小学奥数——用割补法求面积

合集下载

小升初奥数巧求面积---割补法

小升初奥数巧求面积---割补法
9厘米 5厘米
11
解析
因为不知道梯形的高,所以不能直接求出梯形的面 积。可以从等腰直角三角形与正方形之间的联系上考 虑。将四个同样的等腰直角三角形拼成一个正方形, 图中阴影部分是边长9厘米与边长5厘米的两个正方 形面积之差,也是所求梯形面积的4倍。所以所求梯 形面积是(9× 9-5× 5)÷4=14(平方厘米)。
6
例3.求图中阴影部分的面积
7
解析
如图所示,将左下角的阴影部分分为两部分,然后按照右下图所示, 将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等 于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形 OAB的面积之差。 解: π× 4× 4÷ 4-4× 4÷ 2=4.56。
8
例4. 在一个等腰三角形中,两条与底边平行的线段将三角形的两 条边等分成三段(见下图),求图中阴影部分的面积占整个图形 面积的几分之几。
9厘米 5厘米
12
例6.ABC是三个圆的圆心,圆的半径都是10分米,求阴 影部分的面积。
D
B
F
A
C
E
13
解析
我们用割补法,将阴影部分割补 成一个半圆形,求出阴影部分面 积就可以了。 S半圆=10× 10× 3.14÷ 2=157平方 分米
D
B
F
A
C
E
14
例7.如图所示,空白部分占正方形面积的 几分之几?
S正=(5× 2)×(5× 2)=100(平方厘米) S阴=157+100=257(平方厘米)
4
例2.求图中阴影部分的面积
5
解析
在图中分割的两个正方形中,右边正方形的 阴影部分是半径为5的四分之一个圆,在左 边正方形中空白部分是半径为5的四分之一 个圆。 如右图所示,将右边的阴影部分平移到左边 正方形中。可以看出,原题图的阴影部分正 好等于一个正方形的面积,5× 5=25。

(完整版)用割补法求面积

(完整版)用割补法求面积

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

五年级奥数第22讲 用割补法求面积

五年级奥数第22讲 用割补法求面积

第22讲用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

小学奥数——用割补法求面积

小学奥数——用割补法求面积

小学奥数解析十三用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

小学奥数——用割补法求面积

小学奥数——用割补法求面积

小学奥数解析十三用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5X 5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段 (见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角nX 4X 4-4-4X 4- 2=4.56。

形拼成一个长方形〔见下图)°显然,阴影部分正好是长方形的2,所以将两个这样的三角形拼成一个平行四边形(下页左上图)。

显然,图中阴影面积占平行四边形面积的苓根据商不变性质.将阴影面积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面积的!(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个圈形面积的I注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

小学奥数割补法、差不变原理求面积

小学奥数割补法、差不变原理求面积

分割法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到分割、拼补的方法。

例题2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少?例题3、下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。

求乙正方形的面积。

例题4、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

例题5、在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几?练习2.求下图(单位:厘米)中四边形ABCD的面积。

练习3.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45厘米2。

求甲、乙的面积之和。

练习4.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。

已知梯形的面积为36厘米2,上底为3厘米,求下底和高。

练习5、如图,三个正方形的边长分别为5厘米、6厘米、4厘米拼在一起,求阴影部分的面积?练习6、下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?等差法解题关键:找出组合图形的公共部分解题技巧:利用差不变原理进行等量代换:例题1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。

那么,三角形BCM的面积与三角形DCM面积之差是多少?练习1如图ABCG是的长方形,AB=5,AG=3,DEFG是的长方形,GF=1,FE=9。

那么,三角形BCM的面积与三角形DCM面积之差是多少?例题2、如图所示,平行四边形ABCD的边长BC长为8,直角三角形BCE的直角边CE长为6。

小学奥数——用割补法求面积

小学奥数——用割补法求面积

小学奥数解析十三用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5X 5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段 (见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角nX 4X 4-4-4X 4- 2=4.56。

形拼成一个长方形〔见下图)°显然,阴影部分正好是长方形的2,所以将两个这样的三角形拼成一个平行四边形(下页左上图)。

显然,图中阴影面积占平行四边形面积的苓根据商不变性质.将阴影面积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面积的!(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个圈形面积的I注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

