最小速度为零.故A 项错误,B 项正确;小球在管道中运动时,向心力的方向要指向圆心;小球在水平线ab 以下时,重力沿半径的分量背离圆心,则管壁必然提供指向圆心的支持力,只有外侧管壁才能提供此力,内侧管壁对小球一定无作用力,C 项正确;同理在水平线ab 以上时,重力沿半径的分量指向圆心,外侧管壁对小球可能没有作用力,D 项错误.7. 如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求:(1)小球离开屋顶时的速度v 0的大小范围;(2)小球落在空地上的最小速度.解析:(1)设小球恰好落到空地的右侧边缘时的水平初速度为v 01,则小球的水平位移:L +x =v 01t 1小球的竖直位移:H =12gt 21解以上两式得v 01=(L +x )g2H=13 m/s 设小球恰好越过围墙的边缘时的水平初速度为v 02,则此过程中小球的水平位移:L =v 02t 2 小球的竖直位移:H -h =12gt 22解以上两式得:v 02=Lg2H -h=5 m/s小球离开屋顶时的速度大小为5 m/s≤v 0≤13 m/s.(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越好围墙的边缘落在空地上时,落地速度最小. 竖直方向:v 2y =2gH 又有:v min =v 202+v 2y 解得:v min =5 5 m/s.答案:(1)5 m/s≤v 0≤13 m/s (2)5 5 m/s[B 组·能力题]8. (多选)如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD 中点的轴转动,已知两物块质量相等,杆CD 对物块A 、B 的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B 到轴的距离为物块A 到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A 、B 即将滑动的过程中,下列说法正确的是( BC )A .A 受到的静摩擦力一直增大B .B 受到的静摩擦力先增大后保持不变C .A 受到的静摩擦力先增大后减小再增大D .B 受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( AB )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB ,AO 是高h =3 m 的竖直峭壁,OB 是以A 点为圆心的弧形坡,∠OAB =60°,B 点右侧是一段水平跑道.选手可以自A 点借助绳索降到O 点后再爬上跑道,但身体素质好的选手会选择自A 点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g =10 m/s 2.(1)若选手以速度v 0水平跳出后,能跳在水平跑道上,求v 0的最小值; (2)若选手以速度v 1=4 m/s 水平跳出,求该选手在空中的运动时间.解析:(1)运动员从A 到B 点做平抛运动,设刚好能到达B 点,水平方向上h sin 60°=v 0t 竖直方向上h cos 60°=12gt 2计算可得v 0=3102m/sv 0的最小值为3102m/s. (2)若选手以速度v 1=4 m/s 水平跳出,v 1<v 0,选手会落到圆弧上, 水平方向上x =v 1t 1 竖直方向上y =12gt 21根据几何关系x 2+y 2=h 2计算可得t 1=0.6 s.答案:(1)3102m/s (2)0.6 s11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面所成的倾角.板上一根长为l =0.60 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)解析:小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力.在垂直平板方向上合力为0,重力在沿平板方向的分量为mg sin α小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有F T +mg sinα=mv 21l①研究小球从释放到最高点的过程,根据动能定理有 -mgl sin α=12mv 21-12mv 20②若恰好能通过最高点,则绳子拉力F T =0③ 联立①②③解得sin α=12,解得α=30°故α的范围为0°≤α≤30°. 答案:0°≤α≤30°。
(新课标)2018版高考物理一轮复习第四章曲线运动万有引力与航天专题五平抛运动、圆周运动热点问题分析教案
