2019新课标人教版六年级数学下册第6周导学案
2019新课标人教版小学六年级数学下册全册导学案教学案WORD版语文
新课标人教版小学六年级数学下册全册导学案
教学案WORD版
第一单元教学计划
一、学习目标:
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也
不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、教学重点:
能认识负数,正确的读、写正数和负数,知道0既不是正数也不是负数。
三、教学难点:
用负数表示一些日常生活中的实际问题,能比较正数、0和负数之间的大小。
四、教具、学具准备:
温度计、工资折、多媒体。
五、教材分析:
本单元内容是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认
识负数,进一步丰富学生对数概念的认识,有利于中小学
数学的衔接,为第三学段进一步理
解有理数的意义和运算打下良好的基础。
六、本单元教材编排特点:
1、选取学生熟悉的生活素材,加深对负数意义的理解。
2、初步建立数轴的模型,渗透数形结合的思想。
七、本单元教学措施:
1、通过丰富多彩的生活情境,加深学生对负数的认识。
知道负数是生活中表示两种相反意
义的量的需要。
感受数学在实际生活中的广泛应用。
2、把握好教学要求。
只要求学生能辨认正负数,能借助数轴比较负数的大小。
八、本单元课时安排:2课时。
案, , 免费, 教学, 数学。
人教版六年级下册数学第6课时 图形与位置(导学案)
第6课时图形与位置市实验一小陈思思课时安排1课时教学环节导案学案达标检测一、创设情境,引入复习。
(5分钟)师:我们每位同学坐在教室的不同位置,你能想办法准确说出你的位置,让别人快速地找到你吗?小组交流后指名学生回答。
师:小学阶段我们学过哪几种确定物体位置的方法?(确定物体位置可以用数对表示,也可以用方向和距离表示。
)师:这节课我们将复习用数对、方向和距离确定物体的位置。
学生思考教师提出的问题,准备进入复习。
1.下面是游乐场的平面图。
(1)海洋世界用数对(1,4)表示,在图上用数对表示溜冰城和骑马场的位置。
(2)在图上标出下面场所的位置。
射击场(3,2)游戏厅(6,3)(3)某次,李辉的活动路线如下:(1,4)→(3,2)→(6,5)→(9,3)说一说,他先后去了哪些地方?答案:他先后去了海洋世界、射击场、溜冰城、骑马场。
2.填一填。
二、师生互动,整理复习。
(22分钟)1.复习位置的表示方法。
(1)课件出示教材第94页小明家所在街区的平面图。
(2)提问:从平面图中,你知道了哪些信息?比例尺1∶2000表示什么意思?指名学生回答。
(3)如果以学校为中心,你用什么方法确定其他地方的位置?试着在方格纸上画一画。
1.(1)学生观察平面图,了解图中的信息。
(2)学生交流汇报已知信息及图中比例尺的意义。
(3)学生在方格纸上确定其他地方的位置,立完成后小组交流。
4)学生汇报确定位置的方法,并独立画出行走路线并描述,然后小组交流。
2.学生交流汇报。
学生独立思考后小组交流。
(教师巡视,及时指导)(4)展示学生作品,集体汇报。
①用数对表示,以学校为中心,学校的位置用(0,0)表示。
②如果学校的位置用(1,1)表示,你知道是以哪点为中心吗?此时,其他地方用数对表示的结果和前面一样吗?③用方向和距离表示位置。
教师结合生的汇报情况,引导学生明确:用方向和距离表示位置时,首先要确定观测点,量出相应的角度;其次要量出图上距离,根据比例计算出实际距离。
六年级下册数学导学案第六单元统计人教新课标
六年级下册数学导学案第六单元统计人教新课标统计教学设计表学科:数学年级:六年级册次:下学校:教员:课题统计课型温习课方案学时 1教学内容系统温习统计的相关知识,进一步掌握统计的知识,开展统计观念。
教学目的1.会搜集、整理和剖析数据,明白统计表和统计图在描画数据方面的特点及作用,能依据相关数据的特点,恰外地选择统计图,能用自己的言语描画统计表或统计图的特点。
2.了解平均数的意义,会求平均数。
3.经过温习,构成统计观念和依据数据停止剖析与处置效果的看法。
重难点重点:会搜集、整理和剖析数据;能依据实践要求求平均数和设计复杂的统计图或统计表;掌握绘制统计图或统计表的方法。
难点:结合统计图或统计表停止剖析、预测。
化解措施引导温习,稳固运用教学预备教具预备:PPT课件教学进程典例解析一、说话导入。
1.回想常用的统计图有哪些。
2.说话:我们班要和希望小学六(2)班树立手拉手班级,怎样向他们引见我们班的一些状况呢?这就需求我们对我们班的总人数、男生人数、女生人数及喜欢各种运动、喜欢各种书籍的人数等数据停止搜集、剖析、整理,以统计表或统计图的方式展现给六(2)班同窗。
这就用到了我们学过的统计的知识。
3.导入:明天我们就来温习统计知识中的统计表、统计图和统计量等相关知识。
