动量和能量练习及答案

合集下载

动量和能量一章习题解答

动量和能量一章习题解答
解:根据动量定理(取竖直向下为坐标轴正方向) 所以,安全带对人的平均冲力为 此力为负值说明其方向与取定的坐标轴方向相反,是竖直向上的。
习题3—8 一个人从10.0m深的井中提水,起始桶中装有10.0kg的水,由 于水桶漏水,每升高1.00m要漏去0.20kg的水。求水桶被匀速地从井中 提到井口人所作的功。 解:依题意,桶中水的质量随桶到井底的距离x的变化关系为 因此,水桶被匀速地从井中提到井口人所作的功为
解:∵ ,
45˚ B Y X O A B A 图2-22
∴ (N•s)
[注意:本题已给出坐 标系,用矢量列式进行 计算更方便]
习题3—7 高空作业时系安全带是必要的。假如一质量为51.0kg的人在 操作时不慎从高空跌落下来,由于有安全带的保护,最终使他被悬挂起 来。已知此时人离原处的距离为2.0m,安全带弹性缓冲作用时间为 0.50s,求安全带对人的平均冲力。
(C) A2方向。 (D) A3方向。 解:小球与平板组成的系统在水平方向动量守恒,小球与平板碰撞
后小球仍旧保持原来的水平速度;在竖直方向,由于是完全弹性碰撞而 且小球与平板的质量相等,因而碰撞后两者交换速度,即碰后小球竖直 方向的速度为零。综合上述分析可知,碰撞后小球以原水平速度v向右 运动。所以应该选择答案(C).
习题3―19图
习题3—19 质量为m的平板A(体 积不计),用竖立的弹簧支持而处 在水平位置,如图。从平台上投 掷一个质量为m的球B,球的初速 为v,沿水平方向。球由于重力作 用而下落,与平板发生完全弹性 碰撞,且假定平板是光滑的。则 球与平板碰撞后的运动方向应为 [ ] (A) A0方向。 (B) A1方向。
(2) 由引力势能公式,可得卫星的势能为 (3) 卫星的机械能为

动量、冲量、动能动能定理练习答案

动量、冲量、动能动能定理练习答案

动量、冲量、动能动能定理练习一、不定项选择题1.下列说法正确的是 ( D )A .动量为零时,物体一定处于平衡状态B .动能不变,物体的动量一定不变C .物体所受合外力大小不变时,其动量大小一定要发生改变D .物体受到恒力的冲量也可能做曲线运动2.下列说法正确的是( C )A .动量的方向一定跟物体的速度方向相同,且动量大的物体其速度一定大B .冲量的方向一定跟对应的作用力方向相同,且冲量大对应的作用力一定大C .物体受到的冲量方向与物体末动量的方向不一定相同D .合外力的冲量为零,则物体所受各力的冲量均为零3.下面的说法正确的是( ABD )A .物体运动的方向就是它的动量的方向B .如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C .如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D .作用在物体上的合外力冲量不一定能改变物体速度的大小4、下列说法中不正确的是 ( AC )A .物体的动量发生改变,则合外力一定对物体做了功;B .物体的运动状态改变,其动量一定改变;C .物体的动量发生改变,其动能一定发生改变D .物体的动能发生改变,其动量一定发生改变。

5.如图所示,固定的光滑斜面倾角为θ.质量为m 的物体由静止开始从斜面顶端滑到底端,所用时间为t .在这一过程中正确的是( CD )A .所受支持力的冲量为OB .合力的冲量大小为cos mg t θ⋅C .所受重力的冲量大小为mgtD .动量的变化量大小为sin mg t θ⋅5.质量为1kg 的物体从离地面5m 高处自由下落。

与地面碰撞后。

上升的最大高度为3.2m ,设球与地面作用时间为0.2s ,则小球对地面的平均冲力为(g=10m/s2)( D )A .90NB .80NC .110ND .100N7、质量为m 的物体以初速度v 0开始做平抛运动,经过时间t ,下降的高度为h ,速度变为v ,在这段时间内物体动量的变化大小为( BCD )A 、m(v-v 0)B 、mgtC 、220m v v -D 、 8、质量为m 的物体放在光滑的水平面上,在与水平方向成θ角恒力F 作用下,由静止开始运动,经时间t ,速度为v ,在此过程中推力F 和重力的冲量大小分别为( D )A 、Ft, 0B 、Ft cos θ, 0C 、mv, 0D 、Ft, mgt9、一质量为m 的物体放在光滑水平面上,一恒力F 沿水平方向推物体,在相同时间间隔内,下列说法正确的是( AD )A 、力F 的冲量相等B 、物体动能的变化量相等C 、F 对物体做的功相等D 、物体动量的变化相等 ghm 2RA B C O h SP Q O 10、PQS 是固定于竖直平面内的光滑的1/4圆周轨道,圆心O 在S 点正上方,在点O 和P 两点各有一质量为m 的小物块a 和b 从同一时刻开始,a 自由下落,b 沿圆弧下滑,以下说法正确的是( A ) A 、a 比b 先到达S 点,它们在S 点的动量不相等B 、a 比b 同时到达S 点,它们在S 点的动量不相等C 、a 比b 先到达S 点,它们在S 点的动量相等D 、b 比a 先到达S 点,它们在S 点的动量不相等11、质量为m 的小球距离轻弹簧的上端为h ,小球自由下了一段时间后与轻弹簧接触,它从接触弹簧开始到弹簧被压缩到最短的过程中持续的时间为t ,求小球从接触弹簧到弹簧被压缩最短的过程中弹簧的弹力对小球的冲量。