专题五平抛运动、圆周运动热点问题分析突破水平面内圆周运动的临界问题1.水平面内圆周运动的临界问题关于水平面内的匀速圆周运动的临界问题,主要是临界速度和临界力的问题.常见的是与绳的拉力、弹簧的拉力、接触面的弹力和摩擦力等相关的问题.通过受力分析来确定临界状态和临界条件,是较常用的解题方法.2.处理临界问题的解题步骤(1)判断临界状态有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往是临界状态.(2)确定临界条件判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.(3)选择物理规律当确定了物体运动的临界状态和临界条件后,要分别对于不同的运动过程或现象,选择相对应的物理规律,然后再列方程求解.[典例1] (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg[问题探究] (1)物体随圆盘共同转动时,哪个物体受到的摩擦力大?(2)随着ω不断增大,哪个物体首先达到最大静摩擦力?谁先开始滑动?[提示] (1)根据F f =m ω2r 可知,b 物体受到的摩擦力大.(2)随着ω增大,b 物体先达到最大静摩擦力,所以b 物体先相对圆盘滑动.[解析] 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F fm =kmg 相同.它们所需的向心力由F 向=m ω2r 知F a <F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起绕转轴缓慢地转动时,F f =m ω2r ,r 不同,所受的摩擦力不同,B 项错误;b 开始滑动时有kmg =m ω2·2l ,其临界角速度为ωb =kg 2l ,选项C 正确;当ω=2kg 3l时,a 所受摩擦力大小为F f =m ω2r =23kmg ,选项D 错误.[答案] AC[变式1] (多选)如图所示,两个可视为质点的、相同的木块A 和B 放在水平转盘上,且木块A 、B 与转盘中心在同一条直线上,两木块用长为L 的轻绳连接,木块与转盘之间的最大静摩擦力均为各自重力的k 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的竖直转轴O 1O 2转动.开始时,绳恰好伸直但无弹力.现让该装置从静止开始转动,角速度缓慢增大,以下说法正确的是( )A.当ω>2kg3L时,A 、B 会相对于转盘滑动 B.当ω>kg2L 时,绳子一定有弹力 C.ω在kg 2L<ω<2kg3L范围内增大时,B 所受摩擦力变大 D.ω在0<ω<2kg3L范围内增大时,A 所受摩擦力一直变大 答案:ABD 解析:若木块A 、B 间没有轻绳相连,随着ω的逐渐增大,由F f =m ω2r 可知木块B 先出现相对滑动.木块A 、B 间有轻绳相连时,木块B 刚好要出现相对滑动,此时轻绳上弹力为零,以木块B 为研究对象可知kmg =m ω2·2L ,则ω=kg2L.若木块A 刚好要出现相对滑动,对木块B 有F T +kmg =m ω2·2L ,对木块A 有kmg -F T =m ω2L ,则ω=2kg3L.综上所述可知,当0<ω≤kg 2L时,绳子没有弹力,木块A 、B 各自的摩擦力均随ω的增大而增大;当kg2L <ω≤2kg3L时,绳子有弹力,且木块B 的摩擦力达到最大值,而木块A 的摩擦力随ω的增大而增大;当ω>2kg3L时,木块A、B会相对于转盘滑动.故A、B、D 正确,C错误.突破竖直面内圆周运动的临界问题1.在竖直面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”;二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”.2.轻绳和轻杆模型涉及的临界问题[典例2] 如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是( )A.过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg 的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg[解析] 人过最高点时,F N +mg =m v 2R ,当v ≥gR 时,不用保险带,人也不会掉下来,当v =2gR 时,人在最高点时对座位产生的压力为mg ,A 、B 均错误;人在最低点具有竖直向上的加速度,处于超重状态,故人此时对座位的压力大于mg ,C 错误,D 正确.[答案] D[变式2] 如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小得多).现给小球一个水平向右的初速度v 0,要使小球不脱离圆轨道,则v 0应满足(取g =10 m/s 2)( )①v 0≥0 ②v 0≥4 m/s ③v 0≥2 5 m/s ④v 0≤2 2 m/s A.①和④ B.②或④ C.③或④ D.