二、回忆与整理。
1.温习统计表的知识。
〔1〕我们学过的统计表有哪几类?(单式统计表、复式统计表)〔2〕制造统计表要留意的事项有哪些?先生回想旧知,讨论后汇报:依据原始数据和统计要求确定分类的项目,设计统计表。
统计表要有称号。
表中一切数据都应标明计量单位。
标明制表时间。
2.温习统计图的知识。
1.某班有50人,期末数学考试有1人缺考,其他同窗的平均效果是87.5分,后来缺考的同窗补考后班级的平均效果提高到了87.7分,这个同窗的效果比全班的平均效果高多少分?剖析此题主要考察先生对求平均数知识的掌握状况。
由于补考的人把分数移补给了其他49人,将平均效果由87.5分提高到了87.7分,平均效果提高了0.2分,说明补考的同窗移出0.2×49=9.8(分)。
2019新课标人教版小学数学六年级(下)导学案全册
新课标人教版小学数学六年级(下)导学案全册
课题: 负数认识
课题: 用数轴表示正负数
课题: 第一单元检测题
课题: 圆柱的认识
课题: 圆柱的表面积
课题: 圆柱的体积
课题: 圆锥的认识
课题:圆锥的体积
课题: 圆柱表面积练习题
课题: 圆柱表面积练习
课题: 圆柱圆锥的体积复习课
课题: 圆柱体积的练习
课题: 圆柱体和圆锥体积计算复习课
课题:圆锥体积的练习
课题: 第二单元测试题
课题: 比例的意义和基本性质
课题: 解比例
课题: 比和比例复习课
课题: 成正比例的量
课题:成反比例的量。
2019年六下第六单元数的运算导学案-新课标人教版小学六年级
2019年六下第六单元数的运算导学案-新课标人教版小学六年级导学目标:1.学生掌握四则运算的意义和法则,以及四则运算各部分间的关系。
比较熟练地进行整数、小数、分数的四则运算。
2.提高学生的计算能力,培养学生整理归纳知识的能力及逻辑推理的能力。
3.培养学生主动参与计算学习的积极性;培养学生认真、细致地完成计算的良好习惯。
导学重难点:掌握四则运算定律并运用其进行简便运算。
导学准备:小黑板导学过程:预习学案:1.我们学过哪些运算?举例说明每一种运算的含义。
2.整数、分数、小数的运算有什么相同点和不同点?导学案:(一)小组交流汇报预习情况。
(二)复习四则运算的意义1.整数四则运算的意义。
教师:“整数加法、减法、乘法、除法的意义各是什么?指名说一说,学生回答时,可以举例说明各种运算的意义。
(出示小黑板,在小组内完成问题)①“为什么说整数的乘法是求几个相同加数和的简便运算?”②“为什么说除法是已知两个因数的积与其中一个因数,求另一个因数的运算?”③“加法与减法有什么联系?”(减法是加法的逆运算。
)④“加法与乘法有什么联系?”(乘法是求几个相同加数的和的简便运算。
)⑤“乘法与除法有什么联系?”(除法是乘法的逆运算。
)2.小数和分数四则运算的意义。
指名分别说出小数和分数四则运算的意义。
让学生分组讨论,分别说一说小数、分数四则运算的联系。
然后与整数四则运算进行比较。
(三)复习四则运算的法则l,加法和减法的计算法则。
(出示小黑板,指名口答)①整数、小数、分数加法和减法的计算法则各是怎样的;②整数加、减法数值对齐后。
是什么样的数进行加、减?③小数加、减法小数点对齐后,是什么样的数进行加、减?④分数加、减法先通分后,是什么样的数进行加、减?2,乘法和除法的计算法则。
(1)整数、小数乘法和除法。
指名分别说一说整数、小数乘法和除法的计算法则各是怎样的:教师:“小数乘法和除法的计算法则与整数乘法和除法有什么相似的地方?有什么不同?”(它们的基本算理和算法是一致的,只是在计算小数乘、除时,需要根据参加运算的数的小数位数来确定计算结果中小数点的位置。
新课标人教版小学六年级数学下册全册导学案教学案
新课标人教版小学六年级数学下册全册导学案教学案第三课时圆柱的体积导学案一、教学目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力3、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
二、预习学案:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
三、导学案:(一)小组交流汇报预习情况(二)共同探究1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)2、教学补充例题(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的。
人教版六年级下册数学全册导学案全套共59课时【精品】
人教版2019年六年级下册数学全册导学案全套共59课时第一单元负数第一课时负数的认识【学习目标】1.初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
2.结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
