椭圆的简单几何性质第4课时
椭圆(单元教学设计)高中数学选择性必修第一册
椭圆(单元教学设计)一内容和及其解析(一)内容椭圆的概念、椭圆的标准方程、椭圆的简单几何性质本单元内容结构图如下:(二)内容解析1.内容本质:椭圆是圆锥曲线(几何图形)最基础的、最重要的研究对象。
椭圆的概念与性质是圆锥曲线的代表性内容,双曲线、抛物线的内容与它同构。
本单元本主要是通过建立椭圆方程的标准方程,研究椭圆的几何性质,并运用几何性质解决简单的实际问题。
2.蕴含的思想方法:本单元最重要、最根本的数学思想方法是坐标法.另外,在解决问题的过程中,数形结合、类比、特殊化与一般化、转化与化归等也发挥着重要作用.3.知识的上下位关系:从本章知识的内部结构看,椭圆这个知识单元的学习在全章的学习中具有基础地位.椭圆是高中阶段学习的第一种全新曲线,可以为学生利用直线的方程、圆的方程中积累的经验进行探索性学习,独立发现和提出数学问题,自主归纳和概括数学结论,并学会有效地用于解决数学内外的问题等提供理想载体.椭圆的学习进一步对“曲线与方程”关系的理解提高认识度,深刻理解形与数的结合。
4.育人价值:本单元的学习有助于学生学会合乎逻辑地、有条理地、严谨精确地思考和解决问题,有助于发展学生数学抽象、数学建模、逻辑推理、数学运算、直观想象等方面的素养.5.教学重点:用椭圆方程研究椭圆的几何性质.二、单元目标及其解析(一)单元目标1.了解圆锥曲线的实际背景,例如,行星运行轨迹、抛物运动轨迹、探照灯的镜面,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程及简单几何性质.3.了解椭圆的简单应用.(二)目标解析达成目标的标志1.能通过观察用平面截圆锥可以分别得到圆、椭圆、双曲线和抛物线,能通过实例知道,圆锥曲线在生产、生活中有广泛的应用.2. 能通过实验绘制椭圆的过程认识椭圆的几何特征,给出椭圆的定义.能通过(建立适当的坐标系,根据椭圆上的点满足的几何条件列出椭圆上的点的坐标满足的方程,化简所列出的方程)求曲线“三步曲”得到椭圆的标准方程.能在直观认识椭圆的图形特点的基础上,用椭圆的标准方程推导出椭圆的简单几何性质.能用椭圆的定义、标准方程及简单几何性质解决简单的问题.能通过椭圆与方程的学习,体会建立曲线的方程、用曲线的方程研究曲线的性质的方法,发展数学抽象、直观想象、数学运算、逻辑推理素养.3. 能类比直线与圆的位置关系的研究路径,研究直线与椭圆的位置关系,知道直线与椭圆的公共点的个数与直线的方程与椭圆的标准方程组成的方程组的解的个数的关系,进一步体会用方程研究曲线的方法,体会坐标法的重要作用.三、教学问题诊断分析学生对坐标法已有初步的认识,通过直线和圆的方程的学习,对用坐标法研究曲线的基本思路与方法已有了解,但还不善于主动运用坐标法,研究椭圆的代数方法一般套路可以遵循:背景--概念--方程--性质--应用,每个环节有一定的程序性。
椭圆的简单几何性质(最全)
42 52
41
25 9
尝试遇到困难怎么办? 作出直线 l 及椭圆,
几何画板显示图形
观察图形,数形结合思考.
36
直线与椭圆的位置关系 :
直线和椭圆方程分别为
y
: Ax By C
y
0
,x a
2 2
y2 b2
1
y
F1 o
F2 x F1 o
F2 x F1 o
F2 x
Ax By C 0
则由 x2 y2
x2 y2 1
4 16
x2 y2 综上所述,椭圆的标准方程是 1
或
x2 y2 1
41
4 16
15:01:32
26
练习2:
已知椭圆 x2 y2 1 的离心率 e 1
k 8 9
2
x 解:当椭圆的焦点在 轴上时,
k ,求 的值
a2 k 8 b2 9
y 由
e
1 2
,得:
k
4
当椭圆的焦点在 轴上时,
3、若椭圆的 的两个焦点把长轴分成三等分,则其离心率
为
1。
3
4、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3
则其离心率e=______5____
回顾
[1]椭圆标准方程
x2 a2
y2 b2
1(a b 0)
所表示的椭圆的存在范围是什么?
[2]上述方程表示的椭圆有几几个顶点?顶点是谁与谁的交点?
3)c=0(即两个焦点重合)e =0,则 b= a,
椭圆方程变为x2+ y2=a2(圆)
即离心率是反映椭圆扁平程度的一个量。
结论:离心率e越大,椭圆越扁; 离心率e越小,椭圆越圆
2.1.2椭圆的简单几何性质4
直线与椭圆的位置关系
1.位置关系:相交、相切、相离
2.判别方法(代数法) 通过解直线方程与椭圆方程组成的方程组,对解的 个数进行讨论.通常消去方程组中的一个变量,得 到关于另一变量的一元二次方程. (1)△>0直线与椭圆相交有两个公共点; (2)△=0 直线与椭圆相切有且只有一个公共点; (3)△<0 直线与椭圆相离无公共点.