②和③答案:C 解析:当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤mv 2r ,根据机械能守恒定律有12mv 2+2mgr =12mv 20,可得v 0≥2 5 m/s ;当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置时速度恰好减为零,根据机械能守恒定律有mgr =12mv 20,可得v 0≤2 2 m/s ,选项C 正确.考向2 轻杆模型[典例3] (2017·山东烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小[解析] 轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R,随v 增大,F 增大,故C 、D 均错误.[答案] A[变式3] 如图所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧管壁半径为R ,小球半径为r ,则下列说法正确的是( )A.小球通过最高点时的最小速度v min =g R +r )B.小球通过最高点时的最小速度v min =gRC.小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力答案:C 解析:小球沿管道上升到最高点时的速度可以为零,选项A 、B 错误;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与小球的重力在背离圆心方向的分力F mg 的合力提供向心力,即F N -F mg =ma ,因此,外侧管壁一定对小球有作用力,而内侧管壁对小球无作用力,选项C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球的速度大小有关,选项D错误.解决竖直平面内圆周运动的关键点(1)确定模型:首先判断是轻绳模型还是轻杆模型.(2)确定临界点:v临界=gr,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.突破平抛、圆周运动综合问题1.题目特点:此问题一般涉及圆周运动、平抛运动(或类平抛运动)、匀变速直线运动等多个运动过程,常结合功能关系进行求解.2.解答突破(1)分析临界点:对于物体在临界点相关多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口.(2)分析每个运动过程的运动性质:①若为圆周运动,应明确是水平面内的匀速圆周运动,还是竖直面内的变速圆周运动,机械能是否守恒.②若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力.考向1 水平面内圆周运动与平抛运动的综合问题[典例4] (2017·山西八校一联)如图所示,质量是1 kg的小球用长为0.5 m 的细线悬挂在O点,O点距地面竖直距离为1 m,如果使小球绕OO′轴在水平面内做圆周运动,若细线最大承受拉力为12.5 N,(取g=10 m/s2)求:(1)当小球的角速度为多大时,细线将断裂;(2)线断裂后小球落地点与悬点的水平距离.[解析] (1)当细线承受的拉力恰为最大时,对小球受力分析,如图所示:竖直方向F T cos θ=mg 得:θ=37° 向心力F 向=mg tan 37°=m ω2L sin 37° 解得:ω=5 rad/s.(2)线断裂后,小球做平抛运动,则其平抛运动的初速度为:v 0=ωL sin 37°=1.5 m/s 竖直方向:y =h -L cos 37°=12gt 2水平方向:x =v 0t解得d =L 2sin 2θ+x 2=0.6 m. [答案] (1)5 rad/s (2)0.6 m考向2 竖直面内圆周运动与平抛运动的综合问题[典例5] 如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球.现使小球恰好能在竖直面内做完整的圆周运动.已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L .不计空气阻力.(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力F T 恰好为小球重力的6倍,且小球经过B 点的瞬间细线断裂,求小球的落地点到C 点的距离.[解析] (1)若小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有mg =m v 2AL解得v A =gL .(2)小球在B 点时,根据牛顿第二定律有F T -mg =m v 2BL其中F T =6mg解得小球在B 点的速度大小为v B =5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得 竖直方向上:1.9L -L =12gt 2水平方向上:x =v B t解得x =3L即小球落地点到C 点的距离为3L . [答案] (1)gL (2)3L圆周运动与平抛运动综合问题解题关键(1)明确圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程. (2)平抛运动一般是沿水平方向和竖直方向分解速度或位移.