动量和能量综合题
动量和能量练习题
物理专题——动量和能量一.选择题1.一小型爆炸装置在光滑.坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是:A .总动量守恒B .机械能守恒C .水平方向动量守恒D .竖直方向动量守恒 2(多选).向空中发射一物体,不计空气阻力。
当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则:A .b 的速度方向一定与原速度方向相反B .从炸裂到落地的这段时间里,a 飞行的水平距离一定比b 的大C .a .b 一定同时到达水平地面D .在炸裂过程中,a .b 受到的爆炸力的冲量大小一定相等3(多选).光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是:A .子弹对木块做的功等于()222121v v m -B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能D .子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和4(多选).子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木块后子弹的动能为E 2,动量大小为2p 。
若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为:A .2121p p E E ++ B .1212p p E E -- C .2211p E p E + D .2211p E p E - 5(多选).如图所示,质量分别为m 和2m 的A .B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。
用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。
这时突然撤去F ,关于A .B 和弹簧组成的系统,下列说法中正确的是:A .撤去F 后,系统动量守恒,机械能守恒B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /36(多选).一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示.下列说法正确的是:A .半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B .半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C .半圆槽固定不动时,物体M 在滑动过程中机械能守恒D .半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒7.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m .M 及M 与地面间接触光滑。
动量与能量守恒2025年综合题解析
动量与能量守恒2025年综合题解析在物理学的领域中,动量与能量守恒定律一直是极为重要的核心概念,不仅在理论研究中具有关键地位,更在实际问题的解决中发挥着不可或缺的作用。
接下来,让我们深入探讨 2025 年的一道有关动量与能量守恒的综合题,通过解析这道题,来进一步加深对这两个重要定律的理解和应用。
题目如下:在一个光滑的水平面上,有两个质量分别为 m1 = 2kg 和 m2 = 3kg 的物体,它们以速度 v1 = 5m/s 和 v2 = 2m/s 相向运动,发生正碰。
碰撞后两物体粘在一起,求碰撞后的共同速度以及碰撞过程中损失的机械能。
首先,我们来分析一下这道题所涉及的知识点。
动量守恒定律指出,在一个不受外力或者所受合外力为零的系统中,系统的总动量保持不变。
对于这道题,在水平方向上,没有外力的作用,所以系统在碰撞前后的总动量是守恒的。
碰撞前两物体的总动量为:P1 = m1 v1 = 2 5 = 10 kg·m/sP2 = m2 v2 = 3 (-2) =-6 kg·m/s (因为相向运动,速度方向相反)总动量 P = P1 + P2 = 10 6 = 4 kg·m/s碰撞后两物体粘在一起,共同速度为 v,根据动量守恒定律可得:(m1 + m2) v = 4(2 + 3) v = 45v = 4v = 08 m/s接下来,我们来计算碰撞过程中损失的机械能。
碰撞前两物体的总动能为:E1 = 1/2 m1 v1^2 = 1/2 2 5^2 = 25 JE2 = 1/2 m2 v2^2 = 1/2 3 2^2 = 6 J总动能 E = E1 + E2 = 25 + 6 = 31 J碰撞后两物体的总动能为:E' = 1/2 (m1 + m2) v^2 = 1/2 5 08^2 = 16 J碰撞过程中损失的机械能为:ΔE = E E' = 31 16 = 294 J通过对这道题的解析,我们可以看出,在解决动量与能量守恒的综合问题时,关键是要清晰地判断系统是否满足动量守恒和能量守恒的条件。
动量守恒能量守恒练习题
动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
动量与能量综合问题归类分析
量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0
①
设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。
或
v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:
微专题49 动量与能量的综合问题
