2.5二次函数与一元二次方程课件(1)
合集下载
二次函数与一元二次方程(第1课时)PPT课件
(1) h和t的关系式是什么?
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:
们
函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:
们
函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。
人教版九年级上册数学课件:二次函数与一元二次方程
x
人教版九年级上册数学课件:二次函 数与一 元二次 方程
人教版九年级上册数学课件:二次函 数与一 元二次 方程
归纳:
当二次函y数 a x2 bxc,当给定y的值时,则二次函数
可转化为一元二次. 方程
如:二次函数 y x24x的值为 3,求自变量 x的值, 可以解一元二次方x程 2 4x 3(即x2 4x30). 反过来,解方程x2 4x30又可以看作已知二次 函数y x24x3的值为 0,球自变量 x的值.
如果h=20,那50-20t2= 20 ,
如果h=0,那50-20t2= 0 。 如果要想求t的值,那么我们可以求 方程
人教版九年级上册数学课件:二次函 数与一 元二次 方程
的解。
人教版九年级上册数学课件:二次函 数与一 元二次 方程
问题:王明手里抛出的篮球的飞行路线是一条抛物线,如果
不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t
人教版九年级上册数学课件:二次函 数与一 元二次 方程
呢?
∴当球飞行2s时,它的高度为4m。 (3)解方程4.1=4t-t2 即: t2-4t+4.1=0
因为(-4)2-4×4.1<0,所以方程无解,
从上面我们看出, 对于二次函数 高为个度什时为么间3在球mh其 二两的=?实 次4就 方(t –是程4t)∴2把的t中球1解=函解的,0方,t飞数。程已2=行0值4知=高4hht换度-的t2达成值不常,即到数:求4.,1t时2m-求4间。t=一t0,元
人教版九年级上册数学课件:二次函 数与一 元二次 方程
拓展升华
二次函数 yax2 bxc(a0)的图像如图,
根据图像解答下列问题:
(1)写出方程 ax2bxc0的两个根;
《二次函数与一元二次方程》(上课)课件PPT1
有两个交点:
有两个不相等的 实数根
b2-4ac > 0
有一个交点
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
学习目标(1分钟)
1.能够利用二次函数的图象求一元二次方程的 近似根.
2.能利用图象确定方程的根和不等式的解集。
还可以解一元二自次学方指导一(3分钟) 思程考求:近由似图值象如何估计一元二次方程x2 +2x-10=0的根? 由图象知方程有两个根,一个在-5和-4之间,另一个在2 和3之间. (1)先求-5和-4之间的根.
(2)经过_1_0_s ,炮弹落在地上爆炸.
3.一元二次方程ax2+bx+c=h的根就是二次函数 y=ax2+bx+c与直线__y_=_h___交点的__横__坐标.
变式:(2019春•天心区校级期中)函数y=ax²+bx+c 的图象 如图所示,那么关于一元二次方程ax²+bx+c-2=0的根的情况
对应值:
x
1
1.1 1.2 1.3 1.4
y
-1 -0.49 0.04 0.59 1.16
那么方程x²+3x-5=0的一个近似根是( C )
A.1
B.1.1
C.1.2
D.1.3
2.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)
与飞行时间x(s)的关系满足:y=-x2+10x. (1)经过_5___s,炮弹达到最高点,最高点的高度是_2_5_m.
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56 因此x=-4.3是方程的一用个图近象似法根求一元二次 (2)另一个根可以类似的方求程出的:近似根时,结 x 2.1 2.2 2.3 果只2.取4到十分位
二次函数与一元二次方程ppt课件
垂直于直线x=2于点E.
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
九年级数学北师大版初三下册--第二单元2.5《二次函数与一元二次方程(第一课时)》课件
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元
二次方程ax2+bx+h=15时,20t-5t2=15, t2-4t+3=0,
t1=1,t2=3. 当球飞行1s和3s时,它的高度为15m. (2)当h=20时,20t-5t2=20,
t2-4t+4=0, t1=t2=2. 当球飞行2s时,它的高度为20m. (3)当h=20.5时,20t-5t2=20.5, t2-4t+4.1=0, 因为(-4)2-4×4.1<0,所以方程无实根. 故球的飞行高度达不到20.5m.