(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度.1.[圆周运动中力和运动的关系]在室内自行车比赛中,运动员以速度v 在倾角为θ的赛道上做匀速圆周运动.已知运动员的质量为m ,做圆周运动的半径为R ,重力加速度为g ,则下列说法正确的是( )A.将运动员和自行车看做一个整体,整体受重力、支持力、摩擦力和向心力的作用B.运动员受到的合力大小为m v 2R ,做圆周运动的向心力大小也是m v 2RC.运动员做圆周运动的角速度为vRD.如果运动员减速,运动员将做离心运动答案:B 解析:向心力是整体所受力的合力,选项A 错误;做匀速圆周运动的物体,合力提供向心力,选项B 正确;运动员做圆周运动的角速度为ω=vR,选项C 错误;只有运动员加速到所受合力不足以提供做圆周运动的向心力时,运动员才做离心运动,选项D 错误.2.[竖直面内的圆周运动](多选)如图所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中,下列说法正确的是( )A.木块A 处于超重状态B.木块A 处于失重状态C.B 对A 的摩擦力越来越小D.B 对A 的摩擦力越来越大答案:BC 解析:A 、B 一起做匀速圆周运动,合力提供向心力,加速度即向心加速度.水平位置a 沿逆时针方向运动到最高点b 的过程中,加速度大小不变,方向指向圆心.在竖直方向有竖直向下的分加速度,因此A 、B 都处于失重状态,A 错误,B 正确;对A 受力分析,加速度指向圆心,那么此过程中水平方向加速度逐渐减小,而能够提供A 水平加速度的力只有B 对A 的摩擦力,因此B 对A 的摩擦力越来越小,C 正确,D 错误.3.[水平面内圆周运动的临界问题](多选)如图所示,在水平转台的光滑水平横杆上穿有两个质量分别为2m 和m 的小球A 和B ,A 、B 间用劲度系数为k 的轻质弹簧连接,弹簧的自然长度为L ,转台的直径为2L ,当转台以角速度ω绕竖直轴匀速转动时,如果A 、B 仍能相对横杆静止而不碰左右两壁,则( )A.小球A 和B 具有相同的角速度B.小球A 和B 做圆周运动的半径之比为1∶2C.若小球不与壁相碰,则ω>k mD.若小球不与壁相碰,则ω<k 2m答案:ABD 解析:A 、B 两球共轴转动,角速度相同,故A 正确.两球靠弹簧的弹力提供向心力,知两球向心力大小相等,2mr 1ω2=mr 2ω2,解得r 1∶r 2=1∶2,故B 正确.转台的直径为2L ,则r 2<L ,由mr 2ω2=k ⎝⎛⎭⎪⎫r 2-L 2解得ω<k2m,故C 错误,D 正确. 4.[轻绳模型的应用]如图所示,小球沿水平面通过O 点进入半径为R 的半圆弧轨道后恰能通过最高点P ,然后落回水平面,不计一切阻力,下列说法正确的是( )A.小球落地点离O 点的水平距离为RB.小球落地点离O 点的水平距离为2RC.小球运动到半圆弧最高点P 时向心力恰好为零D.若将半圆弧轨道上部的14圆弧截去,其他条件不变,则小球能达到的最大高度比P 点低答案:B 解析:若小球恰能通过最高点P ,则在最高点P 时重力恰好提供向心力,选项C 错误;由圆周运动的知识可得mg =m v 2R ,小球离开P 点后做平抛运动,x =vt,2R =12gt 2,解得x =2R ,故选项A 错误,B 正确;若将弧轨道上部的14圆弧截去,其他条件不变,则小球离开轨道后做竖直上抛运动,达到最大高度时速度为零,故能达到的最大高度比P 点高,选项D 错误.5.[平抛、圆周运动综合问题](多选)如图所示,半径为R 的水平圆盘中心轴正上方a 处水平抛出一小球,圆盘以角速度ω做匀速转动,当圆盘半径Ob 恰好转到与初速度方向相同且平行的位置时,将小球抛出,要使球与圆盘只碰一次,且落点为b ,重力加速度为g ,小球抛出点a 距圆盘的高度h 和小球的初速度v 0可能应满足( )A.h =g π2ω2,v 0=R ω2πB.h =8π2g ω2,v 0=R ω4πC.h =2g π2ω2,v 0=R ω6πD.h =32π2g ω2,v 0=R ω8π答案:BD 解析:因圆盘转动具有周期性,则当小球落到b 点时,圆盘转过的角度θ=2πk (k =1,2,3,…),由ω=θt ,可得圆盘的角速度ω=2πkt(k =1,2,3,…),因小球做平抛运动,则小球下落高度h =12gt 2=2π2gk 2ω2(k =1,2,3,…),初速度v 0=R t =R ω2πk (k =1,2,3,…),将k 的取值代入可知,当k 取2和4时,B 、D 正确.。
18学年高中物理模块要点回眸6三“确定”解决平抛运动的临界问题新人教版必修2
第6点 三“确定”解决平抛运动的临界问题
平抛运动中经常出现临界问题,解决此类问题的关键有三点:
(1)确定运动性质——平抛运动.
