高二数学选修2-2练习题(二)

合集下载

(北师大版)上海市高中数学选修2-2第二章《变化率与导数》测试(含答案解析)

(北师大版)上海市高中数学选修2-2第二章《变化率与导数》测试(含答案解析)

一、选择题1.如图,()y f x =是可导函数,直线l :2y kx =+是曲线()y f x =在3x =处的切线,令2()()g x x f x =,()g x '是()g x 的导函数,则()3g '等于( )A .3B .0C .2D .42.已知a ,b 为正实数,直线y x a =-与曲线()ln y x b =+相切,则11ab+的最小值是( ) A .2B .42C .4D .223.若曲线()xf x mx e n =⋅+在点()()1,1f 处的切线方程为y ex =,则m n +的值为( ) A .12e + B .12e - C .12D .2e 4.函数()2221sin cos 622x xf x x =+-的导函数()y f x '=的图象大致是( ) A . B .C .D .5.已知()ln f x x =,217()(0)22g x x mx m =++<,直线l 与函数()f x ,()g x 的图象都相切,且与()f x 图象的切点为(1,(1))f ,则m 的值为( ) A .2-B .3-C .4-D .1-6.设曲线y =x n +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 014x 1+log 2014x 2+…+log 2 014x 2 013的值为()A .-log 2 0142 013B .-1C .(log 2 0142 013)-1D .17.已知直线:l y m =,若l 与直线23y x =+和曲线ln(2)y x =分别交于A ,B 两点,则||AB 的最小值为A .1B .2C .455D .2558.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .[0,π)C .3,44ππ⎡⎤⎢⎥⎣⎦ D .[0,4π]∪[2π,34π]9.函数为R 上的可导函数,其导函数为()f x ',且()3sin cos 6f x f x x π⎛⎫=⋅+⎪⎝⎭',在ABC ∆中,()()1f A f B ='=,则ABC ∆的形状为 A .等腰锐角三角形B .直角三角形C .等边三角形D .等腰钝角三角形10.已知函数()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '<,则有( ) A .2019(2019)(0)e f f -<,2019(2019)(0)f e f < B .2019(2019)(0)e f f -<,2019(2019)(0)f e f > C .2019(2019)(0)e f f ->,2019(2019)(0)f e f > D .2019(2019)(0)e f f ->,2019(2019)(0)f e f <11.设函数sin cos y x x x =+的图象上的点()00,x y 处的切线的斜率为k ,记()0k g x =,则函数()k g x =的图象大致为( )A .B .C .D .12.函数f (x )=﹣12x 2+12在x=1处的切线的斜率为( ) A .﹣2B .﹣1C .0D .1二、填空题13.设点P 是曲线3233y x x =-+上的任意一点,P 点处的切线倾斜角为σ,则σ的取值范围为____________. 14.已知函数4()ln 2f x x x xλλ=+-≥,,曲线()y f x =上总存在两点M (x 1,y 1),N (x 2,y 2)使曲线()y f x =在M 、N 两点处的切线互相平行,则x 1+x 2的取值范围为_______. 15.在曲线3211333y x x x =-+-的所有切线中,斜率最小的切线方程为______. 16.若直线y kx b =+是曲线ln 3y x =+的切线,也是曲线ln(1)y x =+的切线,则b =______17.函数在处的切线与直线垂直,则a 的值为______.18.若以曲线()y f x =上任意一点(,)M x y 为切点作切线l ,曲线上总存在异于M 的点11(,)N x y ,以点N 为切点作线1l ,且1//l l ,则称曲线()y f x =具有“可平行性”,下列曲线具有可平行性的编号为__________.(写出所有的满足条件的函数的编号) ①1y x=②3y x x =- ③cos y x = ④2(2)ln y x x =-+ 19.设()()()sin 2',''32f x x xf f x f x f ππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭是的导函数,则___________. 20.过点()1,1-与曲线()32f x x x =-相切的直线方程是__________.三、解答题21.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.22.已知函数()mf x mx x=-,()2ln g x x =. (1)当2m =时,求曲线()y f x =在点(1(1))f ,处的切线方程; (2)当1m =时,判断方程()()f x g x =在区间(1)+∞,上有无实根;(3)若(1]x e ∈,时,不等式()()2f x g x -<恒成立,求实数m 的取值范围. 23.求下列函数的导数: (1)()(1sin )(14)f x x x =+-; (2)()21x xf x x =-+. 24.设函数()bf x ax x=-,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -(1)求y =f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.25.(1)函数()(1sin )f x x x =+的导数为()'f x ,求2f π⎛⎫' ⎪⎝⎭; (2)设l 是函数1y x=图象的一条切线,证明:l 与坐标轴所围成的三角形的面积与切点无关.26.已知函数()()1ln 1x f x x++=和()()1ln 1g x x x =--+(1)若()f x '是()f x 的导函数,求(1)f '的值 (2)当0x >时,不等式()()0g x f x kx'->恒成立,其中()g x '是()g x 导函数,求正整数k 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】2y kx =+是曲线()y f x =在3x =处的切线求出=(3)k f ,由图(3)=1f ,对2()()g x x f x =求导取值可得.【详解】2y kx =+是曲线()y f x =在3x =处的切线,所以切点(3,1)代入切线方程得1=(3)=3k f ,又(3)=1f 2()()g x x f x =,2()2()+()g x xf x x f x ''=,(3)6(3)+9(3)=3g f f ''∴=故选:A. 【点睛】本题考查导数的几何意义.根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点00)(P x y ,既在曲线上又在切线上构造方程组求解.2.C【分析】求函数的导数,由已知切线的方程,可得切线的斜率,求得切线的坐标,可得1a b +=,再由乘1法和基本不等式,即可得到所求最小值. 【详解】解:()y ln x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1, 可得切点的横坐标为1b -,所以切点为(1,0)b -, 代入y x a =-,得1a b +=,a 、b 为正实数,则111()()22241b a b a a b a b a b a b a b+=++=+++=. 当且仅当12a b ==时,11a b+取得最小值4. 故选:C 【点睛】本题主要考查导数的应用,利用导数的几何意义以及基本不等式是解决本题的关键,属于中档题.3.A解析:A 【分析】求导得到()()'1xf x m x e =+⋅,由已知得()1f e =,()1f e '=,解得答案.【详解】()x f x mx e n =⋅+,则()()'1x f x m x e =+⋅,故()1f e =,()1f e '=,()11me n e m e e +=⎧∴⎨+=⎩,解得122m en ⎧=⎪⎪⎨⎪=⎪⎩,所以12e m n ++=. 故选:A . 【点睛】本题考查了根据切线方程求参数,意在考查学生的计算能力和转化能力.4.C解析:C 【分析】将函数()y f x =的解析式化简,求出其导数()1sin 3f x x x '=+,,然后结合导函数的符号排除错误选项即可确定导函数的图像.因为()222211sin cos cos 6226x x f x x x x =+-=-,()1sin 3f x x x '∴=+. 当03x <≤时,103x >,sin 0x >,则()1sin 03f x x x '=+>; 当3x >时,113x >,1sin 1x -≤≤,则()1sin 03f x x x '=+>. 所以,当0x >时,()1sin 03f x x x '=+>,排除ABD 选项, 故选:C. 【点睛】本题考查函数图象的识别,给定函数解析式,一般要结合函数的定义域、奇偶性、单调性(导数)、特殊值符号、零点等知识进行逐一排除,考查分析问题和解决问题的能力,属于中等题.5.A解析:A 【分析】先利用导数求切线斜率,再根据点斜式方程得切线方程,最后根据判别式为零得结果. 【详解】 1()f x x'=, 直线l 是函数()f x lnx =的图象在点(1,0)处的切线,∴其斜率为k f ='(1)1=, ∴直线l 的方程为1y x =-.又因为直线l 与()g x 的图象相切,∴211722y x y x mx =-⎧⎪⎨=++⎪⎩,消去y ,可得219(1)022x m x +-+=,得△2(1)902(4m m m =--=⇒=-=不合题意,舍去), 故选A 【点睛】本题主要考查函数导数的几何意义,考查直线和曲线的位置关系,意在考查学生对这些知识 的理解掌握水平和分析推理能力.6.B解析:B 【解析】 【分析】由题意,求出y =x n +1(n ∈N *)在(1,1)处的切线方程,取0y =,求得n x ,再利用对数的运算性质可得答案. 【详解】由y =x n +1,可得(1)n y n x =+',即11x y n ='=+即曲线y =x n +1(n ∈N *)在(1,1)处的切线方程为1(1)(1)y n x -=+-令0y =,得1n n x n =+ log 2 014x 1+log 2 014x 2+…+log 2 014x 2 013=20141220132014122013log ()log ()1232014x x x =⋅=- 故选B 【点睛】本题考查了曲线的切线方程和对数的运算,细心计算是解题的关键,属于中档题.7.B解析:B 【分析】利用导数求出与直线23y x =+平行的曲线的切线的切点,利用点到直线的距离可得. 【详解】1y x '=,令12x =可得12x =,所以切点为1,02⎛⎫ ⎪⎝⎭. 根据题意可知1,02B ⎛⎫ ⎪⎝⎭且0m =,所以3,02A ⎛⎫- ⎪⎝⎭,此时2AB =.故选B. 【点睛】本题主要考查导数的几何意义.已知切线的斜率,结合导数可得切点.8.A解析:A 【解析】由题得cos y x '=,设切线的倾斜角为α,则,3tan cos 1tan 1[0,][,)44k x ππαααπ==∴-≤≤∴∈⋃,故选A.9.D解析:D 【解析】 【分析】求函数的导数,先求出'16f π⎛⎫= ⎪⎝⎭,然后利用辅助角公式进行化简,求出A ,B 的大小即可判断三角形的形状. 【详解】函数的导数()''cos sin 6f x x x π⎛⎫=- ⎪⎝⎭,则131''cos sin ''666662262f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则11'262f π⎛⎫= ⎪⎝⎭,则'16f π⎛⎫= ⎪⎝⎭,则()'sin 2cos 6f x x x x π⎛⎫=-=+⎪⎝⎭, ()cos 2cos 3f x x x x π⎛⎫=+=- ⎪⎝⎭,()()'1f A f B ==,()'2cos 16f B B π⎛⎫∴=+= ⎪⎝⎭,即1cos 62B π⎛⎫+= ⎪⎝⎭,则63B ππ+=,得6B π=,()2cos 13f A A π⎛⎫=-= ⎪⎝⎭,即1cos 32A π⎛⎫-= ⎪⎝⎭,则33A ππ-=,则23A π=, 则2366C ππππ=--=, 则B C =,即ABC 是等腰钝角三角形, 故选D . 【点睛】本题考查三角形形状的判断,根据导数的运算法则求出函数()f x 和()'f x 的解析式是解决本题的关键.10.B解析:B 【分析】 令()()xf xg x e=,x ∈R .()()()x f x f x g x e '-'=,根据x R ∀∈,均有()()f x f x '<,可得函数()g x 的单调性,进而得出结论. 【详解】 解:令()()x f x g x e=,x ∈R .()()()xf x f xg x e '-'=, x R ∀∈,均有()()f x f x '<, ()g x ∴在R 上单调递增,(2019)(0)(2019)g g g ∴-<<,可得:2019(2019)(0)e f f -<,2019(2019)(0)f e f >. 故选B . 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、构造法,考查了推理能力与计算能力,属于中档题.11.A解析:A 【详解】因为sin cos ,sin cos sin cos y x x x y x x x x x x '=+=+-=, 则()cos g x x x =,该函数为奇函数,排除B 、C ,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0>g x ,排除D. 故选:A12.B解析:B 【解析】 【分析】根据导数的几何意义可知(1)k f '=,求导后计算即可. 【详解】 因为()f x x '=-,所以 (1)1k f '==- ,故选B. 