(来自《教材》)
解:(1)函数h=-4.9t2+19.6t 的图象如图. (2)当t=1时,h=-4.9+19.6=14.7; 当t=2时,h=-4.9×4+19.6×2=19.6.
知1-练
(来自《教材》)
知1-练
(3)方程-4.9t2+19.6t=0的根的实际意义是当足球距
地面的高度为0 m时经过的时间;
的部分对应值如下表: x -1 0 1 3 y -3 1 3 1
下列结论:①抛物线的开口向下;②其图象的对
称轴为直线x=1;③当x<1时,函数值y随x的增
大而增大;④方程ax2+bx+c=0有一个根大于4,
其中正确的结论有( B )
A.1个 B.2个 C.3个
D.4个
1 知识小结
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元
二次方程ax2+bx+h=15时,20t-5t2=15, t2-4t+3=0,
t1=1,t2=3. 当球飞行1s和3s时,它的高度为15m. (2)当h=20时,20t-5t2=20,
t2-4t+4=0, t1=t2=2. 当球飞行2s时,它的高度为20m. (3)当h=20.5时,20t-5t2=20.5, t2-4t+4.1=0, 因为(-4)2-4×4.1<0,所以方程无实根. 故球的飞行高度达不到20.5m.
(来自《教材》)
解:(1)函数h=-4.9t2+19.6t 的图象如图. (2)当t=1时,h=-4.9+19.6=14.7; 当t=2时,h=-4.9×4+19.6×2=19.6.
知1-练
(来自《教材》)
知1-练
(3)方程-4.9t2+19.6t=0的根的实际意义是当足球距
地面的高度为0 m时经过的时间;
的部分对应值如下表: x -1 0 1 3 y -3 1 3 1
下列结论:①抛物线的开口向下;②其图象的对
称轴为直线x=1;③当x<1时,函数值y随x的增
大而增大;④方程ax2+bx+c=0有一个根大于4,
其中正确的结论有( B )
A.1个 B.2个 C.3个
D.4个
1 知识小结
2.3二次函数与一元二次方程、不等式(第一课时)课件(人教版)
(2)x2-4x+4≤0;
(3)-x2-3x+4<0.
1
答案:(1){x|x<- ,或
2
x>2}
(3){x|x<-4,或x>1}
(2){x|x =2}
特别的,若一元二次不等式情势如下,则可直接写相
应解集:
1)(x-x1)(x-x2)>0(x1<x2)解集为 {x|x<x1 ,或 x>x2} ;
2)(x-a)2<b (b>0)解集为 {x|a- <x<a+ } .
数据分析
逻辑推理
数学运算
课堂小结
三、本节课训练的数学思想方法
函数结合
方程思想
转化与化归
分类讨论
基础作业:
.
02 能力作业:
.
01
03
拓展延伸:(选做)
例3. 求不等式-x2+2x-3 > 0 的解集 .
解:原不等式可化为x2-2x+3 < 0
因为判别式△=-8<0,
方程x2-2x+3 =0无实根.
原不等式的解集为.
方法总结:二次系数为负,先要化为正,再由判别式及函数
图像情况作出判断.
一元二次不等式求解流程图
练一练
求下列不等式的解集:
(1)2x2-3x>2;
a2-4<0,且判别式△=(a+2)2+4(a2-4)<0.
6
解得:-2≤a<
5
方
法
总
结
当二次系数含参变量时,要考虑它是否为零,
故需要分类讨论.
2.3.1 二次函数与一元二次方程、不等式
(3)-x2-3x+4<0.
1
答案:(1){x|x<- ,或
2
x>2}
(3){x|x<-4,或x>1}
(2){x|x =2}
特别的,若一元二次不等式情势如下,则可直接写相
应解集:
1)(x-x1)(x-x2)>0(x1<x2)解集为 {x|x<x1 ,或 x>x2} ;
2)(x-a)2<b (b>0)解集为 {x|a- <x<a+ } .