微专题49 动量与能量的综合问题1.如果要研究在某一时刻物理量的关系,可用牛顿第二定律列式.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究对象为一系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,满足动量守恒定律.1.(2020·河南名校联考)在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球的前方O 点处有一质量为m 2的小球B 处于静止状态,如图1所示.小球A 与小球B 发生正碰后,小球A 、B 均向右运动.小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5 PO .假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,小球均可看成质点,求:图1(1)两小球质量之比m 1m 2; (2)若小球A 与小球B 碰后的运动方向以及小球B 反弹后与A 相遇的位置均未知,两小球A 、B 质量满足什么条件,就能使小球B 第一次反弹后一定与小球A 相碰.答案 (1)2∶1 (2)m 1>m 23解析 (1)两球发生弹性碰撞,设碰后A 、B 两球的速度分别为v 1、v 2,规定向右为正方向,根据系统动量守恒得m 1v 0=m 1v 1+m 2v 2已知小球间的碰撞及小球与墙壁之间的碰撞均无机械能损失,由机械能守恒定律得12m 1v 02= 12m 1v 12+12m 2v 22 从两球碰撞后到它们再次相遇,甲和乙的速度大小保持不变,由于PQ =1.5PO , 则小球A 和B 通过的路程之比为s 1∶s 2=v 1t ∶v 2t =1∶4,联立解得m 1m 2=21(2)由(1)中两式解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0若小球A 碰后静止或继续向右运动,一定与小球B 第一次反弹后相碰,此时有v 1≥0,即m 1≥m 2 若小球A 碰后反向运动,则v 1<0,此时m 1<m 2,则小球A 与B 第一次反弹后相碰需满足|v 1|<|v 2| 即m 2-m 1m 1+m 2v 0<2m 1m 1+m 2v 0 解得m 1>m 23综上所述,只要小球A 、B 质量满足m 1>m 23,就能使小球B 第一次反弹后一定与小球A 相碰. 2.(2020·河北邢台市期末)如图2所示,竖直平面内粗糙水平轨道AB 与光滑半圆轨道BC 相切于B 点,一质量m 1=1 kg 的小滑块P (视为质点)在水平向右的力F 作用下,从A 点以v 0= 0.5 m/s 的初速度滑向B 点,当滑块P 滑到AB 正中间时撤去力F ,滑块P 运动到B 点时与静止在B 点的质量m 2=2 kg 的小滑块Q (视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q 恰好能滑到半圆轨道的最高点C ,并且从C 点飞出后又恰好落到AB 的中点,小滑块P 恰好也能回到AB 的中点.已知半圆轨道半径R =0.9 m ,重力加速度g =10 m/s 2.求:图2(1)与Q 碰撞前的瞬间,小滑块P 的速度大小;(2)力F 所做的功.答案 (1)925 m/s (2)61.75 J 解析 (1)滑块P 、Q 碰撞过程机械能守恒、动量守恒,则有12m 1v 12=12m 1v 1′2+12m 2v 22 m 1v 1=m 1v 1′+m 2v 2滑块Q 从B 运动到C 的过程机械能守恒,则有12m 2v 22=12m 2v 32+m 2g ×2R 滑块Q 在C 点时,有m 2g =m 2v 32R解得v 3=3 m/s ,v 1′=-352m/s 与Q 碰撞前的瞬间,小滑块P 的速度大小v 1=952m/s.(2)滑块P从A到B过程,由动能定理,有W F-μm1gx AB=12m1(v12-v02)滑块P与Q碰撞后返回过程,有v1′2=2μg·x AB2解得W F=61.75 J.3.(2020·河南中原名校第五次考评)如图3所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现使M 获得一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而M落在水平地面上的C点,其水平位移s=1.2 m,不计空气阻力,g=10 m/s2,求:图3(1)质量为M的物块落地时的动能;(2)若物块M在P处的初速度大小为8.0 m/s,平台表面与物块间动摩擦因数μ=0.5,物块M 与小球的初始距离s1为多少?答案(1)25 J(2)2.8 m解析(1)碰后物块M做平抛运动,设其平抛运动的初速度为v3由h=12gt2,s=v3t,得:v3=s g2h=3.0 m/s落地时的竖直速度为:v y=2gh=4.0 m/s所以物块落地时的速度为:v=v32+v y2=5.0 m/s物块落地时的动能为:E k=12M v2=25 J(2)物块与小球在B处碰撞,设碰撞前物块的速度为v1,碰撞后小球的速度为v2,由动量守恒定律:M v1=m v2+M v3碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为v A:12=12m v A2+2mgL2m v2小球在最高点时有:2mg=m v A2L联立解得:v2=6.0 m/sv1=6.0 m/s物块M从P运动到B处过程中,由动能定理得:-μMgs1=12-12M v022M v1解得:s1=2.8 m.4.如图4所示为研究某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带足够长,传送带的轮子沿逆时针方向转动,带动传送带以恒定速度v=2.0 m/s匀速运动.三个质量均为m=1.0 kg的滑块A、B、C置于水平导轨上,开始时在B、C 间有一压缩的轻弹簧,两滑块用细绳相连处于静止状态.滑块A以初速度v0=4.0 m/s沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短,可认为A与B碰撞过程中滑块C的速度仍为零.因碰撞使连接B、C的细绳受到扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v C=4.0 m/s滑上传送带,已知滑块C与传送带间的动摩擦因数μ=0.20,重力加速度g取10 m/s2.