【点睛】本题主要考查了导数的几何意义,属于容易题.二、填空题13.【分析】设点根据导数的几何意义求得即可得到答案【详解】设点由函数可得可得即又由所以故答案为:【点睛】本题主要考查了导数的几何意义及其应用其中解答中熟记导数的几何意义准确计算是解答的关键着重考查推理与解析:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】设点00(,)P x y ,根据导数的几何意义,求得tan σ≥.【详解】设点00(,)P x y,由函数323y x =+,可得23y x '=可得020|3x x y x ='=,即tan σ≥ 又由[)0,σπ∈,所以20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭. 故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭. 【点睛】本题主要考查了导数的几何意义及其应用,其中解答中熟记导数的几何意义,准确计算是解答的关键,着重考查推理与运算能力.14.【分析】求出导函数根据题意转化为对恒成立即可得解【详解】曲线上总存在两点M (x1y1)N (x2y2)使曲线在MN 两点处的切线互相平行即所以对恒成立所以x1+x2的取值范围为故答案为:【点睛】此题考查解析:()8+∞,【分析】求出导函数24()1f x x x λ'=--,根据题意转化为()()212121244x x x x x x λλ++=<对2λ≥恒成立,即可得解.【详解】4()ln 2f x x x x λλ=+-≥,,24()1f x x xλ'=--,曲线()y f x =上总存在两点M (x 1,y 1),N (x 2,y 2)使曲线()y f x =在M 、N 两点处的切线互相平行,即121212()(),,0,0f x f x x x x x ''=≠>>,2211224411x x x x λλ--=--, 22121244x x x x λλ-=-,()()212121244x x x x x x λλ++=<所以1216x x λ+>对2λ≥恒成立所以x 1+x 2的取值范围为()8+∞,. 故答案为:()8+∞,【点睛】此题考查导数的几何意义,根据导数的几何意义解决切线斜率相等的问题,求切点横坐标之和的取值范围,利用基本不等式构造不等关系求解.15.【解析】【分析】根据导数的几何意义可知在某点处的导数为切线的斜率先求出导函数利用配方法求出导函数的最小值即为切线最小斜率再用点斜式写出化简【详解】曲线时切线最小斜率为2此时切线方程为即故答案为:【点 解析:20x y -=【解析】 【分析】根据导数的几何意义可知在某点处的导数为切线的斜率,先求出导函数()f x ',利用配方法求出导函数的最小值即为切线最小斜率,再用点斜式写出化简. 【详解】曲线3211333y x x x =-+-,223y x x ∴'=-+,1x ∴=时,切线最小斜率为2,此时,32111131233y =⨯-+⨯-=.∴切线方程为22(1)y x -=-,即20x y -=.故答案为:20x y -=. 【点睛】本题主要考查了利用导数研究曲线上某点切线方程,以及二次函数的最值等基础题知识,考查运算求解能力,属于基础题.16.【分析】对两条曲线对应的函数求导设出两个切点的横坐标令它们的导数相等求出两条曲线在切点处的切线方程对比系数求得的值【详解】依题意设直线与相切切点的横坐标为即切点为设直线与相切切点的横坐标为即切点为令 解析:2ln 3-【分析】对两条曲线对应的函数求导,设出两个切点的横坐标,令它们的导数相等,求出两条曲线在切点处的切线方程,对比系数求得b 的值. 【详解】依题意,()()''11ln 3,ln 11x x x x +=+=⎡⎤⎣⎦+,设直线y kx b =+与ln 3y x =+相切切点的横坐标为0x ,即切点为()00,ln 3x x +,设直线y kx b =+与()ln 1y x =+相切切点的横坐标为1x ,即切点为()()11,ln 1x x +,令01111x x =+,解得101x x =-,故直线y kx b =+与()ln 1y x =+相切切点为()001,ln x x -.由此求出两条切线方程为()()0001ln 3y x x x x -+=-和()0001ln 1y x x x x -=-+;即001ln 2y x x x =++和000111ln y x x x x =-++,故0001ln 21ln x x x +=-++,013x =,故0ln 22ln3b x =+=-.【点睛】本小题主要考查两条曲线共切线方程的问题,考查切线方程的求法,考查导数的运算,属于中档题.17.0【解析】【分析】求函数的导数根据导数的几何意义结合直线垂直时直线斜率的关系建立方程关系进行求解即可得结果【详解】因为函数y=(x+a)ex 在x=0处的切线与直线x+y+1=0垂直所以函数y=(x+ 解析:【解析】 【分析】求函数的导数,根据导数的几何意义结合直线垂直时直线斜率的关系建立方程关系进行求解即可得结果. 【详解】 因为函数在处的切线与直线垂直,所以函数在处的切线斜率,因为,所以,解得,故答案是0. 【点睛】该题考查的是有关利用导数研究曲线上某点处的切线的问题,涉及到的知识点有两直线垂直的条件,导数的几何意义,以及函数的求导公式,属于中档题目.18.①③【解析】因为;因为不存在异于的点;因为总存在异于的点满足条件;因为不存在异于的点;所以选①③解析:①③ 【解析】 因为122111y x x x x x =-=-∴=-'≠取 ; 因为231,0y x x =-='时不存在异于M 的点N ;因为1sin sin y x x =-=-'∴总存在异于M 的点N 满足条件;因为212412(2)x x y x x x ='-+=-+,22x =不存在异于M 的点N ;所以选①③19.-1【解析】∵令可得:解得则解析:-1 【解析】∵()2(),()2()33f x sinx xf f x cosx f ππ=+'∴'=+',令3x π=,可得:()2()333f cos f πππ'=+' ,解得1()32f π'=- , 则1()2()1222f cosππ'=+⨯-=- 20.或【解析】由题意可得:设曲线上点的坐标为切线的斜率为切线方程为:(*)切线过点则:解得:或将其代入(*)式整理可得切线方程为:或点睛:曲线y =f(x)在点P(x0y0)处的切线与过点P(x0y0)的解析:20x y --=或5410x y +-= 【解析】由题意可得:()2'32f x x =-,设曲线上点的坐标为()3000,2x x x -,切线的斜率为2032k x =-,切线方程为:()()()320000232y x x x x x --=--,(*)切线过点()1,1-,则:()()()32012321x x x x ---=--,解得:01x =或012x =-将其代入(*)式整理可得,切线方程为:20x y --=或5410x y +-=.点睛:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.三、解答题21.(1)[-1,+∞);(2)(-∞,2∪(1,3)∪[2∞). 【解析】试题分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C 上任意一点处的切线的斜率的取值范围;(2)根据(1)可知k 与﹣1k的取值范围,从而可求出k 的取值范围,然后解不等式可求出曲线C 的切点的横坐标取值范围. (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1, 即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,111k k≥-⎧⎪⎨-≥-⎪⎩解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2∪(1,3)∪[2∞) 22.(1) 44y x =-;(2) 内无实数根;(3)241e e ⎛⎫-∞ ⎪-⎝⎭,. 【解析】试题分析:(2)把m 的值代入后,求出f (1),求出x=1时函数的导数,由点斜式写出曲线y=f (x )在点(1,f (1))处的切线方程;(Ⅱ)代入m 的值,把判断方程f (x )=g (x )在区间(1,+∞)上有无实根转化为判断函数h (x )=f (x )﹣g (x )在(1,+∞)上有无零点问题,求导后利用函数的单调性即可得到答案;(Ⅲ)把f (x )和g (x )的解析式代入不等式,整理变形后把参数m 分离出来,x ∈(1,e]时,不等式f (x )﹣g (x )<2恒成立,转化为实数m 小于一个函数在(1,e]上的最小值,然后利用导数分析函数在(1,e]上的最小值. 试题(1)2m =时,()22f x x x =-,()222f x x='+,()14f '=,切点坐标为()10,, ∴切线方程为44y x =-(2)1m =时,令()()()12ln h x f x g x x x x=-=--, ()()22211210x h x x x x-=+-=≥',∴()h x 在()0+∞,上为增函数, 又()10h =,所以()()f x g x =在()1+∞,内无实数根. (3)2ln 2mmx x x--<恒成立,即()2122ln m x x x x -<+恒成立. 又210x ->,则当(]1x e ,∈时,222ln 1x x xm x +<-恒成立,令()222ln 1x x xG x x +=-,只需m 小于()G x 的最小值. ()()()2222ln ln 21x x x G x x-++-'=,∵1x e <≤,∴ln 0x >,∴(]1x e ,∈时,()0G x '<, ∴()G x 在(]1e ,上单调递减,∴()G x 在(]1e ,的最小值为()241eG e e =-, 则m 的取值范围是241e e ⎛⎫-∞ ⎪-⎝⎭,. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >. 23.(1)'()4cos 4sin 4cos f x x x x x ==-+--;(2)21'()2ln 2(1)x f x x =-+. 【分析】(1)利用积的导数和和差的导数法则求导.(2)利用商的导数和积的导数的法则求导. 【详解】(1)f'(x)=(1+sin x)'(1-4x)+(1+sin x)(1-4x)'=cos x(1-4x)-4(1+sin x)=cos x-4xcos x-4-4sin x.(2)f(x)=1x x +-2x =1-11x +-2x ,则f'(x)=21(1)x +-2xln 2. 【点睛】本题主要考查对函数求导,意在考查学生对该知识的掌握水平和分析推理能力. 24.(1)3()f x x x=-;(2)证明见解析. 【解析】解:(1)方程7x -4y -12=0可化为y =74x -3, 当x =2时,y =12. 又f′(x)=a +2b x , 于是1222{744b a b a -=+=,解得13a b ==⎧⎨⎩故f(x)=x -3x. (2)证明:设P(x 0,y 0)为曲线上任一点,由f′(x)=1+23x知,曲线在点P(x 0,y 0)处的切线方程为y -y 0=(1+203x )·(x -x 0),即y -(x 0-03x )=(1+203x )(x -x 0). 令x =0得,y =-06x ,从而得切线与直线x =0,交点坐标为(0,-06x ). 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P(x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-06x ||2x 0|=6.曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,此定值为6.25.(1)2;(2)证明见解析. 【分析】(1)求出()cos 1sin f x x x x '=++,即得2f π⎛⎫'⎪⎝⎭的值; (2)设切点为001,x x ⎛⎫⎪⎝⎭,先求出切线l 的方程为:()020011y x x x x -=--,再求出l 与坐标轴所围成的三角形的面积2S =,即得证. 【详解】(1)()(1sin )f x x x =+,则()[(1sin )](1sin )(1sin )cos 1sin f x x x x x x x x x x ''''=+=+++=++, 所以cos 1sin 22222f ππππ'⎛⎫=++=⎪⎝⎭; (2)设切点为001,x x ⎛⎫⎪⎝⎭, ∵1y x =,21y x'∴=-,∴切线l 的斜率201k x =-, ∴切线l 的方程为:()020011y x x x x -=--, 令0x =,得02y x =, 令0y =,得02x x =,所以l 与坐标轴所围成的三角形的面积0012222S x x =⋅⋅=, 因此l 与坐标轴所围成的三角形的面积与切点无关. 【点睛】本题主要考查导数的运算,考查导数的几何意义,意在考查学生对这些知识的理解掌握水平. 26.(1)1ln 22--;(2)3 【分析】(1)求出导函数,代入x 的值即可得到结果; (2)不等式()()0g x f x k x-'>恒成立等价于[](1)1ln(1)x x k x+++<对于0x >恒成立.【详解】(1)由题意可得()()2ln 111xx x f x x +='--+ ∴()11ln 22f '=--;(2)当0x >时,不等式()()0g x f x k x'->恒成立 即[](1)1ln(1)x x k x+++<对于0x >恒成立设[](1)1ln(1)()x x h x x+++=,则21ln(1)()x x h x x --+'=1()1011x g x x x '=-=>++,()1ln(1)g x x x =--+在区间()0,∞+上是增函数, 且()0g x =存在唯一实数根a ,满足(2,3)a ∈,即1ln(1)a a =++ 由x a >时,()0,()0g x h x '>>;0x a <<时,()0,()0g x h x '<< 知()(0)h x x >的最小值为[](1)1ln(1)()1(3,4)a a h a a a+++==+∈故正整数k 的最大值为3. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题.。