【学习过程】一、知识铺垫1.生活中见过负数吗?它有什么含义呢?二、自主探究1.感知负数。
(1)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
我的结论:①-3℃表示,3℃表示;②它们表示的意义相反;(2)0℃表示什么意思?0℃表示淡水开始结冰的温度;是零上温度和零下温度的分界线。
0℃低的温度叫零下温度,通常在数字前加“-”(负号)。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
2.认识正负数(1)2000.00表示。
“500.00”与“-500.00”意义相同吗?我的想法:。
你能用自己的语言描述一下什么是正负数吗?。
(2)0既不是正数,也不是负数,它是正数与负数的分界线。
(3)你能试着把数分一分类吗?3.做一做哪些是正数,哪些是负数,并填入相应的圈中。
三、课堂达标1.月球表面白天的平均温度是零上126℃,记作_______℃,夜间的平均温度为零下150℃,记作_________℃。
2.通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___________。
3.第一单元负数第二课时直线上的负数【学习目标】1.体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
2.在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题。
【学习过程】一、知识铺垫1.填一填。
(1)一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
(2)阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
2019年六下第六单元数学思考导学案-新课标人教版小学六年级
2019年六下第六单元数学思考导学案-新课标人教版小学六年级导学目标:1.通过学生观察、探索,使学生掌握数线段的方法。
2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。
3.培养学生归纳推理探索规律的能力。
导学重难点:引导学生发现规律,找到数线段的方法。
导学准备:多媒体课件导学过程:预习学案:完成数学游戏:请你拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。
注意思考发现规律。
导学案:一、联系预习游戏导学用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。
1.2个点可以连1条线段。
为了方便表述我们把这两个点设为点A和点B。
2.如果增加1个点,我们用点C表示,现在有几个点呢?如果每2个点连1条线段,这样会增加几条线段?那么3个点就连了几条线段?3.如果再增加1个点,用点D表示现在有几个点?又会增加几条线段呢?那么4个点可以连出几条线段?4.大家接着想想5个点可以连出多少条线段?为什么?5.6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。
二、观察对比,发现规律。
仔细观察这张表格,在这张表格里有哪些信息呢?看着这些信息你有什么发现吗?师也可以提问引导:当3个点时,增加条数是几?那点数是4时,增加条数是多少?点数是5时呢? 6时呢?你有什么新发现?三、集体交流发现规律(1)分步指导,逐个列出求总线段数的算式。
师:同学们,我们知道了6个点可以连15条线段,现在你们有什么办法知道8个点可以连多少条线段吗?如果当点数再大一些时,我们这样去计算是不是很麻烦呢?(2)观察算式,探究算理。
师:下面,同学们仔细观察看看这些算式,有什么发现吗?(3)集体交流教师点拨总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。
新课标人教版六年级下数学第6周导学案
六年级数学下册学案21号第三章用比例解决问题编制教师:审核领导:学生姓名:班级:组别: 【学习目标】1、使学生能正确判别应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
3、培养学生的判断分析推理能力,并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题【教学重点】学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
【教学难点】能利用正反比例的意义正确解答应用题。
【自主学习】一、内容要求:(让学生自主学习教材59页的内容,独立完成下列问题)1、第一种方法:先算出,再算出10吨水多少钱?(分步计算)第二种方法:利用比例的方法列方程进行计算。