求:图4(1)滑块C在传送带上向右滑动距N点的最远距离s max;(2)弹簧锁定时的弹性势能E p;(3)滑块C在传送带上运动的整个过程中与传送带之间因摩擦产生的内能Q.答案(1)4.0 m(2)4.0 J(3)18 J解析(1)滑块C滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远.由动能定理得-μmgs max=0-122m v C解得s max=4.0 m.(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,由动量守恒定律有m v 0=2m v 12m v 1=2m v 2+m v C解得v 1=2 m/s ,v 2=0由能量守恒定律有E p +12×2m v 12=12×2m v 22+12m v C 2 解得E p =4.0 J.(3)滑块C 在传送带上向右做匀减速运动,设滑块C 在传送带上运动的加速度大小为a ,滑块C 在传送带上经时间t 1速度减为零,在同样时间内传送带向左的位移大小为x 1.根据牛顿第二定律和运动学公式可知a =μmg m=2 m/s 2 滑块C 速度减小到零所需的时间t 1=v C a=2 s 传送带的位移大小x 1=v t 1=2×2 m =4 m相对路程Δx 1=s max +x 1=8 m滑块C 在传送带上向右运动至速度为0后开始向左做匀加速直线运动,当速度达到与传送带速度相同时,与传送带一起做匀速直线运动.滑块C 在传送带上向左做匀加速直线运动的时间t 2=v a=1 s 滑块C 的位移大小s 1=12at 22=1 m 传送带的位移大小x 2=v t 2=2 m相对路程Δx 2=x 2-s 1=1 m则滑块C 在传送带上运动的整个过程中与传送带之间因摩擦产生的内能Q =μmg (Δx 1+Δx 2)=0.2×1×10×9 J =18 J .。
第十六章 专题 动量和能量的综合应用
第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。
经典课时作业 动量和能量综合训练
经典课时作业动量和能量综合训练(含标准答案及解析)时间:45分钟分值:100分一、选择题1.一铅球正在做平抛运动.下列说法正确的是(不计空气阻力)( )A.在连续相等的时间内铅球的动量变化量都相等B.在连续相等的时间内铅球的动能变化量都相等C.在相等的时间内铅球动能增加量一定等于它重力势能的减少量D.重力对铅球做功不影响它水平方向的匀速运动2.质量不同而初动量相同的两个物体,在水平地面上由于摩擦力的作用而停止运动,它们与地面间的动摩擦因数相同,比较它们的滑行时间和滑行距离,则( )A.两个物体滑行的时间一样长B.质量大的物体滑行的时间较长C.两个物体滑行的距离一样长D.质量小的物体滑行的距离较长3.质量为5 kg的A球静止在光滑水平面上,质量为2 kg的B球以10 m/s的速度与A 正碰,则碰后A和B的速度可能的是(设B球初速度方向为正)( )A.v A=2m/s,v B=5m/sB.v A=5m/s,v B=2m/sC.v A=-2m/s,v B=15m/sD.v A=4m/s,v B=04.一质点以一定的初速度飞入一个恒定有界引力场(进入后该质点受到一个恒力),又从该引力场飞出来,从质点进入到离开该有界场,可能的情况有( )A.动量和动能都变化B.动量和动能都不变C.只有动能变化,而动量不变D.只有动量变化,而动能不变5.如图a所示,物块A、B间拴接一个压缩后被锁定的弹簧,整个系统静止放在光滑水平地面上,其中A物块最初与左侧固定的挡板相接触,B物块质量为2 kg.现解除对弹簧的锁定,在A 离开挡板后,B物块的v-t图象如图b所示,则可知( )A.在A离开挡板前,A、B系统动量不守恒,之后守恒B.在A离开挡板前,A、B与弹簧组成的系统机械能守恒,之后不守恒C.弹簧锁定时其弹性势能为9 JD.A的质量为1 kg,在A离开挡板后弹簧的最大弹性势能为3 J6.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B速度相等时,A的速度达到最大D.当A、B速度相等时,弹簧的弹性势能最大7.质量为m=1 kg的物块A从倾角为θ=37°的固定斜面顶端由静止开始下滑到斜面底端,在此过程中重力对物块的冲量为5 N·s,重力做的功为4.5 J.若将该斜面放在光滑水平地面上,仍让物块A从斜面顶端由静止开始下滑,当物块到达斜面底端时(取g=10m/s2,sin37°=0.6,cos37°=0.8)( )A.物块和斜面的总动量为3 kg· m/sB.物块和斜面的总动量为5 kg· m/sC.物块和斜面的总动能为4.5 JD.物块的动能为4.5 J8.如图所示, 该物体从斜面的顶端由静止开始下滑,经过A点时的速度与经过C点时的速度相等,已知AB=BC,则下列说法正确的是( )斜面上除了AB段粗糙外,其余部分均是光滑的,小物体与AB段的动摩擦因数处处相等.今使A.物体在AB段与BC段的加速度大小相等B.物体在AB段与BC段的运动时间相等C.重力在这两段中所做的功相等D.物体在AB段与BC段的动量变化相等9.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b 两块,若质量较大的a块物体的速度方向仍沿原来的方向,则有( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等10.如图所示将一光滑的半圆槽置于光滑水平面上,让一小球自左侧槽口A的正上方从静止开始下落,与圆弧槽相切自A点进入槽内,到达最低点B,再上升到C点后离开半圆槽,则以下结论中不正确的是( )A.小球在半圆槽内从A到B的运动的过程中,只有重力对它做功,所以小球的机械能守恒B.小球在半圆槽内运动的过程中,小球与半圆槽组成的系统的机械能守恒C.小球在半圆槽内运动的过程中,小球与半圆槽的水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动11.