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)1.已知i i Z+=+-21,则复数Z=A 、i 31+-B 、i 31-C 、i +3D 、i -32.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是 A .0.8 B .0.75 C .0.6 D .0.483.若5250125(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则0a =BA.1B.32C.-1D.-324.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.25.有A 、B 两个口袋,A 袋装有4个白球,2个黑球;B 袋装有3个白球,4个黑球,从A 袋、B 袋各取2个球交换之后,则A 袋中装有4个白球的概率为(A )352(B )10532(C )1052(D )2186.设函数,)21()(10x x f -=则导函数)(x f '的展开式中2x 项的系数为 A .1440 B.-1440 C.2880 D.-28807.已知函数f(x)=x 2-ax +3在(0,1)上为减函数,函数g(x)=x 2-aln x 在(1,2)上为增函数,则a 的值等于 A .1 B .2 C .0 D. 2则根据表中的数据,计算随机变量2K 的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有 A .97.5% B.99% C . 99.5% D.99.9%9.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x -8,则曲线y =f(x)在点(1,f(1))处的切线方程是 A .y =2x -1 B .y =x C .y =3x -2 D .y =-2x +310.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。

(易错题)高中数学高中数学选修2-2第四章《定积分》检测卷(含答案解析)(2)

(易错题)高中数学高中数学选修2-2第四章《定积分》检测卷(含答案解析)(2)

一、选择题1.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .22.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数 3.如图,矩形ABCD 的四个顶点()(0,1),(,1),(,1),0,1A B C D ππ--,正弦曲线f xsinx 和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A .B .C .D .4.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 5.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .26.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-7.11)x dx -=⎰( )A .1π+B .1π-C .πD .2π 8.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+9.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰10.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-11.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3- B .4ln3+C .4ln3-D .32912.定积分()22xex dx +⎰的值为( )A .1B .2eC .23e +D .24e +二、填空题13.由曲线sin .cos y x y x ==与直线0,2x x π==所围成的平面图形的面积是______.14.若二项式621x x ⎫+⎪⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________. 15.计算由曲线22,4y x y x ==-所围成的封闭图形的面积S =__________.16.设函数2()f x ax b =+(0a ≠),若300()3()f x dx f x =⎰,00x >,则0x =__________.17.计算()2224x x dx -+-⎰得__________.18.二项式33()6a x -的展开式的第二项的系数为,则的值为______.19.ππ(sin )d x x x -+=⎰________.20.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若2()2ln 2g x x bx kx =--在[1,)+∞上单调递减,则实数k 的取值范围是__________. 三、解答题21.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值.22.已知函数()21ln ,2f x x ax a R =-∈.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()()11f x a x ≤--恒成立,求整数a 的最小值. 23.已知函数()()322,f x x ax bx aa b =+++∈R .(1)若函数()f x 在1x =处有极值为10,求b 的值; (2)若()4,a f x =-在[]0,2x ∈上单调递增,求b 的最小值. 24.如图,函数()sin()f x x ωϕ=+(其中π0,2ωϕ>≤)的图象与坐标轴的三个交点为,,P Q R ,且π(,0)6P ,2π(,0)3Q ,M 为QR 的中点,且M 的纵坐标为34-.(1)求()f x 的解析式;(2)求线段QR 与函数()f x 图象围成的图中阴影部分的面积.25.已知函数()1x f x e ex =--,其中e 为自然对数的底数,函数()(2)g x e x =-. (1)求函数()()()h x f x g x =-的单调区间; (2)若函数(),,()(),f x x m F x g x x m ≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围.26.设函数()()1xf x ae x =+(其中 2.71828e =⋅⋅⋅),()22g x x bx =++,已知它们在0x =处有相同的切线.(1)求函数()f x ,()g x 的解析式; (2)若函数()f x 在[],1t t +上的最小值为22e-,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 2.D解析:D【解析】由①,()()()(),,F x F x f x f x -=-=-∴B,C正确; 由②,()(),F x F x -=- ()(),f x f x -=∴A 正确,D 项,偶函数的原函数不一定是奇函数,比如()()233cos sin 1f x x x F x x x =+=++的原函数可以为,此时F(x)为非奇非偶函数,所以D错误,故选D.3.B解析:B 【解析】试题分析:阴影部分的面积()044sin cos (cos sin )|12S x x dx x x ππππ=-=--=+⎰ 由几何概型可知:向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是01+2=2ABCDS P S π=矩形 ,故选B . 考点:几何概型.4.A解析:A 【解析】试题分析:'0x x y e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程5.C解析:C 【解析】 由函数的图像可知,需满足或,所以点的运动轨迹与两坐标轴围成的图形是边长为2的正方形,其面积为4.6.C解析:C 【分析】先由微积分基本定理得到327S =,再由等比数列的求和公式以及通项公式,即可求出结果. 【详解】23312333133|2727003S x dx x a a a =⎰=⋅=∴++=,,即333227a a a q q ++=,解得1q =或1-2q =.【点睛】本题主要考查定积分的就算,以及等比数列的公比,熟记微积分基本定理,以及等比数列的通项公式及前n 项和公式即可,属于常考题型.7.D解析:D 【解析】因1112221211111[1]1|12x x dx x dx x x dx -----+=-+=-⎰⎰⎰,故设sin ,[,]22x ππθθ=∈-,则122221221cos 211cos sin cos (2)2sin 2|442x dx d d d ππππππππθπθθθθθπθ-----+-====⨯+=⎰⎰⎰⎰,应选答案D 。

【同步测控 优化设计】高二人教A版数学选修2-2练习:2章测评A Word版含答案[ 高考]

【同步测控 优化设计】高二人教A版数学选修2-2练习:2章测评A Word版含答案[ 高考]

