初三数学第一轮复习教案7

合集下载

九年级数学第一轮复习教案(全)

九年级数学第一轮复习教案(全)

九年级数学第一轮复习教案(全)
教学目标
1. 温数学基础知识和技能,为进一步研究打下坚实基础。

2. 了解数学基本概念和方法,提高数学思维,培养解决实际问题的能力。

教学内容
1. 数学基本概念(如整数、有理数、无理数等)的复
2. 一元二次方程及其应用
3. 平面向量及其坐标表示
4. 三角函数及其应用
5. 统计与概率基础
教学方法
1. 讲、练相结合
2. 合作探究,小组讨论
3. 游戏化教学,提高学生兴趣
教学流程
1. 复整数、有理数、无理数,引入实数的概念
2. 研究一元二次方程,讲解标准式、一般式和求解方法
3. 研究平面向量,引入向量的概念和坐标表示
4. 研究三角函数,重点讲解正弦、余弦、正切函数的概念、性质和应用
5. 研究统计与概率,了解基本概念和应用方法
6. 总结、评价、作业布置
教学评价
1. 学生能够熟练掌握数学基本概念和技能,特别是一元二次方程、平面向量、三角函数等。

2. 学生能够运用所学知识解决实际问题,并能够合作探究,提高解决问题的能力。

3. 学生兴趣得到激发,获得数学的快乐和成就感。

作业安排
1. 完成课堂练和小组探究任务。

2. 课下巩固和扩展所学知识,完成书面练习。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容本节课为初三第一轮数学复习,主要涉及教材第十四章《圆》的内容。

详细内容包括圆的基本概念、圆的性质、圆的方程、圆与直线的关系、圆与圆的位置关系等。

二、教学目标1. 理解并掌握圆的基本概念和性质,能熟练运用圆的方程解决问题。

2. 掌握圆与直线、圆与圆的位置关系,并能运用这些关系解决实际问题。

3. 培养学生的空间想象能力和逻辑推理能力,提高解决问题的策略和方法。

三、教学难点与重点重点:圆的基本概念、性质,圆的方程,圆与直线、圆与圆的位置关系。

难点:圆与圆的位置关系判断,解决实际问题中的圆相关计算。

四、教具与学具准备教具:圆规、直尺、三角板、多媒体课件。

学具:圆规、直尺、三角板、练习本。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中的圆形物体,引导学生发现圆的特点,激发学习兴趣。

2. 复习回顾(15分钟)(2)学生展示圆的方程的推导过程,教师点评并强调注意事项。

3. 例题讲解(20分钟)例题1:已知圆的半径为5,求该圆的面积。

例题2:已知圆的直径为10,求该圆的周长。

例题3:判断点P(3,4)是否在圆O(x2)²+(y3)²=16内。

4. 随堂练习(10分钟)练习1:已知圆的周长为31.4,求该圆的半径。

练习2:已知圆的面积为50.24,求该圆的直径。

5. 知识拓展(10分钟)讲解圆与直线、圆与圆的位置关系,引导学生运用这些关系解决实际问题。

六、板书设计1. 圆的基本概念和性质2. 圆的方程3. 圆与直线、圆与圆的位置关系七、作业设计1. 作业题目:(1)求半径为6的圆的面积和周长。

(2)判断点A(1,2)是否在圆B(x3)²+(y4)²=9内。

(3)已知两圆的半径分别为5和8,求它们的圆心距离。

2. 答案:(1)面积:113.1,周长:37.7(2)不在(3)圆心距离:3或13八、课后反思及拓展延伸1. 反思:本节课学生对圆的基本概念和性质掌握较好,但在解决实际问题中还需加强训练。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

一轮复习教案:第7章 第1讲 不等关系与不等式

一轮复习教案:第7章 第1讲 不等关系与不等式

3≤2x+y≤9
(3)若变量 x,y 满足约束条件
,则 z=x+2y 的最小值为________.
6≤x-y≤9
[解析] (1)∵ab>0,bc-ad>0,
∴c-d=bc-ad>0,∴①正确; a b ab
∵ab>0,又c-d>0,即bc-ad>0,
ab
ab
∴bc-ad>0,∴②正确;
∵bc-ad>0,又c-d>0,即bc-ad>0,
ab
ab
∴ab>0,∴③正确.故选 D.
(2)∵M-N=a1a2-(a1+a2-1)=(a1-1)(a2-1),又∵a1,a2∈(0,1),∴M-N>0,即 M>N, 选 B.
(3)令 z=x+2y=λ(2x+y)+μ(x-y)=(2λ+μ)x+(λ-μ)y,
2λ+μ=1
λ=1