数据分析
逻辑推理
数学运算
课堂小结
三、本节课训练的数学思想方法
函数结合
方程思想
转化与化归
分类讨论
基础作业:
.
02 能力作业:
.
01
03
拓展延伸:(选做)
例3. 求不等式-x2+2x-3 > 0 的解集 .
解:原不等式可化为x2-2x+3 < 0
因为判别式△=-8<0,
方程x2-2x+3 =0无实根.
原不等式的解集为.
方法总结:二次系数为负,先要化为正,再由判别式及函数
图像情况作出判断.
一元二次不等式求解流程图
练一练
求下列不等式的解集:
(1)2x2-3x>2;
a2-4<0,且判别式△=(a+2)2+4(a2-4)<0.
6
解得:-2≤a<
5
方
法
总
结
当二次系数含参变量时,要考虑它是否为零,
故需要分类讨论.
2.3.1 二次函数与一元二次方程、不等式
二次函数与一元二次方程ppt课件
(3,0)
相应方程的根 x1=-2,x2=1
x1=x2=3
y x2 x 1
无交点 无实根
二次函数与一元二次方程的关系(2)
确定二次函数图象与 x 轴的位置关系
解一元二次方程的根
二次函数 y=ax2+bx+c 的图象和x轴交点
的三种情况与一元二次方程根的关系
y=ax2+bx+c 的图象与x轴
有两个交点 有一个交点 没有交点
已知函数 y ax2 bx c 的图象如图所示,那么 关于ax2 bx c 2 0 的方程的根的情况是( D )
A.无实数根
B.有两个相等实根
C.有两个异号实数根
D.有两个同号不等实数根
-3
随堂练习
A组
1.抛物线 y=2x2-3x-5 与y轴交于点_(0_,_-_5), 与xபைடு நூலகம்交于点 (5/2,0) (-1,0) .
3.二次函数图像
与x轴的位置关系有3种,分别是
,,
。
对应的一元二次方程的根的三种情况:
,
,
课后作业
【必做】课本47页,复习巩固1、2 【选做】实际生活中有哪些问题可 以用二次函数的知识解决?
老师寄语
ax2+bx+c = 0 的根
有b2 两– 4个ac根> 0 有b2 一– 4个ac根=(0两个相同的根) 没b2 有– 4根ac < 0
若抛物线 y=ax2+bx+c 与 x 轴有交点,则 __b_2_–_4_a_c_≥__0______ 。
△ = b2 – 4ac
y △<0
△=0
△>0
o
x
例题讲解
二次函数与一元二次方程、不等式_课件
对于比较简单的分式不等式,可直接转化为一元二次 不等式或一元一.次不等式组求解,但要注意分母不 为零.
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为
程
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为
程
二次函数与一元二次方程公开课优秀课件ppt
解题技巧:利用判别式、对称轴等性质,结合图像和性质分析题目。
解题步骤:先观察方程形式和特点,选择合适的方法和步骤解题。
易错点:注意方程的解的情况和图像的交点情况,避免漏解或误解题目。
经典例题解析
解题思路清晰,问题建模合理 解题方法多样,学生易于掌握 题目难度适中,具有代表性 解析过程详细,学生易于理解
二次函数的定义
二次函数的一般形式:y=ax2+bx+c(a≠0)
二次函数的定义域和值域:R
二次函数的单调性:在区间(-∞,-b/2a)和(b/2a,+∞)内递增,在区间(-b/2a,b/2a) 内递减 二次函数的对称性:二次函数的最小值在对称轴处取得,即当x=-b/2a时, ymin=(4ac-b2)/4a
二次函数的实际应用
股票:根据股票的涨跌情况,利用二次函数求出最佳买卖时机。 物理:利用二次函数求解单摆周期公式。 经济学:利用二次函数求解最优化问题,实现利益最大化。 工程:在桥梁、建筑等领域,利用二次函数进行结构设计,确保安全性和稳定性。
02
一元二次方程
一元二次方程的定义
只含有一个未知数
未知数的最高次数是2
二次函数的图像和性质
图像:抛物线形状, 开口方向,顶点, 对称轴
性质:增减性,最 值,奇偶性
表达式:一般式, 顶点式,交点式
实际应用:解决实 际问题,如最大利 润问题等
二次函数的解析式和极值
解析式: y=ax²+bx+c
极值:顶点坐标、 开口方向、对称 轴
图像变化:增减 性、最大数根
应用:用于解一 元二次方程、判 断根的情况、求
根的近似值等
二次函数与一元二
03
次方程的关系