第二章测评A(基础过关卷)(时间:90分钟满分:100分)第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误答案:C2.观察下面图形的规律,在其右下角的空格内画上合适的图形为()A.■B.△C.□D.○解析:由每一行中图形的形状及黑色图形的个数,则知A正确.答案:A3.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面()A.各正三角形内任一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点解析:正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.答案:C4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199解析:记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.答案:C5.数列{a n}满足a1=,a n+1=1-,则a2 015等于()A.B.-1 C.2 D.3解析:∵a1=,a n+1=1-,∴a2=1-=-1,a3=1-=2,a4=1-,a5=1-=-1,a6=1-=2,∴a n+3k=a n(n∈N*,k∈N*).∴a2 015=a2+3×671=a2=-1.答案:B6.已知f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+…+f(n)不能等于()A.f(1)+2f(1)+…+nf(1)B.fC.D.f(1)解析:f(x+y)=f(x)+f(y),令x=y=1,得f(2)=2f(1),令x=1,y=2,f(3)=f(1)+f(2)=3f(1)︙f(n)=nf(1),所以f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1).所以A,D正确.又f(1)+f(2)+…+f(n)=f(1+2+…+n)=f,所以B也正确.故选C.答案:C7.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,依此类推,则每组内奇数之和S n与其组的编号数n的关系是() A.S n=n2 B.S n=n3C.S n=n4D.S n=n(n+1)解析:∵当n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33;∴归纳猜想S n=n3,故选B.答案:B8.在等差数列{a n}中,若a n>0,公差d>0,则有a4a6>a3a7,类比上述性质,在等比数列{b n}中,若b n>0,公比q>1,则b4,b5,b7,b8的一个不等关系是()A.b4+b8>b5+b7B.b4+b8<b5+b7C.b4+b7>b5+b8D.b4+b7<b5+b8解析:b5+b7-b4-b8=b4(q+q3-1-q4)=b4(q-1)(1-q3)=-b4(q-1)2(1+q+q2)=-b4(q-1)2.∵b n>0,q>1,∴-b4(q-1)·<0,∴b4+b8>b5+b7.答案:A9.已知x>0,不等式x+≥2,x+≥3,x+≥4,…,可推广为x+≥n+1,则a的值为()A.2nB.n2C.22n-2D.n n解析:由x+≥2,x+=x+≥3,x+=x+≥4,…,可推广为x+≥n+1,故a=n n.答案:D10.将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 012项与5的差,即a2 012-5=()A.2 018×2 012B.2 018×2 011C.1 009×2 012D.1 009×2 011解析:由已知可得a2-a1=4a3-a2=5a4-a3=6……a2 012-a2 011=2 014.以上各式相加得a2 012-a1==1 009×2 011.∵a1=5,∴a2 012-5=1 009×2 011.答案:D第Ⅱ卷(非选择题共60分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.在△ABC中,D为BC的中点,则),将命题类比到三棱锥中得到的命题为.答案:在三棱锥A-BCD中,G为△BCD的重心,则)12.用数学归纳法证明+…+(n>1且n∈N*),第一步要证明的不等式是.解析:∵n>1,∴第一步应证明当n=2时不等式成立,即.答案:13.f(n)=1++…+(n∈N*),经计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,推测当n≥2时,有.解析:观测f(n)中n的规律为2k(k=1,2,…),不等式右侧分别为,k=1,2,…,所以f(2n)>(n≥2).答案:f(2n)>(n≥2)14.若定义在区间D上的函数f(x)对于D上的n个值x1,x2,…,x n,总满足[f(x1)+f(x2)+…+f(x n)]≤f,称函数f(x)为D上的凸函数;现已知f(x)=sin x在(0,π)上是凸函数,则△ABC中,sin A+sin B+sin C的最大值是.解析:因为f(x)=sin x在(0,π)上是凸函数(小前提),所以(sin A+sin B+sin C)≤sin(结论),即sin A+sin B+sin C≤3sin.因此,sin A+sin B+sin C的最大值是.答案:15.观察下图:则第行的各数之和等于2 0112.解析:经观察知,图中的第n行的各数构成一个首项为n,公差为1,共(2n-1)项的等差数列,其各项和为:S n=(2n-1)n+=(2n-1)n+(2n-1)(n-1)=(2n-1)2.令(2n-1)2=2 0112,得2n-1=2 011,故n=1 006.答案:1 006三、解答题(本大题共5小题,共40分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题6分)已知a>b>c,且a+b+c=0,求证:.证明:因为a>b>c,且a+b+c=0,所以a>0,c<0.要证明原不等式成立,只需证明a,即证b2-ac<3a2,从而只需证明(a+c)2-ac<3a2,即(a-c)(2a+c)>0,因为a-c>0,2a+c=a+c+a=a-b>0,所以(a-c)(2a+c)>0成立,故原不等式成立.17.(本小题6分)已知实数x,且有a=x2+,b=2-x,c=x2-x+1,求证:a,b,c中至少有一个不小于1.证明:假设a,b,c都小于1,即a<1,b<1,c<1,则a+b+c<3.∵a+b+c=+(2-x)+(x2-x+1)=2x2-2x+=2+3,且x为实数,∴2+3≥3,即a+b+c≥3,这与a+b+c<3矛盾.∴假设不成立,原命题成立.∴a,b,c中至少有一个不小于1.18.(本小题8分)先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,且a1+a2=1,求证:.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+.因为对一切x∈R,恒有f(x)≥0,所以Δ=4-8()≤0,从而得.(1)若a1,a2,…,a n∈R,且a1+a2+…+a n=1,请写出上述结论的推广式;(2)参考上述证法,对你推广的结论加以证明.(1)解:若a1,a2,…,a n∈R,a1+a2+…+a n=1,则+…+.(2)证明:构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x++…+=nx2-2x++…+.因为对一切x∈R,都有f(x)≥0,所以Δ=4-4n(+…+)≤0,从而证得+…+.19.(本小题10分)已知等差数列{a n}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{b n}的前n项和为S n,且S n=1-b n.(1)求数列{a n},{b n}的通项公式;(2)记c n=a n·b n,求证:c n+1≤c n.(1)解:∵a3,a5是方程x2-14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差d==2.∴a n=a5+(n-5)d=2n-1.由题意得,当n=1时,b1=S1=1-,∴b1=.当n≥2时,b n=S n-S n-1=(b n-1-b n),∴b n=b n-1(n≥2).∴数列{b n}是以为首项,为公比的等比数列.∴b n=.(2)证明:由(1)知,c n=a n·b n=,c n+1=,∴c n+1-c n=≤0.∴c n+1≤c n.20.(本小题10分)用数学归纳法证明12+32+52+…+(2n-1)2=n(4n2-1)(n∈N*).证明:(1)当n=1时,左边=12,右边=×1×(4×1-1)=1,左边=右边,等式成立.(2)假设当n=k时,等式成立,即12+32+52+…+(2k-1)2=k(4k2-1),则当n=k+1时,12+32+52+…+(2k-1)2+(2k+1)2=k(4k2-1)+(2k+1)2=k(2k+1)(2k-1)+(2k+1)2=(2k+1)[k(2k-1)+3(2k+1)]=(2k+1)(2k2+5k+3)=(2k+1)(k+1)(2k+3)=(k+1)(4k2+8k+3)=(k+1)[4(k+1)2-1],即当n=k+1时,等式成立.由(1)(2)可知,对一切n∈N*等式成立.。

高二数学选修2-2练习题.doc.docx

高二数学选修2-2练习题.doc.docx
0.2
0.3
0.4
⑶P(2
x<4)
P( x
2)
P( x
3)
0.20.3
0.5
B组答案
13—17. BABDD 18.
16
19. 15
21
22、解:(1)由题知,总得分X的概率分布列为:
2
3
21. 0.135
X-300-100100300
P
0.23
C320.220.8 C320.2 0.82
0.83
∴EX=3000.23( 100) C320.220.8100 C320.2 0.82300 0.83
X的数学期望EX
6
X
0
1
2
3
P
a
1
1
b
3
6
则a=_____
___.
9、一个袋中有
10个大小相同的小球,其中
6个红球,4个白球,现从中摸
3个,至少摸到2
个白球的概率是__________________.
三.解答题:本大题共
3小题,共
41分,解答题应写出文字说明、证明过程或演算步骤
.
10、(本题
12分)有品,其中
21、已知Y~N(3,1),P(4<Y<5)=_____________.
六、解答 :本大 共3小 ,共41分,解答 写出文字 明、 明 程或演算步 。
22、某考生参加一种 ,需回答三个 , 定:每 回答正确得
100分,回答不正确得
-100
分。已知 考生每 回答正确的概率都是
0.8,且各 回答正确与否相互之 没有
∴所求概率P(A)=19
36
(2)由 分析知,X的可能取0,1,2,

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)