因为每吨水的价钱,所以和成正比例。
2、小明买了4支圆珠笔用了6元。
小刚想买3支同样的圆珠笔,要用多少钱?(用比例的方法计算)二、内容要求:(让学生自主学习教材60页的内容,独立完成下列问题)1、第一种方法:先算出一共有多少本书,再算出?(分步计算)第二种方法:利用比例列方程进行计算。
因为书的一定,所以包数和每包的本书成。
2、学校小商店有两种圆珠笔。
小明带的钱刚好可以买4支单价是1.5元的,如果他想都买单价是2元的,可以买多少支?(用比例的方法计算)【合作探究】:要求:小组内一对一交流,然后组内交流,并标出组内不能解决的问题。
1、工程队修一条水渠,每天工作6小时,12天可以完成。
如果工作效率不变,每天工作8小时,多少天可以完成任务?2、一个晒盐场用100g海水可以晒出3g盐。
照这样计算,如果一块盐田一次放入585000吨海水,可以晒出多少吨盐?多少吨海水可以晒出9吨盐?3、学校举行团体操表演,如果每列25人,要排24列。
如果每列20人,要排多少列?4、车队向灾区运送一批救灾物资,去时每小时行60Km,6.5小时到达灾区。
回来时每小时行78Km,多长时间能够返回出发地点?【巩固提高】1、下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?(1)一辆汽车行驶速度一定,所行的路程和所用时间。
2019春最新人教版六年级数学下册全册导学案
第一单元主备人:赵京志复备人:杨秀艳、农飞强第一课时负数的认识【学习目标】1.初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
2.结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
【学习过程】一、知识铺垫1.生活中见过负数吗?它有什么含义呢?二、自主探究1.感知负数。
(1)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
我的结论:①-3℃表示,3℃表示;②它们表示的意义相反;(2)0℃表示什么意思?0℃表示淡水开始结冰的温度;是零上温度和零下温度的分界线。
0℃低的温度叫零下温度,通常在数字前加“-”(负号)。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
2.认识正负数(1)2000.00表示。
“500.00”与“-500.00”意义相同吗?我的想法:。
你能用自己的语言描述一下什么是正负数吗?。
(2)0既不是正数,也不是负数,它是正数与负数的分界线。
(3)你能试着把数分一分类吗?3.做一做哪些是正数,哪些是负数,并填入相应的圈中。
三、课堂达标1.月球表面白天的平均温度是零上126℃,记作_______℃,夜间的平均温度为零下150℃,记作_________℃。
2.通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___________。
3.第二课时直线上的负数【学习目标】1.体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
2.在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题。
【学习过程】一、知识铺垫1.填一填。
(1)一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
(2)阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
(3)升降机上升3.5米,记作+3.5米;-4米表示()。
【人教版】2019年版小学六年级数学下册:导学案全集(126页,Word版)
如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!第一课时负数的认识授课日期主备人副备人【学习目标】1.初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
2.结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
【学习过程】一、知识铺垫1.生活中见过负数吗?它有什么含义呢?二、自主探究1.感知负数。
(1)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
我的结论:①-3℃表示,3℃表示;②它们表示的意义相反;(2)0℃表示什么意思?0℃表示淡水开始结冰的温度;是零上温度和零下温度的分界线。
0℃低的温度叫零下温度,通常在数字前加“-”(负号)。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
