数字信号处理讲义

合集下载

数字信号处理讲义

数字信号处理讲义

在数值上它等于信号的采样值,即
x(n)=xa(nT),
自动化系
-∞<n<∞ (1.2.2)
信号随n的变化规律表示
自动化系
1.2.1 常用的典型序列
1. 单位采样序列δ(n)
1, n 0 ( n) (1.2.3) 0, n 0 单位采样序列也可以称为单位脉冲序列,特点是 仅在n=0时取值为1,其它均为零。它类似于模拟信号 和系统中的单位冲激函数δ(t),但不同的是δ(t)在t=0时, 取值无穷大,t≠0时取值为零,对时间t的积分为1。单 位采样序列和单位冲激信号如图1.2.1所示。
fs
(1.2.11)
自动化系
6. 复指数序列
x(n) e ( j0 ) n
式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式:
x ( n ) e j 0 n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
自动化系
1.3.2 时不变系统
如果系统对输入信号的运算关系T[·]在整个运 算过程中不随时间变化,或者说系统对于输入信号的 响应与信号加于系统的时间无关,则这种系统称为时 不变系统,用公式表示如下: y(n) = T[x(n)] y(n-n0) = T[x(n-n0)] (1.3.5)
自动化系
例1.3.2
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。具体正弦序列有以下三种
情况:
(1) 当2π/ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。

《数字信号处理》课件

《数字信号处理》课件
特点
数字信号处理具有精度高、稳定性好、灵活性大、易于实现和可重复性好等优 点。它克服了模拟信号处理系统中的一些限制,如噪声、漂移和温度变化等。
数字信号处理的重要性
数字信号处理是现代通信、雷达、声 呐、语音、图像、控制、生物医学工 程等领域中不可或缺的关键技术之一 。
随着数字技术的不断发展,数字信号 处理的应用范围越来越广泛,已经成 为现代信息处理技术的重要支柱之一 。
04 数字信号变换技术
CHAPTER
离散余弦变换
总结词
离散余弦变换(DCT)是一种将离散信号变换到余弦函数基 的线性变换。
详细描述
DCT被广泛应用于图像和视频压缩标准,如JPEG和MPEG, 因为它能够有效地去除信号中的冗余,从而减小数据量。 DCT通过将信号分解为一系列余弦函数的和来工作,这些余 弦函数具有不同的大小和频率。
雷达信号处理
雷达目标检测
利用数字信号处理技术对雷达回 波数据进行处理和分析,实现雷 达目标检测和跟踪。
雷达测距和测速
通过数字信号处理技术,对雷达 回波数据进行处理和分析,实现 雷达测距和测速。
雷达干扰抑制
利用数字信号处理技术对雷达接 收到的干扰信号进行抑制和滤除 ,提高雷达的抗干扰能力。
谢谢
THANKS
《数字信号处理经典》ppt课 件
目录
CONTENTS
• 数字信号处理概述 • 数字信号处理基础知识 • 数字滤波器设计 • 数字信号变换技术 • 数字信号处理的应用实例
01 数字信号处理概述
CHAPTER
定义与特点
定义
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及信号的获 取、表示、变换、分析和综合的理论和技术。它以数字计算为基础,利用数字 计算机或其他数字硬件来实现信号处理的方法。

数字信号处理_第一章

数字信号处理_第一章
t
四.冲激响应
1.定义 系统在单位冲激信号 (t ) 作用下产生的零状态响应, 称为单位冲激响应,简称冲激响应,一般用h(t)表示。
(t )
H
h(t )
说明:
在时域,对于不同系统,零状态情况下加同样的
h(t ) 不同,说明其系统特性 激励 (t ) 看响应 h(t ) ,
不同,冲激响应可以衡量系统的特性。
1.2 时域离散信号