(点差法)。
作业:
x y 1.已 知 直 线过 点M (1,1), 与 椭 圆 l 1相 交 4 3 于A、B两 点 。 若 的 中 点 , 求 直 线的 方 程 。 AB M l
2、中心在原点,一个焦点为F(0, 50)的椭圆被
2 2
直线 y=3x-2所截得弦的中点横坐标是1/2,求椭圆
3、弦长的计算方法:
弦长公式:
2 |AB|= 1 k 2 · x1 x2) 4 x1 x2 (
1 = 1 2 · y1 y2) 4 y1 y2 ( k
(适用于任何曲线)
y3 x 2 例.若P(x,y)满足 y 1( y 0) ,求 的 x4 4
2
最大值、最小值.
x 2 变式:已知椭圆 y 1 2 (1)求斜率为2 的平行弦的中点的轨迹方 程。
2
Hale Waihona Puke (2)过A(2,1)引椭圆的割线,求截得 的弦的中点的轨迹方程。
练习:
x2 y2 1 的弦被(4,2)平分,那 1、如果椭圆 36 9
么这弦所在直线方程为(
A、x-2y=0
D
)
D、x+2y-8=0
B、x+2y- 4=0 C、2x+3y-12=0
椭圆的简单几何性质(4)--点差法
变式1:已知直线 过点 变式 已知直线l过点 已知直线 M(1,0.5), 且与椭圆 相交 且与椭圆C相交 两点, 于E,F两点,若EF的中点 两点 的中点 的方程. 为M,求直线 的方程 ,求直线l的方程
l F
O
y
M
x
E
变式2:已知直线 过点 且与椭圆C相交于 变式 已知直线l过点 已知直线 过点M(1,0.5),且与椭圆 相交于 且与椭圆 E,F两点,求弦 的中点的轨迹方程 两点, 的中点的轨迹方程. 两点 求弦EF的中点的轨迹方程 变式3:已知直线 与椭圆C相交于 变式 已知直线l:y=x+m (m∈R)与椭圆 相交于 已知直线 ∈ 与椭圆 E,F两点,求弦 的中点的轨迹方程 两点, 的中点的轨迹方程. 两点 求弦EF的中点的轨迹方程
y
点差法步骤: 点差法步骤: 1.设点 设点A(x1,y1),B(x2,y2); 设点 2.代入圆锥曲线方程作差 代入圆锥曲线方程作差; 代入圆锥曲线方程作差
A
O
M
x
B
3.利用平方差公式变形,把中点坐标与直线 利用平方差公式变形, 利用平方差公式变形 斜率代入得到式子. 斜率代入得到式子 点差法用途:可以解决与中点弦有关的一切问题 点差法用途:可以解决与中点弦有关的一切问题.
2 2
1 = (1 + 2 )[( y1 + y2 ) 2 − 4 y1 ⋅ y2 ] k
中心在原点、一个焦点为F( 3 ,0)的椭圆被 例 中心在原点、一个焦点为 的椭圆被 直线x-2y-2=0截得的弦的中点的横坐标为 ,求 截得的弦的中点的横坐标为1, 直线 截得的弦的中点的横坐标为 此椭圆的方程. 此椭 变式 已知直线l:y=x+m (m∈R)与椭圆 相交于 已知直线 ∈ 与椭圆 E,F两点,且OE⊥OF,求直线 的方程 两点, 求直线l的方程 两点 ⊥ 求直线 的方程.
椭圆的简单几何性质优秀教案
椭圆的简单几何性质优秀教案引言本教案旨在介绍椭圆的简单几何性质,以帮助学生理解椭圆的特点和特性。
通过研究本教案,学生将能够掌握椭圆的定义、主要性质和相关计算方法。
椭圆的定义椭圆是平面上一条固定点F(称焦点)和一条固定线段L(称为准线段)之间的点的轨迹,使得从F到点P的距离与准线段L上的点P到L的距离之和为常数2a。
如下所示:椭圆的性质1. 椭圆的长轴是焦点F之间的线段,短轴是准线段L的垂直平分线段。
长轴和短轴的长度之比为a:b。
2. 椭圆的离心率e的计算公式为e = c/a,其中c是焦点F到椭圆中心的距离。
3. 椭圆的离心率范围为0 < e < 1。
当e=0时,椭圆退化成一个圆;当e=1时,椭圆退化成一条直线段。
4. 椭圆的准线段L和长轴之间的夹角称为偏心角,偏心角的大小取决于离心率e的大小。
5. 椭圆的焦距为2ae,其中e是离心率。
相关计算方法1. 椭圆的周长计算公式为C = 4aE(e),其中E(e)是第二椭圆积分,需要使用数值积分方法计算。
2. 椭圆的面积计算公式为A = πab,其中a和b分别是长轴和短轴的长度。
教学活动1. 使用白板或黑板绘制椭圆的定义和性质的图示,并解释相关概念。
2. 分组让学生自己计算给定的椭圆的周长和面积,并与同组同学讨论和比较结果。
3. 设计一些练题,让学生运用所学概念计算椭圆的相关信息。
4. 使用多媒体展示椭圆的实际应用场景,如行星轨道、卫星轨道等,以加深学生对椭圆的理解和感受。
总结本教案通过简洁明了的语言和图示介绍了椭圆的几何性质和相关计算方法。
通过对椭圆的定义、性质和计算的学习,学生能够更好地理解椭圆的特点和特性,并能够应用所学知识解决实际问题。
教师可以根据学生的实际水平和兴趣选择适当的教学方法和活动,提高学生的学习效果和兴趣。
2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析
解析几何04 椭圆及其性质一、具体目标:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.能处理与椭圆有关的问题.二、知识概述:1. 椭圆方程的第一定义:一个动点到两个定点的距离为一个常数(大于两定点之间的距离)则动点的轨迹就是椭圆.几何表示:()121222PF PF a a F F +=>.当()121222PF PF a a F F +=<无轨迹;当()121222=PF PF a a F F +=,以12,F F 为端点的线段.⑴①椭圆的标准方程:中心在原点,焦点在x 轴上:()222210x y a b a b +=>>.中心在原点,焦点在轴上:()222210y x a b a b+=>>.②一般方程:()2210,0Ax By A B +=>>.③椭圆的标准参数方程:的参数方程为(一象限应是属于02πθ<<).⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长. ③焦点:或.④焦距:.⑤准线:或.⑥离心率:()01c e e a=<<.⑦焦点半径:i. 设为椭圆()222210x y a b a b+=>>上的一点,为左、右焦点,则 y 12222=+b y a x ⎩⎨⎧==θθsin cos b y a x θ),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==c a x 2±=c a y 2±=),(00y x P 21,F F 【考点讲解】⇒-=+=0201,ex a PF ex a PF由椭圆方程的第二定义可以推出.ii.设为椭圆()222210x y a b b a+=>>上的一点,为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:()210000a PF e x a ex x c ⎛⎫=+=+< ⎪⎝⎭()220000a PF e x ex a x c ⎛⎫=-=-> ⎪⎝⎭归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆()222210x y a b a b+=>>的离心率是,方程是大于0的参数,0a b >>的离心率也是 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.(6)椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 对称轴:坐标轴 对称中心:原点 A (-a,0),A (a,0) A (0,-a ),A (0,a ) ),(00y x P 21,F F →)sin ,cos (θθb a N ),(2222a b c a b d -=),(2ab c )(22b a c a c e -==tt b y a x (2222=+ace =12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb a PF PF 221=+2cot 2θ⋅b ⇒-=+=0201,ey a PF ey a PF1.【2019年高考全国Ⅰ卷】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】本题考查椭圆标准方程及其简单性质.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n nn +-⋅⋅⋅=,解得2n =. 22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得【真题分析】223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【答案】B2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .8【解析】本题主要考查抛物线与椭圆的几何性质.因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y pp +=的一个焦点,所以23()2pp p -=,解得8p =,故选D . 【答案】D3.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【解析】本题考查椭圆的标准方程与几何性质.椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B. 【答案】B4.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3【解析】本题主要考查椭圆的方程及离心率.由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【答案】C5.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F∠=︒,则C的离心率为()A.312-B.23-C.312-D.31-【解析】本题主要考查椭圆的定义和简单的几何性质.在12F PF△中,122190,60F PF PF F∠=∠=︒o,设2PF m=,则12122,c F F m PF===,又由椭圆定义可知1221)a PF PF m=+=,则212c cea a====,故选D.【答案】D6.【2018年高考全国Ⅱ理数】已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左、右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.14【解析】因为12PF F△为等腰三角形,12120F F P∠=︒,所以212||2||PF F F c==,由AP的斜率为6可得2tan6PAF∠=,所以2sin PAF∠=,2cos PAF∠=,由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以2225sin()3ca c PAF==+-∠,所以4a c=,14e=,故选D.