同一粗糙水平面上有两个完全相同的滑块并排放置,现分别用方向相同的恒定拉力F1与F2(F1>F2)作用于滑块,使滑块从静止开始运动一段时间后撤去拉力,最终两滑块位移相同,滑块运动的v-t图象如图所示(两图线速度减小阶段平行),则( )A.两拉力的冲量I1>I2B.两拉力的冲量I1<I2C.两拉力做的功W1>W2D.两拉力做的功W1=W212.物体只在力F作用下运动,力F随时间变化的图象如图所示,在t=1 s时刻,物体的速度为零,则下列论述正确的是( )A.0~3 s内,力F所做的功等于零,冲量也等于零B.0~4 s内,力F所做的功等于零,冲量也等于零C.第1 s内和第2 s内的速度方向相同,加速度方向相反D.第3 s内和第4 s内的速度方向相反,加速度方向相同13.(1)下列是一些有关高中物理实验的描述,其中错误的是________.A.在“验证力的平行四边形定则”实验中,拉橡皮筋的细绳要稍长,并且实验时要使弹簧与木板平面平行B.在“用单摆测定重力加速度”实验中,如果摆长测量无误,但测得的g值偏小,其原因可能是将全振动的次数n误计为n-1C.在“验证机械能守恒定律”的实验中,需要用天平测物体(重锤)的质量D.在做“验证动量守恒定律”实验中,确定小球落后的方法是:用尽可能小的圆把所有的小球落点圈在里面,圆心就是小球落点的平均位置(2)下列说法中正确的是________.A.在用落体法“验证机械能守恒定律”的实验中,所用的重锤的质量宜大一些B.做“验证力的平行四边形定则”实验时,两个测力计可以和木板成一定的角度C.做“碰撞中的动量守恒”的实验时,必须让斜槽末端的切线水平D.在“用单摆测定重力加速度”实验中,应该在摆球摆到最高点时开始计时14.如图所示的实验装置,水平桌面上固定一个曲面斜面体C,曲面下端的切平面是水平的,并且曲面是不光滑的.桌上还有质量不等的小滑块A、B,小滑块A、B放在曲面上时放手后均能沿曲面向下滑动且能滑出斜面体C.另外还有实验器材:天平,重锤线,刻度尺,白纸,复写纸.(1)要想比较准确地测出小滑块A从曲面顶端滑到曲面底端(曲斜面体最右端)的过程中,滑块A克服摩擦力所做的功:(重力加速度g为已知)①写出实验中需要直接测量的物理量:(用字母表示,并对字母简要说明)_______________________________________________________________②滑块A克服摩擦力做功W f的表达式:________________________________________________________________(2)应用以上器材和测量仪器,还可以完成的物理实验有:_________________________________________________________________15.2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如下图,运动员将静止于O点的冰壶(视为质点)沿直线OO′推到A点放手,此后冰壶沿AO′滑行,最后停于C点.已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m,AC=L,CO′=r,重力加速度为g.(1)求冰壶在A点的速率;(2)求冰壶从O点到A点的运动过程中受到的冲量大小;(3)若将BO′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C点的冰壶能停于O′点,求A点与B点之间的距离.16.某机械打桩机原理可简化为如图所示,直角固定杆光滑,杆上套有m A=55 kg和m B=80 kg两滑块,两滑块用无弹性的轻绳相连,绳长为5 m,开始在外力作用下将A滑块向右拉到与水平夹角为37°时静止释放,B滑块随即向下运动,并带动A滑块向左运动,当运动到绳与竖直方向夹角为37°时,B滑块(重锤)撞击正下方的桩头C,桩头C的质量m C=200 kg.碰撞时间极短,碰后A滑块由缓冲减速装置让其立即静止,B滑块反弹上升h1=0.05 m,C桩头朝下运动h2=0.2 m静止.取g=10 m/s2.求:(1)滑块B碰前的速度;(2)泥土对桩头C的平均阻力.17.竖直平面内有一半径为R=3.2 m的光滑圆弧轨道,O为轨道的最低点,A点距O点的高度为h1=0.2 m,B点距O点的高度为h2=0.8 m.现从A点释放一质量为M的大球(半径远小于R),且每隔适当的时间从B点释放一质量为m的小球,它们和大球碰撞后都结为一体,已知M=4m,g取10 m/s2.(1)若大球向右运动到O点时,第一个小球与之碰撞,求碰撞后大球的速度;(2)若大球向右运动到O点时,第一个小球与之碰撞,当大球第一次向左运动到O点时,第二个小球恰好与之碰撞,求第一、二两个小球释放的时间差;(3)若大球第一次向右运动到O点时与小球碰撞,以后每当大球向左运动到O点时,就会与一个小球碰撞,求经过多少次碰撞后,大球将越过A点?标准答案及解析: 一、选择题 1.解析:由动量定理可知,铅球在连续相等时间内动量的变化等于重力的冲量mgΔt,因此是相等的,A 正确;由动能定理得动能的变化等于重力做的功,相等时间内位移不等,重力做功不等,因此动能的变化不等,B 错;由于机械能守恒,铅球动能的增量总等于重力势能的减少量,C 正确;重力做功改变物体的动能,由于重力产生的加速度在竖直方向上,因此不影响水平方向的匀速运动,D 正确.答案:ACD 2.解析:由动量定理P=μmgt,由动能定理得22P m=μmgs,即P 2=2μm 2gs,显然P 相同,m 大则时间长、滑行距离长,D 对.答案:D 3.解析:本题考查碰撞,动量守恒定律.此类碰撞问题中对于碰撞速度、质量可能性分析的试题主要从以下三个方面分析:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理.两球在碰撞过程中动量守恒即P A +P B =P A′+P B′,代入数据发现B 选项动量不守恒;由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有:22222222A B A B A B A BP P P P m m m m ''++≥,代入数据发现C 选项机械能增加了,同时也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景;同理发现A 项也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景.