离散时间信号(序列)只在离散时刻给出函数 值,是时间上不连续的序列。
实际中遇到的信号一般是模拟信号,对它进行 等间隔采样便可以得到时域离散信号。假设模 拟信号为xa (t),以采样间隔T对它进行等间隔 采样,得到:

x(n) xa (t ) t nT =xa (nT)
注意:n为整数
解:设yd (n)是系统对输入xd (n) x(n nd )的输出,则 yd (n) nxd (n) nx(n nd ) 而y (n nd ) (n nd ) x(n nd ) 即yd (n) y (n nd ) 故系统是时变系统。
三、LTI系统输入与输出之间的关系
五、卷积(Convolution)
设有两个 函数 f1 (t ) f 2 (t ) ,积分
f (t )


f1 ( ) f 2 (t ) d
称为 f1 (t ) f2 (t ) 的卷积积分,简称卷积,记为
f (t ) f1 (t ) f 2 (t )
主要利用卷积来求解系统的零状态响应。
N 5
非周期信号

N 80
二、序列的运算
1. 加法和乘法 序列之间的加法和乘法,是指同一时 刻的序列值逐项对应相加和相乘。

数字信号处理》讲义

数字信号处理》讲义
(Asymmetrical Digital Subscriber Loop, 非对 称数字用户环线)
可编辑ppt
21
DSP的典型应用十—— ADSL的DMT调制器框图
可编辑ppt
22
DSP的典型应用十一—— 网络安全摄像机
可编辑ppt
23
DSP的典型应用十二—— 网络音频系统
可编辑ppt
24
DSP的典型应用十三—— 医院监视系统
可编辑ppt
15
DSP的典型应用四—— 生物指纹系统
可编辑ppt
16
DSP的典型应用五—— Digital Speaker
可编辑ppt
17
DSP的典型应用六—— 汽车多媒体系统
可编辑ppt
18
DSP的典型应用七——数字马达
可编辑ppt
19
DSP的典型应用八——MP3
可编辑ppt
20
DSP的典型应用九—— ADSL网络接入
可编辑ppt
返回10
数字信号处理系统的典型框图
可编辑ppt
返回11
数字信号处理的优点
• 精度高 • 体积小 • 可靠性好(重复性好) • 耗电量少 • 成本低
可编辑ppt
返回12
DSP的典型应用一——通信手机
可编辑ppt
13
DSP的典型应用二——数字无线电
可编辑ppt
14
DSP的典型应用三——雷达
8. vinay K.Ingle, John G.Proakis, 数 字 信 号处理及MATLAB实现,陈怀琛等译,电子工业 出版社,1998.9
Байду номын сангаас
可编辑ppt
31
• 主要内容:

数字信号处理基础pptDSP第01章

数字信号处理基础pptDSP第01章

例1-10 h(n)= anu(n) 该系统是因果系统,当0< |a| < 1时系统稳定
§1.4 N阶线性常系数差分方程
无限脉冲响应系统(IIR, Infinite Impulse Response)
M
N
y(n) bm x(n m) ak y(n k),ak、bm是常数
m0
k 1
ak有非零值
n的有效
有效
n的有效
区间范围 数据长度 区间范围
有效 数据长度
x(n) [0, M1]
M
h(n) [0, N1]
N
y(n) [0, MN2] MN1
[nxl, nxu]
[nhl, nhu]
[nxl nhl, nxu nhu]
nxunxl1
nhunhl1
nxu nhu nxlnhl1
x(n)={1, 2, 3},0 n 2, M = 3 h(n)={1, 2, 2, 1},0 n 3, N = 4 y(n)={1, 4, 9, 11, 8, 3},0 n 5,M N 1 = ulse Response)
M
y(n) bm x(n m)
m0
差分方程的求解方法 ➢时域方法
例1-8 T[ x1(n)] nx1(n) x1(n 1) 3 T[ x2 (n)] nx2 (n) x2 (n 1) 3 T[ax1(n) bx2 (n)] n[ax1(n) bx2 (n)] ax1(n 1) bx2 (n 1) 3
≠ aT[ x1(n)] bT[ x2 (n)] n[ax1(n) bx2(n)] ax1(n 1) bx2(n 1) 3(a b)
T[ax1(n) bx2 (n)] aT[ x1(n)] bT[ x2(n)]