一、选择题1.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞4.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或155.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞ D .()8,+∞6.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞7.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞8.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞9.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦10.内接于半径为R 的球且体积最大的圆柱体的高为( )A .3R B .3R C .2R D .2R 11.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .012.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .12二、填空题13.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫=⎪⎝⎭,其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.已知函数()2xe f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.已知函数()321213f x x x ax =+-+,若函数()f x 在()2,2-上有极值,则实数a 的取值范围为______. 18.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 19.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.已知函数()cos x f x e x x =-,()(sin 1)g x x x =-. (1)讨论()f x 在区间(,0)2π-上的单调性;(2)判断()()f x g x -在区间[,]22ππ-上零点的个数,并给出证明. 22.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围.23.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围. 24.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.25.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.4.C解析:C 【分析】由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.5.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.6.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e >04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭xsin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.7.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.8.B解析:B 【解析】令()()()()()0,(0)1x xf x f x f xg x g x g e e-=∴=<'=' 所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等9.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.10.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-, 故圆柱的体积()23214h r h h R h πππ=⨯=-+, 故可得()223,(02)4V h h R h R ππ<'=-+<, 令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭. 即当23h =时,圆柱的体积最大. 故选:A .【点睛】 本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.11.D解析:D【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x =的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点. 故选:D .【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题. 12.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.二、填空题13.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x '-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫⎪⎝⎭. 【点睛】 关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33 【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值.【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增,(1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当 解析:2,12e ⎛⎤-∞ ⎥⎝⎦ 【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立,所以()()g x xf x =,在()0,x ∈+∞上是增函数,所以()230x g x e ax '=-≥,在()0,x ∈+∞上是恒成立, 即23xe a x≤,在()0,x ∈+∞上是恒成立, 令2()3xe h x x=, 所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e , 所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦. 故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求出函数的导数利用函数的极值点转化列出不等式求解即可【详解】解:可得导函数的对称轴为x =﹣1f (x )在(﹣22)上有极值可得或可得或解得故答案为:【点睛】本题考查函数的导数的应用函数的极值的 解析:1,42⎛⎫- ⎪⎝⎭【分析】求出函数的导数,利用函数的极值点,转化列出不等式求解即可.【详解】解:()321213f x x x ax =+-+, 可得()'222f x x x a =+-,导函数的对称轴为x =﹣1,f (x )在(﹣2,2)上有极值,可得(2)0(1)0f f >⎧⎨-<''⎩或(2)0(1)0f f ->⎧⎨-<''⎩, 可得44201220a a +->⎧⎨--<⎩或44201220a a -->⎧⎨--<⎩, 解得1,42a ⎛⎫∈- ⎪⎝⎭. 故答案为:1,42⎛⎫-⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及计算能力. 18.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x -'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x =在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-.故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.19.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值.【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162a h +=, 即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答 解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++, 即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>,则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>, 即为()()()lg lg 22f x f x f +->, 即有()()lg 2f x f >, 可得()()lg 2f x f >, 即有lg 2x >,即lg 2x >或lg 2x <-,解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)()f x 在(,0)2π-上单调递减;(2)有且仅有2个零点. 证明见解析.【分析】(1)求出函数的导数,根据导函数的单调性判断即可;(2)令()()()cos sin x F x f x g x e x x x =-=-,求出函数的导数,通过讨论x 的范围,求出函数的单调区间,从而求出函数的零点个数即可证明结论成立.【详解】(1)()cos sin 1cos()14x x x f x e x e x x π⎛⎫=--=+- ⎪⎝⎭',()cos sin 44x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭'⎭⎝'⎝⎭ 2cos()2sin 2x x e x e x π=+=-.(,0)2x π∈-,sin 0x ∴<,()0f x ''∴>,所以()'f x 在(,0)2π-上单调递增,()(0)0f x f ''<=, ()f x ∴在(,0)2π-上单调递减.(2)()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 证明:令()()()cos sin x F x f x g x e x x x =-=-,所以()()()cos sin cos sin x F x ex x x x x '=--+, ①当,02x ⎡⎤∈-⎢⎥⎣⎦π时, 因为()()cos sin 0,cos sin 0x x x x x ->-+>,()()0,F x F x '∴>在02π⎡⎤-⎢⎥⎣⎦,单调递增, 又()010,022F F ππ⎛⎫=>-=-< ⎪⎝⎭. ()F x ∴在02π⎡⎤-⎢⎥⎣⎦,上有一个零点; ②当0,4x π⎛⎤∈ ⎥⎝⎦时,cos sin 0,0x x x e x ≥>>>,()cos sin sin sin sin ()0x x x F x e x x x e x x x x e x ∴=-≥-=->恒成立.()F x ∴在04π⎛⎤ ⎥⎝⎦,上无零点;③当,42x ππ⎛⎤∈ ⎥⎝⎦时, 0cos sin x x <<, ()()()cos sin cos sin 0x F x e x x x x x '∴=--+<,()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上单调递减;又40,022424F F e πππππ⎫⎛⎫⎛⎫=-<=->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上必存在一个零点; 综上,()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞.【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】(1)()()3231x f x e x x a x '=-++-当2a =-时,()()()()()3233311x x f x e x x x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负,∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减,有()21f e-=-,()224f e =,()12f e =-,故()f x 在[]1,2-上的最大值为24e ,最小值为2e -;(2)由()()3231x f x e x x x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞.【点睛】(1)利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性;③利用单调性判断极值点,比较极值和端点值得到最值即可.(2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:①数形结合法;②分离参数法;③构造函数法.23.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x ≥+在[]2,5上恒成立,设()13m x x x =+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围.【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-,由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<; ∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =; 函数()g x 极小值点为0,对应的极小值为()00g =.(2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增,∴2320cx x c -+≥在[]2,5上恒成立,即 2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 24.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性;(2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果.【详解】(1)由题意得:()22xf x e a '=-, 当0a ≤时,()0f x '>,()f x ∴在R 上单调递增;当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减; 当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意;当0a =时,2()0x f x e =>恒成立,满足题意.当0a >时,()f x 在1ln 22a x =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭, 令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立. 综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.25.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -, 直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-.综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。

高中数学选修2-2分章节测试卷(含答案)

高中数学选修2-2分章节测试卷(含答案)

第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。

2013版高二数学(人教B版)选修2-2同步练习2-1-1 Word版含答案

2013版高二数学(人教B版)选修2-2同步练习2-1-1 Word版含答案

选修2-2 2.1.1一、选择题1.已知数列{a n}中,a1=1,当n≥2时,a n=2a n-1+1,依次计算a2,a3,a4后,猜想a n的一个表达式是()A.n2-1 B.(n-1)2+1C.2n-1 D.2n-1+1[答案] C[解析]a2=2a1+1=2×1+1=3,a3=2a2+1=2×3+1=7,a4=2a3+1=2×7+1=15,利用归纳推理,猜想a n=2n-1,故选C.2.(2010·山东卷文,10)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=() A.f(x) B.-f(x)C.g(x) D.-g(x)[答案] D[解析]本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,∴g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理能力的考查.3.我们把4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如下图),则第n-1个正方形数是()A.n(n-1)B.n(n+1)C.n2D.(n+1)2[答案] C[解析]第n-1个正方形数的数目点子可排成n行n列,即每边n个点子的正方形,∴点数为n2.故选C.4.根据给出的数塔猜测123456×9+7等于()1+9×2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111…A .1111110B .1111111C .1111112D .1111113 [答案] B5.类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边的一半;(3)三内角平分线交于一点.可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14; (3)四面体的六个二面角的平分面交于一点.其中类比推理方法正确的有( )A .(1)B .(1)(2)C .(1)(2)(3)D .都不对 [答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.故选C.6.图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A .白色B .黑色C .白色可能性大D .黑色可能性大[答案] A[解析] 由图知:三白二黑周而复始相继排列,∵36÷5=7余1,∴第36颗珠子的颜色是白色.7.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,则猜想a n =( )A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1 D .2sin θ2n [答案] B [解析] ∵a 1=2cos θ,a 2=2+2cos θ=21+cos θ2=2cos θ2,a 3=2+2a 2=21+cos θ22=2cos θ4……,猜想a n =2cos θ2n -1.故选B. 8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A .①B .①②C .①②③D .③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.故选C.9.把3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第六个三角形数是( )A .27B .28C .29D .30[答案] B[解析] 观察归纳可知第n -1个三角形数共有点数:1+2+3+4+…+n =n (n +1)2个,∴第六个三角形数为7×(7+1)2=28.故选B. 10.已知f (x )是R 上的偶函数,对任意的x ∈R 都有f (x +6)=f (x )+f (3)成立,若f (1)=2,则f(2005)等于()A.2005 B.2C.1 D.0[答案] B[解析]f(3)=f(-3)+f(3)=2f(3),所以f(3)=0.所以f(x+6)=f(x)+f(3)=f(x),即f(x)的最小正周期为6.所以f(2005)=f(1+334×6)=f(1)=2.故选B.二、填空题11.在平面上,若两个正三角形的边长比为12,则它们的面积比为1 4.类似地,在空间中,若两个正四面体的棱长比为12,则它们的体积比为________.[答案]18[解析]V1V2=13S1h113S2h2=S1S2·h1h2=14×12=18.12.观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,…由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=________.[答案]24n-1+(-1)n22n-1[解析]由归纳推理,观察等式右边23-2,27+23,211-25,215+27,…,可以看到右边第一项的指数3,7,11,15,…成等差数列,公差为4,首项为3,通项为4n-1;第二项的指数1,3,5,7,…,通项为2n-1.故得结论24n-1+(-1)n22n-1.13.将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.[答案] n 2-n +62[解析] 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行从左到右的第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 14.(2010·湖南理,15)若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.[答案] 2 n 2[解析] 因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3.所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16.猜想((a n )*)*=n 2.三、解答题15.在△ABC 中,不等式1A +1B +1C ≥9π成立, 在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立, 在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?[解析] 根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n 2(n -2)π(n ≥3且n ∈N *).∴在n 边形A 1A 2…A n 中:1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3且n ∈N *). 16.在数列{a n }中,a 1=1,a n +1=2a n 2+a n,n ∈N +,猜想数列的通项公式并证明. [解析] {a n }中a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式a n =2n +1(n ∈N +). 证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12, 即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =1+(n -1)12=n 2+12,即通项公式为a n =2n +1(n ∈N +). 17.如图,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF cos ∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.[解析] (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN .∴BB 1⊥MN .又CC 1∥BB 1,∴CC 1⊥MN .(2)在斜三棱柱ABC -A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2SBCC 1B 1·SACC 1A 1cos α.其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角.∵CC 1⊥平面PMN ,∴上述的二面角的平面角为∠MNP .在△PMN 中,PM 2=PN 2+MN 2-2PN ·MN cos ∠MNP⇒PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP , 由于S BCC 1B 1=PN ·CC 1,S ACC 1A 1=MN ·CC 1,S ABB 1A 1=PM ·BB 1=PM ·CC 1,∴有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2S BCC 1B 1·S ACC 1A 1·cos α.18.若a 1、a 2∈R +,则有不等式a 21+a 222≥⎝⎛⎭⎫a 1+a 222成立,此不等式能推广吗?请你至少写出两个不同类型的推广.[解析] 本题可以从a 1,a 2的个数以及指数上进行推广.第一类型:a 21+a 22+a 233≥(a 1+a 2+a 33)2, a 21+a 22+a 23+a 244≥(a 1+a 2+a 3+a 44)2,…, a 21+a 22+…+a 2n n ≥(a 1+a 2+…+a n n)2; 第二类型:a 31+a 322≥(a 1+a 22)3, a 41+a 422≥(a 1+a 22)4, …,a n 1+a n 22≥(a 1+a 22)n ; 第三类型:a 31+a 32+a 333≥(a 1+a 2+a 33)3,…, a m 1+a m 2+…+a m n n ≥(a 1+a 2+…+a n n)m .上述a1、a2、…、a n∈R+,m、n∈N*.。

期末高二数学选修2-2、2-3测试题(含答案)

期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .1 3.定义运算a cad bc b d=-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i +取最大值时的复数z 为 . 13.已知数列{}a n 为等差数列,则有,02321=+-a a a 0334321=-+-a a a aa a a a a 123454640-+-+=类似上三行,第四行的结论为__________________________。