2.认识正负数(1)2000.00表示。
“500.00”与“-500.00”意义相同吗?我的想法:。
你能用自己的语言描述一下什么是正负数吗?。
(2)0既不是正数,也不是负数,它是正数与负数的分界线。
(3)你能试着把数分一分类吗?3.做一做哪些是正数,哪些是负数,并填入相应的圈中。
三、课堂达标1.月球表面白天的平均温度是零上126℃,记作_______℃,夜间的平均温度为零下150℃,记作_________℃。
2.通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___________。
3.第二课时直线上的负数授课日期主备人副备人【学习目标】1.体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
2.在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题。
【学习过程】一、知识铺垫1.填一填。
(1)一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
(2)阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
【人教版】2019年版小学六年级数学下册:导学案全集(126页,Word版)
第一单元第一课时负数的认识授课日期主备人副备人【学习目标】1.初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
2.结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
【学习过程】一、知识铺垫1.生活中见过负数吗?它有什么含义呢?二、自主探究1.感知负数。
(1)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
我的结论:①-3℃表示,3℃表示;②它们表示的意义相反;(2)0℃表示什么意思?0℃表示淡水开始结冰的温度;是零上温度和零下温度的分界线。
0℃低的温度叫零下温度,通常在数字前加“-”(负号)。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
2.认识正负数(1)2000.00表示。
“500.00”与“-500.00”意义相同吗?我的想法:。
你能用自己的语言描述一下什么是正负数吗?。
(2)0既不是正数,也不是负数,它是正数与负数的分界线。
(3)你能试着把数分一分类吗?3.做一做哪些是正数,哪些是负数,并填入相应的圈中。
三、课堂达标1.月球表面白天的平均温度是零上126℃,记作_______℃,夜间的平均温度为零下150℃,记作_________℃。
2.通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___________。
3.第二课时直线上的负数授课日期主备人副备人【学习目标】1.体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
2.在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题。
【学习过程】一、知识铺垫1.填一填。
(1)一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
(2)阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
(3)升降机上升3.5米,记作+3.5米;-4米表示()。
【人教版】2019年版小学六年级数学下册:导学案全集(126页,Word版)
第一课时负数的认识授课日期主备人副备人【学习目标】1.初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
2.结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
【学习过程】一、知识铺垫1.生活中见过负数吗?它有什么含义呢?二、自主探究1.感知负数。
(1)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
我的结论:①-3℃表示,3℃表示;②它们表示的意义相反;(2)0℃表示什么意思?0℃表示淡水开始结冰的温度;是零上温度和零下温度的分界线。
0℃低的温度叫零下温度,通常在数字前加“-”(负号)。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
2.认识正负数(1)2000.00表示。
“500.00”与“-500.00”意义相同吗?我的想法:。
你能用自己的语言描述一下什么是正负数吗?。