动量和能量练习题

动量和能量练习题

物理专题——动量和能量一.选择题1.一小型爆炸装置在光滑.坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是:A .总动量守恒B .机械能守恒C .水平方向动量守恒D .竖直方向动量守恒 2(多选).向空中发射一物体,不计空气阻力。

当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则:A .b 的速度方向一定与原速度方向相反B .从炸裂到落地的这段时间里,a 飞行的水平距离一定比b 的大C .a .b 一定同时到达水平地面D .在炸裂过程中,a .b 受到的爆炸力的冲量大小一定相等3(多选).光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是:A .子弹对木块做的功等于()222121v v m -B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能D .子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和4(多选).子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木块后子弹的动能为E 2,动量大小为2p 。

若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为:A .2121p p E E ++ B .1212p p E E -- C .2211p E p E + D .2211p E p E - 5(多选).如图所示,质量分别为m 和2m 的A .B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。

用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。

这时突然撤去F ,关于A .B 和弹簧组成的系统,下列说法中正确的是:A .撤去F 后,系统动量守恒,机械能守恒B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /36(多选).一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示.下列说法正确的是:A .半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B .半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C .半圆槽固定不动时,物体M 在滑动过程中机械能守恒D .半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒7.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m .M 及M 与地面间接触光滑。

专题3.1 动量和能量答案2

专题3.1 动量和能量答案2

动量和能量 第一讲答案训练1:(1)根据动量守恒:v M m mv )(0+= 系统机械能的减少量:2220111222E mv mv Mv mgl μ∆=--= (2)m 、M 相对位移为l ,根据能量守恒得:Q mgl μ=,可解出L训练2:小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. 训练3:(1)由A 到B 过程,根据动能定理:mgR=21m v 2 ∴物体到达B 点时的速率v =gR 2=8.0102⨯⨯=4m/s (2)由A 到C 过程,由动能定理:mgR -μmgs =0 ∴ 物体与水平面间的动摩擦因数μ=R /s =0.8/4=0.2 训练4:(1)根据机械能守恒 E k =mgR(2)根据机械能守恒 ΔE k =ΔE p mv 2=12mgR 小球速度大小 v=gR 速度方向沿圆弧的切线向下,与竖直方向成30°(3)根据牛顿运动定律及机械能守恒,在B 点N B -mg=m v B 2R ,mgR =12mv B 2 解得 N B =3mg 在C 点:N C =mg 训练5: ①小球经过B 点时,重力与支持力的合力提供向心力,由公式可得:Rv m mg F B NB2=- 解得:mg F NB 3= ②小球离开B 点后做平抛运动,在竖直方向有:221gt R H =- 水平方向有:t v S B = 解以上两式得: R R H S )(2-= ③由R R H S )(2-=,根据数学知识知,当R R H =-(即21=H R )时,S 有最大值,其最大值为:H R R S m ===222 训练6:(1)物块沿斜面下滑C 到B 的过程中,在重力、支持力和摩擦力作用下做匀加速运动,设下滑到达斜面底端B 时的速度为v ,则由动能定理可得:21cos 0sin 2h mgh mg mv μθθ-⋅=- 所以v = 代入数据解得:0.6=v m/s (2)设物块运动到圆轨道的最高点A 时的速度为v A ,在A 点受到圆轨道的压力为N 。

动量和能量训练专题(含详细解析过程)

动量和能量训练专题(含详细解析过程)