解题步骤:先观察方程形式和特点,选择合适的方法和步骤解题。
易错点:注意方程的解的情况和图像的交点情况,避免漏解或误解题目。
经典例题解析
解题思路清晰,问题建模合理 解题方法多样,学生易于掌握 题目难度适中,具有代表性 解析过程详细,学生易于理解
二次函数的定义
二次函数的一般形式:y=ax2+bx+c(a≠0)
二次函数的定义域和值域:R
二次函数的单调性:在区间(-∞,-b/2a)和(b/2a,+∞)内递增,在区间(-b/2a,b/2a) 内递减 二次函数的对称性:二次函数的最小值在对称轴处取得,即当x=-b/2a时, ymin=(4ac-b2)/4a
二次函数的实际应用
股票:根据股票的涨跌情况,利用二次函数求出最佳买卖时机。 物理:利用二次函数求解单摆周期公式。 经济学:利用二次函数求解最优化问题,实现利益最大化。 工程:在桥梁、建筑等领域,利用二次函数进行结构设计,确保安全性和稳定性。
02
一元二次方程
一元二次方程的定义
只含有一个未知数
未知数的最高次数是2
二次函数的图像和性质
图像:抛物线形状, 开口方向,顶点, 对称轴
性质:增减性,最 值,奇偶性
表达式:一般式, 顶点式,交点式
实际应用:解决实 际问题,如最大利 润问题等
二次函数的解析式和极值
解析式: y=ax²+bx+c
极值:顶点坐标、 开口方向、对称 轴
图像变化:增减 性、最大数根
应用:用于解一 元二次方程、判 断根的情况、求
根的近似值等
二次函数与一元二
03
次方程的关系
二次函数与一元二次方程、不等式一元二次函数、方程和不等式课件PPT
二次函数与一元二次方程、不等式
0,图象在
x
轴的上方;一元二次
3 二次函数与一元二次方程、不等式
3 3
不等式 ax +bx+c>0 二 二次次函函数数与与一一元元二二次次方方2 程程、、不不等等式式 的解集即二次函数图象在 x 轴上方部分的
3 二次函数与一元二次方程、不等式
3 二次函数与一元二次方程、不等式
栏目 导引
第二章 一元二次函数、方程和不等式
3.二次函数与一元二次方程、不等式的解的对应关系
Δ>0
Δ=0
Δ<0
y=ax2+bx+ c(a>0)的图象
ax2+bx+c= 0(a>0)的根
有两个不相等 有两个相等的实
的实数根 x1, x2(x1<x2)
数根 x1=x2=-2ba 没有实数根
栏目 导引
第二章 一元二次函数、方程和不等式
栏目 导引
第二章 一元二次函数、方程和不等式
4.求解一元二次不等式的过程
栏目 导引
第二章 一元二次函数、方程和不等式
判断正误(正确的打“√”,错误的打“×”) (1)mx2-5x<0 是一元二次不等式.( × ) (2)不等式 x2-2x+3>0 的解集为 R.( √ ) (3)若一元二次方程 ax2+bx+c=0 的两根为 x1,x2(x1<x2),则 一元二次不等式 ax2+bx+c<0 的解集为{x|x1<x<x2}.( × )
栏目 导引
第二章 一元二次函数、方程和不等式
不等式 3x2-2x+1>0 的解集为( )
A.x-1<x<13 C.∅
B.x13<x<1 D.R
0,图象在
x
轴的上方;一元二次
3 二次函数与一元二次方程、不等式
3 3
不等式 ax +bx+c>0 二 二次次函函数数与与一一元元二二次次方方2 程程、、不不等等式式 的解集即二次函数图象在 x 轴上方部分的
3 二次函数与一元二次方程、不等式
3 二次函数与一元二次方程、不等式
栏目 导引
第二章 一元二次函数、方程和不等式
3.二次函数与一元二次方程、不等式的解的对应关系
Δ>0
Δ=0
Δ<0
y=ax2+bx+ c(a>0)的图象
ax2+bx+c= 0(a>0)的根
有两个不相等 有两个相等的实
的实数根 x1, x2(x1<x2)
数根 x1=x2=-2ba 没有实数根
栏目 导引
第二章 一元二次函数、方程和不等式
栏目 导引
第二章 一元二次函数、方程和不等式
4.求解一元二次不等式的过程
栏目 导引
第二章 一元二次函数、方程和不等式
判断正误(正确的打“√”,错误的打“×”) (1)mx2-5x<0 是一元二次不等式.( × ) (2)不等式 x2-2x+3>0 的解集为 R.( √ ) (3)若一元二次方程 ax2+bx+c=0 的两根为 x1,x2(x1<x2),则 一元二次不等式 ax2+bx+c<0 的解集为{x|x1<x<x2}.( × )
栏目 导引