最新小升初奥数巧求面积---割补法知识讲解

最新小升初奥数巧求面积---割补法知识讲解

解析
从顶点作底边上的高,得到两个相同的直角三角 形。将这两个直角三角形拼成一个长方形见右图。 显然,阴影部分正好是长方形的三分之一,所以 原题阴影部分占整个图形面积的三分之一。 还可以拼成一个平行四边形或将其分成9个三 角形。
例5. 如下图所示,在一个等腰直角三角形中,削去一个三角形后, 剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。 求这个梯形的面积。
小升初奥数巧求面积---割 补法
知识梳理
相加法
相减法
割补法
平移法 旋转法
巧求 面积
放大法 等量代换法
直接求法 重叠法 引辅助线法
典型例题精讲
例1. 下图中四个圆的半径都是5厘米,求阴影部分的面积。
解析
同学们请看图,我们将图形进行割补。 把阴影部分割补成四个半圆形和一个正方形, 求出阴影部分面积就可以了。 2S圆=5× 5× 3.14× 2=157(平方厘米)
9厘米 5厘米
例6.ABC是三个圆的圆心,圆的半径都是10分米,求阴 影部分的面积。
D
B
F
A
C
E
解析
我们用割补法,将阴影部分割补 成一个半圆形,求出阴影部分面 积就可以了。 S半圆=10× 10× 3.14÷ 2=157平方 分米
D
B
F
A
C
E
例7.如图所示,空白部分占正方形面积的 几分之几?
解析
9厘米 5厘米
解析
因为不知道梯形的高,所以不能直接求出梯形的面 积。可以从等腰直角三角形与正方形之间的联系上考 虑。将四个同样的等腰直角三角形拼成一个正方形, 图中阴影部分是边长9厘米与边长5厘米的两个正方 形面积之差,也是所求梯形面积的4倍。所以所求梯 形面积是(9× 9-5× 5)÷4=14(平方厘米)。

小学奥数——用割补法求面积

小学奥数——用割补法求面积

小学奥数解析十三用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

小学奥数 几何 割补法求面积、等差法 知识点+例题+练习 (分类全面)

小学奥数 几何 割补法求面积、等差法 知识点+例题+练习 (分类全面)

巩固.在直角三角形ABC中,四边形DECF为正方形,若AD=7,DB=8,则ΔADE与ΔBDF的面积之和是多少?AD EB CF巩固、如图所示,用一张斜边长为29厘米的红色直角三角形纸片、一张斜边长为50厘米的蓝色直角三角形纸片、一张黄色的正方形纸片,拼成一个直角三角形.红、蓝两张三角形纸片面积之和是多少?例2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少?巩固.求下图(单位:厘米)中四边形ABCD的面积。

例3、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

巩固.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。

已知梯形的面积为24平方厘米,上底为4厘米,求下底和高。

例4、在一个等边三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几?巩固、如图,三个正方形的边长分别为8厘米、10厘米、6厘米拼在一起,求阴影部分的面积?巩固、下图是两块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)分别有多大?等差法解题关键:找出组合图形的公共部分解题技巧:利用差不变原理进行等量代换:例1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。

那么,三角形BCM的面积与三角形DEM面积之差是多少?巩固、如图ABCG是的长方形,AB=5,AG=3,DEFG是的长方形,GF=1,FE=9。

那么,三角形BCM的面积与三角形DEM面积之差是多少?例2、如图所示,平行四边形ABCD的边长BC长为8,直角三角形BCE的直角边CE长为6。

已知两块阴影部分的面积和比三角形EFG的面积大8,求CF的长度?巩固、如图,四边形BCEF是平行四边形,三角形ACB是直角三角形,BC的长是8厘米,AC长是7厘米。