高二数学选修2-2(B版)_同步练习:数学归纳法2

高二数学选修2-2(B版)_同步练习:数学归纳法2

数学归纳法一、选择题1.用数学归纳法证明1+q +q 2+…+q n +1=q n +2-qq -1(n ∈N *,q ≠1),在验证n=1等式成立时,等式左边的式子是( )A .1B .1+qC .1+q +q 2D .1+q +q 2+q 3[答案] C[解析] 左边=1+q +q 1+1=1+q +q 2.故选C.2.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从n =k 到n =k +1,左边的式子之比是( )A.12k +1B .122k +1C.2k +1k +1D .2k +3k +1[答案] B [解析] k +1k +2k +3…k +k k +1+1k +1+2…k +1+k +1=k +1k +2k +3…2k k +2k +3…2k 2k +12k +2=122k +1.故选B.3.用数学归纳法证明1n +1+1n +2+…+12n >1314(n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边( )A .增加了一项12k +1B .增加了两项12k +1+12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对 [答案] C[解析] n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2∴增加了12k +1+12k +2,减少了一项1k +1. 故选C.4.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(n ∈N *,a ≠1),在验证n=1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.5.某个与正整数n 有关的命题,如果当n =k (k ∈N *)时该命题成立,则可推得n =k +1时该命题也成立,现已知n =5时命题不成立,那么可推得( )A .当n =4时该命题不成立B .当n =6时该命题不成立C .当n =4时该命题成立D .当n =6时该命题成立 [答案] A[解析] 由命题及其逆否命题的等价性知选A. 6.等式12+22+32+…+n 2=12(5n 2-7n +4)( ) A .n 为任何正整数都成立 B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立 [答案] B[解析] 经验证,n =1,2,3时成立,n =4,5,…不成立.故选B.7.用数学归纳法证明某命题时,左式为12+cosα+cos3α+…+cos(2n-1)α(α≠kπ,k∈Z,n∈N*),在验证n=1时,左边所得的代数式为()A.1 2B.12+cosαC.12+cosα+cos3αD.12+cosα+cos3α+cos5α[答案] B[解析]令n=1,左式=12+cosα.故选B.8.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3[答案] A[解析]因为从n=k到n=k+1的过渡,增加了(k+1)3,减少了k3,故利用归纳假设,只需将(k+3)3展开,证明余下的项9k2+27k+27能被9整除.二、填空题9.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到________.[答案]1+2+22+…+2k-1+2k=2k+1-110.用数学归纳法证明当n∈N+时,1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为__________,从k→k+1时需增添的项是________.[答案]1+2+22+23+2425k+25k+1+25k+2+25k+3+25k+411.使不等式2n>n2+1对任意n≥k的自然数都成立的最小k值为________.[答案] 5[解析]25=32,52+1=26,对n≥5的所有自然数n,2n>n2+1都成立,自己用数学归纳法证明之.三、解答题12.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n·1·3·5·…·(2n-1)(n∈N*).[证明](1)当n=1时,等式左边=2,右边=2×1=2,∴等式成立.(2)假设n=k (k∈N*)时等式成立.即(k+1)(k+2)…(k+k)=2k·1·3·5·…·(2k-1)成立.那么当n=k+1时,(k+2)(k+3)…(k+k)(2k+1)(2k+2)=2(k+1)·(k+2)·(k+3)·…·(k+k)·(2k+1)=2k+1·1·3·5·…·(2k-1)[2·(k+1)-1]即n=k+1时等式成立.由(1)、(2)可知,对任何n∈N*等式均成立.一、选择题1.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3…(2n-1)(n∈N+)”,则“从k到k+1”左端需乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时左式=(k+1)(k+2)(k+3)n=k+1时左式=(k+2)(k+3)…(2k+1)(2k+2)故“从k到k+1”左端需乘2k+12k+2k+1=2(2k+1).故选B.2.已知数列{a n},a1=1,a2=2,a n+1=2a n+a n-1(k∈N*),用数学归纳法证明a4n能被4整除时,假设a4k能被4整除,应证()A.a4k+1能被4整除B.a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除[答案] D[解析]在数列{a4n}中,相邻两项下标差为4,所以a4k后一项为a4k+4.故选D.3.凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为() A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2[答案] C[解析]由凸n边形变为凸n+1边形后,应加一项,这个顶点与不相邻的(n -2)个顶点连成(n-2)条对角线,同时,原来的凸n边形的那条边也变为对角线,故有f(n+1)=f(n)+(n-2)+1.故选C.4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n =k到n=k+1”左边需增乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时,等式为(k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),n=k+1时,等式左边为(k+1+1)(k+1+2)…(k+1+k+1)=(k+2)(k+3)…(2k)·(2k+1)·(2k+2),右边为2k+1·1·3·…·(2k-1)(2k+1).左边需增乘2(2k+1),故选B.二、填空题5.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,待证表达式应为________.[答案]1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)26.用数学归纳法证明:1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:①当n=1时,左边=20=1,右边=21-1=1,不等式成立;②假设n=k时,等式成立,即1+2+22+…+2k-1=2k-1.则当n=k+1时,1+2+22+…+2k-1+2k=1-2k+11-2=2k+1-1,所以n=k+1时等式成立.由此可知对任意正整数n,等式都成立.以上证明错在何处?____________. [答案] 没有用上归纳假设[解析] 由数学归纳法证明步骤易知其错误所在.7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+n 2+…+22+12.用数学归纳法证明S n =n 2n +12时,第二步从k 到k +1应添加的项为________.[答案]k +2·2k +12[解析] S k +1-S k =k +12k +1+12-k 2k +12=k +2·2k +12.三、解答题8.在数列{a n }中,a 1=a 2=1,当n ∈N *时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }的各项均为3的倍数.[证明] (1)∵a 1=a 2=1, 故a 3=a 1+a 2=2,a 4=a 3+a 2=3.∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数. 则n =k +1时,b k +1=a 4(k +1)=a (4k +4)=a 4k +3+a 4k +2 =a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设,a 4k 是3的倍数,故可知b k +1是3的倍数. ∴n =k +1时命题正确.综合(1)、(2)可知,对于任意正整数n ,数列{b n }的各项都是3的倍数. 9.数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74. 由此猜想a n =2n -12n -1(n ∈N *)(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k -12k -1,当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ∴a k +1=2+a k 2=2k +1-12k =2k +1-12k +1-1,∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n -12n -1成立.。

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

高中数学选修2-2综合测试题及答案

高中数学选修2-2综合测试题及答案

选修2-2综合测试题2一、选择题1.在数学归纳法证明“1211(1)1n na a a a a n a+*-++++=≠∈-N ,”时,验证当1n =时,等式的左边为( ) A.1B.1a -C.1a + D.21a -2.已知三次函数3221()(41)(1527)23f x x m x m m x =--+--+在()x ∈-+,∞∞上是增函数,则m 的取值范围为(A.m <3.设(f A.1,4A.y =5.数列A.676.已知A.x >7.复数A.第一象限 B.第二象限 C.第三象限 D.第四象限8.定义A B B C C D D A ****,,,的运算分别对应下图中的(1),(2),(3),(4),那么,图中(A),(B)可能是下列( )的运算的结果 A.B D *,A D *B.B D *,A C * C.B C *,A D *D.C D *,A D *9.用反证法证明命题“a b ∈N ,,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )A.a ,b 都能被5整除B.a ,b 都不能被5整除 C.a 不能被5整除D.a ,b 有1个不能被5整除 10.下列说法正确的是( )A.函数y x =有极大值,但无极小值B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值D.函数y x =无极值11.对于两个复数12α=,12β=-,有下列四个结论:①1αβ=;②1αβ=;③1αβ=;17.设n *∈N 且sin cos 1x x +=-,求s i n c o snnx x +的值.(先观察1234n =,,,时的值,归纳猜测sin cos n n x x +的值.)18.设关于x 的方程2(tan )(2)0x i x i θ-+-+=, (1)若方程有实数根,求锐角θ和实数根;(2)证明:对任意ππ()2k k θ≠+∈Z ,方程无纯虚数根.19.设0t ≠,点(0)P t ,是函数3()f x x ax =+与2()g x bx c =+的图象的一个公共点,两函数的图象在点P处有相同的切线.(1)用t 表示a b c ,,;(2)若函数()()y f x g x =-在(13)-,上单调递减,求t 的取值范围.20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若a b c >>,且0a b c ++=,<.21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为(0)k k >,且知当利率为0.012时,存款量为1.44亿;又贷款的利率为4.8%时,银行吸收的存款能全部放贷22(1)求(217当2n =当3n =而sin x +当4n =18由于a ,tan θ∈R ,那么21tan tan 20tan 111a a a a θθ=-⎧--=⎧⇒⎨⎨=+=⎩⎩,,.又π02θ<<,得1π4a θ=-⎧⎪⎨=⎪⎩,.(2)若有纯虚数根()i ββ∈R ,使2()(tan )()(2)0i i i i βθβ-+-+=,即2(2)(tan 1)0i βββθ-+--+=,由β,tan θ∈R ,那么220tan 10βββθ⎧-+-=⎨+=⎩,,由于220ββ-+-=无实数解.故对任意ππ()2k k θ≠+∈Z ,方程无纯虚数根19、解:(1)因为函数()f x ,()g x 的图象都过点(0)t ,,所以()0f t =,即30t at +=. 因为0t ≠,所以2a t =-.()0g t =,即20bt c +=,所以c ab =. 又因为()()f x g x ,在点(0)t ,处有相同的切线,所以()()f t g t ''=,而2()3f x x a '=+,()2g x bx '=,所以232t a bt +=. 将2a 323(2当y '由y '若t ][)3+,∞.20a b c ++∵21、解:由题意,存款量2()f x kx =,又当利率为0.012时,存款量为1.44亿,即0.012x =时, 1.44y =;由21.44(0.012)k=·,得10000k =,那么2()10000f x x =,银行应支付的利息3()()10000g x x f x x ==·, 设银行可获收益为y ,则2348010000y x x =-,由于296030000y x x '=-,则0y '=,即2960300000x x -=,得0x =或0.032x =. 因为,(00.032)x ∈,时,0y '>,此时,函数2348010000y x x =-递增;(0.0320.048)x ∈,时,0y '<,此时,函数2348010000y x x =-递减;故当0.032x =时,y 有最大值,其值约为0.164亿.22、解:(1)由1()a f x =,得21()a f a ==,32()a f a =43()a f a =(2证明:((2由(1)。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC ­A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。