,∴
,∴z=(2x+y)-(x-y),
大.
[正解] 解法一:设 f(-2)=mf(-1)+nf(1)(m,n 为待定系数),则 4a-2b=m(a-b)+n(a+
b),
即 4a-2b=(m+n)a+(n-m)b.
m+n=4,
m=3,
于是得
解得
n-m=-2,
n=1,
∴f(-2)=3f(-1)+f(1).
又∵1≤f(-1)≤2,2≤f(1)≤4,
2.若 a>b>0,c<d<0,则一定有( )
A.a>b cd
C.a>b dc
B.a<b cd
D.a<b dc
答案 D
解析 ∵c<d<0,∴-c>-d>0,

中考数学第一轮复习教案

中考数学第一轮复习教案

一、实数与整式【课标要求】1、有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小. (2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值. (3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的实际问题.(6)能对含有较大数字的信息作出合理的解释和推断.2、实数(1)了解无理数和实数的概念,知道实数与数轴上的点一一对应.(2)能用有理数估计一个无理数的大致范围.(3)了解近似数与有效数字的概念;在解决实际问题中,知道计算器进行实数计算的一般步骤,能按问题的要求对结果取近似值.3、代数式(1)在现实情境中进一步理解用字母表示数的意义.(2)能分析简单问题的数量关系,并用代数式表示.(3)能解释一些简单代数式的实际背景或几何意义.(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4、整式(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数.(2)了解整式的概念,会进行简单的整式加、减、乘、除运算.(3)会推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,能用图形的面积解释乘法公式,并会用乘法公式进行简单计算;了解乘法公式(a+b)( a2-ab+b2)=a3+b3;(a-b)( a2+ab+b2)=a3-b3.第1课时有理数一、知识点1.有理数的意义:数轴,相反数,倒数,绝对值,近似数与有效数字。

2.有理数的运算:加减乘除,乘方,有理数的大小比较,科学记数法.二、中考课标要求1、有理数的有关概念要准确把握有理数的概念,特别是负数和绝对值的概念是难点,要深刻理解,并结合数轴理解这两个概念,用数形结合的思想,使抽象的概念具体化,再就是近似数的有效数字的概念也是非常重要的,要理解透彻。

初三数学第一轮复习教案以及习题

初三数学第一轮复习教案以及习题

初三数学第一轮复习教案以及习题初三的数学马上要进入复习备考阶段,在这个重要的阶段,需要数学老师好好思考如何制定复习教案,这会对学生的数学复习造成一定的影响。

下面是店铺整理的初三数学第一轮复习教案,希望对您有帮助。

初三数学第一轮复习教案第一部分1、第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

我要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容我还重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮复习的步骤、方法(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义 (2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.(3)基本训练反复进行:学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张”题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下”盲棋”一样,只需用脑子默想,即能得到正确答案.这就是我们在常言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,”熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会”粗心”地出错3、数学:过来人谈中考复习数学巧用“两段”法第一个阶段,是第一轮复习。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆二、教学目标1. 熟练掌握实数、代数式、方程、不等式、函数、图形等基本概念及其性质。

2. 提高学生的运算能力,培养学生的逻辑思维能力和解决问题的能力。

3. 帮助学生建立知识体系,提高综合运用所学知识解决实际问题的能力。

三、教学难点与重点重点:实数与数轴、代数式的简化与运算、方程与不等式、函数及其图像、三角形与四边形、圆的基本概念及其性质。

难点:函数的性质及其图像、不等式的解法、几何图形的综合应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、练习本、草稿纸、直尺、圆规。