经上分析可知只有D 选项正确.答案:D 4.解析:相当于质点受恒力作用一段时间而做类抛体运动,由动量定理可知质点的动量是一定要变化的,B 、C 错;质点的动能是否改变就要看质点速度的大小是否改变,若恒力先做负功后做正功,且总功为零,则动能不变,所以质点的动能可能变,也可能不变,A 、D 正确.质点受到的恒力可以是重力与引力场恒力的合力,也可以仅受引力场恒力,结果都是一样的.答案:AD 5.解析:在A 离开挡板前,由于挡板对A 有作用力,所以,A 、B 系统所受合外力不为零,则系统动量不守恒;A 离开挡板后,系统所受合外力为零,动量守恒,A 选项正确.在A 离开挡板前,挡板对A 的作用力不做功,A 、B 及弹簧组成的系统在整个过程中机械能都守恒,B 选项错误.解除对弹簧的锁定后至A 刚离开挡板的过程中,弹簧的弹性势能释放,全部转化为B 的动能,根据机械能守恒定律,有:E p =201,2B m v 由图象可知,v 0=3m/s,解得:E p =9 J,C 选项正确.分析A 离开挡板后A 、B 的运动过程,并结合图象数据可知,弹簧伸长到最长时A 、B 的共同速度为v 共=2 m/s,根据机械能守恒定律和动量守恒定律,有:m B v 0=(m A +m B )v共,E′p =22011(),22B A B m v m m v -+共联立解得:E′p =3 J,D 选项正确. 答案:ACD 6.解析:本题通过弹簧连接AB 两物体,考查对牛顿运动定律、功能规律的综合运用能力.根据牛顿运动定律,对A 物体,,A F kx a m -=对B 物体,B kxa m=.可见随着弹簧压缩量x 增加,A 的加速度逐渐减小,B 的加速度逐渐增大.AB 物体运动过程利用速度图象表示,如图,很方便地判断出B 、C 、D 项正确,A 项错误.答案:BCD 7.解析:当斜面固定时,物块在斜面上滑动可能受到重力、斜面支持力和滑动摩擦力的作用,下滑到底端的过程中重力的冲量为5 N\5s=mgt,t=0.5 s;重力做的功为4.5 J=mgh,h=0.45 m;斜面长21237hL at sin ==。
动量及能量经典题剖析及问题详解
动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。
质量为m的小球以速度v1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H和物块的最终速度v。
2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。
火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
动量和能量的综合应用 例题精选
动量和能量的综合应用 例题精选例题1: 如图,质量为3m 、长度为L 的木块放于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度变为0.4v 0 ,设木块对子弹的阻力始终保持不变,求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿出木块中所受平均阻力大小。
解:(1)子弹与木块组成的系统动量守恒,有mv 0=0.4mv 0+3mv ,则子弹穿出后木块的速度为v=0.2v 0 ;(2)子弹穿越木块的过程中,设木块的位移为s , 则据动能定理对子弹有:-f(s+L)= 12m(0.4v 0)2-12mv 02 对木块有: fs=123mv 2 联立解得:f=9mv 20/(25L)变式训练1:如图所示,质量为M 的木块固定在水平面上,有一质量为m 的子弹以初速度v 1水平射向木块,并恰能射穿,设木块的厚度及木块对子弹的平均阻力恒定. 试问若木块可以在光滑的水平面上自由滑动,子弹要射穿该木块速度至少应为多少?【解析】若木块在光滑水平面上能自由滑动,设子弹以速度v 0射入恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即 mv 0=(m +M )v设木块对子弹阻力为f, 木块厚度为d ,对系统应用能量守恒得fd =12mv 02-12(M +m )v 2由上面两式消去v 可得fd =12mv 02-12(m +M )(mv 0m +M)2 整理得12mv 20=m +M Mfd -----------------① 据题目条件,在木板固定时对子弹列动能定理有 -fd= - 12mv 12 ………………②联立① ② 可得v 0v 1例题2:如图甲质量m B =1 kg 的平板小车B 在光滑水平面上以v1=1 m/s 的速度向左匀速运动.当t =0时,质量m A =2 kg 的小铁块A 以v 2=2 m/s 的速度水平向右滑上小车,A 与小车间的动摩擦因数为μ=0.2.若A 最终没有滑出小车,取水平向右为正方向,g =10 m/s 2,则:1)A 在小车上停止运动时,小车的速度为多大?(2)小车的长度至少为多少?(3)在图乙所示的坐标纸中画出1.5 s 内的小车B 运动的速度—时间图象.解:因p A =m A v 2>p B =m B v 1,所以系统的总动量水平向右,即A 在车上停止运动时,它们必定以共同速度向右运动.此过程中A 的运动方向不变,做减速运动,而B 是先向左做匀减速运动而后再向右做匀加速运动,最后与A 达到共同速度.(1)A 在小车上停止运动时,A 、B 以共同速度运动,设其速度为v ,取水平向右为正方向,由动量守恒定律得 m A v 2-m B v 1=(m A +m B )v解得:v =1 m/s.(2)设小车的最小长度为L ,由功能关系得μmAgL =12m A v 22+12m B v 12-12(m A +m B )v 2 解得:L =0.75 m.