(2)0既不是正数,也不是负数,它是正数与负数的分界线。
(3)你能试着把数分一分类吗?3.做一做哪些是正数,哪些是负数,并填入相应的圈中。
三、课堂达标1.月球表面白天的平均温度是零上126℃,记作_______℃,夜间的平均温度为零下150℃,记作_________℃。
2.通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___________。
3.第二课时直线上的负数授课日期主备人副备人【学习目标】1.体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
2.在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题。
【学习过程】一、知识铺垫1.填一填。
(1)一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
(2)阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
(3)升降机上升3.5米,记作+3.5米;-4米表示()。
【人教版】2019年版小学六年级数学下册:导学案全集(126页,Word版)
第一单元第一课时负数的认识授课日期主备人副备人【学习目标】1.初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
2.结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
【学习过程】一、知识铺垫1.生活中见过负数吗?它有什么含义呢?二、自主探究1.感知负数。
(1)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
我的结论:①-3℃表示,3℃表示;②它们表示的意义相反;(2)0℃表示什么意思?0℃表示淡水开始结冰的温度;是零上温度和零下温度的分界线。
0℃低的温度叫零下温度,通常在数字前加“-”(负号)。
比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
2.认识正负数(1)2000.00表示。
“500.00”与“-500.00”意义相同吗?我的想法:。
你能用自己的语言描述一下什么是正负数吗?。
(2)0既不是正数,也不是负数,它是正数与负数的分界线。
(3)你能试着把数分一分类吗?3.做一做哪些是正数,哪些是负数,并填入相应的圈中。
三、课堂达标1.月球表面白天的平均温度是零上126℃,记作_______℃,夜间的平均温度为零下150℃,记作_________℃。
2.通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作__________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作___________。
3.第二课时直线上的负数授课日期主备人副备人【学习目标】1.体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
2.在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题。
【学习过程】一、知识铺垫1.填一填。
(1)一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
(2)阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
(3)升降机上升3.5米,记作+3.5米;-4米表示()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册学案第三章用比例解决问题编制教师:审核领导:学生姓名:班级:组别: 【学习目标】1、使学生能正确判别应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
3、培养学生的判断分析推理能力,并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题【教学重点】学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
【教学难点】能利用正反比例的意义正确解答应用题。
【自主学习】一、内容要求:(让学生自主学习教材59页的内容,独立完成下列问题)1、第一种方法:先算出,再算出10吨水多少钱?(分步计算)第二种方法:利用比例的方法列方程进行计算。
因为每吨水的价钱,所以和成正比例。
2、小明买了4支圆珠笔用了6元。
小刚想买3支同样的圆珠笔,要用多少钱?(用比例的方法计算)二、内容要求:(让学生自主学习教材60页的内容,独立完成下列问题)1、第一种方法:先算出一共有多少本书,再算出?(分步计算)第二种方法:利用比例列方程进行计算。