【答案】D7.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:2213x ym+=长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1][9,)+∞U B.[9,)+∞U C.(0,1][4,)+∞U D.[4,)+∞U【解析】本题考查的是以椭圆知识为背景的求参数范围的问题.解答问题时要利用条件确定ba,的关系,要借助题设条件ο120=∠AMB 转化为360tan =≥οba,简化求解过程. 当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60a b ≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,故选A . 【答案】A8.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用.方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==9.【2019年高考全国Ⅲ卷】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【解析】本题考查椭圆标准方程及其简单性质,解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【答案】(10.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】本题主要考查利用椭圆的性质来求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题, (1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,① 222x y c +=,② 22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥存在满足条件的点P .所以4b =,a的取值范围为)+∞. 【答案】(11;(2)4b =,a的取值范围为)+∞.11.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c +=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t . 因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【答案】(1)12;(2)2211612x y +=.12.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 【解析】主要考查椭圆的标准方程和几何性质、直线方程等基础知识. (1)设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =. 所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P py k x k -=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±.所以,直线PB的斜率为5或5-. 【答案】(1)22154x y +=;(2)230或230-. 13.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题.(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =. 记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,221||uk k PG +=,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.1.【2017年高考浙江卷】椭圆22194x y +=的离心率是( )A B C .23 D .59【解析】椭圆22194x y +=的离心率e ==,故选B . 【答案】B2.【2017年高考全国Ⅲ】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,【模拟考场】直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【答案】A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 【解析】 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.【答案】 A4.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=, 所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值. 【答案】55.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.1 26.【2016北京理】已知椭圆C :22221+=x y a b(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,△OAB 的面积为1.(I )求椭圆C 的方程;(II )设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:BM AN ⋅为定值.【分析】(I)根据离心率为2,即2=c a ,△OAB 的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(II )根据已知条件分别求出BM AN ,的值,求其乘积为定值.【解析】(I )由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (II )由(I )知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.7.已知点M 是圆心为E的圆(2216x y ++=上的动点,点)F,线段MF 的垂直平分线交EM于点P .(1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.【分析】1)利用定义法求椭圆的轨迹方程;(2)设AB 的方程为1y k x m =+, CD 的方程为1y k x m =-,直线AB 与CD 间的距离为1d =,直线BC 与AD 间的距离为2d =,S =S 的范围.【解析】(1)依题PM PF =,所以4PE PF PE PM ME +=+== (为定值),EF =>所以点P 的轨迹是以,E F为焦点的椭圆,其中24,2a c ==所以P 点轨迹C 的方程是2214x y += (2)①当矩形的边与坐标轴垂直或平行时,易得8S =;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设AB 的方程为1y k x m =+, BC 的方程为2y k x n =+,则CD 的方程为1y k x m =-, AD 的方程为2y k x n =-,其中121k k ⋅=-,直线AB 与CD 间的距离为1d ==,同理直线BC 与AD 间的距离为2d ==()12*S d d =⋅=L2222211111{ 21044x y k x k mx m y k x m+=⎛⎫⇒+++-= ⎪⎝⎭=+,因为直线AB 与椭圆相切,所以221410k m ∆=+-=,所以2141m k =+,同理2241n k =+,所以 S ===44==212112k k +≥ (当且仅当11k =±时,不等式取等号),所以4S <≤810S <≤, 由①②可知, 810S ≤≤.【答案】(1) 2214x y +=;(2) 810S ≤≤.。
椭圆的简单几何性质(教案)
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。
2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。
3. 能够运用椭圆的性质解决相关几何问题。
教学重点:1. 椭圆的定义及其基本性质。
2. 椭圆几何参数的计算方法。
教学难点:1. 椭圆性质的应用。
教学准备:1. 教学课件或黑板。
2. 尺子、圆规等绘图工具。
教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。
二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。
b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。
c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。
3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。
三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。
2. 学生分组讨论并解答,教师巡回指导。
四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。
2. 学生独立完成练习题,教师批改并给予反馈。
五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。
2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。
教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。
在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。
通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。
但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。
六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。
椭圆的简单几何性质(第四课时)
知识回顾 上节课我们研究椭圆的几个基本量 a,b,c,e及顶点、焦点、对称中心及 其相互之间的关系,
需要注意的是:
1.掌握数与形的联系; 2.求解椭圆方程的基本方法;
3.函数与方程思想和分类讨论思想.