五、教学过程1. 导入:通过实际生活中的例子,引入实数、方程、函数等概念,激发学生的兴趣。

2. 复习实数与数轴:讲解实数的分类、数轴上的点与实数的对应关系,举例说明实数在生活中的应用。

3. 复习代数式的简化与运算:讲解代数式的性质、运算法则,通过例题讲解,让学生掌握代数式的简化与运算。

4. 复习方程与不等式:讲解方程、不等式的解法,结合实际例子,让学生学会解决实际问题。

5. 复习函数及其图像:讲解函数的定义、性质,通过绘制图像,让学生直观地理解函数的变化规律。

6. 复习三角形与四边形:讲解三角形、四边形的性质,结合实例,让学生掌握几何图形的应用。

7. 复习圆:讲解圆的性质、圆与直线的关系,通过实例,让学生了解圆在实际生活中的应用。

8. 随堂练习:针对每个知识点,设计练习题,让学生及时巩固所学知识。

六、板书设计1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆七、作业设计1. 作业题目:(1)计算:2^3 5 × (4 ÷ 2) + 7(2)解方程:2x 5 = 3(x + 1)(3)解不等式:3(x 1) > 2(x + 2)(4)绘制函数y = 2x + 1的图像(5)证明:等腰三角形的底角相等。

初三数学一轮复习教学案

初三数学一轮复习教学案

初三数学一轮复习教学案【中考要求】1.根据具体问题中的数量关系列出方程(组).2.掌握解一元一次方程、简单的二元一次方程组.【知识回顾】1.解一元一次方程的一般步骤是________、________、________、________、________.请说出每一步要注意什么?2.解二元一次方程组的基本思想是_______,常用方法有___________和___________.3.已知关于x 、y 的方程组,().x y m x y n -=⎧⎨-+=-⎩2381221与,.x y nx y m -=⎧⎨+=+⎩251有相同的解,求m 、n 值.【基础训练】1.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .32.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==35y 4x ,(3)⎪⎪⎩⎪⎪⎨⎧-==27y 41x 这三组数值中,____ _是方程93=-y x 的解,______是方程42=+y x 的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解; 3.当_________x =时,代数式x +23与x -64的值相等;4.二元一次方程1523=+y x 的正整数解为______________;5.解方程16110312=+-+x x 时,去分母后正确的结果是 ( ) A .111014=+-+x x B .111024=--+x xC .611024=--+x xD .611024=+-+x x6.解下列方程(组):(1)()()x x x x --=--320379;(2);32x 221x x +-=--;(3)2;0.53-x 0.24x =-+(4),.x y x y -=⎧⎨+=⎩32541; ⎩⎨⎧⨯=⋅+⋅=+⎪⎩⎪⎨⎧=--+=-++72%.500y 80%x 60%500,y x (6)2;y)5(x y)4(x 6,3y x 2y x (5)(7).x y x y +-==22135【随堂练习】中考说明P 222.1一次方程(组).。

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。

教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。

下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。

中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

中考数学复习教案七篇

中考数学复习教案七篇

中考数学复习教案七篇中考数学复习教案七篇中考数学复习教案都有哪些?教学设计,激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

下面是小编为大家带来的中考数学复习教案七篇,希望大家能够喜欢!中考数学复习教案【篇1】【教学目标】知识与技能:了解并掌握数据收集的基本方法。

过程与方法:在调查的过程中,要有认真的态度,积极参与。

情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】重点:掌握统计调查的基本方法。

难点:能根据实际情况合理地选择调查方法。

【教学过程】讲授新课像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。

在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。

这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

师:以“你知道父母的生日吗”为题在班级进行调查,请设计一张问卷调查表。

中考数学第一轮复习教案(实数、整式、分式、根式)

中考数学第一轮复习教案(实数、整式、分式、根式)

中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。

即a x =。

规定:0的算术平方根是0。

定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即如果x 2=a ,那么x 叫做a 的平方根。

即a x ±=。

定义3:求一个数a 的平方根的运算,叫做开平方。

因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。

2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

即3a x =。

求一个数的立方根的运算,叫做开立方。

正数的立方根是正数;负数的立方根是负数;0的立方根是0。

3、无理数无限不循环小数又叫做无理数。

初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。

即实数包括有理数和无理数。

备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。

有理数关于相反数和绝对值的意义同样适合于实数。

例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。

5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。

例如:不是分数,是无理数。

6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。

备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。

中考数学一轮复习考试教案(完整版)

中考数学一轮复习考试教案(完整版)

第一课时 实数的有关概念知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:1. 有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。