1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mghB .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mg mgh ∆===︒机械 综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停12 3 4 5t在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r甲 乙D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为 A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v 2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos 60)()2m m gR m m v '+-︒=+, 联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块-v甲B的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零. 26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin30cos30t g t g mg μμ==︒-︒ 29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m /s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022()解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.v【答案】(1;(2)208(12)25v m g Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv m Mv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ② 当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③ 联立①②③解得v =(2)由①②两式解得208(12)25v m l g Mμ=- 33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02 ②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12 mv 2 ③在最高点Q ,由牛顿第二定律得Rmv mg 2= ④ 联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求:(1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x , 由功能关系可得221(2)2(2)2mg x m v μ=解得20168v l x g μ=- 35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能.【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+① 解得v =1.2m/s 由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++ ②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求:(1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =m M m +v 0 ②木块A 的速度:V =2m/s③ (2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱? 已知:返回过程中需克服火星引力做功(1)R W mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r - 解析:物体m 在火星表面附近2mMG mg R =,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m Mv Gm r r = 联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r== 返回舱返回过程克服引力做功(1)R W mgR r=-返回舱返回时至少需要能量k E E W =+ 解得(1)2R E mgR r =- 38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求:(1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小;(2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v -- 解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v MmG m RR = 同理,在轨道Ⅲ上有232()()v M m m G m m rr -∆=-∆由上两式可得31v v = 探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r= 解得212Ra v r = (2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv 解得122v v m m u v -∆=- 78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2)【答案】(1)0.017m ;(2)0.1s解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++. 再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++ 绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B系统动量守恒:0=m v A +3m v B系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =?【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍).【答案】(1)H H 2m v v m m =+,N N 2m v v m m =+;(2) 1.0165m m=' 解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21H H v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+。

动量周末作业

动量周末作业

第7周周末作业:动量和能量计算题练习1.在光滑的水平桌面上有质量分别为M=0.6 kg,m=0.2 kg的两个小球, 中间夹着一个被压缩的具有E p=10.8 J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425 m的竖直放置的固定光滑半圆形轨道,如图所示.g取10 m/s2.求:(1)球m从轨道底端A运动到顶端B时,球对轨道的压力多大?(2)球m从B点飞出后落在水平桌面上的水平距离多大?2、如图所示,带有光滑的半径为R =2.7m的四分之一圆弧轨道的滑块静止在光滑水平面上,轨道末端B点距离水平面的高度为h=5m。

此滑块的质量为M=2kg,一个质量为m=1kg 的小球由静止从A 点释放,(g取10m/s2)求:①当小球从滑块B 上水平飞出时,落地点距离滑块最右端的水平位移。

②若把圆弧轨道的滑块M固定,落地点距离滑块最右端的水平位移又是多少?3.如图所示,一质量m2=0.25的平顶小车,车顶右端放一质量m3=0.2kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.4,小车静止在光滑的水平轨道上。

现有一质量m1=0.05kg的子弹以水平速度v0=123m/s射中小车左端,并留在车中。

子弹与车相互作用时间很短。

若使小物体不从车顶上滑落,求:(1)小车的最小长度应为多少?最后物体与车的共同速度为多少? (2)小木块在小车上滑行的时间。

(g取10m/s2)4.为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。

其中AB与BC轨道以微小圆弧相接,如图所示。

一个小物块以初速度v0=4.0m/s,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。

已知物块与倾斜轨道的动摩擦因数5.0=μ(g取10m/s2,6.037sin0=0,80.037cos0=)求:(1)小物块的抛出点和A点的高度差;(2)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件。

大学物理习题及解答(运动学、动量及能量)

大学物理习题及解答(运动学、动量及能量)

⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。

求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。

1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。

求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。

1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。

(1)求在s .t 02=时质点的法向加速度和切向加速度。

(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。

解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。

(B)质点系总动量的改变与内力无关。

(C)动量是过程量,冲量是状态量。

(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。

2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。

3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。

5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。

7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。

经典课时作业 动量和能量综合训练

经典课时作业  动量和能量综合训练

经典课时作业动量和能量综合训练(含标准答案及解析)时间:45分钟分值:100分一、选择题1.一铅球正在做平抛运动.下列说法正确的是(不计空气阻力)( )A.在连续相等的时间内铅球的动量变化量都相等B.在连续相等的时间内铅球的动能变化量都相等C.在相等的时间内铅球动能增加量一定等于它重力势能的减少量D.重力对铅球做功不影响它水平方向的匀速运动2.质量不同而初动量相同的两个物体,在水平地面上由于摩擦力的作用而停止运动,它们与地面间的动摩擦因数相同,比较它们的滑行时间和滑行距离,则( )A.两个物体滑行的时间一样长B.质量大的物体滑行的时间较长C.两个物体滑行的距离一样长D.质量小的物体滑行的距离较长3.质量为5 kg的A球静止在光滑水平面上,质量为2 kg的B球以10 m/s的速度与A 正碰,则碰后A和B的速度可能的是(设B球初速度方向为正)( )A.v A=2m/s,v B=5m/sB.v A=5m/s,v B=2m/sC.v A=-2m/s,v B=15m/sD.v A=4m/s,v B=04.一质点以一定的初速度飞入一个恒定有界引力场(进入后该质点受到一个恒力),又从该引力场飞出来,从质点进入到离开该有界场,可能的情况有( )A.动量和动能都变化B.动量和动能都不变C.只有动能变化,而动量不变D.只有动量变化,而动能不变5.如图a所示,物块A、B间拴接一个压缩后被锁定的弹簧,整个系统静止放在光滑水平地面上,其中A物块最初与左侧固定的挡板相接触,B物块质量为2 kg.现解除对弹簧的锁定,在A 离开挡板后,B物块的v-t图象如图b所示,则可知( )A.在A离开挡板前,A、B系统动量不守恒,之后守恒B.在A离开挡板前,A、B与弹簧组成的系统机械能守恒,之后不守恒C.弹簧锁定时其弹性势能为9 JD.A的质量为1 kg,在A离开挡板后弹簧的最大弹性势能为3 J6.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B速度相等时,A的速度达到最大D.当A、B速度相等时,弹簧的弹性势能最大7.质量为m=1 kg的物块A从倾角为θ=37°的固定斜面顶端由静止开始下滑到斜面底端,在此过程中重力对物块的冲量为5 N·s,重力做的功为4.5 J.若将该斜面放在光滑水平地面上,仍让物块A从斜面顶端由静止开始下滑,当物块到达斜面底端时(取g=10m/s2,sin37°=0.6,cos37°=0.8)( )A.物块和斜面的总动量为3 kg· m/sB.物块和斜面的总动量为5 kg· m/sC.物块和斜面的总动能为4.5 JD.物块的动能为4.5 J8.如图所示, 该物体从斜面的顶端由静止开始下滑,经过A点时的速度与经过C点时的速度相等,已知AB=BC,则下列说法正确的是( )斜面上除了AB段粗糙外,其余部分均是光滑的,小物体与AB段的动摩擦因数处处相等.今使A.物体在AB段与BC段的加速度大小相等B.物体在AB段与BC段的运动时间相等C.重力在这两段中所做的功相等D.物体在AB段与BC段的动量变化相等9.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b 两块,若质量较大的a块物体的速度方向仍沿原来的方向,则有( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等10.如图所示将一光滑的半圆槽置于光滑水平面上,让一小球自左侧槽口A的正上方从静止开始下落,与圆弧槽相切自A点进入槽内,到达最低点B,再上升到C点后离开半圆槽,则以下结论中不正确的是( )A.小球在半圆槽内从A到B的运动的过程中,只有重力对它做功,所以小球的机械能守恒B.小球在半圆槽内运动的过程中,小球与半圆槽组成的系统的机械能守恒C.小球在半圆槽内运动的过程中,小球与半圆槽的水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动11.同一粗糙水平面上有两个完全相同的滑块并排放置,现分别用方向相同的恒定拉力F1与F2(F1>F2)作用于滑块,使滑块从静止开始运动一段时间后撤去拉力,最终两滑块位移相同,滑块运动的v-t图象如图所示(两图线速度减小阶段平行),则( )A.两拉力的冲量I1>I2B.两拉力的冲量I1<I2C.两拉力做的功W1>W2D.两拉力做的功W1=W212.物体只在力F作用下运动,力F随时间变化的图象如图所示,在t=1 s时刻,物体的速度为零,则下列论述正确的是( )A.0~3 s内,力F所做的功等于零,冲量也等于零B.0~4 s内,力F所做的功等于零,冲量也等于零C.第1 s内和第2 s内的速度方向相同,加速度方向相反D.第3 s内和第4 s内的速度方向相反,加速度方向相同13.(1)下列是一些有关高中物理实验的描述,其中错误的是________.A.在“验证力的平行四边形定则”实验中,拉橡皮筋的细绳要稍长,并且实验时要使弹簧与木板平面平行B.在“用单摆测定重力加速度”实验中,如果摆长测量无误,但测得的g值偏小,其原因可能是将全振动的次数n误计为n-1C.在“验证机械能守恒定律”的实验中,需要用天平测物体(重锤)的质量D.在做“验证动量守恒定律”实验中,确定小球落后的方法是:用尽可能小的圆把所有的小球落点圈在里面,圆心就是小球落点的平均位置(2)下列说法中正确的是________.A.