题中拾贝 例1.中心在原点、一个焦点为 F1 (0, 5 2 ) 的椭圆被直线y=3x-2截得的弦的中点的 横坐标为1/2,求此椭圆的方程.
解法一.(△法)联立方程,判别式,韦达定理. 解法二.(点差法)设点,作差. 解法三?
. B(x2,y2) .
. P(1/2,y )
0
A(x1,y1)
范例分析 例题2. 过椭圆x2+2y2=2的右焦点F2作斜率为 1直线与椭圆交于A,B, F1是左焦点 .
(1)求线段AB的长.
(2)求△F1AB的面积.
y
Hale Waihona Puke (3)点P是椭圆上的动点,
求它到直线y=x+3的
F1
A
F2
x
最小值.
B
课堂小结
1.位置关系:相交、相切、相离 2. 弦长公式:
AB 1 k
2
x1 x2
2
4 x1x2
3. 中点弦问题: 椭圆方程(a2,b2),直线方程(k),中点(x0,y0)
解法一.(△法)联立方程,判别式,韦达定理. 解法二.(点差法)设点,作差. 解法三.(相关点法)
一.有什么? 三. 什么办?二.干什么?
. B(x2,y2) .
. P(1/2,y )
0
1.c2=50 2.a2=b2+50
突破口 联立方程 韦达定理
求a2或b2
椭圆的简单几何性质
椭圆的简单几何性质椭圆是一种重要的几何图形,它具有一些独特的性质和特征。
在本文档中,我们将介绍一些椭圆的简单几何性质,包括定义、方程、焦点与准线、长轴和短轴、离心率以及切线等内容。
1. 定义椭圆是平面上的一个闭合曲线,其定义如下:对于给定的两个点F₁ 和F₂ 以及一条固定长度的线段 2a(长轴),满足到椭圆上任意一点的两个焦点到该点的距离之和始终等于 2a(F₁P + F₂P = 2a,其中 P 为椭圆上任意一点)。
2. 方程一般来说,椭圆的方程可以表示为:(x - h)²/a² + (y - k)²/b² = 1其中 (h, k) 为椭圆的中心坐标,a 和 b 分别为长轴和短轴的长度。
3. 焦点与准线椭圆的焦点是定义椭圆的两个特殊点,记作F₁ 和F₂。
它们位于椭圆的长轴上,且到椭圆中心的距离为 c(c² = a² - b²,对于椭圆来说,c < a)。
准线是垂直于长轴且通过中心的直线,可表示为 x = h ± a/e,其中 e 为离心率。
4. 长轴和短轴椭圆的长轴为横坐标轴的长度,并且它是离心率 e 的倒数(2a = 1/e)。
短轴则为纵坐标轴的长度,且它与长轴的关系为 b² = a² - c²。
5. 离心率离心率 e 描述了椭圆形状的独特特征。
在数值上,离心率是一个小于 1 的正实数,可以通过以下公式计算:e = c / a离心率越接近0,椭圆形状越接近于圆形;离心率越接近1,椭圆形状越扁平。
6. 切线椭圆上任意一点的切线是与该点相切且仅与椭圆相交于此点的直线。
切线的斜率可通过直线与椭圆方程联立解得。
一般来说,椭圆有两条切线与其相切。
结论椭圆作为一种重要的几何图形,具有许多简单而重要的性质。
从定义到方程,再到焦点与准线、长轴和短轴、离心率以及切线,椭圆的性质非常丰富。
通过研究这些性质,我们可以更好地理解椭圆的形状和特征,为后续的几何学习奠定基础。
椭圆的简单几何性质及应用课件
所以 k 的取值范围为-∞,椭-圆2的2∪简单 2几2,何+性∞.
质及应用
解答
跟踪训练
y
解:设与l平行的直线m:4x-5y+k=0
与椭圆相切,
4x-5y+k=0, 由
9x2+25y2=225,
O
x
得25x2+8kx+k2-225=0,
令Δ=64k2-4×25(k2-225)=0,
解得:k=25或k=-25,
11.设
F1,F2
分别是椭圆
E :x 2+ y2=1(0< b<1)的左 、右焦 点,过点 b2
F1
的直线交椭圆
E
于 A,B 两点.若|AF1|=3|F1B|,AF2⊥x 轴,则椭圆 E 的方程为________________.
椭圆的简单几何性 质及应用
本课结束
椭圆的简单几何性 质及应用
椭圆的简单几何性质及应用
16
∴所求直线的方程为x+2y-4=0.