第二章 一元二次函数、方程和不等式
不等式 3x2-2x+1>0 的解集为( )
A.x-1<x<13 C.∅
B.x13<x<1 D.R
《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT教学课件
栏目导航
31
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察 结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}. 不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x -3>0解集的端点值恰好是方程x2-2x-3=0的根.
栏目导航
8
4.三个“二次”的关系
设 y=ax2+bx+c(a>0),方程 ax2+bx+c=0 的判别式 Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
栏目导航
解不 等式 y>0
求方程 y=0 的解
9
有两个相等的实
有两个不相等的实 数根 x1,x2(x1<x2)
数根 x1=x2= -2ba
没有 实数根
栏目导航
30
方程ax2+bx+c=0(a≠0)和不等式ax2+bx+c>0(a>0)或ax2+bx+ c<0(a>0)是函数y=ax2+bx+c(a≠0)的一种特殊情况,它们之间是一种包 含关系,也就是当y=0时,函数y=ax2+bx+c(a≠0)就转化为方程,当 y>0或y<0时,就转化为一元二次不等式.
或 y 画函数 y=ax2+bx+
<0 c(a>0)的图象
的步 得等的集 骤 不式解
y>0 y<0
{_x_|_x_<__x_1_或___x_>__x_2_} ___x__x_≠__-__2b_a__
__{__x|_x_1<___x<___x_2}___
___∅_
__R__ __∅__
栏目导航
10
思考 3:若一元二次不等式 ax2+x-1>0 的解集为 R,则实数 a 应满 足什么条件?
31
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察 结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}. 不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x -3>0解集的端点值恰好是方程x2-2x-3=0的根.
栏目导航
8
4.三个“二次”的关系
设 y=ax2+bx+c(a>0),方程 ax2+bx+c=0 的判别式 Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
栏目导航
解不 等式 y>0
求方程 y=0 的解
9
有两个相等的实
有两个不相等的实 数根 x1,x2(x1<x2)
数根 x1=x2= -2ba
没有 实数根
栏目导航
30
方程ax2+bx+c=0(a≠0)和不等式ax2+bx+c>0(a>0)或ax2+bx+ c<0(a>0)是函数y=ax2+bx+c(a≠0)的一种特殊情况,它们之间是一种包 含关系,也就是当y=0时,函数y=ax2+bx+c(a≠0)就转化为方程,当 y>0或y<0时,就转化为一元二次不等式.
或 y 画函数 y=ax2+bx+
<0 c(a>0)的图象
的步 得等的集 骤 不式解
y>0 y<0
{_x_|_x_<__x_1_或___x_>__x_2_} ___x__x_≠__-__2b_a__
__{__x|_x_1<___x<___x_2}___
___∅_
__R__ __∅__
栏目导航
10
思考 3:若一元二次不等式 ax2+x-1>0 的解集为 R,则实数 a 应满 足什么条件?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数y=ax2+bx+c的图 象和x轴交点个数 有两个交点 有一个交点 没有交点
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
自主学习三: 二次函数图象和x轴交点坐标与 一元二次方程的根有什么关系? 交 点 的 横 坐 标 是 一 元 二 次 方 程 的 根
y=x2+2x与 x轴交点
ax2+bx+c=0
的根.