(2)确定临界位置.
(3)确定临界轨迹,并画出轨迹示意图.
对点例题 女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m 高处,击球后排球以25 m/s 的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图1所示,试计算说明:(不计空气阻力,g 取10 m/s 2)
图1
(1)此球能否过网?
(2)若此球能过网,球是落在对方界内,还是界外?
解题指导 (1)当排球在竖直方向下落高度Δh =(3.04-2.24) m =0.8 m 时,所用时间为
t 1,由Δh =12
gt 1 2,x =v 0t 1,解得x =10 m >9 m ,故此球能过网. (2)当排球落地时,h =12
gt 2 2,x ′=v 0t 2. 将h =3.04 m 代入得x ′≈19.5 m>18 m ,
故排球落在界外.
答案 (1)能过网 (2)界外
如图2所示,窗子上、下沿间的高度H =1.6 m ,墙的厚度d =0.4 m ,某人在离墙壁L =1.4 m 、距窗子上沿h =0.2 m 处的P 点,将可视为质点的小物件以速度v 水平抛出,小物件直接穿过窗口并落在水平地面上,取g =10 m/s 2
.则v 的取值范围是( )
图2
A.v>7 m/s
B.v<2.3 m/s
C.3 m/s<v<7 m/s
D.2.3 m/s<v<3 m/s 答案 C。
(新课标)近年高考物理一轮复习 第四章 曲线运动 第4讲 圆周运动中的临界问题夯基提能作业本(202
(新课标)2018高考物理一轮复习第四章曲线运动第4讲圆周运动中的临界问题夯基提能作业本编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018高考物理一轮复习第四章曲线运动第4讲圆周运动中的临界问题夯基提能作业本)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018高考物理一轮复习第四章曲线运动第4讲圆周运动中的临界问题夯基提能作业本的全部内容。
第4讲圆周运动中的临界问题基础巩固1。
(2014课标Ⅰ,20,6分)(多选)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO’的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.b一定比a先开始滑动B。
a、b所受的摩擦力始终相等C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg2.(多选)公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势。
则在该弯道处,( )A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D。
当路面结冰时,与未结冰时相比,v c的值变小3.(2015浙江理综,19,6分)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内外半径分别为r和2r。
一辆质量为m的赛车通过AB线经弯道到达A'B'线,有如图所示的①、②、③三条路线,其中路线③是以O'为圆心的半圆,OO'=r.赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[A 组·基础题]一、单项选择题1.(2014·安徽高考卷)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .5 rad/s解析:物体随圆盘做圆周运动,运动到最低点时最容易滑动,因此物体在最低点且刚好要滑动时的转动角速度为最大值,这时,根据牛顿第二定律可知,μmg cos 30°-mg sin 30°=mrω2,求得ω=1.0 rad/s ,C 项正确,A 、B 、D 项错误.答案:C2.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R ,甲、乙两物体的质量分别为M 与m (M >m ),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l (l <R )的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( ) A.μ(M -m )g ml B.μ(M -m )g Ml C.μ(M +m )g Ml D.μ(M +m )g ml解析:当圆盘转动时,乙受拉力、摩擦力,二者的合力提供向心力,则F T +μmg =mω2l ;对于甲来说,物体受到拉力与摩擦力的作用,即F T =μMg ,二者联立,则ω=μ(M +m )g ml,故选项D 正确.