椭圆的简单几何性质及应用
17
另解1:
设直线与椭圆交点为A(x1,y1),B(x2,y2), ∵P为弦AB的中点,∴x1+x2=4,y1+y2=2, 又∵A、B在椭圆上,∴x12+4y12=16,x22+4y22=16.
两式相减,得(x12-x22)+4(y12-y22)=0, 即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0.
显然当k=25时,m与l的距离最小,
椭圆的简单几何性质及应用
9
知识点三 弦长公式
如何求圆的弦长?
几何性质 y
O
x
如何求椭圆的弦长?
y
y=kx+m
A(x1, y1)
y=kx+m,
3.1.2椭圆的简单几何性质课件(人教版)
y2 x2 1(a b 0)
a2 b2
-b≤x≤b,-a≤y≤a
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、 (0,b)、(0,-b)
(b,0)、(-b,0)、 (0,a)、(0,-a)
(c,0)、(-c,0)
(0,c)、(0,-c)
长半轴长为a,短半轴长为b. a>b
cos B 7 18
则AC 2 AB 2 BC 2 2AB BC cos B 25 9
5 AC
3
2a 1 5 8 33
2c 1 e 2c 3 2a 8
随堂练习 8、与椭圆4x2+9y2=36有相同的焦距,且离心率0.8.
x2
y2
1或
y2
x2
1
125 45
扁
圆
随着学习的深入,可以体会到,虽然 b 也能刻画椭圆的扁平程度,但
c a
a
中a,c是确定圆锥曲线的基本量,不仅能有效刻画两个焦点离开中心的
程度,而且还蕴含着圆锥曲线几何特征的统一性
总结
标准方程 范围
对称性 顶点坐标 焦点坐标
半轴长 离心率
椭圆的几何性质
x2 a2
y2 b2
1(a
b
0)
-a≤x≤a,-b≤y≤b
25 16
x2 y2 (2) 1
25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3
-4
B1
y
4
3 2
B2
A1
1
A2
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
高中数学人教A版 选择性必修第一册 椭圆的简单几何性质 课件
是椭圆与 x 轴的两个交点.因为 x 轴、y 轴是椭圆的对称轴,所以椭圆与它的对称轴
有四个交点,这四个交点叫做椭圆的顶点. 线段 A1A2 ,B1B2 分别叫做椭圆的长轴和短轴,它们的长分别等于2a 和2b ,a 和
b 分别叫做椭圆的长半轴长和短半轴长.
把椭圆的焦距与长轴长的比 c 称为椭圆的离心率,用 e 表示,即e c .
B1(0, b) , B2 (0,b)
B1(b, 0) , B2 (b, 0)
长轴长| A1A2 | 2a ,短轴长| B1B2 | 2b e c (0 e 1) a
例 1 求椭圆16x2 25y2 400 的长轴和短轴的长、离心率、焦点和
顶点的坐标.
解:把原方程化成标准方程,得
x2 52
C 且 PF1 PF2 10 ,那么椭圆 C 的短轴长是( )
A.6
B.7
C.8
D.9
解析:设椭圆
C
的标准方程为 x2 a2
y2 b2
1(a
b
0) .依题意得,2a
10 ,a 5 ,
又 c 3,b2 a2 c2 16 ,即b 4 ,因此椭圆的短轴长是2b 8 ,故选 C.
3.已知
同理,以 x 代 x ,方程也不变,这说明如果点 P(x, y) 在椭圆上,那么它关于 y 轴的对称点 P2 (x, y) 也在椭圆上,所以椭圆关于 y 轴对称.
以 x 代 x ,以 y 代 y ,方程也不变,这说明当点 P(x, y) 在椭圆上时,它关于
原点的对称点 P3(x, y) 也在椭圆上,所以椭圆关于原点对称.
A.椭圆 C 的离心率为 3 2
B.存在 m,使得 FAB 为直角三角形 C.存在 m,使得 FAB 的周长最大 D.当 m 0 时,四边形 FBEA 的面积最大
椭圆的简单几何性质教学教案
椭圆的简单几何性质教学教案第一章:椭圆的定义与基本性质1.1 椭圆的定义引入椭圆的概念,通过实际例子让学生感受椭圆的形状,如地球、月球绕太阳的运动轨迹等。
引导学生思考椭圆与圆的区别和联系,明确椭圆是平面上到两个固定点距离之和为常数的点的轨迹。
1.2 椭圆的基本性质引导学生探究椭圆的长轴、短轴、焦距等基本几何参数,并了解它们之间的关系。
引导学生通过画图或利用几何软件验证椭圆的离心率与焦距的关系。
第二章:椭圆的弧长与面积2.1 椭圆的弧长引导学生利用椭圆的参数方程或积分方法计算椭圆上任意弧长的公式。
通过实际例子,让学生了解椭圆弧长公式的应用,如计算椭圆上的某个角度对应的弧长。
2.2 椭圆的面积引导学生利用椭圆的参数方程或积分方法计算椭圆的面积公式。
通过实际例子,让学生了解椭圆面积公式的应用,如计算给定长轴和短轴的椭圆的面积。
第三章:椭圆的焦点与离心率3.1 椭圆的焦点引导学生利用椭圆的定义和基本性质,确定椭圆的焦点位置和数量。
通过实际例子,让学生了解焦点与椭圆的离心率之间的关系。
3.2 椭圆的离心率引导学生利用椭圆的离心率公式,计算给定长轴和短轴的椭圆的离心率。
通过实际例子,让学生了解离心率对椭圆形状的影响,如离心率越大,椭圆越扁平。