因为书的一定,所以包数和每包的本书成。
2、学校小商店有两种圆珠笔。
小明带的钱刚好可以买4支单价是1.5元的,如果他想都买单价是2元的,可以买多少支?(用比例的方法计算)【合作探究】:要求:小组内一对一交流,然后组内交流,并标出组内不能解决的问题。
1、工程队修一条水渠,每天工作6小时,12天可以完成。
如果工作效率不变,每天工作8小时,多少天可以完成任务?2、一个晒盐场用100g海水可以晒出3g盐。
照这样计算,如果一块盐田一次放入585000吨海水,可以晒出多少吨盐?多少吨海水可以晒出9吨盐?3、学校举行团体操表演,如果每列25人,要排24列。
如果每列20人,要排多少列?4、车队向灾区运送一批救灾物资,去时每小时行60Km,6.5小时到达灾区。
回来时每小时行78Km,多长时间能够返回出发地点?【巩固提高】1、下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从A地到B地,行驶的速度和时间。
2、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。
如果要4小时到达,每小时行驶75千米。
3、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。
甲乙两地之间的公路长多少千米? (用比例的方法解答)4、修一条长600米的公路,修理20天后,还剩4800米,照这样计算,剩下的路要修多少天?5、一堆煤,原计划烧3吨,可以烧96天,由于改进炉灶.每天烧2.4吨,这堆煤实际可以烧多少天?6、一辆汽车从甲地开往乙地,前2.5小时行了300千米,照这样的速度,共用了5小时到达乙地,甲、乙两地相距多少千米?7、挖一条水渠,原计划每天32人挖,要9天完成。
现在每天有48人参加,几天可以完成?(每人工作效率相同)总结与反思:六年级数学下册学案22号第三章比例(复习一)编制教师:审核领导:学生姓名:班级:组别: 【学习目标】1、能运用比例的基本性质判断两个比能否组成比例。
2、使学生能利用正反比例的意义正确解答应用题。
3、能应用比例的意义判断两个比能否成比例。
【教学重点】利用比的基本性质进行解比例。
【教学难点】利用比的基本性质进行解比例【自主学习】一、内容要求:(让学生复习教材32——35页的内容,独立完成下列问题)1、下面那组中的两个比可以组成比例?把组成的比例写出来。
(1)6:12和9:18 (2)20:0.5和1:4(3)12:13和6:4 (4)0.9:0.1和94:142、填空:(1)如果3a=7b,那么a:b= : 。
(2)如果m:11=6: n,那么m×n= 。
3、判断下面的比能否组成比例,对打“√”,错打“×”0.5:0.1 5和0.2:2.4 ( ) 15 :12 和0.5:0.2 ( )12:13和6 : 4 ( ) 0.21:725和3:4 ( )4、在一个比例中,两个外项都是质数,它们的积是35,一个内项是这个积的110。
求出另一个内项,并写出这个比例。
5、解比例X∶21=142∶1385∶x=65∶2 12∶2.4=3∶X15∶X=0.6∶238∶15=X∶19X3.2=50.8【合作探究】要求:先在小组内一对一交流,然后在组内交流,并标出在组内不能解决的问题1、18与X的比值和12与1.5的比例值相等。
(依条件列出比例,并解比例)2、甲数的289 等于乙数的143 ,求甲、乙两个数的比。
3、博物馆展出了一个高为19.6cm 的秦代将军俑模型,它的高度与实际高度的比是1:10。
这个将军俑的实际高度是多少?【巩固提高】1、判断。
对打“√”,错打“×”(1)如果3×a=5×b ,那么a :5=b :3 ( )(2)25 :13 和16 :14 中,能与2048 :58 组成比例的是16 :14 。
( )(3)在一个比例中,两个外项分别是18和8,那么两个内项的积一定是26。
( ) 2、把下面的比例式改写成乘积的形式。
(1)2.4∶X=18∶40 改写成( )×( )=( )×( )(2)156 ∶712 =X ∶225 改写成( )×( )=( )×( )(3) X ∶0.3=635 改写成( )×( )= ( )×( )3、解比例:x 5=310 214 =x 4.0 95:32=X :621:31=91:X 2512= x 5x :5.6=3.25:84、小红8分钟走了500米,照这样的速度,她从家中走到学校用了14分钟,小红家离学校多少米?5、一辆汽从甲城开往乙城,每小时行42千米,5小时到达乙城,返回每小时行了45千米,几小时到达甲城?6、如果两个比的比值a b 和cd 互为倒数,那么a ,b ,c ,d 这四个数可以组成怎样的比例?请你在下面写出来。