东南大学《数字信号处理》内部教学课件讲义

东南大学《数字信号处理》内部教学课件讲义

数 字 信 号 处 理绪 论一、从模拟到数字•1、信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。

•2、连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。

•3、模拟信号是连续信号的特例。

时间和幅度均连续。

•4、离散信号:时间上不连续,幅度连续。

•5、数字信号:幅度量化,时间和幅度均不连续。

A / D 变换器通用或专用计算机采样保持器D/ A变换器模拟低通滤波器模拟信号数字信号模拟信号数字信号处理系统连续时间信号连续时间信号模拟信号的数字化数字信号数码量化电平模拟信号采样保持信号量化电平数码量化电平数字信号D/A输出信号模拟信号数字信号转化成模拟信号D/A输出模拟滤波输出二、数字信号处理的主要优点数字信号处理采用数字系统完成信号处理的任务,它具有数字系统的一些共同优点,例如抗干扰、可靠性强,便于大规模集成等。

除此而外,与传统的模拟信号处理方法相比较,它还具有以下一些明显的优点:1、精度高在模拟系统的电路中,元器件精度要达到10-3以上已经不容易了,而数字系统17位字长可以达到10-5 的精度,这是很平常的。

例如,基于离散傅里叶变换的数字式频谱分析仪,其幅值精度和频率分辨率均远远高于模拟频谱分析仪。

2、灵活性强数字信号处理采用了专用或通用的数字系统,其性能取决于运算程序和乘法器的各系数,这些均存储在数字系统中,只要改变运算程序或系数,即可改变系统的特性参数,比改变模拟系统方便得多。

 3、可以实现模拟系统很难达到的指标或特性例如:有限长单位脉冲响应数字滤波器可以实现严格的线性相位;在数字信号处理中可以将信号存储起来,用延迟的方法实现非因果系统,从而提高了系统的性能指标;数据压缩方法可以大大地减少信息传输中的信道容量。

 4、可以实现多维信号处理利用庞大的存储单元,可以存储二维的图像信号或多维的阵列信号,实现二维或多维的滤波及谱分析等。

 5、缺点(1)增加了系统的复杂性。

第1章 数字信号处理基础讲解

第1章 数字信号处理基础讲解

1.3.2 FIR 滤波器的优点
1 可以在幅度特性随意设计的同时,保证精确、严格的 线性相位;
2 由于FIR滤波器的单位脉冲响应 h(n)是有限长序列,因 此FIR滤波器没有不稳定的问题;
3 由于FIR滤波器一般为非递归结构,因此在有限精度运 算下, 不会出现 递归型结构中的极限震荡等 不稳定现 象,误差较小;
Processing Systems 》,电子工业出版社
1 数字信号处理基础
1.1 引言
傅里叶变换(FT)是一种将信号从时域变换到频域的变换 形式。它在声学、电信、电力系统、信号处理等领域有广泛的 应用。希望在计算机上实现信号的频谱分析或其它工作,而计 算机要求信号在时域和频域都是离散的,且都是有限长的。傅 里叶变换(FT)仅能处理连续信号,DFT就是应这种需要而诞 生的。它是傅里叶变换在离散域的表示形式。DFT的运算量是 非常大的。在1965年首次提出快速傅里叶变换算法FFT之前, 其应用领域一直难以拓展,是FFT的提出使DFT的实现变得接近 实时,DFT的应用领域也得以迅速拓展。除了一些速度要求非 常高的场合之外,FFT算法基本上可以满足工业应用的要求。 由于数字信号处理的其它运算都可以由DFT来实现,因此FFT算 法是数字信号处理的重要基石。
1.3 FIR 滤波器 1.3.1 基本原理
FIR滤波器的差分方程为:
N ?1
y(n) ? ? h(n)x(n ? k ) k?0
式中,x(n)输入序列,y(n)为输出序列,h(n) 为滤波器系数,N是滤波器的阶数。对此式进行Z变换, 整理后可得FIR滤波器的传递函数:
? H ( z ) ?
Y (z)
Xi h0
hN-1
D
D
…...