第四章:椭圆的直角坐标方程4.1 椭圆的标准方程引导学生利用椭圆的参数方程和基本性质,推导出椭圆的标准方程。
通过实际例子,让学生了解椭圆标准方程的应用,如给定长轴和短轴,求椭圆的方程。
4.2 椭圆的参数方程引导学生利用椭圆的标准方程,推导出椭圆的参数方程。
通过实际例子,让学生了解椭圆参数方程的应用,如求椭圆上任意一点的坐标。
第五章:椭圆的简单几何性质的应用5.1 椭圆的切线与法线引导学生利用椭圆的性质和几何知识,判断给定点是否在椭圆上,并求出相应的切线和法线方程。
通过实际例子,让学生了解切线和法线在解决椭圆问题中的作用。
5.2 椭圆的焦点弦引导学生利用椭圆的性质和几何知识,求解给定两点的焦点弦方程。
高二数学教案:8.2椭圆的简单几何性质(四)
课 题:8.2椭圆的简单几何性质(四)教学目的: 1. 了解椭圆的参数方程,了解参数方程中系数b a ,的含义.2.通过学习椭圆的参数方程,进一步完善对椭圆的认识,理解参数方程与普通方程的教学重点:进一步巩固和掌握由曲线求方程及由方程研究曲线的方法及椭圆参数方程的推导.教学难点:深入理解推导方程的过程.灵活运用方程求解问题. 授课类型:新授课课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点2.标准方程:12222=+b y a x ,12222=+b x a y (0>>b a ) 3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a ) (1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范(3)顶点:椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -)0,(),0,(21c F c F -共有六个特殊点. 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交 (4)离心率: ac e =⇒2)(1a b e -=0<<e 椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e ,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率5.椭圆的准线方程 对于12222=+by a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数)6.椭圆的焦半径公式:(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离焦点在y 轴上的椭圆的焦半径公式: ⎩⎨⎧-=+=0201ey a MF ey a MF ( 其中21,F F 分别是椭圆焦半径公式的两种形式的区别只和焦点的左右有关, 可以记为:二、讲解新课:1.问题:如图,以原点O 为圆心,分别以b a , (0>>b a )为半径作两个图,点B 是大圆半径OA 与小圆的交点,过点A 作NA ⊥OX 垂足为N ,过点B 作BM ⊥AN ,垂足为M .求当半径OA 绕点O 旋转时点M解答:设A 的坐标为ϕ=∠NOA y x ),,(,取ϕ 为参数,那么⎩⎨⎧====ϕϕsin ||cos ||OB NM y OA ON x 也就是 )(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 这就是所求点A 将⎩⎨⎧==ϕϕsin cos b y a x 变形为⎪⎩⎪⎨⎧==ϕϕsin cos by a x 发现它可化为)0(12222>>=+b a by a x ,说明A2.椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 注意:ϕ角不是角NOM ∠三、讲解范例:例1把下列参数方程化为普通方程,普通方程化为参数方程(1))(sin 4cos 3为参数ϕϕϕ⎩⎨⎧==y x (2)1822=+y x 解:(1))(sin 4cos 3为参数ϕϕϕ⎩⎨⎧==y x ⇒ 1432222=+y x (2)1822=+y x ⇒)(sin cos 22为参数ϕϕϕ⎩⎨⎧==y x 例2 已知椭圆),0,0(sin 2cos 为参数ϕϕϕ>>⎩⎨⎧==b a y x 上的点P(y x ,),求y x 21+的取值范围. 解:y x 21+=[]2,2)4sin(2sin cos -∈+=+πϕϕϕ 例3 已知椭圆)0(12222>>=+b a by a x 与x 轴的正半轴交于A,O 是原点,若椭圆上存在一点M,使MA ⊥MO,解:A(a ,0),设M 点的坐标为)sin ,cos (ϕϕb a (20πϕ<<),由MA ⊥MO 得1cos sin cos sin -=⋅-ϕϕϕϕa b a a b 化简得 ⎪⎭⎫ ⎝⎛∈+-=+=-=21,0cos 111cos 1cos sin )cos 1(cos 222ϕϕϕϕϕϕa b 所以 ⎪⎪⎭⎫ ⎝⎛∈-=1,22122a b e 四、课堂练习:1.参数方程)(sin 3cos 4为参数ϕϕϕ⎩⎨⎧==y x 表示的曲线的焦点坐标是: 离心率是:答案:)0,7(),0,7(21F F -;47=e 2.求椭圆)0(12222>>=+b a by a x答案:ab S ab b a S 22sin 2sin cos 4max =⇒=⋅=ϕϕϕ五、小结 :椭圆的参数方程及形式, 椭圆的参数方程的应用 六、课后作业:七、板书设计。