总结与反思:六年级数学下册学案23号 第三章 比例(复习二)编制教师: 审核领导: 学生姓名: 班级: 组别:【学习目标】1、判断两种相关联的量是否成正比例的量;2、根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生观察,分析、归纳、概括的能力,渗透函数思想。
【教学重点】1、比例的量的特征及其判断方法。
【教学难点】1、确定两个变量之间的比例关系,发现两种相关联的量的变化规律。
【自主学习】一、内容要求:(让学生复习教材39——44页的内容,独立完成下列问题) 1、选择题(1)根据表格判断数量间的比例关系。
时间与路程成 A.成正比例 B.成反比例 C.不成比例(2)根据表格判断数量间的比例关系圆柱体底面积与高 A.成正比例 B.成反比例 C.不成比例(3)根据表格判断数量间的比例关系年龄与身高成 A.成正比例 B.成反比例 C.不成比例(4)长方形的 ,它的长和面积成正比例。
A.周长一定 B.宽一定 C.面积一定 (5)圆柱体体积一定, 和高成反比例。
A.底面半径 B.底面积 C.表面积 2、填空,判断数量间的比例关系。
(1)比例尺一定,图上距离与实际距离( ) (2)圆的面积一定,直径与圆周率( ) (3)比的前项一定,比的后项与比值( )(4)时间一定,速度与路程( ) (5)被减数一定,减数与差( ) (6)圆锥体体积一定,底面积与高( ) 【合作探究】要求:先在小组内一对一交流,然后在组内交流,并标出在组内不能解决的问题 1、给一间长9m 、宽6m 的教室铺地砖,每块地砖的面积与所需数量如下。
每块地砖的面积与所需数量是否成反比例?为什么?2、食品加工厂准备把一批新酿的醋装瓶运往商店。
每瓶容量与所装瓶数是否成反比例?为什么?3、运送同一批砂石,货车载重量和运送次数之间的关系如下表。
完成下表,并回答问题。
(1)货车的载重量和运送次数之间成什么比例?为什么?(2)这批砂石一共多少吨?【巩固提高】1、填空(1)两种相关联的量,()变化,()也随着变化,如果这两种量相对应的两个数的()一定,这两种量就叫成反比例的量,它们的关系叫做()(2)用字母表示的反比例关系式是()(3)工作量一定,工作效率和()成反比例(4)长方形的面积一定,长和()成反比例(5)比的前项一定,比的后项和比值()比例2、判断下面个体中的两种量是否成反比例,对的打“√”,否的打“×”(1)总产量一定,单产量和数量。
()(2)小明从家到学校的速度和时间。
()(3)三角形的面积一定,底和高。
()(4)长方形的体积一定,他的底面积和高。
()3、A、B、C表示三种量,它们之间的关系可以用A×B=C来表示,那么(1)当A一定时,B和C()比例(2)当B一定时,A和C()比例(3)当C一定时,A和B()比例4、根据x和y这两种量成正比例,填写下表5、根据x和y这两种量成反比例,填写下表6、甲乙两地相距310千米,客车和货车同时从两地相对开出,3.1小时相遇,已知客车和货车的速度的比是5:4,求客车和货车的速度7、一个炼油厂从500吨原油可以提炼出250吨汽油,照这样计算1000吨原油可以提炼多少吨汽油?8、有一件工作如果派10人去做,12小时完成任务,如果想要在一天内完成全部任务,则需要多少人完成?总结与反思:六年级数学下册学案24号第三章比例(复习三)编制教师:审核领导:学生姓名:班级:组别: 【学习目标】1、根据比例尺会求实际距离;2、知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没有改变;3、会利用正反比例解决实际问题。
【教学重点】根据题中比例尺的量会求实际距离和图上距离。
【教学难点】利用比例解决实际问题。
【自主学习】一、内容要求:(让学生复习教材48——60页的内容,独立完成下列问题)1、填空:(1)比例尺是和的比。
(2)在比例尺是1:3000000的地图上,图上1厘米代表实际距离厘米,也就是千米。
(3)将线段比例尺改写成数值比例尺2、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。
如果要4小时到达,每小时行驶75千米3、(1)先按5:1画出下面的正方形放大后的图形。
(2)再按1:2画出它缩小后的图形。
4、一台拖拉机3小时可以耕地4.2公顷,照这样计算,5小时可以耕地多少公顷?(用比例方法解答)【合作探究】要求:先在小组内一对一交流,然后在组内交流,并标出在组内不能解决的问题1、(1)一副交通地图上,用4厘米表示相距8千米的两村,求这幅图的比例尺?(2)一座综合教学楼地基长7米,宽32米,用1:200的比例尺画在设计图上,长和宽各应该画多少米?2、在比例尺是1:200的平面图中,长方形客厅的长是4.8厘米,宽是3.6厘米,该客厅的实际距离是多少?3、甲、乙两辆汽车分别从A、B 两地同时相对开出,甲车每小时行驶110千米,乙车每小时行驶90千米,2小时后两车共行驶了全程的80%。