2022成才之路·人教B版数学·选修2-2练习:第2章知能基础测试

2022成才之路·人教B版数学·选修2-2练习:第2章知能基础测试

其次章知能基础测试时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.k 棱柱有f (k )个对角面,则k +1棱柱的对角面个数f (k +1)为导学号05300577( )A .f (k )+k -1B .f (k )+k +1C .f (k )+kD .f (k )+k -2答案] A解析] 增加的一条侧棱与其不相邻的k -2条侧棱形成k -2个对角面,而过与其相邻的两条侧棱的截面原来为侧面,现在也成了一个对角面,故共增加了k -1个对角面,∴f (k +1)=f (k )+k -1.故选A.2.已知a >0,b >0,a 、b 的等差中项为12,且α=a +1a ,β=b +1b,则α+β的最小值为导学号05300578( )A .3B .4C .5D .6答案] C解析] 由已知得a +b =1,∴α+β=a +1a +b +1b =1+a +b a +a +b b =3+b a +ab≥3+2=5.故选C.3.已知f (x )=x 3+x (x ∈R ),a 、b 、c ∈R ,且a +b >0,b +c >0,c +a >0,则f (a )+f (b )+f (c )的符号为导学号05300579( )A .正B .负C .等于0D .无法确定答案] A解析] ∵f ′(x )=3x 2+1>0, ∴f (x )在R 上是增函数.又a +b >0,∴a >-b .∴f (a )>f (-b ). 又f (x )=x 3+x 是奇函数, ∴f (a )>-f (b ),即f (a )+f (b )>0. 同理:f (b )+f (c )>0,f (c )+f (a )>0,∴f (a )+f (b )+f (c )>0,故选A.4.下列代数式(其中k ∈N *)能被9整除的是导学号05300580( ) A .6+6·7k B .2+7k -1 C .2(2+7k +1) D .3(2+7k )答案] D解析] 特值法:当k =1时,明显只有3(2+7k )能被9整除,故选D. 证明如下:当k =1时,已验证结论成立,假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36. ∵3(2+7n )能被9整除,36能被9整除, ∴21(2+7n )-36能被9整除, 这就是说,k =n +1时命题也成立.故命题对任何k ∈N *都成立.5.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为导学号05300581( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c答案] A解析] 令n =1,得1=3(a -b )+c ,令n =2,得1+2×3=9(2a -b )+c , 令n =3,得1+2×3+3×32=27(3a -b )+c . 即⎩⎪⎨⎪⎧3a -3b +c =118a -9b +c =781a -27b +c =34,∴a =12,b =c =14.故选A.6.观看下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=导学号05300582( )A .28B .76C .123D .199答案] C解析] 法一:由a +b =1,a 2+b 2=3得ab =-1,代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123,故选C.法二:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123,故选C.7.观看下列各式:55=3125,56=15625,57=78125,…,则52021的末四位数字为导学号05300583( )A .3125B .5625C .0625D .8125答案] D解析] ∵55=3125,56=15625,57=78125, 58末四位数字为0625,59末四位数字为3125, 510末四位数字为5625,511末四位数字为8125, 512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替消灭, ∴52021=54×502+7末四位数字为8125.8.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为导学号05300584( )A.13 B .43C .2D .83答案] B解析] 由f ′(x )的图象知,f ′(x )=2x +2,设f (x )=x 2+2x +c ,由f (0)=0知,c =0,∴f (x )=x 2+2x ,由x 2+2x =0得x =0或-2.故所求面积S =-⎠⎛-2(x 2+2x )dx =⎪⎪-(13x 3+x 2)0-2=43. 9.平面上有n 个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f (n )块区域,有f (1)=2,f (2)=4,f (3)=8,则f (n )的表达式为导学号05300585( )A .2nB .n 2-n +2C .2n -(n -1)(n -2)(n -3)D .n 3-5n 2+10n -4 答案] B解析] 四个选项的前三项是相同的,但第四项f (4)=14(如图)就只有B 符合,从而否定A ,C ,D ,选B ,一般地,可用数学归纳法证明f (n )=n 2-n +2.故选B.10.已知等比数列a n =13n -1,其前n 项和为S n =∑k =1na k ,则S k +1与S k 的递推关系不满足导学号05300586( )A .S k +1=S k +13k +1B .S k +1=1+13S kC .S k +1=S k +a k +1D .S k +1=3S k -3+a k +a k +1答案] A解析] S k +1=a 1+a 2+…+a k +a k +1 =S k +a k +1.C 真. S k +1=1+13+…+13k=1+13×⎝ ⎛⎭⎪⎫1+13+…+13k -1=1+13S k .B 真. 3S k =3×⎝ ⎛⎭⎪⎫1+13+…+13k -1=3+1+13+…+13k -2=3+⎝ ⎛⎭⎪⎫1+13+…+13k -2+13k -1+13k -a k -a k +1=3+S k +1-a k -a k +1.D 真.事实上,S k +1=S k +a k +1=S k +13k .A 不真.故选A.11.下列结论正确的是导学号05300587( ) A .当x >0且x ≠1时,lg x +1lg x≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2D .当0<x ≤2时,x -1x 无最大值答案] B解析] A 错在lg x 的正负不清;C 错在等号成立的条件不存在;依据函数f (x )=x -1x 的单调性,当x =2时,f (2)max =32,故D 错.故选B.12.如图(1),在△ABC 中,AB ⊥AC 于点A ,AD ⊥BC 于点D ,则有AB 2=BD ·BC ,类似地有命题:如图(2),在三棱锥A -BCD 中,AD ⊥面ABC ,若A 在△BCD 内的射影为O ,则S 2△ABC =S △BCO ·S △BCD ,那么上述命题导学号05300588( )A .是真命题B .增加条件“AB ⊥AC ”后才是真命题 C .是假命题D .增加条件“三棱锥A -BCD 是正三棱锥”后才是真命题 答案] A解析] 由已知垂直关系,不妨进行如下类比:将题图(2)中的△ABC ,△BCO ,△BDC 分别与题图(1)中的AB ,BD ,BC 进行类比即可.严格推理如下:连结DO 并延长交BC 于点E ,连结AE ,则DE ⊥BC ,AE ⊥BC .由于AD ⊥面ABC ,所以AD ⊥AE .又由于AO ⊥DE ,所以AE 2=EO ·ED ,所以S 2△ABC=(12BC ·EA )2=(12BC ·EO )·(12BC ·ED )=S △BCO ·S △BCD .故选A.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.(2022·全国卷Ⅱ理,15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.导学号 05300589答案] 1和3解析] 为便利说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙动身,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一张,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必定是C ,最终由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .14.在平面上,我们用始终线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,假如用S 1、S 2、S 3表示三个侧面面积,S 表示截面面积,那么类比得到的结论是________.导学号05300590答案] S 2=S 21+S 22+S 23解析] 类比如下:正方形↔正方体;截下直角三角形↔截下三侧面两两垂直的三棱锥;直角三角形斜边平方↔三棱锥底面面积的平方;直角三角形两直角边平方和↔三棱锥三个侧面面积的平方和,结论S 2=S 21+S 22+S 23.证明如下:如图,作OE ⊥平面LMN ,垂足为E ,连接LE 并延长交MN 于F , ∵LO ⊥OM ,LO ⊥ON , ∴LO ⊥平面MON , ∵MN ⊂平面MON ,∴LO ⊥MN ,∵OE ⊥MN ,∴MN ⊥平面OFL ,∴S △OMN =12MN ·OF ,S △MNE =12MN ·FE ,S △MNL =12MN ·LF ,OF 2=FE ·FL ,∴S 2△OMN=(12MN ·OF )2=(12MN ·FE )·(12MN ·FL )=S △MNE ·S △MNL ,同理S 2△OML =S △MLE ·S △MNL ,S 2△ONL =S △NLE ·S △MNL ,∴S 2△OMN +S 2△OML+S 2△ONL =(S △MNE +S △MLE +S △NLE )·S △MNL =S 2△MNL ,即S 21+S 22+S 23=S 2.15.对于大于1的自然数m 的n 次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a ,而52的“分裂”中最大的数是b ,则a +b =________.导学号05300591答案] 30解析] 类比规律∴a =21,b =9故a +b =30.16.(2022·四川文,15)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′(yx 2+y 2,-xx 2+y 2);当P 是原点时,定义P 的“伴随点”为它自身.现有下列命题:导学号 05300592 ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”肯定共线. 其中的真命题是________(写出全部真命题的序号). 答案] ②③解析] 对于①,设A (0,3),则A 的“伴随点”为A ′(13,0),但是A ′(13,0)的“伴随点”为(0,-3),与A 不同,所以①错误;对于②,设单位圆C :x 2+y 2=1上的点P (x ,y ),点P 的“伴随点”为P ′(x ′,y ′),则有⎩⎨⎧x ′=yx 2+y 2y ′=-xx 2+y2,所以x ′2+y ′2=y 2(x 2+y 2)2+(-x )2(x 2+y 2)2=1x 2+y2=1,所以②正确;对于③,设P (x ,y )的“伴随点”为P ′(yx 2+y 2,-x x 2+y 2),P 1(x ,-y )的“伴随点”为P ′1(-y x 2+y 2,-xx 2+y 2),易知P ′(yx 2+y 2,-xx 2+y 2)与P ′1(-y x 2+y 2,-xx 2+y 2)关于y 轴对称,所以③正确;对于④,设原直线的解析式为Ax +By +C =0,其中A ,B不同时为0,且P (x 0,y 0)为该直线上一点,P (x 0,y 0)的“伴随点”为P ′(x ′,y ′),其中P ,P ′都不是原点,且⎩⎨⎧x ′=y 0x 20+y 2y ′=-x 0x 20+y2,则x 0=-(x 20+y 20)y ′,y 0=(x 20+y 20)x ′,将P (x 0,y 0)代入原直线方程,得-A (x 20+y 20)y ′+B (x 20+y 20)x ′+C =0,则-Ay ′+Bx ′+C x 20+y 20=0,由于x 20+y 20的值不确定,所以“伴随点”不肯定共线,所以④错误.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知a 、b 、c 是互不相等的非零实数.用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.导学号05300593证明] 假设三个方程中都没有两个相异实根, 则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0, Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0, 即(a -b )2+(b -c )2+(c -a )2≤0.由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.18.(本题满分12分)在圆x 2+y 2=r 2(r >0)中,AB 为直径,C 为圆上异于A 、B 的任意一点,则有k AC ·k BC=-1.你能用类比的方法得出椭圆x 2a 2+y 2b2=1(a >b >0)中有什么样的结论?并加以证明.导学号05300594解析] 类比得到的结论是:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,A 、B 分别是椭圆长轴的左右端点,点C (x ,y )是椭圆上不同于A 、B 的任意一点,则k AC ·k BC =-b 2a2证明如下:设A (x 0,y 0)为椭圆上的任意一点,则A 关于中心的对称点B 的坐标为B (-x 0,-y 0),点P (x ,y )为椭圆上异于A ,B 两点的任意一点,则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20.由于A 、B 、P 三点在椭圆上,∴⎩⎨⎧x 2a 2+y 2b 2=1,x 20a 2+y20b 2=1.两式相减得,x 2-x 20a 2+y 2-y 20b 2=0,∴y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a 2.故在椭圆x 2a 2+y 2b 2=1(a >b >0)中,长轴两个端点为A 、B 、P 为异于A 、B 的椭圆上的任意一点,则有k AB ·k BP=-b 2a2.19.(本题满分12分)已知a 、b ∈R ,求证:|a |+|b |1+|a |+|b |≥证明] 设f (x )=x1+x,x ∈0,+∞).设x 1、x 2是0,+∞)上的任意两个实数,且0≤x 1<x 2,则f (x 2)-f (x 1)=x 21+x 2-x 11+x 1=x 2-x 1(1+x 1)(1+x 2). 由于x 2>x 1≥0,所以f (x 2)>f (x 1).所以f (x )=x1+x 在0,+∞)上是增函数.(大前提)由|a |+|b |≥|a +b |≥0(小前提) 知f (|a |+|b |)≥f (|a +b |) 即|a |+|b |1+|a |+|b |≥|a +b |1+|a +b |成立.20.(本题满分12分)设a ,b ∈R +,且a≠b ,求证:a 3+b 3>a 2b +ab 2证明] 证法1:用分析法. 要证a 3+b 3>a 2b +ab 2成立,只需证(a +b )(a 2-ab +b 2)>ab (a +b )成立.又因a +b >0, 只需证a 2-ab +b 2>ab 成立.只需证a 2-2ab +b 2>0成立. 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0明显成立. 由此命题得证. 证法2:用综合法. a ≠b ⇒a -b ≠0⇒(a -b )2>0 ⇒a 2-2ab +b 2>0⇒a 2-ab +b 2>ab .留意到a ,b ∈R +,a +b >0,由上式即得(a +b )(a 2-ab +b 2)>ab (a +b ). ∴a 3+b 3>a 2b +ab 2.21.(本题满分12分)(2021·甘肃省会宁一中高二期中)用数学归纳法证明等式:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *)证明] (1)当n =1时,左边=12-22=-3,右边=-1×(2+1)=-3, 故左边=右边,∴当n =1时,等式成立; (2)假设n =k 时,等式成立,即12-22+32-…+(2k -1)2-(2k )2=-k (2k +1)成立, 那么n =k +1时,左边=12-22+32-…+(2k +1)2-(2k +2)2 =-k (2k +1)+(2k +1)2-4(k +1)2 =(2k +1)(2k +1)-k ]-4(k +1)2 =(k +1)(-2k -3) =-(k +1)2(k +1)+1],综合(1)、(2)可知等式12-22+32-42+…+(2k -1)2-(2n )2=-n (2n +1)对于任意正整数都成立.22.(本题满分14分)(2021·湖北理,22)已知数列{a n }的各项均为正数,b n =n ⎝⎛⎭⎫1+1n n a n (n ∈N +),e 为自然(1)求函数f (x )=1+x -e x 的单调区间,并比较⎝⎛⎭⎫1+1n n 与e 的大小; (2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推想计算b 1b 2…b n a 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n )1n ,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n .解析] (1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x.当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x >0时,f (x )<f (0)=0,即1+x <e x . 令x =1n ,得1+1n <e 1n ,即(1+1n )n <e.①(2)b 1a 1=1·(1+11)1=1+1=2; b 1b 2a 1a 2=b 1a 1·b 2a 2=2·2(1+12)2 =(2+1)2=32; b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32·3(1+13)3=(3+1)3=43.由此推想:b 1b 2…b na 1a 2…a n =(n +1)n .②下面用数学归纳法证明②.(1)当n =1时,左边=右边=2,②成立. (2)假设当n =k 时,②成立,即 b 1b 2…b ka 1a 2…a k=(k +1)k .当n =k +1时,b k +1=(k +1)(1+1k +1)k +1a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k (k +1)(1+1k +1)k +1=(k +2)k +1. 所以当n =k +1时,②也成立.依据(1)(2),可知②对一切正整数n 都成立.(3)由c n 的定义,②,算术-几何平均不等式, b n 的定义及①得 T n =c 1+c 2+c 3+…+c n=(a 1)11+(a 1a 2)12+(a 1a 2a 3)13+…+(a 1a 2…a n )1n=(b 1)112+(b 1b 2)123+(b 1b 2b 3)134+…(b 1b 2…b n )1n n +1≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n (n +1)=b 111×2+12×3+…+1n (n +1)]+b 212×3+13×4+…+1n (n +1)]+…+b n ·1n (n +1)=b 1(1-1n +1)+b 2(12-1n +1)+…+b n (1n -1n +1)<b 11+b 22+…+b nn=(1+11)1a 1+(1+12)2a 2+…+(1+1n )n a n<e a 1+e a 2+…+e a n =e S n . 即T n <e S n .。