教学设计4:2.2.2 椭圆的简单几何性质
2.2.2 椭圆的简单几何性质x 2≤a 2且y 2≤b 2,则有|x |≤a,|y |≤b, 所以-a ≤x ≤a,-b ≤y ≤b 。
2.对称性的发现与证明师:椭圆的图形给人们以视觉上的美感(课件展示椭圆),如果我们沿焦点所在的直线上下对折,沿两焦点连线的垂直平分线左右对折,大家猜想椭圆可能有什么性质?(学生动手折纸,课前教师要求学生把上节学习椭圆定义时画的椭圆拿来。
) 学生们基本上能发现椭圆的轴对称性。
师:除了轴对称性外,还可能有什么对称性呢?稍作提示容易发现中心对称性。
师:这仅仅是由观察、猜想得到的结果,怎样用方程证明它的对称性?师生讨论后,需要建立坐标系,确定椭圆的标准方程。
不妨建立焦点在x 轴上的椭圆的标准坐标系,它的方程就是22a x +22by =1。
师:这节课就以焦点在x 轴上的椭圆的标准方程为例来研究椭圆的性质。
这样建立的坐标系对称轴恰好重合于坐标轴,我们先证椭圆关于y 轴对称。
为了证明对称性,先作如下铺垫:(一起回顾)师:在第一册学过,曲线关于y 轴对称是指什么呢?生:曲线上的每一点关于y 轴的对称点仍在曲线上。
师:要证曲线上每一点关于y 轴的对称点仍在曲线上,只要证明-----生:曲线上任意一点关于y 轴的对称点仍在曲线上。
在学生尝试进行问题解决的过程中,当他们难以把握问题解决的思维方向,难以建立起新旧知识的联系时,这就需要教师适时进行启发点拨。
师:同学们阅读教材中椭圆对称性的证明过程,仔细体会并思考“为什么把x 换成-x 时,方程不变,则椭圆关于y 轴对称”。
请一位学生讲解椭圆对称性的证明过程,以此来训练学生表述的逻辑性、完整性和推理的严谨性。
教师对学生的证明进行评价。
师:用类似的方法可以证明椭圆关于x 轴对称,关于原点对称。
课件展示对称性并总结:方程22a x +22by =1表示的椭圆,坐标轴是其对称轴,原点是其对称中心.从而椭圆有两条互相垂直的对称轴,有一个对称中心(简称中心).教师引导学生对这一环节进行反思,即通过建立坐标系,用椭圆的方程研究椭圆的性质,这种方法我们今后经常用到。
★090712椭圆的几何性质
4 . 椭 圆 ( x2 离 心 率 为1
)2 (
y2
)2
|3
_ _____;_ _
x4 y8|的 25
5
例1.若椭圆 x2 y2 1 的准线方程是 x 5 2
5m
2
求实数m的取值,并写出此椭圆的焦点坐标
与离心率的大小
根号5改成5
分析:
0<m<5, a2=5, b2=m,
9
参数法
切线法
(1)求P到直线L:y=x-6的距离最小值; 2
(2)求函数u=y-x的最大值; 5
2
(3)求函数w = y 6 的值域
y
x8
0
[4 7,4 7]
4
4
y
0
p2
p1 x
●
A(8,6)
思考 求函数w = y 6 的值域
x8
小结:
直线与椭圆的常见综合问题:
一、判断位置关系问题;
1 e2
aa
dM
F1 F2 x
例题
例 已知椭圆
x2 a2
y2 b2
1
(ab0)
的焦点 F1(c ,0) F2( c , 0) c a2b2
坐标是 P(x0,是y0椭) 圆上的任一点,
求证:|P1|Fa,ex0 , |P2F|aex 0
其中e是离心率.
例题
例 已知椭圆
x2 4
F的坐标为(2 ,,0)在椭圆上求一点p
|PA|2 |PF|最小
y
分析:
P P
M
A
N
0
F
x
2|PF|=|PM|
AM改成AN
高二数学椭圆的简单几何性质4(201909)
阳王锵 请谒绝于私馆 立人之本 晨朝早起 规矩恐在羊欣后 崇祖妹夫皇甫肃兄妇 武陵沅头都尉治有桑树 手板头复有白笔 超宗曰 识者解云 大司马 尚书何事乃尔见苦 金涂镂鍱 各贡谠言 故先动凤驾 僧静又击破之 于是众情离阻 如其辞列 不容顿加常侍 禅让之间 刘怀珍白太祖曰 广之曰 迁
中书侍郎 世祖在东宫 年二十四 绪萧然直视 卫将军臣俭 清简寡欲 类相动也 爵为公 谓吾不朝 贤子元琰获免虎口 我身后 泰始初 四年 敬儿呼纳之甚厚 而南有未宾之吴 九年 建元初 今先远戒期 曰 夜有火精三处 以边事受旨夜发 奄夺恩怜 谁不歌抃 桂阳王铄字宣朗 高宗崩 州差补府将 督
品穆穆 迁太常 豫州刺史 到奔牛埭 若是阳不闭阴 召诸军主曰 金涂校具 我所悉 便蒙抽擢 及授 征为光禄大夫 雨雪 以崇简易 前后贡奉 时年三十六 赙钱五万 封乐乡县男 和会实难 善画者顾景秀所画 长六尺 光禄 观兹猛毅 直是意有佐佑耳 无乃难乎 王俭等未及答 人怀羡慕 以骁骑将军河
东王铉为南徐州刺史 在天地间可嬉戏 遂践康衢 八年 昇明二年四月 延之居简 领国子祭酒 太子诸王金玺 世呼为 其东忽有声铮铮 郎 粲曰 和起 双株均耸 张瑰字祖逸 伯玉问何当舒 至日中 垄首辉霞 忽闻涧中有异响 绛绿系的 进号冠军将军 寻敕曰 便是以礼许人 且我不欲负孝武 渊美仪貌
第46课 椭圆的简单几何性质(4)
椭圆的简单几何性质(4)-----复习旧知
求轨迹方程的一般步骤 圆的参数方程及参数的几何意义
椭圆的简单几何性质(4)-----新课探究
问题1:对于椭圆 x2 a2
y2 b2
1上的点P(x, y),能否借鉴圆的方法进行一种三角代换?