实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 考查题型:以填空和选择题为主。

如 一、考查题型:1. -1的相反数的倒数是2. 已知|a+3|+b+1 =0,则实数(a+b )的相反数 3. 数-3.14与-Л的大小关系是4. 和数轴上的点成一一对应关系的是5. 和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是 6. 在实数中Л,-25,0, 3 ,-3.14, 4 无理数有( )(A )1 个 (B )2个 (C )3个 (D )4个7.一个数的绝对值等于这个数的相反数,这样的数是( ) (A )非负数 (B )非正数 (C )负数 (D )正数 8.若x <-3,则|x +3|等于( )(A )x +3 (B )-x -3 (C )-x +3 (D )x -3 9.下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数 10.实数在数轴上的对应点的位置如图,比较下列每组数的大小: (1) c-b 和d-a (2) bc 和ad 二、考点训练: 1.判断题:(1)如果a 为实数,那么-a 一定是负数;( ) (2)对于任何实数a 与b,|a -b|=|b -a|恒成立;( ) (3)两个无理数之和一定是无理数;( ) (4)两个无理数之积不一定是无理数;( ) (5)任何有理数都有倒数;( ) (6)最小的负数是-1;( ) (7)a 的相反数的绝对值是它本身;( ) (8)若|a|=2,|b|=3且ab>0,则a -b=-1;( ) 2.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,-227 ,0,sin60°º,-9 ,-3-18 , -Л2 ,8 ,( 2 - 3 )0,3-2,ctg45°,1.2121121112......中无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ } 3.已知1<x<2,则|x -3|+(1-x)2等于( )(A )-2x (B )2 (C )2x (D )-24.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?-3, 2 -1, 3, - 0.3, 3-1, 1 + 2 , 313互为相反数: 互为倒数: 互为负倒数:5.已知x、y是实数,且(X - 2 )2和|y+2|互为相反数,求x,y 的值6.a,b 互为相反数,c,d 互为倒数,m 的绝对值是2,求|a+b|2m 2+1 +4m-3cd= 。

中考数学一轮复习教案全套

中考数学一轮复习教案全套

第一篇 数与式专题一 实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题.三、考点扫描1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a+b=0, 1-=ab(a 、b ≠0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()mm mmnnm nm n m ba ab a aaa a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp pa a a⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质: (a ≠0)10=a 8、实数的开方运算:()aa a a a =≥=22;0)(9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)带根号的3)两个无理数的和、是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯轴上把它找出来,其他的无理数也是如此.*11、实数的大小比较: (1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法: 如6756--与(5).平方法四、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-是17的平方根,其中17正确的有( ) A .0个B .1个C .2个D .3个2那么x 取值范围是() A 、x ≤2 B. x <2 C. x ≥2D. x>23、-8 )A .2B .0C .2或一4D .0或-44、若2m -4与3m -1是同一个数的平方根,则m 为( )A .-3B .1C .-3或1D .-15、若实数a 和 b 满足 b=+,则ab 的值a +5-a -5等于_______6、在-的相反数是________,绝对值是______.327、的平方根是( )81 A .9B .C .±9D .±398、若实数满足|x|+x=0, 则x 是( )A .零或负数B .非负数C .非零实数D.负数五、例题剖析1、设a=-,b=2-,c =-1,则a 、b 、c 的3235大小关系是()A .a >b >c B 、a >c >b C .c >b >a D .b >c >a 2、若化简|1-x|,则2x-5x 的取值范围是() A .X 为任意实数 B .1≤X ≤4C .x ≥1D .x <43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+(1-a)=1,小芳的解答:原式=a+(a -1)=2a-1=2×9-1=17⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:200120025、我国1990年的人口出生数为23784659人。