跟踪练习一
1 . 若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数 (-2,0)、(3,0) y=ax2+bx+c的图象与x轴交点坐标是 。 2.抛物线y=x2-4x+4与轴有 一个交点,坐标是 (2,0) 。 3.抛物线y=0.5x2-x+3与x轴的交点情况是( c ) A 两个交点 B 一个交点 C 没有交点 D 画出图象后才能说明 4 不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。 解:∵解方程x2-3x-4=0得: x1=-1,x2=4 ∴抛物线y=x2-3x-4与x轴的交点坐标是: (-1,0)和(4,0) 5.若函数 y mx2 6 x 1图象与x 轴是只有一个公共点,求m的值. 解:∵ 图象与x 轴是只有一个公共点 则△=0 即 36-4m=0 ∴ m=9
2 、 二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像 是一条 抛物线 ,
自主学习一:
1、二次函数图像与x轴交点个数有几种情况?想一想, 画一画
y
三种可能:①两个交点
②一个交点
0 x
③没有交点。
自主学习二: 二次函数与x轴交点与一元二次方程的根有什么关系? 二次函数y=x2+2x, y=x2-2x+1, y=x2-2x+2的图象如图:
(-2,0)
(0,0)
令
y=0 x2+2x=0方程的根是
X1 =-2 X2 =0
y=x2-6x+8与x轴交点是 (2, 0)(4,0 )
令 y=0 x2-6x+8=0方程的根是 X1 =2 X2 =4
想一想
二次函数y=ax2+bx+c的图象和x轴交点坐标与一元二次方 ax2+bx+c=0的根有什么关系? 与x轴交点的横坐标是当 y=0 时自变量 x 的值 即方程
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1)图象y=x2+2x与x轴交点个数
(
两个交点
) ) ) )
一元二次方程x2+2x=0根的个数 ( △﹥0,有两个不相等实数根 ) (2)图象y=x2-2x+1与x轴交点个数( 一个交点 (3)图象y=x2-2x+2与x轴交点个数(
一元二次方程x2-2x+1=0根的个数(△=0,有两个相等实数根 )
要化成 一般式
跟踪练习三
二次函数的图象与轴交于(2,0)(-1,0)且过点(0, -2)求这个二次函数的解析式
解:设所求的二次函数为 y=a(x-2)(x+1) 因为: 点M( 0,-2 )在抛物线上 所以:a(0-2)(0+1)=-2 得 : a=1 故所求的抛物线为 y=(x-2)(x+1) 即:y=x2-x-2
100
80
60 40 20
0
2
4
6
8
课堂小结
想一想 议一议
若一元二次方程ax 2+bx+c=0两个根为x 1 , x2 则一 元二次方程可化为 (x-x1)(x-x2)=0 若二次函数y=ax 2+bx+c的图象和x轴交点坐标(X1 ,0) (X2 ,0),则二次函数的表达式可表示为Y=a(x-x1)(x-x2)这种表示 方法称为二次函数的交点式。 友情提示:二次函数有哪几种表达形式?
2
80
60 40 20
0
.
2
4
6
.
8
2) 小球上抛问题中,何时小球离地面的高度是60m,
你是如何知道的,你有几种方法 (1)方法一:利用图像 (2)方法二:利用方程:把h=60 代入得 解得x1=2 x2=6
3)对于上题来说,方程-5t2+40t=80的根
-5t2+40t=60
h
的实际意义是什么? -5t2+40t=80 当h=80时,相对应的t
二、基础训练 1、已知抛物线y=x2-6x+a的顶点在x轴上,则 a= ;若抛物线与x轴有两个交点,则a的 范围是 ;若抛物线与坐标轴有两个公共 点,则a的范围是 ; 2、已知抛物线y=x2-3x+a+1与x轴最多只有一 个交点,则a的范围是 。
3、已知抛物线y=x2+px+q与x轴的两个交点为 (-2,0),(3,0),则p= ,q= 。
没有交点 一元二次方程x2-2x+2=0根的个数( △﹤0无实数根
想一想 填一填
. 二次函数y=ax2+bx+c的图象和x轴交点的个数 与一元二次方程ax2+bx+c=0的根有什么关系?