(3)设小车匀变速运动的时间为t ,由动量定理得μmAgt =mB (v +v 1)解得:t =0.5 s故小车的速度—时间图象如右图所示.答案:(1)1 m/s (2)0.75 m (3)见解析图变式训练2:如图所示,一质量m 2=0.20 kg 的平顶小车,车顶右端放一质量m 3=0.25 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.4,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=12 3 m/s 射中小车左端,并留在车中.子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10 m/s 2.求:(1)小车的最小长度应为多少?最后小物体与小车的共同速度为多少?(2)小物体在小车上相对小车滑行的时间.【解析】(1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 1v 0=(m 2+m 1)v 1 ①由三物体组成的系统动量守恒得(m 2+m 1)v 1=(m 2+m 1+m 3)v 2 ②设小车最小长度为L ,三物体相对静止后,对系统利用能量守恒定律得12(m 2+m 1)v 21-12(m 2+m 1+m 3)v 22=μm 3gL ③联立以上方程解得L =0.9 m车与物体的共同速度为 v 2=2.1 m/s(或1.2 3 m/s)(2)以m 3为研究对象,利用动量定理得:μm 3gt =m 3v 2 ④解得t =0.52 s(或0.3 3 s)例题3:如图所示,一轻质弹簧两端连着物体A 和物体B ,放在光滑的水平面上,水平速度为v 0的子弹射中物体A 并嵌在其中(作用时间极短),已知物体B 的质量为m B ,物体A 的质量是物体B的质量的34,子弹的质量是物体B 的质量的14,求(1) 弹簧被压缩至最短时的弹性势能;(2) B 物体的最大速度。
高中物理动量、能量综合题
动量与能量综合题1.如图所示,质量m1=0.3kg 的小车静止在光滑的水平面上,车长L足够长,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=5 m/s从左端滑上小车,当物块对地位移x2=2.1m 的时候与小车保持相对静止。
已知物块与车面间的动摩擦因数u=0.5,取g=10 m/s2。
求:(1)物块与小车的共同速度v的大小;(2)小车发生的位移x1;(3)系统动能损失多少?损失的能量去哪了?(4)如何求系统产生的热量?(5)物块相对于小车的相对位移d多大?2.在光滑水平的地面上,有一个M=2kg长度为d=10cm的木块,一颗质量m=10g的子弹以v0=200m/s的速度射入其中,当木块在水平地面前进s=0.5m时,子弹从其中穿出且速度减为v1=100m/s,求:(1)子弹和木块间的作用力;(2)木块获得的速度是多少?(3)系统损失了多少机械能?(4)物块相对于小车的相对位移d3.如图所示,在水平轨道上有一轻质弹簧,左端固定在墙M上,右端恰好处于斜坡最低点O,弹簧正好为原长。
光滑坡道顶端距水平面高度为h=5m,质量为m A=2kg的小物块A从坡道顶端由静止滑下。
已知在OM段,物块A与水平面间的动摩擦因数为μ=0.25,其余各处的摩擦不计,g=10m/s²。
求:(1)物块A第一次滑到O点时的速度v的大小;(2)若弹簧的劲度系数k=1×103N/m,则弹簧最大压缩量d是多少?(设弹簧处于原长时弹性势能为零)(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?vv4.某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。
已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。
动量和能量综合问题
动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。
动量守恒,碰撞系统动能损失。
根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。
动量与能量结合综合题附答案
动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cdB.cd始终做减速运动,ab始终做加速运动,但追不上cdC.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动D.磁场力对两金属杆做功的大小相等h,如图所示。
2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为后又向上运动。
若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求:1,质量为m时物块与木板碰撞后的速度;2,质量为2m时物块向上运动到O的速度。
3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热Q最多是多少?(2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。
一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A物块,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。
动量守恒与能量守恒练习题
动量守恒与能量守恒复习 1.质量为1m 的物体以速度1v 与质量为物体2m 发生弹性碰撞,求碰撞后它们的速度分别是多少?2.质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 0向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求:(1)小球能上升到的最大高度H 是多少 ?(2)小球与物块最终速度1v 和2v 是多少?3.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视做质点,质量分别为2m 和m .Q 与轻质弹簧相连(弹簧处于原长).设开始时P 和Q 分别以2v 和v 初速度向右匀速运动,当小滑块P 追上小滑块Q 与弹簧发生相互作用,在以后运动过程中,求:(1)弹簧具有的最大弹性势能?(2)小滑块Q 的最大速度?4.如图所示,质量M 的小车B 静止光滑的水平轨道上,一个质量m 的物体A 以初速度0v 冲上小车B 后经一段时间t 从小车的右端以速度1v 滑下。