答案:D3.(2017·东北三省三校模拟)如图所示,可视为质点的木块A 、B 叠放在一起,放在水平转台上随转台一起绕固定转轴OO ′匀速转动,木块A 、B 与转轴OO ′的距离为1 m ,A 的质量为5 kg ,B 的质量为10 kg.已知A 与B 间的动摩擦因数为0.2,B 与转台间的动摩擦因数为0.3,如木块A 、B 与转台始终保持相对静止,则转台角速度ω的最大值为(最大静摩擦力等于滑动摩擦力,取g=10 m/s2)()A.1 rad/s B. 2 rad/sC. 3 rad/s D.3 rad/s解析:由于A、AB整体受到的静摩擦力均提供向心力,故对A,有:μ1m A g≥m Aω2r 对AB整体,有:(m A+m B)ω2r≤μ2(m A+m B)g带入数据解得:ω≤ 2 rad/s,故选B.答案:B4.(2017·甘肃兰州诊断)如图所示,转动轴垂直于光滑水平面,交点O的上方h处固定细绳的一端,细绳的另一端拴接一质量为m的小球B,绳长l>h,转动轴带动小球在光滑水平面上做圆周运动.当转动的角速度ω逐渐增大时,下列说法正确的是()A.小球始终受三个力的作用B.细绳上的拉力始终保持不变C.要使球不离开水平面,角速度的最大值为g hD.若小球飞离了水平面,则角速度的最小值为g l解析:小球可以在水平面上转动,也可以飞离水平面,飞离水平面后只受重力和绳的拉力两个力作用,A错误;飞离水平面后,随着转速增大,绳与竖直方向的夹角变大,设为β,由牛顿第二定律得F T sin β=mω2l sin β可知,随角速度变化,绳的拉力F T会发生变化,B错误;当小球对水平面的压力为零时,有F T cos θ=mg,F T sin θ=mlω2sin θ,解得临界角速度为ω=gl cos θ=gh,C正确,D错误.答案:C二、多项选择题5.(2017·潍坊模拟)水平面上有倾角为θ、质量为M的斜面体,质量为m的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是()A.小物块受到斜面的最大摩擦力为F+mg sin θB.小物块受到斜面的最大摩擦力为F-mg sin θC.斜面体受到地面的最大摩擦力为FD.斜面体受到地面的最大摩擦力为F cos θ解析:当力F方向沿斜面向下时,斜面体对小物块的静摩擦力最大,此时小物块受到斜面的最大摩擦力为F+mg sin θ,选项A正确,B错误;当力F沿水平方向时,对斜面体和小物块整体而言,地面对斜面体的静摩擦力最大,最大值是F ,选项C 正确,D 错误.答案:AC6.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(取g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤m v 2r ,又根据机械能守恒定律有12m v 2+2mgr =12m v 02,得v 0≥2 5 m/s ,C 正确.当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处时速度恰好减为零,根据机械能守恒定律有mgr =12m v 02,得v 0≤2 2 m/s ,D 正确. 答案:CD三、非选择题7.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求:(1)小球离开屋顶时的速度v 0的大小范围;(2)小球落在空地上的最小速度.解析:(1)设小球恰好落到空地的右侧边缘时的水平初速度为v 01,则小球的水平位移:L +x =v 01t 1小球的竖直位移:H =12gt 12 解以上两式得v 01=(L +x )g 2H=13 m/s 设小球恰好越过围墙的边缘时的水平初速度为v 02,则此过程中小球的水平位移:L =v 02t 2小球的竖直位移:H -h =12gt 22 解以上两式得:v 02=L g 2(H -h )=5 m/s 小球离开屋顶时的速度大小为5 m/s ≤v 0≤13 m/s(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越好围墙的边缘落在空地上时,落地速度最小.竖直方向:v y 2=2gH又有:v min =v 022+v y 2解得:v min =5 5 m/s答案:(1)5 m /s≤v 0≤13 m/s (2)5 5 m/s[B 组·能力题]一、选择题8.