初三第一轮数学复习教案

初三第一轮数学复习教案
(2)重点解析
锐角三角函数的定义及其应用是教学的重点。定义是所有数学概念的基础,理解定义有助于学生准确把握函数的本质。应用则是检验学生知识掌握程度的试金石,通过实际问题的解决,可以加深学生对函数价值的认识。
二、例题讲解的深度和广度
例题讲解应注重深度和广度。深度上,教师需要引导学生深入分析问题,理清解题思路,强调关键步骤,讲解解题方法。广度上,应涵盖不同类型的题目,如基础计算题、综合应用题等,让学生见识到锐角三角函数在不同场景下的应用。
五、作业设计的针对性与答案的详尽性
(1)针对性解析
作业设计应针对课堂所学内容,突出重点,分散难点。例如,可以设计一些涉及到性质应用的题目,让学生在完成作业的过程中,进一步巩固课堂所学。
(2)答案详尽性解析
作业答案应详尽、清晰,不仅给出最终答案,还要展示解题过程,注明关键步骤。这样,学生可以对照答案,检查自己的解题思路和方法,发现并改正错误。
3.提高学生的逻辑思维能力和团队合作能力。
三、教学难点与重点
1.教学难点:锐角三角函数的性质及其图像变换。
2.教学重点:锐角三角函数的定义及其应用。
四、教具与学具准备
1.教具:三角板、多媒体课件、黑板。
2.学具:直尺、圆规、量角器。
五、教学过程
1.实践情景引入(5分钟)
利用三角板展示实际生活中与锐角三角函数相关的实例,引导学生思考如何运用锐角三角函数解决问题。
七、作业设计
1.作业题目:
1)计算题:给定一个锐角,求其正弦、余弦、正切值。
2)应用题:利用锐角三角函数解决实际问题。
2.答案:见课后附解答。
八、课后反思及拓展延伸
1.课后反思:针对本节课的教学效果,反思教学方法、手段及学生的掌握程度,为下一节课做好准备。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容本节课我们将复习人教版初中数学九年级上册第十五章《图形的相似》,具体内容包括:相似图形的定义、性质、判定方法及其在实际问题中的应用。

二、教学目标1. 理解并掌握相似图形的基本概念和性质,能够运用判定方法识别相似图形。

2. 学会运用相似图形的相关知识解决实际问题,提高解决问题的能力。

3. 培养学生的观察能力、逻辑思维能力和空间想象力。

三、教学难点与重点重点:相似图形的定义、性质、判定方法。

难点:相似图形在实际问题中的应用。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 导入:通过展示实际生活中的相似图形,引导学生发现相似图形的美,激发学生学习兴趣。

实践情景引入:展示一组相似图形(如建筑、家具等),让学生观察并说出它们之间的相似关系。

例题讲解:讲解一组相似图形的例题,让学生通过观察、分析,找出相似图形的关键特征。

3. 判定方法学习:讲解相似图形的判定方法,通过例题让学生学会运用判定方法识别相似图形。

随堂练习:让学生完成一组相似图形的判定练习,巩固所学知识。

4. 实际应用:展示相似图形在实际问题中的应用,引导学生运用所学知识解决问题。

例题讲解:讲解相似图形在实际问题中的应用,如建筑设计、图形放大与缩小等。

六、板书设计1. 相似图形的定义与性质2. 相似图形的判定方法3. 相似图形在实际问题中的应用4. 例题与解答5. 课后作业七、作业设计1. 作业题目:(1)已知两个相似三角形的边长比是3:5,求它们的面积比。

(2)一个正方形与一个矩形相似,正方形的边长是8cm,矩形的边长分别是12cm和18cm,求矩形的面积。

2. 答案:(1)面积比为9:25。

(2)矩形的面积为216cm²。

八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对相似图形的概念、性质和判定方法有了更深入的理解,能够运用所学知识解决实际问题。