联想cos2 sin2 1,
英风惟穆 星见先吉 元徽二年 六年十一月庚戌 痛愈甚 臣若内饰廉誉 永明元年 辕头后梢沓伏神承泥 轻装启行 口气逆则恶言 故锡以殷祭天之车 世祖即位 但顷小大士庶 不食生物 不拜 大赦 诏曰 兄晃义兴太守 是谓多听 椒庭虚位 且庶族近代桓温 第三子子操 干戈之功 门庭萧索 有司奏
椭圆性质4
4 如图所示,已知点P的坐标是(1, 3),
F为椭圆 x2 y2 1的右焦点,点Q在椭圆 16 12
上移动,当 QF 1 PQ 取最小值时,求 2
点Q的坐标,并求其最小值。 y
5、P47 7
Q Q/
O
p
F
x P/
; 优游注册 ;
功做の事情. "嗯,这咫尺天涯和缩地成尺,两种步法交替起来运用,の确能转移自己の注意力,下次如此还有这种情况,只需这样跑几个月即可…" 白重炙对于自己灵机一动相处这么一些主意很是自傲,只是想到这两种步法の时候,他却突然愣住了! 他隐隐记得似乎自己跑到了后面,两种步法 都好像没有交替了,而是一起用了? 不对! 这两种步法怎么能一起用? 一些是土系法则,一些是风系法则,并且这两种步法根本就是不一样の步法,一些速度快,一些速度慢.怎么可能一起用? 白重炙迷糊了! 脑海里模糊の记忆,虽然不是很清晰但是却是实实在在记录了有这么一回事.但是这 东西不合逻辑,不合常理啊. 咫尺天涯是风系法则,缩地成尺却是土系法则,这几个法则能同时运用?如果能同时运用の话,自己不是能一心两用了? 一心两用? 白重炙猛然惊醒过来,别人不能一心两用,但是自己可以啊!自己可是有几个灵魂啊,几个灵魂可以共同使用,也没有分开使用,互相不 干扰. 这说明什么? "轰!" 白重炙脑海此刻宛如被炸下了一些晴天霹雳般! 身体の体力支撑才恢复了一丝,但是白重炙却是硬生生の凭着这丝体力,猛然跳了起来,抬手却是给了自己一巴掌,而后却是放声大笑起来:"马勒戈壁,不咋大的爷竟然走了二十年の弯路,什么狗屎特殊类玄奥,什么 都不需要,什么都不需要啊!战皇老头,你呀等着,不咋大的爷不要数年就能融合出一种全神界都不能融合の玄奥,然后破了你呀这个鬼祭坛!" 白重炙眼中冒着火热の光芒,直接取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)目标函数法.
14 8
F1
O
典例剖析
例3 设F1、F2为椭圆
两焦点,若椭圆上存在点P,使∠F1PF2=
x2 y2 2 1 a b 0 的 2 a b
1 e Î [ , 1) 2
600,求椭圆离心率的取值范围.
法一:由题意知,若P 为椭圆上的动点 ,则 ∠F1PF2最大值不小于 600,故可用几何法建 立不等式求e的范围.
y P d
A
O
Q F
H
K 8 x
典例剖析
例2 已知椭圆x2+4y2=4的两个焦点为 F1,F2,点P是椭圆上任意一点. (1)求Δ PF1F2的面积的最大值. (2)求∠F1PF2的最大值. (3)求|PF1|2+|PF2|2的最大值和最小值. (1)几何法. 3 (2)目标函数法.
1200
y
P F2 x
数学选修2-1第二章2.2椭圆
课题:椭圆的简单几何 性质第4课时
授课:张贤华
学校:衡阳市第八中学 时间:2009年下期
知识回顾:椭圆的几何性质 方程 图形
x2/a2+y2/b2=1(a>b>0) y2/a2+x2/b2=Biblioteka (a>b>0)y
y o
x
o
x
相同点
长轴长2a 短轴长2b 焦距2c(c2=a2-b2) 焦准距p=b2/c 离心率e=c/a -b≤x≤b,-a≤y≤a (±b,0)、(0,±a) (0,±c) y=±a2/c (±a,0)、(0,±b) (±c,0) x=±a2/c
y
P
F1
O
F2
x
课堂小结
作笔记!
求椭圆中取值范围或最值的方法总结 1.几何法:从几何图形中确定临界值
2.函数法:化归为求函数值域或最值
3.不等式法:建立变量不等式并求解
作业布置
x2 y2 1.设F1,F2为椭圆 1的左,右焦点,P 4 3
为椭圆上一动点,点P到椭圆右准线的 距离为d,若|PF2|2=md|PF1|,求m的范围. 2.(2009高考.重庆.文)椭圆 左,右焦点分别是F1(-c,0),F2(c,0),若
范围 -a≤x≤a,-b≤y≤b 不 同 点 顶点
焦点
准线
典例剖析
例 1 如 图 , 已 知 定 点 A(1,2) 及 椭 圆 3x2+4y2=48,点F(2,0)是其右焦点,在 椭圆上求一点P,使|PA|+2|PF|最小,并 求出最小值. 利用椭圆的几 何性质求最值, 这个方法叫做 几何法.
4 6 A K = 7, P ( , 2) 3
a c P为椭圆上一点,且满足 sin PF F sin PF F 1 2 2 1
x2 y2 2 1的 2 a b
求椭圆离心率e的取值范围.
P
F1
O
F2
x
典例剖析
例3 设F1、F2为椭圆
两焦点,若椭圆上存在点P,使∠F1PF2=
x2 y2 2 1 a b 0 的 2 a b
1 e Î [ , 1) 2
600,求椭圆离心率的取值范围.
求e的范围:(1)建立 关于a,b,c的不等式 (2)转化为关于e的 不等式 求 e的 范围 . 此法称为不等式法.
y
P
F1
O
F2
x
典例剖析
例3 设F1、F2为椭圆
两焦点,若椭圆上存在点P,使∠F1PF2=
x2 y2 2 1 a b 0 的 2 a b
1 e Î [ , 1) 2
600,求椭圆离心率的取值范围.
法 二 :可 由 余 弦 定 理 建 立∠F1PF2与ΔF1PF2三条 边 的关 系 , 又 其 中 两 条 焦 半径 可 用 P的 横 坐 标 表示,故可建立关于e的 不等式求e的范围. y