在用落体法“验证机械能守恒定律”的实验中,所用的重锤的质量宜大一些B.做“验证力的平行四边形定则”实验时,两个测力计可以和木板成一定的角度C.做“碰撞中的动量守恒”的实验时,必须让斜槽末端的切线水平D.在“用单摆测定重力加速度”实验中,应该在摆球摆到最高点时开始计时14.如图所示的实验装置,水平桌面上固定一个曲面斜面体C,曲面下端的切平面是水平的,并且曲面是不光滑的.桌上还有质量不等的小滑块A、B,小滑块A、B放在曲面上时放手后均能沿曲面向下滑动且能滑出斜面体C.另外还有实验器材:天平,重锤线,刻度尺,白纸,复写纸.(1)要想比较准确地测出小滑块A从曲面顶端滑到曲面底端(曲斜面体最右端)的过程中,滑块A克服摩擦力所做的功:(重力加速度g为已知)①写出实验中需要直接测量的物理量:(用字母表示,并对字母简要说明)_______________________________________________________________②滑块A克服摩擦力做功W f的表达式:________________________________________________________________(2)应用以上器材和测量仪器,还可以完成的物理实验有:_________________________________________________________________15.2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如下图,运动员将静止于O点的冰壶(视为质点)沿直线OO′推到A点放手,此后冰壶沿AO′滑行,最后停于C点.已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m,AC=L,CO′=r,重力加速度为g.(1)求冰壶在A点的速率;(2)求冰壶从O点到A点的运动过程中受到的冲量大小;(3)若将BO′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C点的冰壶能停于O′点,求A点与B点之间的距离.16.某机械打桩机原理可简化为如图所示,直角固定杆光滑,杆上套有m A=55 kg和m B=80 kg两滑块,两滑块用无弹性的轻绳相连,绳长为5 m,开始在外力作用下将A滑块向右拉到与水平夹角为37°时静止释放,B滑块随即向下运动,并带动A滑块向左运动,当运动到绳与竖直方向夹角为37°时,B滑块(重锤)撞击正下方的桩头C,桩头C的质量m C=200 kg.碰撞时间极短,碰后A滑块由缓冲减速装置让其立即静止,B滑块反弹上升h1=0.05 m,C桩头朝下运动h2=0.2 m静止.取g=10 m/s2.求:(1)滑块B碰前的速度;(2)泥土对桩头C的平均阻力.17.竖直平面内有一半径为R=3.2 m的光滑圆弧轨道,O为轨道的最低点,A点距O点的高度为h1=0.2 m,B点距O点的高度为h2=0.8 m.现从A点释放一质量为M的大球(半径远小于R),且每隔适当的时间从B点释放一质量为m的小球,它们和大球碰撞后都结为一体,已知M=4m,g取10 m/s2.(1)若大球向右运动到O点时,第一个小球与之碰撞,求碰撞后大球的速度;(2)若大球向右运动到O点时,第一个小球与之碰撞,当大球第一次向左运动到O点时,第二个小球恰好与之碰撞,求第一、二两个小球释放的时间差;(3)若大球第一次向右运动到O点时与小球碰撞,以后每当大球向左运动到O点时,就会与一个小球碰撞,求经过多少次碰撞后,大球将越过A点?标准答案及解析: 一、选择题 1.解析:由动量定理可知,铅球在连续相等时间内动量的变化等于重力的冲量mgΔt,因此是相等的,A 正确;由动能定理得动能的变化等于重力做的功,相等时间内位移不等,重力做功不等,因此动能的变化不等,B 错;由于机械能守恒,铅球动能的增量总等于重力势能的减少量,C 正确;重力做功改变物体的动能,由于重力产生的加速度在竖直方向上,因此不影响水平方向的匀速运动,D 正确.答案:ACD 2.解析:由动量定理P=μmgt,由动能定理得22P m=μmgs,即P 2=2μm 2gs,显然P 相同,m 大则时间长、滑行距离长,D 对.答案:D 3.解析:本题考查碰撞,动量守恒定律.此类碰撞问题中对于碰撞速度、质量可能性分析的试题主要从以下三个方面分析:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理.两球在碰撞过程中动量守恒即P A +P B =P A′+P B′,代入数据发现B 选项动量不守恒;由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有:22222222A B A B A B A BP P P P m m m m ''++≥,代入数据发现C 选项机械能增加了,同时也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景;同理发现A 项也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景.经上分析可知只有D 选项正确.答案:D 4.解析:相当于质点受恒力作用一段时间而做类抛体运动,由动量定理可知质点的动量是一定要变化的,B 、C 错;质点的动能是否改变就要看质点速度的大小是否改变,若恒力先做负功后做正功,且总功为零,则动能不变,所以质点的动能可能变,也可能不变,A 、D 正确.质点受到的恒力可以是重力与引力场恒力的合力,也可以仅受引力场恒力,结果都是一样的.答案:AD 5.解析:在A 离开挡板前,由于挡板对A 有作用力,所以,A 、B 系统所受合外力不为零,则系统动量不守恒;A 离开挡板后,系统所受合外力为零,动量守恒,A 选项正确.在A 离开挡板前,挡板对A 的作用力不做功,A 、B 及弹簧组成的系统在整个过程中机械能都守恒,B 选项错误.解除对弹簧的锁定后至A 刚离开挡板的过程中,弹簧的弹性势能释放,全部转化为B 的动能,根据机械能守恒定律,有:E p =201,2B m v 由图象可知,v 0=3m/s,解得:E p =9 J,C 选项正确.分析A 离开挡板后A 、B 的运动过程,并结合图象数据可知,弹簧伸长到最长时A 、B 的共同速度为v 共=2 m/s,根据机械能守恒定律和动量守恒定律,有:m B v 0=(m A +m B )v共,E′p =22011(),22B A B m v m m v -+共联立解得:E′p =3 J,D 选项正确. 答案:ACD 6.解析:本题通过弹簧连接AB 两物体,考查对牛顿运动定律、功能规律的综合运用能力.根据牛顿运动定律,对A 物体,,A F kx a m -=对B 物体,B kxa m=.可见随着弹簧压缩量x 增加,A 的加速度逐渐减小,B 的加速度逐渐增大.AB 物体运动过程利用速度图象表示,如图,很方便地判断出B 、C 、D 项正确,A 项错误.答案:BCD 7.解析:当斜面固定时,物块在斜面上滑动可能受到重力、斜面支持力和滑动摩擦力的作用,下滑到底端的过程中重力的冲量为5 N\5s=mgt,t=0.5 s;重力做的功为4.5 J=mgh,h=0.45 m;斜面长21237hL at sin ==。