割补法求面积技巧

割补法求面积技巧

割补法是一种常用的求面积的方法,其基本思想是将一个复杂的图形割补成几个简单的规则图形,然后利用这些规则图形的面积公式来求解原图形的面积。

以下是使用割补法求面积的一些技巧:
1.观察图形:首先观察要计算的图形,看是否可以通过割补将其变为简单的规则图形。

2.选择割补方式:根据图形的特点,选择合适的割补方式。

割补方式的选择对于简化问题非常重要。

3.计算规则图形面积:对于割补后的规则图形,使用相应的面积公式进行计算。

4.求和或相减:如果图形是通过割补多个部分得到的,那么需要将各部分的面积相加或相减,以得到原图形的面积。

5.验证答案:完成计算后,要验证答案是否正确。

可以通过将答案代回原图形,看是否与原图形的面积相等来进行验证。

下面是一个使用割补法求面积的例子:
题目:求下图中阴影部分的面积(单位:cm²)。

![阴影部分为不规则图形]
(请根据您所使用的软件或平台的功能进行适当的调整或
绘制)
解:观察图形,发现可以将阴影部分割补成一个半圆和一个等腰直角三角形。

半圆的半径为r = 5cm,面积为 21×π×r2。

等腰直角三角形的底为b = 10cm,高为h = 5cm,面积为 21×b×h。

因此,阴影部分的面积为半圆面积加上三角形面积,即 21×π×52+21×10×5=39.25cm2。

五年级奥数专题二十二:用割补法求面积

五年级奥数专题二十二:用割补法求面积

五年级奥数专题二十二:用割补法求面积关键词:三角正方图中面积题图奥数正方形三角形阴影图形在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

小学五年级奥数专题讲座22:用割补法求面积...

小学五年级奥数专题讲座22:用割补法求面积...

小学五年级奥数专题讲座22:用割补法求面积...小学五年级奥数专题讲座22:用割补法求面积小升初数学广角第22讲用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

用割补法求面积

用割补法求面积

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

五年级奥数专题二十二:用割补法求面积

五年级奥数专题二十二:用割补法求面积

五年级奥数专题二十二:用割补法求面积关键词:三角正方图中面积题图奥数正方形三角形阴影图形在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

五年级奥数专题二十二:用割补法求面积

五年级奥数专题二十二:用割补法求面积

五年级奥数专题二十二:用割补法求面积关键词:三角正方图中面积题图奥数正方形三角形阴影图形在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

五年级割补求面积问题

五年级割补求面积问题

五年级奥数用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数解析十三用割补法求面积
在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:
分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法
从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角
(2)拼补法
将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面
(3)等分法
将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,
注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

可以从等腰直角三角形与正方形之间的联系上考虑。

将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。

所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。

例4在左下图的直角三角形中有一个矩形,求矩形的面积。

分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。

我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。

因为A与A′,B与B′
面积分别相等,所以甲、乙两个矩形的面积相等。

乙的面积是4×6=24,所以甲的面积,即所求矩形的面积也是24。

例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。

求乙正方形的面积。

分析与解:如果从甲正方形中“挖掉”和乙正方形同样大的正方形丙,所剩的A,B,C三部分之和就是40厘米2(见左下图)。

把C割下,拼补到乙正方形的上面(见右上图),这样A,B,C三块就合并成一个长20厘米的矩形,面积是40厘米2,宽是40÷20=2(厘米)。

这个宽恰好是两个正方形的边长之差,由此可求出乙正方形的边长为(20-2)÷2=9(厘米),从而乙正方形的面积为9×9=81(厘米2)。

第二坊教育五年级奥数课堂练习
1.求下列各图中阴影部分的面积:
(1)(2)
2.以等腰直角三角形的两条直角边为直径画两个半圆弧(见下图),直角边长4厘米,求图中阴影部分的面积。

3.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。

已知梯形的面积为36厘米2,上底为3厘米,求下底和高。

4.在右上图中,长方形AEFD的面积是18厘米2,BE长3厘米,求CD的长。

5.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45厘米2。

求甲、乙的面积之和。

6.求下图(单位:厘米)中四边形ABCD的面积。

练习22
1.(1)25;(2)ab。

提示:(1)(2)
2.4.56厘米2。

提示:如左下图所示,所求面积等于右下图中圆面积减去正方形面积,等于(4÷2)2π-4×4÷2= 4.56(厘米2)。

3.下底9厘米,高6厘米。

解:用两个同样的等腰直角三角形拼成一个正方形(见左下图),大正方形的面积为36×2+3×3=81(厘米2)。

边长为9厘米。

所求梯形的下底为9厘米,高为9-3=6(厘米)。

4.6厘米。

提示:与例4类似,右上图中甲、乙的面积相等,所以,CD=18÷3=6(厘米)。

5.117厘米2。

提示:与例5类似,下图中丙与乙相同,C与C'相同。

甲、乙的边长和等于45÷3=15(厘米),甲的边长为(l5+3)÷2=9(厘米)。

甲、乙的面积和为9×9×2-45=117(厘米2)。

6.20厘米2。

解:将AD,BC分别延长,相交于E(见右图)。

四边形ABCD的面积等于等腰直角三角形ABE与等腰直角三角形CDE的面积之差,为7×7÷2-3×3÷2=20(厘米2)。

相关文档
最新文档