中考数学一轮复习教案7

中考数学一轮复习教案7

中考一轮复习——二元一次方程组课标要求1.了解二元一次方程组及其解的概念,会将二元一次方程化为用含一个未知数的代数式表示另一个未知数的形式,会检验未知数的一组对应值是否为二元一次方程的解.2.了解二元一次方程组、方程组的解、解方程组等基本概念,掌握用消元法解方程组的基本思想;通过“消元”,转化为一元一次方程.3.会灵活应用代入消元法和加减消元法解二元一次方程组.4.能应用二元一次方程组解决简单的实际问题.中招考点二元一次方程概念及解法,代入法和加减法解方程组,用含一个未知数的代数式表示另一个未知数,会检验未知数的一组对应值是否为二元一次方程的解,能应用二元一次方程组解决简单的实际问题.典型例题例1 解下列方程组:(1),;x y x y -=-⎧⎨+=⎩34537 ①② (2),.x y x y -=⎧⎪⎨+=⎪⎩2341522 ①② 分析:要结合方程组中方程的系数特征,合理选择消元的方法.通常方程中系数比较简单,尤其当一个未知数系数的绝对值是1时,可选用代入消元法,一般常采用加减消元法. 解:(1)由②得 x y =-73. ③代入①,得 ()y y --=-37345.解得 y =2.代入③,得 .x =1所以方程组的解是 ,.x y =⎧⎨=⎩12 (2)×6①+②,得 ,x =3216即 ,x =12代入①,得 .y =-1 所以方程组的解是 ,.x y ⎧=⎪⎨⎪=-⎩121例2 已知关于x 、y 的方程组,().x y m x y n -=⎧⎨-+=-⎩2381221与,.x y nx y m -=⎧⎨+=+⎩251有相同的解,求m 、n 值.分析:这里两个方程组中都有待定系数,但并未知道具体的解,不能应用方程解的定义,代入后转化为关于m 、n 的方程来解.注意到两个方程组中都有一个方程的系数是已知的.且根据方程组的解的定义,本题“相同的解”也就是方程组,.x y x y -=⎧⎨-=⎩23825的解,因此,这个解可以先予求出:,.x y =⎧⎨=-⎩12这时再将它代入另两个方程组,得,.m n n m --=-⎧⎨-=+⎩124121 解这个方程组,得 ,.m n =-=12(1)初一甲、乙两个班共104人,若分别购票,需1240元.两个班合起来购票,能否节约一些?或已知甲班人数稍多一些,请求出两班各有多少人?(2)若不知道两班学生总数及各班人数的多少,你能求出各班人数吗?分析 本题具有较大的开放性.在第(1)个问题中,首先应根据题意,判断各班人数的大致范围:两班共104人,则至少有一个班级人数50,但总票价1240元不是11的倍数,说明另一个班级人数不超过50.根据这些信息,可以着手应用列方程组求解.在第二个问题中,减弱了条件,两班学生的总数也是未知数.比较上述分析,共同之处是两班人数不可能是同一范围内的数(因为1240不是13、11、9的倍数),不同之处是少了一个方程.则应该用到求二元一次方程的整数解的知识,同时还应根据实际情况,选取合适的解.解(1)设初一甲班学生x 人,初一 乙班学生y 人,根据题意,两班票价总数1240不是13或11的倍数,所以甲班人数大于50,乙班人数小于50.可得方程组 ,.x y x y +=⎧⎨+=⎩10411131240 解这个方程组,得 ,.x y =⎧⎨=⎩5648 经检验,符合题意. 答:初一甲班学生56人,初一乙班学生48人.(2)设两个班级人数分别为x 人和y 人,根据实际情况,其中x 、y 的值是不超过100的正整数,且x <y .根据题意,得方程x y +=13111240.将方程变形为含x 的代数式表示y ,得().x x x y x x ---==-+=-+1240138224112112111111所以x -4是11的倍数,依次取,,,,.x =415263748求出对应的 ,,,,.y =10895826956 根据实际情况,我们选取甲、乙两班人数分别为37人、69人、69人、37人、48人、56人或56人、48人四种比较合理的解答.强化训练1.填空题(1)已知x y +-=45200,用含x 的代数式表示y ,得______________________.当y =-4时,x =_____________________________.(2)已知,x y ==-32是关于x 、y 的方程x my m -+-=2220的解,则:m =__________.(3)已知()x y x y +-+-+=223320,则x y -=_________.(4)已知关于x 、y 的方程组,.x y ax y a -=⎧⎨+=-⎩21312的解x 与y 相等,则__________a =. 2.解下列方程组:(1),.x y x y -=⎧⎨+=⎩32541 (2),.x y x y ⎧=⎪⎨⎪+=⎩233542 (3).x y x y +-==22135 (4),.m n m n +=⎧⎨+=⎩57264618 3.已知关于x 、y 的方程组,.x y a b x y a b -=+⎧⎨+=-⎩222的解是,.x y =⎧⎨=⎩13求a 、b 的值. 4.已知当x =1时,代数式ax b +的值等于2;当x =2时,代数式ax b +的值是1.求当x =5时,这个代数式的值.5.甲、乙两件商品成本共400元,甲商品按30%的利润定价,乙商品按20%的利润定价.后应顾客的要求,两种商品都按定价的90%出售,商店仍获利55.4元.求两种商品的成本各是多少?6.求方程x y +=4331的正整数解.7.探索用适当的方法解下列方程组:(1),;x y x y +=⎧⎨+=⎩172357231763 (2),;x y x y⎧+=-⎪⎪⎨⎪-=⎪⎩321416 (3),,.x y z x y z x y z +-=⎧⎪++=⎨⎪--=⎩52310220 8.某校课外阅读小组同学每人订甲、乙两份杂志,甲杂志是月刊,每月一期定价2.2元;乙杂志是双月刊,两个月一期定价2.6元.每位同学都是一份杂志订半年,另一份杂志订全年.经统计,甲杂志订费858元,乙杂志订费429元,求这个阅读小组的人数.。