动量能量试题及答案

动量能量试题及答案

动量能量试题及答案一、选择题(每题5分,共20分)1. 动量守恒定律适用于:A. 只有重力作用的系统B. 只有弹力作用的系统C. 没有外力作用的系统D. 有外力作用但外力为零的系统答案:C2. 一个物体的动能与其速度的关系是:A. 与速度成正比B. 与速度的平方成正比C. 与速度的立方成正比D. 与速度的四次方成正比答案:B3. 以下哪个选项是正确的能量守恒定律表述?A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以在不同形式之间转化答案:C4. 一个物体的动量与其质量、速度的关系是:A. 动量等于质量与速度的乘积B. 动量等于质量与速度的平方的乘积C. 动量等于质量的平方与速度的乘积D. 动量与质量和速度无关答案:A二、填空题(每题5分,共20分)1. 动量守恒定律的数学表达式为:\( p_{总} = p_{1} + p_{2} + ... + p_{n} \),其中p代表______,n代表______。

答案:动量;物体数量2. 动能的计算公式为:\( E_k = \frac{1}{2}mv^2 \),其中E_k代表______,m代表______,v代表______。

答案:动能;质量;速度3. 能量守恒定律表明,能量在转换过程中______。

答案:总量保持不变4. 动量与动能的关系是:动量是矢量,而动能是______。

答案:标量三、简答题(每题10分,共20分)1. 请简述动量守恒定律的条件。

答案:动量守恒定律的条件是系统不受外力或所受外力之和为零,或者外力远小于内力。

2. 请解释为什么在碰撞过程中动量守恒,而动能不守恒。

答案:在碰撞过程中,动量守恒是因为系统不受外力或外力远小于内力,动量在碰撞前后保持不变。

而动能不守恒是因为碰撞过程中可能存在能量的损失,如转化为内能、热能等,导致动能减少。

四、计算题(每题20分,共40分)1. 一个质量为2kg的物体以10m/s的速度向东运动,与一个质量为3kg的物体以5m/s的速度向西运动发生碰撞。

动量能量计算题附答案

动量能量计算题附答案

动量能量专题练习1、(12分)如图所示光滑水平直轨道上有三个滑块A、B、C质量分别为mA=mC=2m和mB=m,A、B用细绳相连,中间有一压缩的弹簧(弹簧与滑块不栓接),开始时A、B以共同速度V0向右运动,C静止,某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三者的速度恰好相同。

求:(1)B与C碰撞前B的速度(2)弹簧释放的弹性势能多大2、如图所示,粗糙斜面与光滑水平面平滑连接,滑块A质量为m1=1kg,滑块B质量为m2=3kg,二者都可视为质点,B的左端连接一轻质弹簧。

若A在斜面上受到F=2N,方向沿斜面向上的恒力作用时,恰能沿斜面匀速下滑,现撤去F,让A在距斜面底端L=1m处从静止开始滑下。

弹簧始终在弹性限度内。

g=10m/s2。

求:(1)A到达斜面底端时速度v是多大?(2)从滑块A接触弹簧到弹簧第一次获得最大弹性势能的过程中,弹簧对A的冲量I大小和方向? 弹簧的最大弹性势能E Pm是多大?3、如图所示,质量M=5.0kg的平板车A原来静止于光滑水平面上,A与竖直固定挡板的距离d=0.050m。

质量m=3.0kg的滑块B以大小v0=1.64m/s的初速水平向右滑上平板车。

一段时间后,A车与挡板发生碰撞。

设车碰挡板前后的速度大小不变但方向相反,且碰撞的时间极短。

已知A、B之间的动摩擦因数μ=0.15,A的车板足够长,重力加速度g=10m/s2。

求:(1)A车第一次碰到挡板前的瞬间,车A和滑块B的速度vA和vB各是多大?(2)当A车与挡板所有可能的碰撞都发生后,车A和滑块B稳定后的速度是多少?4、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧是一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。

车右端固定一个尺寸可以忽略,处于锁定状态的压缩轻弹簧,一质量m=1.0kg的小物体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数。