物体A 与小车板面间的动摩擦因数为μ,(取g=10m/s 2)(1)对物体A 动量定理: (4)对物体A 动能定理:(2)对车B 动量定理: (5)对车B 动能定理:(3)系统动量守恒: (6)系统能量守恒:5.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A (可视为质点),同时给A 和B 以大小均为2.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,要使小木块A 不滑离长木板B 板,已知小木块与长木板之间的动摩擦因数为0.6,求长木板B 的最小长度L=?6.如图所示,质量为3m 、长度为L 的木块静止放置在光滑的水平面上。
质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出木块速度变为025v 。
试求:子弹穿透木块的过程中,所受到平均阻力的大小。
7.如图,长木板a b 的b 端固定一档板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m 。
动量能量试题及答案
动量能量试题及答案一、选择题(每题5分,共20分)1. 动量守恒定律适用于:A. 只有重力作用的系统B. 只有弹力作用的系统C. 没有外力作用的系统D. 有外力作用但外力为零的系统答案:C2. 一个物体的动能与其速度的关系是:A. 与速度成正比B. 与速度的平方成正比C. 与速度的立方成正比D. 与速度的四次方成正比答案:B3. 以下哪个选项是正确的能量守恒定律表述?A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以在不同形式之间转化答案:C4. 一个物体的动量与其质量、速度的关系是:A. 动量等于质量与速度的乘积B. 动量等于质量与速度的平方的乘积C. 动量等于质量的平方与速度的乘积D. 动量与质量和速度无关答案:A二、填空题(每题5分,共20分)1. 动量守恒定律的数学表达式为:\( p_{总} = p_{1} + p_{2} + ... + p_{n} \),其中p代表______,n代表______。
答案:动量;物体数量2. 动能的计算公式为:\( E_k = \frac{1}{2}mv^2 \),其中E_k代表______,m代表______,v代表______。
答案:动能;质量;速度3. 能量守恒定律表明,能量在转换过程中______。
答案:总量保持不变4. 动量与动能的关系是:动量是矢量,而动能是______。
答案:标量三、简答题(每题10分,共20分)1. 请简述动量守恒定律的条件。
答案:动量守恒定律的条件是系统不受外力或所受外力之和为零,或者外力远小于内力。
2. 请解释为什么在碰撞过程中动量守恒,而动能不守恒。
答案:在碰撞过程中,动量守恒是因为系统不受外力或外力远小于内力,动量在碰撞前后保持不变。
而动能不守恒是因为碰撞过程中可能存在能量的损失,如转化为内能、热能等,导致动能减少。
四、计算题(每题20分,共40分)1. 一个质量为2kg的物体以10m/s的速度向东运动,与一个质量为3kg的物体以5m/s的速度向西运动发生碰撞。
2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)
2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习1. (多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示。
爆炸之后乙由静止自由下落,丙沿原路径回到原射出点。
若忽略空气阻力,则下列说法正确的是( )A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 232. (2023ꞏ湖南永州市模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C(可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,忽略空气阻力,则下列说法不正确的是( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 03. (多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点。
一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点。
已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则( )A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR 10C .全过程小车相对地面的位移大小为R +L5 D .μ、L 、R 三者之间的关系为R =μL4. (多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.质量M=0.6kg的平板小车静止在光滑水面上,如图7所示,当t=0时,两个质量都为m=0.2kg的小物体A和B,分别从小车的左端和右端以水平速度1 5.0/v m s =和
2 2.0/v m s =同时冲上小车,
当它们相对于小车停止滑动时,
没有相碰。
已知A、B两物体与车面的动摩擦因数都是0.20,
取g=102/m s ,求:
(1)A、B两物体在车上都停止滑动时车的速度;
(2)车的长度至少是多少?