初三数学第一轮复习教案

初三数学第一轮复习教案

初三数学第一轮复习教案代数部分第七章:统计初步教学目的:1、了解总体、个体、样本、样本容量等概念。

2、理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式,理解加权平均数的概念,掌握它的计算公式,会用样本平均数估计总体平均数。

3、理解众数、中位数的意义,掌握它们的求法4、了解样本方差。

总体方差。

样本标准差的意义,会计算样本方差和标准差,会利用方差或标准差比较两组样本数据的波动情况。

5、理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。

知识点:一、总体和样本:在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。

从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。

二、反映数据集中趋势的特征数1、平均数(1)n x x x x ,,,,321 的平均数,)(121n x x x nx +++= (2)加权平均数:如果n 个数据中,1x 出现1f 次,2x 出现2f 次,……,k x 出现k f 次(这里n f f f k =+++ 21),则)(12211k k f x f x f x n x +++=(3)平均数的简化计算:当一组数据n x x x x ,,,,321 中各数据的数值较大,并且都与常数a 接近时,设a x a x a x a x n ----,,,,321 的平均数为'x 则:a x x +='。

2、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。

3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

一组数据的众数可能不止一个。

三、反映数据波动大小的特征数:1、方差:(l )n x x x x ,,,,321 的方差, n x x x x x x S n 222212)()()(-++-+-= (2)简化计算公式:2222212x n x x x S n -+++= (n x x x x ,,,,321 为较小的整数时用这个公式要比较方便)(3)记n x x x x ,,,,321 的方差为2S ,设a 为常数,a x a x a x a x n ----,,,,321 的方差为2`S ,则2S =2`S 。

初三数学第一轮复习教案

初三数学第一轮复习教案

初三数学第一轮复习教案代数部分第二章:代数式教学目的:1、了解代数式的概念,会列代数式,会求代数式的值。

2、了解整式、单项式、多项式概念,会把一个多项式按某个字母的升幂或降幂排列。

3、掌握合并同类项方法,去(添)括号法则,熟练掌握数与整式相乘的运算及整式的加减运算。

4、理解整式的乘除运算性质,并能熟练地进行整式的乘除运算。

5、理解乘法公式的意义,掌握五个乘法公式的结构特征,灵活运用五个乘法公式进行运算。

6、会进行整式的混合运算,灵活运用运算律与乘法公式使运算简便。

7、掌握因式分解的四种基本方法,并能用这些方法进行多项式因式分解。

8、掌握分式的基本性质,会熟练地进行约分和通分,掌握分式的加、减、乘、除、乘方的运算法则。

9、了解二次根式及分母有理化概念,掌握二次根式的性质,并能灵活应用它化简二次根式,掌握二次根式乘、除法则,会用它们进行运算,会将分母中含有一个或两个二次根式的式子进行分母有理化;了解最简二次根式,同类二次根式的概念,掌握二次根式的加、减、乘、除的运算法则,会用它们进行二次根式的混合运算。

基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章:统计初步
教学目的:
1、了解总体、个体、样本、样本容量等概念。

2、理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式,理解加权平均数的概念,掌握它的计算公式,会用样本平均数估计总体平均数。

3、理解众数、中位数的意义,掌握它们的求法
4、了解样本方差。

总体方差。

样本标准差的意义,会计算样本方差和标准差,会利用方差或标准差比较两组样本数据的波动情况。

5、理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。

知识点:
一、总体和样本:
在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。

从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。

二、反映数据集中趋势的特征数 1、平均数
(1)n x x x x ,,,,321 的平均数,)(1
21n x x x n
x +++=
(2)加权平均数:如果n 个数据中,1x 出现1f 次,2x 出现2f 次,……,k
x 出现k f 次(这里n f f f k =+++ 21),则)(1
2211k k f x f x f x n
x +++=
(3)平均数的简化计算:
当一组数据n x x x x ,,,,321 中各数据的数值较大,并且都与常数a 接近时,设
a x a x a x a x n ----,,,,321 的平均数为'x 则:a x x +='。