动量能量试题及答案

动量能量试题及答案

动量能量试题及答案一、选择题1. 一个质量为 \( m \) 的物体以速度 \( v \) 运动,其动量大小为:A. \( mv \)B. \( \frac{m}{v} \)C. \( \frac{v}{m} \)D. \( \frac{1}{mv} \)答案:A2. 根据能量守恒定律,如果一个系统没有外力作用,那么系统的总能量:A. 保持不变B. 增加C. 减少D. 先增加后减少答案:A3. 一个物体从静止开始自由下落,其势能会:A. 增加B. 减少C. 不变D. 先减少后增加答案:B二、填空题4. 动量守恒定律表明,在没有外力作用的系统中,系统总动量______。

答案:保持不变5. 一个物体的动能与其速度的平方成正比,公式为 \( E_k =\frac{1}{2}mv^2 \),其中 \( E_k \) 表示______。

答案:动能三、简答题6. 解释为什么在碰撞过程中,如果系统没有外力作用,动量守恒。

答案:在没有外力作用的情况下,根据牛顿第三定律,作用力和反作用力大小相等、方向相反,因此它们对系统动量的改变相互抵消,导致系统总动量保持不变。

四、计算题7. 一个质量为 2kg 的物体以 3m/s 的速度运动,求其动量大小。

答案:根据动量公式 \( p = mv \),动量大小为 \( 2 \times 3= 6 \) kg·m/s。

8. 一个物体从 10m 高处自由下落,忽略空气阻力,求其落地时的动能。

答案:首先计算势能 \( E_p = mgh \),其中 \( g \) 为重力加速度,取 \( 9.8 \) m/s²。

假设物体质量为 \( m \),落地时的动能 \( E_k \) 等于势能,即 \( E_k = mgh = 10 \times 9.8 \times m \)。

若物体质量为 1kg,则动能为 \( 98 \) J。

五、论述题9. 讨论在实际生活中,如何应用动量守恒和能量守恒定律来解决实际问题。

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习1. (多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示。

爆炸之后乙由静止自由下落,丙沿原路径回到原射出点。

若忽略空气阻力,则下列说法正确的是( )A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 232. (2023ꞏ湖南永州市模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C(可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,忽略空气阻力,则下列说法不正确的是( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 03. (多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点。

一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点。

已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则( )A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR 10C .全过程小车相对地面的位移大小为R +L5 D .μ、L 、R 三者之间的关系为R =μL4. (多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F 。

高考物理复习动量与能量练习有答案

高考物理复习动量与能量练习有答案

动量和能量1.如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左边拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是A.第一次碰撞后的瞬间,两球的速度大小相等B.第一次碰撞后的瞬间,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的平衡位置2.为了研究鱼所受水的阻力与其形状的关系,小明同学用石蜡做成两条质量均为m、形状不同的“A鱼”和“B鱼”,如图所示。

在高出水面H 处分别静止释放“A鱼”和“B鱼”,“A鱼”竖直下滑h A后速度减为零,“B鱼” 竖直下滑h B后速度减为零。

“鱼”在水中运动时,除受重力外还受浮力和水的阻力,已知“鱼”在水中所受浮力是其重力的10/9倍,重力加速度为g,“鱼”运动的位移远大于“鱼”的长度。

假设“鱼”运动时所受水的阻力恒定,空气阻力不计。

求:(1)“A鱼”入水瞬间的速度V A1;(2)“A鱼”在水中运动时所受阻力f A;(3)“A鱼”与“B鱼” 在水中运动时所受阻力之比f A:f B3如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高度也为h,坡道底端与台面相切。

小球A从坡道顶端由静止开始滑下,到达水平光滑的台面与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半,两球均可视为质点,忽略空气阻力,重力加速度为g。

求(1)小球A刚滑至水平台面的速度v A;(2)A、B两球的质量之比m A:m B。

【答案】:(1)错误!未找到引用源。

(2)1:3【解析】:解:(1)小球从坡道顶端滑至水平台面的过程中,由机械能守恒定律得m A gh = 错误!未找到引用源。

m A v A2解得:v A = 错误!未找到引用源。

(2)设两球碰撞后共同的速度为v,由动量守恒定律得m A v A=(m A + m B)v粘在一起的两球飞出台面后做平抛运动竖直方向:h = 错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量练习题
1,如图所示,光滑的水平面上有质量为M的滑块,其中AB部分为光滑的1/4圆周,半径为r,BC水平但不光滑,长为l。