(多选)(2017·辽宁抚顺一中模拟)如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD 对物块A 、B 的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B 到轴的距离为物块A 到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A 、B 即将滑动的过程中,下列说法正确的是( )A .A 受到的静摩擦力一直增大B .B 受到的静摩擦力先增大后保持不变C .A 受到的静摩擦力先增大后减小再增大D .B 受到的合外力先增大后保持不变解析:根据F fm =mrω2得ω=F fm mr,知当角速度逐渐增大时,B 物块先达到最大静摩擦力,角速度增大,B 物块所受绳子的拉力和最大静摩擦力的合力提供向心力;角速度继续增大,拉力增大,则A 物块所受静摩擦力减小,当拉力增大到一定程度,A 物块所受的摩擦力减小到零后反向;角速度继续增大,A 物块的摩擦力反向增大.所以A 物块所受的摩擦力先增大后减小,又反向增大,B 物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,A 错误,B 、C 正确;在转动过程中,B 物块运动需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供向心力时,绳子的拉力作为补充,速度再增大,当这两个力的合力不足以提供向心力时,物块将会发生相对滑动,根据向心力公式,F 向=m v 2R可知,在发生相对滑动前B 物块运动的半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力等于物块所受的合外力,故D 错误.答案:BC9.(多选)(2016·高考浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s解析:赛车在弯道上做匀速圆周运动时最大径向静摩擦力提供向心力,设最大径向静摩擦力与赛车重力的比值为k ,则kmg =m v 12r,得在小圆弧赛道的最大速率v 1=kgr =30 m/s ,在大圆弧赛道的最大速率为v 2=kgR =45 m/s ,B 正确;为确保所用时间最短,需要在以v 1=30 m/s ,绕过小圆弧赛道后加速以v 2=45 m/s 的速率在大圆弧赛道做匀速圆周运动,A 正确;直道的长度l =L 2-(R -r )2=50 3 m ,在小弯道上的最大速度v 1=30 m/s ,在大弯道上的最大速度v 2=45 m/s ,故在直道上的加速度大小为a =v 22-v 122l =452-3022×503m/s 2=6.50 m/s 2,C 错误;小圆弧弯道的长度为x =2πr 3,则通过小圆弧弯道的时间t =x v 1=2πr 3v 1=2.80 s ,D 错误.答案:AB二、非选择题10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB ,AO 是高h =3 m 的竖直峭壁,OB是以A 点为圆心的弧形坡,∠OAB =60°,B 点右侧是一段水平跑道.选手可以自A 点借助绳索降到O 点后再爬上跑道,但身体素质好的选手会选择自A 点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g =10 m/s 2.(1)若选手以速度v 0水平跳出后,能跳在水平跑道上,求v 0的最小值;(2)若选手以速度v 1=4 m/s 水平跳出,求该选手在空中的运动时间.解析:(1)运动员从A 到B 点做平抛运动,设刚好能到达B 点,水平方向上h sin 60°=v 0t竖直方向上h cos 60°=12gt 2 计算可得v 0=3102m/s v 0的最小值为3102m/s. (2)若选手以速度v 1=4 m/s 水平跳出,v 1<v 0,选手会落到圆弧上,水平方向上x =v 1t 1竖直方向上y =12gt 12 根据几何关系x 2+y 2=h 2计算可得t 1=0.6 s.答案:(1)3102m/s (2)0.6 s 11.(2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面所成的倾角.板上一根长为l =0.60 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)解析:小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力.在垂直平板方向上合力为0,重力在沿平板方向的分量为mg sin α小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有F T +mg sin α=m v 12l① 研究小球从释放到最高点的过程,根据动能定理有-mgl sin α=12m v 12-12m v 02② 若恰好能通过最高点,则绳子拉力F T =0③ 联立①②③解得sin α=12,解得α=30° 故α的范围为0°≤α≤30°.答案:0°≤α≤30°。