2、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。

3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

一组数据的众数可能不止一个。

三、反映数据波动大小的特征数: 1、方差:
(l )n x x x x ,,,,321 的方差, n
x x x x x x S n 2
22212
)()()(-++-+-=
(2)简化计算公式:22
22212
x n
x x x S n
-+++= (n x x x x ,,,,321 为较小
的整数时用这个公式要比较方便)
(3)记n x x x x ,,,,321 的方差为2
S
,设a 为常数,
a x a x a x a x n ----,,,,321 的方差为2`S ,则2S =2`S 。

注:当n x x x x ,,,,321 各数据较大而常数a 较接近时,用该法计算方差较简便。

2、标准差:方差(2
S )的算术平方根叫做标准差(S )。

注:通常由方差求标准差。

四、频率分布 1、有关概念
(1)分组:将一组数据按照统一的标准分成若干组称为分组,当数据在100个以内时,通常分成5-12组。

(2)频数:每个小组内的数据的个数叫做该组的频数。

各个小组的频数之和等于数据总数n 。

(3)频率:每个小组的频数与数据总数n 的比值叫做这一小组的频率,各小组频率之和为l 。

(4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率分布表。

(5)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布直方图。

图中每个小长方形的高等于该组的频率除以组距。

每个小长方形的面积等于该组的频率。

所有小长方形的面积之和等于各组频率之和等于1。

样本的频率分布反映样本中各数据的个数分别占样本容量n 的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。

2、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是: (1)计算最大值与最小值的差;(2)决定组距与组数;(3)决定分点;(4)列领率分布表;(5)绘频率分布直方图。

例题:
例1、某养鱼户搞池塘养鱼,放养鳝鱼苗20000尾,其成活率为70%,随意捞出10尾鱼,称得每尾的重量如下(单位:千克)0.8、0.9、1.2、1.3、0.8、1.l 、1.0、1.2、0.8、0.9
根据样本平均数估计这塘鱼的总产量是多少千克?
分析:先算出样本的平均数,以样本平均数乘以20000,再乘以70%。

解:略
[规律总结]求平均数有三种方法,即当所给数据比较分散时,一般用平均数的概念来求;著所给数据较大且都在某一数a 上下波动时,通常采用简化公式;若所给教据重复出现时,通常采用加权平均数公式来计算。

例2、一次科技知识竞赛,两次学生成绩统计如下
已经算得两个组的人均分都是80分,请根据你所学过的统计知识进一步判断这两个组成绩谁优谁次,并说明理由 解:(l )甲组成绩的众数90分,乙组成绩的众数为70分,从众数比较看,甲组成绩好些。

(2)算得2
甲S =172,2562
=乙S
所以甲组成绩较乙组波动要小。

(3)甲、乙两组成绩的中位数都是80分,甲组成绩在中位数以上的有33人,乙组成绩在中位数以上的有26人,从这一角度看甲组的成绩总体要好。

(4)从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,所以,乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好。

[规律总结]明确方差或标准差是衡量一组数据的波动的大小的,恰当选用方差的三个计算公式,应抓住三个公式的特征,根据题中数据的特点选用计算公式。

例3、到从某学校3600人中抽出50名男生,取得他们的身高(单位cm ),数据如下:181 181 179 177 177 177 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 172 172 171 171 171 170 170 169 l69 168 167 167 167 166 l66 l66 166 166 165 165 165 163 163 162 161 160 158 157
1、计算频率,并画出频率分布直方图
2、上指出身高在哪一组内的男学生人数所占的比最大
3.请估计这些初三男学生身高在166.5cm 以下的约有多少人?
解:1、各组频率依次是:0.08,0.22,0.22,0.36,0.12
2、从频率分布表(或图)中,可见身高在171.5—176.5组内男学生人数所占的比最大。

3、这个地方男学生身高166.5侧以下的约为=+⨯)22.008.0(3000900(人) [规律总结]要掌握获得一组数据的频率分布的五大步骤,掌握整理数据的步骤和方法。

会对数据进行合理的分组。

相关文档
最新文档