一元二次方程 ax2+bx+c=0根的判别式 =b2-4ac
一元二次方程 ax2+bx+c=0的根的情况 有两个相异的实数根 有两个相等的实数根 没有实数根
例2 :已知抛物线与X轴交于A(-1,0),B(2,0)
并经过点M(0,2),求抛物线的解析式?
y x o
思考: 你能用什么方法做呢? 哪个方法更好? 解:设所求的二次函数为 因为 y=a(x+1)(x-2)
点M( 0,2 )在抛物线上
所以:a(0+1)(0-2)=2 得 : a=-1 故所求的抛物线为 y=- (x+1)(x-2) 即:y=-x2+x+2
直线y=k
x2 x
跟踪练习二
函数的图象y=ax2+bx+c如图所示, 那么 (2)关于ax2+bx+c=4的一元二次方程的根的情况是( )
两个不相等的实数根 (1)关于ax2+bx+c=0的一元二次方程的根的情况是 ( ) 无实数根
(3)关于ax2+bx+c=2的一元二次方程的根的情况是( ) 两个相等的实数根 Y=4 Y=2 Y=0
能力升华
y 一元二次方程x2-4x+4=0的根是二次函数 y=x2-4x+4的图象与( X轴 )交点的横坐标。
N
y=x2-4x+4
直线y=0
一元二次方程x2-4x+4=1的根是二次函数 y=x2-4x+4的图象与直线( 直线y=1 )交点的横坐标。 y
0
1 2
.
直线y=0 x
正确 ?
y=x2-4x+4
-2
1
0
(2,0) _____
(-5,0)
3.二次函数y=kx2+4x-4的图象与x轴有交点, 则k 的取值范围 . K>-1且k≠0 4.已知二次函数图象过(-1,0),(3,0)和(1,-8)三点, 求二次函数表达式。 Y=2(x+1)(x-3) 即:Y=2x2-4x-6
课堂小结
1.二次函数y=ax2+bx+c与X轴交点个数的确定 2. 二次函数与一元二次方程的关系 y=ax2+bx+c
与直线 y=k
ax2+bx+c=k y取定值k
交点的横坐标 3.用交点式求二次函数表达式
方程的根
数 形 结 合 的 思 想
目标检测
相信自己,我能行
y
1、已知二次函数y=ax2+bx+c(a≠0)的图象如 下图所示,请写出方程ax2+bx+c=0(a≠0)的根 X1=-2 ,x2=1 2、抛物线y=-3(x-2)(x+5)与x轴的交点坐标为
九年级数学(下)第二章 二次函数
2.5 二次函数与一元二次方程(1) 二次函数与一元二次方程的关系
复习提问
1、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△ = b2-4ac 。 方程根的情况是:当△﹥0 时方程 有两个不等实数根 ; ;
当△=0时,方程 有两个相等实数根 当△﹤0时,方程 没有实数根 。
N
方程x2-4x+4=1的根(x1= 1 ,x2= 3 )
2 1 0
(x-2)2=1 (x-2)=±1 X-2=-1 或 x-2=1 x1= 1 ,x2= 3
..
M
1 2 3
直线y=1
x
想一想
一元二次方ax2+bx+c=k的根是函数y=ax2+bx+c 的图象和 直线y=k
y
交点横坐标
. .
x1
0
4 2
y
0
-2
x
例1学以致用
由上抛小球落地的时间想到
竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式 h=-5t2+40t表示
1).小球经过多少秒后落地?Hale Waihona Puke 有几种 求解方法?与同伴进行交流.
h
100
1.8s, 可以利用图象,
也可以把h 0代入函数h 5t 2 40t 解方程 5t 40t 0.