一可视为质点的质量为m的物块,从A点由静止释放,最后滑到C点静止,求物块与BC的滑动摩擦系数。

2,如图所示,在光滑的水平面上,有一质量为m1 =20千克的小车,通过几乎不可伸长的轻绳与质量m2 =25千克的足够长的拖车连接。

质量为m3 =15千克的物体在拖车的长平板上,与平板间的摩擦系数μ=0.2,开始时,物体和拖车静止,绳未拉紧,小车以3米/秒的速度向前运动。

求:(a)三者以同一速度前进时速度大小。

(b)到三者速度相同时,物体在平板车上移动距离。

3,在光滑的水平面上,有一块质量为M的长条木板,以速度v0向右作匀速直线运动。

现将质量为m的小铁块无初速地轻放在木板的前端,设小铁块与木板间摩擦系数为μ,求(a)小铁块与木板相对静止时,距木板前端多远?(b)全过程有多少机械能转化为系统的内能?(c)从小铁块开始放落到相对木板静止的这段时间内木板通过的距离是多少?
4,如图在光滑的水平台上静止着一块长50厘米,质量为1千克的木板,板的左端静止着一块质量为1千克的小铜块(可视为质点),一颗质量为10克的子弹以200米/秒的速度射向铜块,碰后以100米/秒速度弹回。

问铜块和木板间的摩擦系数至少是多少时铜块才不会从板的右端滑落,g取10米/秒2
5,如图所示,球A无初速地沿光滑圆弧滑下至最低点C后,又沿水平轨道前进至D与质量、大小完全相同的球B发生动能没有损失的碰撞。

B球用长L的细线悬于O点,恰与水平地面切于D点。

A球与水平地面间摩擦系数μ=0.1,已知球A初始高度h=2米,CD=1米。

问:
(1)若悬线L=2米,A与B能碰几次?最后A球停在何处?
(2)若球B能绕悬点O在竖直平面内旋转,L满足什么条件时,A、B将只能
碰两次?A球最终停于何处?
6,如图所示,质量为M边长为h的方木块静放在足够大的水平桌上,方木块的上表面光滑,在方木块左上端边缘静放一质量为m’的小铁块(可视为质点),今有质量为m的子弹以水平速度v0飞来击中木块并留在木块内,子弹击中木块的时间极短,则:
(a)当桌面光滑时,铁块从离开木块起至到达桌面的过程,方木块产生的位
移为_________。

(b)若桌面与方木块的下表面的摩擦系数为μ,则能移动的最大距离为
________。

7,人和冰车的总质量为M,人坐在静止于光滑水平冰面的冰车上,以相对地的速率v将一质量为m的木球沿冰面推向正前方的竖直固定挡板。

设球与挡板碰撞时无机械能损失,碰撞后球以速率v反弹回来。

人接住球后,再以同样的相对于地的速率v将木球沿冰面推向正前方的挡板。

已知M:m=31:2,求:
(1)人第二次推出球后,冰车和人的速度大小。

(2)人推球多少次后不能再接到球?
8,如图所示,一个质量为m的玩具蛙,蹲在质量为M的小车的细杆上,小车放在光滑的水平桌面上,若车长为l,细杆高为h,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v跳出时,才能落到桌面上?(要求写出必要文字,方程式及结果)
9,如图所示,质量为m的子弹以速度v从正下方向上击穿一个质量为M的木球,击穿后木球上升高度为H,求击穿木球后子弹能上升多高?
10.一个质量M=0.8千克的物体静止在光滑水平面上,并被固定.有一颗质量m=0.2kg的子弹以V1=200米/秒的速度水平射向该物块,穿出后的速度V2=100米/秒.如果物体再光滑水平面上不固定,仍是静止(但可自由滑动),子弹仍以V1水平射向该物体,那么物体与子弹的最终速度各是多大?(设子弹在物体中相对运动时所受阻力大小恒定)
11.一块质量为M的长木板静止在光滑水平桌面上,一块质量为m的小滑块以水平速度V0从长木板的端滑上木板,从另一端滑下木板,滑下木板时的速度为原来的1/3.若把木板固定在水平桌面上,其它条件不变,求滑块离开木板时的速度V.
12.A、B两物体质量之比1.5∶4,用一根处于自由状态的轻质弹簧连接后静止在光滑水平面
上,如图所示,一颗质量为0.05千克=m B/3
水平射入A中未穿出(时间可忽略),此后A(含C)、B
再次恢复到自由状态时,A、B的速度。

答案:
1,r /l2,(a)1米/秒,(b)1/3米
3,(a)Mv02/2μg(M+m) (b)Mmv02/2(M+m) (c)M(2M+m)v02/2μg(M+
m)2
4,0.45
5,(1)20次A球停在C处
(2)L≤0.76米,A球停于离D9.5米处
6,(mv02h g/)/(M+m),(mv0)2/(M+m)2×2ug
7,每次推球时,对冰车、人和木球组成的系统,动量守恒,设人和冰车速度方向为正方向,每次推球后人和冰车的速度分别为v1、v2…,则
第一次推球后:Mv1-mv=0
v1=v
M
m
第二次推球后:Mv1+mv=Mv2-mv
v2=3mv/M=6v/31
以此类推,第N次推球后,人和冰车的速度v N=(2N-1)mv/M
当v N>v时,不再能接到球,即
2N-1>M/m=31/2 N>8
4
1
∴人推球9次后不能再接到球
8,
Ml M m g h
22 (),
+
9,(mv-M2gH)2/2gm2。

相关文档
最新文档