数字信号处理讲义--第4章z变换

数字信号处理讲义--第4章z变换

数字信号处理讲义--第4章z变换第4章 z 变换[教学⽬的]1.了解Z 变换的概念,能求常⽤函数的Z 变换,能确定Z 变换的收敛域。

2.掌握各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换。

[教学重点与难点] 重点:1.Z 变换的概念,常⽤函数的Z 变换求解,Z 变换的收敛域; 2.各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换;难点:本章主要内容基本在信号与系统中学过,基本⽆难点,但如学⽣基础较差,还是要从以上三个重点内容去复习。

8.了解离散时间随机信号的概念。

[教学重点与难点] 重点:1.掌握线性时不变系统的概念与性质; 2.离散时间信号与系统的频域表⽰;难点:离散信号系统的性质如线性性,时不变性,因果性,稳定性的判定是本章的⼀个难点。

4.1 Z 变换(1) Z 变换的定义⼀个离散序列x (n )的Z 变换定义为式中,z 是⼀个复变量,它所在的复平⾯称为Z 平⾯。

我们常⽤Z [x (n )]表⽰对序列x (n )进⾏Z 变换,也即这种变换也称为双边Z 变换,与此相应的单边Z 变换的定义如下:∑∞-∞=-=n nz n x z X )()()()]([z X n x Z =∑∞=-=0)()(n nz n x z X这种单边Z 变换的求和限是从零到⽆穷,因此对于因果序列,⽤两种Z 变换定义计算出的结果是⼀样的。

单边Z 变换只有在少数⼏种情况下与双边Z 变换有所区别。

⽐如,需要考虑序列的起始条件,其他特性则都和双边Z 变换相同。

本书中如不另外说明,均⽤双边Z变换对信号进⾏分析和变换。

(2)Z 变换与傅⽴叶变换的关系:单位圆上的Z 变换是和模拟信号的频谱相联系的,因⽽常称单位圆上序列的Z 变换为序列的傅⾥叶变换,也称为数字序列的频谱。

数字频谱是其被采样的连续信号频谱周期延拓后再对采样频率的归⼀化。

单位圆上序列的Z 变换为序列的傅⾥叶变换,根据式(1-54)Z 变换的定义,⽤ej ω代替z ,从⽽就可以得到序列傅⾥叶变换的定义为可得其反变换:(3)Z 变换存在的条件: 正变换与反变换:存在的⼀个充分条件是:∑∞-∞==Ω=??-=Ω==k a Taj e z T k j X T j X e X z X j πωωωω21)(?)()(/nj n j en x e X n x F ωω-∞-∞=∑==)()()]([ωππωππωωd e eX dz z z X j e X F n x n j j n z j ??--=-===)(21)(21)]([)(11||1∑∞-∞=-==n nj j en x e X n x F ωω)()()]([ωπωωππωd e e X n x e X F n j j j )(21)()]([1?--==即:绝对可加性是傅⾥叶变换表⽰存在的⼀个充分条件。

数字信号处理讲义 第8章 离散傅里叶变换

数字信号处理讲义  第8章 离散傅里叶变换

数字信号处理讲义第8章离散傅里叶变换数字信号处理讲义--第8章离散傅里叶变换第8章离散傅里叶变换教学目的1.理解离散傅里叶级数、傅里叶变换的概念和性质,掌握循环卷积的计算方法;2.掌控用线性傅里叶转换同时实现线性卷积的条件和方法。

教学重点与难点重点:1.理解离散傅里叶级数、傅里叶变换的概念和性质,掌握循环卷积的计算方法;2.掌控用线性傅里叶转换同时实现线性卷积的条件和方法。

难点:1.循环卷积的计算方法。

2.线性傅里叶转换同时实现线性卷积的条件与方法。

8.0开场白在前面讨论了序列的傅里叶变换和z变换。

由于数字计算机只能计算有限长离散序列,因此有限长序列在数字信号处理中就显得很重要,当然可以用z变换和傅里叶变换来研究它,但是,这两种变换无法直接利用计算机进行数值计算。

针对序列“有限长”这一特点,可以导出一种更有用的变换:离散傅里叶变换(discretefouriertransform,简写为dft)。

它本身也是有限长序列。

作为有限长序列的一种傅里叶表示法,离散傅里叶变换除了在理论上相当重要之外,而且由于存在有效的快速算法――快速离散傅里叶变换,因而在各种数字信号处理的算法中起着核心作用。