16..如图8所示,A、B两球质量均为m,期间有压缩的轻短弹簧处于锁定状态。
弹簧的长度、两球的大小均忽略,整体视为质点,该装置从半径为R的竖直光滑圆轨道左侧与圆心等高处由静止下滑,滑至最低点时,解除对弹簧的锁定状态之后,B球恰好能到达轨道最高点,求弹簧处于锁定状态时的弹性势能。
15.解:(1)设物体A、B相对于车停止滑动时,车速为v ,根据动量守恒定律 212()(2)m v v M m v -=+
0.6/v m s =
方向向右
(2)设物体A、B在车上相对于车滑动的距离分别为1L 2、L ,车长为L,由功能关系
22212121
11()(2)222
mg L L mv mv M m v μ+=+-+ 12 6.8L L L m ≥+=
可知L至少为6.8m
16.解:设A、B系统滑到圆轨道最低点时锁定为0v ,解除弹簧锁定后A、B的速度分别为A B v v 、,B到轨道最高点的速度为V,则有
201222
mgR mv = 02A B m mv mv =+
22201112222
A B mv E mv mv ⨯+=+弹 2
v mg m R
= 2211222
B mv mg R mv =⋅+
解得:(7E mgR =-弹
如图5-8所示,滑块A 、B 的质量分别为m 1与m 2,m 1<m 2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。
两滑块一起以恒定的速率v 0向右滑动。
突然轻绳断开,当弹簧伸至本身的自然长度时,滑块A 的速度正好为0。
求:
(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能E p ;
(2)在以后的运动过程中,滑块B 是否会有速度为0的时刻?试通过定量分析证明你的结论.
解析:(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A 的速度为0,故系统的机械能等于滑块B 的动能。
设这时滑块B 的速度为v ,则有2212E=
m v 。
因系统所受外力为0,由动量守恒定律
(m 1+m 2)v 0=m 2 v
解得()2212
022m +m E=m v
由于只有弹簧的弹力做功,系统的机械能守恒
()2
12012
p m +m +E =E v 解得()211202
2p m m +m E =m v (2)假设在以后的运动中滑块B 可以出现速度为0的时刻,并设此时A 的速度为v 1,弹簧的弹性势能为E p ’,由机械能守恒定律得
()2
1202112122p m +m m +E '=m v v 根据动量守恒得(m 1+m 2) v 0=m 1 v 1,
求出v 1代入上式得:
()()22
1201201222p m +m m +m +E '=m m v v
因为E p ’≥0,故得:
()()2212012012
22m +m m +m m m ≤v v 即m 1≥m 2,这与已知条件中m 1<m 2不符。
可见在以后的运动中不可能出现滑块B 的速度为0的情况。
例4(2006年天津)如图5-7所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端与质量为m 2的档板相连,弹簧处于原长时,B 恰好位于滑道的末端O 点。
A 与B 碰撞时间极短,碰撞后结合在一起共同压缩弹簧。
已知在OM 段A 、B 与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g ,求
(1)物块A 在档板B 碰撞瞬间的速度v 的大小;
(2)弹簧最大压缩时为d 时的弹性势能E P (设弹簧处于原长时弹性势能为零)。
解析:(1)由机械能守恒定律得,有 211112m g h m v
=
v h (2)A 、B 在碰撞过程中动量守恒有/112()m v m m v =+
A 、
B 克服摩擦力所做的功 W =12()m m gd μ+
根据能量守恒定律得 /212121()()2
P m m v E m m gd μ+=++ 解得
211212
()P m E gh m m gd m m μ=-++
例2如图5-5所示,质量为M 的天车静止在光滑轨道上,下面用长为L 的细线悬挂着质量为m 的沙箱,一颗质量为0m 的子弹,以0v 的水平速度射入沙箱,并留在其中,在以后运动过程中,求:沙箱上升的最大高度。
解析:子弹打入沙箱,水平方向动量守恒,1000)(v m m v m +=,
此后由天车、沙箱和子弹组成的系统机械能守恒,当沙箱上摆到最高点时,系统具有相等的水平速度,损失的动能转化为沙箱的重力势能,运用“子弹打木块”的结论, 21000)(2
1)()(v m m M m m M gh m m +⋅++=+, 联系以上两式,则沙箱上升的最大高度为:
g
M m m m m Mv m h )()(20202020+++=。