有限长序列的离散傅里叶变换(dft)和周期序列的离散傅里叶级数(dfs)本质上是一样的。

为了讨论离散傅里叶级数与离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式,见图8-1所示。

|x(j?)|x(t)1(a)oo?t-?-x(t)|x(jk??)|(b)otok?t?|x(e?)|x(nt)1/t(c)ntoo-tn点|x(e??)|x(n)aa00pppjjkspon点n(d)-?on点?s??图8-1各种形式的傅里叶变换一个非周期实已连续时间信号xa(t)的傅里叶转换,即为频谱xa(jω)就是一个已连续的非周期函数,这一转换对的示意图见到图8-1(a)。

该转换关系与第1章“已连续时间信号的取样”中所牵涉至的非周期已连续时间信号xa(t)的情况相同。

《数字信号处理基础》课件

《数字信号处理基础》课件

信号压缩等。
Z变换
Z变换的定义
Z变换是一种将离散时间信号转换为复数域信号的方法,通过将离 散时间信号转换为复数域中的函数,可以更好地分析信号的特性。
Z变换的性质
Z变换具有线性、时移、频域平移、复共轭等性质,这些性质在信 号处理中有着广泛的应用。
Z变换的应用
Z变换在信号处理中有着广泛的应用,如离散控制系统分析、数字滤 波器设计等。
自适应滤波器应用场景
广泛应用于噪声消除、回声消除、信 号预测等领域。
05 数字信号处理应用
音频处理
音频压缩
通过降低音频数据的冗余度,实 现音频文件的压缩,便于存储和
传输。
音频增强
利用数字信号处理技术,改善音频 质量,如降低噪音、增强语音等。
音频分析
对音频信号进行特征提取和分类, 用于语音识别、音乐信息检索等领 域。
IIR滤波器应用场景
广泛应用于语音处理、图像处理等领 域。
FIR滤波器设计
FIR滤波器定义
FIR滤波器特点
FIR滤波器,即有限冲激响应滤波器,是一 种离散时间滤波器,其冲激响应有限长。
FIR滤波器具有线性相位、设计灵活、计算 量大等特性。
FIR滤波器设计方法
FIR滤波器应用场景
通过窗函数法、频率采样法等进行设计, 常用的设计方法有汉明窗法、凯泽窗法等 。
课程目标
掌握数字信号处理的基本概念、原理和方法。
学会使用数字信号处理软件进行信号处理和分析 。
了解数字信号处理在通信、图像处理、音频处理 等领域的应用。
02 基础知识
信号与系统
信号定义与分类
信号是信息传输的载体,可以是离散 的或连续的,也可以是时间的函数。 信号分类包括周期信号、非周期信号 、确定信号、随机信号等。

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。

2. 掌握典型离散信号的Matlab 产生和显示。

二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。

数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。

三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb nx n K e+=,并给出该复指数序列的实部、虚部、幅值和相位的图形。

(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。

2. 序列信号的实现方法。

3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。

实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。

2. 用MATLAB 实现离散信号的各种运算。

数字信号处理讲义--绪论

数字信号处理讲义--绪论

第1章绪论[教学目的]1.介绍数字信号课程的应用、历史、发展趋势2.复习信号与系统中的相关知识点[教学重点与难点]重点:前沿领域的介绍。

难点:概述性的介绍和知识的回顾,无难点。

一、本课程简介数字信号处理(DSP )是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。

数字信号处理在理论上的发展推动了数字信号处理应用的发展。

反过来,数字信号处理的应用又促进了数字信号处理理论的提高。

而数字信号处理的实现则是理论和应用之间的桥梁。

数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

数字信号处理(DSP)是一门正在生气勃勃迅速发展的学科。

随着超大规模集成电路(VLSI)的出现和迅猛发展,DSP在理论和应用方面不断地发展和完善,在越来越多的应用领域中迅速取代传统的模拟信号处理方法,并且还开辟出许多新的应用领域。

基于高速数字计算机和超大规模数字集成电路的新算法、新实现技术、高速器件、多维处理和新的应用成为DSP学科发展方向和研究热点。

由于DSP应用非常广泛(如,生物医学工程,声学,雷达,地震,通信等),各个领域都需要大量高素质的DSP研究开发人才,所以数字信号处理课程得到学术界和大专院校的高度重视,并达到高度发展和逐步完善的水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档