北师大版高中数学选修2-2测试题全套及答案

北师大版高中数学选修2-2测试题全套及答案

北师大版高中数学选修2-2测试题全套及答案模块综合测评(时间150分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z=a+i的实部与虚部相等,则实数a=()A.-1B.1C.-2D.2【解析】z=a+i的虚部为1,故a=1,选B.【答案】B2.已知复数z=11+i,则z·i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】∵z=11+i=1-i2,∴z=12+12i,∴z·i=-12+1 2i.【答案】B3.观察:6+15<211, 5.5+15.5<211,4-2+17+2<211,……,对于任意的正实数a,b,使a+b<211成立的一个条件可以是()A.a+b=22B.a+b=21C.ab=20D.ab=21【解析】由归纳推理可知a+b=21.故选B.【答案】B4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=()A.-eB.-1C.1D.e【解析】∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x,∴f′(1)=2f′(1)+1,∴f′(1)=-1.【答案】B5.由①y=2x+5是一次函数;②y=2x+5的图像是一条直线;③一次函数的图像是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是()A.②①③B.③②①C.①②③D.③①②【解析】该三段论应为:一次函数的图像是一条直线(大前提),y=2x+5是一次函数(小前提),y=2x+5的图像是一条直线(结论).【答案】D6.已知函数y =f (x )的导函数y =f ′(x )的图像如图1所示,则( )图1A.函数f (x )有1个极大值点,1个极小值点B.函数f (x )有2个极大值点,2个极小值点C.函数f (x )有3个极大值点,1个极小值点D.函数f (x )有1个极大值点,3个极小值点【解析】 根据极值的定义及判断方法,检查f ′(x )的零点左右值的符号,如果左正右负,那么f (x )在这个点处取得极大值;如果左负右正,那么f (x )在这个点处取得极小值;如果左右都是正,或者左右都是负,那么f (x )在这个点处不是极值.由此可见,x 2是函数f (x )的极大值点,x 3是极小值点,x 1,x 4不是极值点. 【答案】 A7.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A.94e 2 B.2e 2C.e 2D.e 22【解析】 ∵f ′(x )=e x ,∴曲线在点(2,e 2)处的切线的斜率为k =f ′(2)=e 2,切线方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0,切线与x 轴和y 轴的交点坐标分别为A (1,0),B (0,-e 2),则切线与坐标轴围成的△OAB 的面积为12×1×e 2=e 22.【答案】 D8.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( ) A.a k +a k +1+…+a 2k B.a k -1+a k +…+a 2k -1 C.a k -1+a k +…+a 2k D.a k -1+a k +…+a 2k -2【解析】 由归纳推理可知,第k 项的第一个数为a k -1,且共有k 项.故选D. 【答案】 D9.函数f (x )=ax 3-x 在R 上为减函数,则( ) A.a ≤0 B.a <1C.a <2D.a ≤13 【解析】 由题意可知f ′(x )=3ax 2-1≤0在R 上恒成立,则a ≤0. 【答案】 A10.设a =⎠⎛10x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛10x 3d x ,则a ,b ,c 的大小关系( ) A .a>b>c B.b>a>c C .a>c>b D.b>c>a【解析】 由题意可得a =⎠⎛01x -13dx =32x 23⎪⎪⎪10=32;b =1-⎠⎛01x 12dx =1-23x 32⎪⎪⎪10=1-⎝ ⎛⎭⎪⎫23-0=13;c =⎠⎛01x 3dx =x 44⎪⎪⎪1=14.综上,a >b >c . 【答案】 A11.在数学归纳法的递推性证明中,由假设n =k 时成立推导n =k +1时成立时,f (n )=1+12+13+…+12n -1增加的项数是( )A.1B.2k +1C.2k -1D.2k【解析】 ∵f (k )=1+12+13+…+12k -1,又f (k +1)=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1.从f (k )到f (k +1)是增加了(2k +1-1)-2k +1=2k 项.【答案】 D12.已知函数f (x )=x 3-ln (x 2+1-x ),则对于任意实数a ,b (a +b ≠0),则f (a )+f (b )a +b的值为( )A.恒正B.恒等于0C.恒负D.不确定【解析】 可知函数f (x )+f (-x )=x 3-ln (x 2+1-x )+(-x )3-ln (x 2+1+x )=0,所以函数为奇函数,同时, f ′(x )=3x 2+1x 2+1>0,f (x )是递增函数,f (a )+f (b )a +b=f (a )-f (-b )a -(-b ),所以f (a )+f (b )a +b>0,所以选A .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.复数3+ii 2(i 为虚数单位)的实部等于________. 【解析】 ∵3+ii 2=-3-i ,∴其实部为-3.【答案】 -314.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第五个等式为________.【解析】 第n 个等式左边为1到n +1的立方和,右边为1+2+3+…+(n +1)的平方,所以第五个等式为13+23+33+43+53+63=212.【答案】 13+23+33+43+53+63=21215.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为__________.【解析】 由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为⎠⎜⎛π65π6⎝ ⎛⎭⎪⎫sin x -12dx =⎝ ⎛⎭⎪⎫-cos x -12x ⎪⎪⎪⎪5π6π6=3-π3.【答案】3-π316.已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【解析】 设x >0,则-x <0,f (-x )=e x -1+x . ∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x . ∵当x >0时,f ′(x )=e x -1+1, ∴f ′(1)=e 1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为 y -2=2(x -1),即2x -y =0.【答案】 2x -y =0三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i,若z 2+az +b =1+i ,求实数a ,b 的值.【解】 z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i=(3-i )(2-i )5=5-5i5=1-i .因为z 2+az +b =(1-i )2+a (1-i )+b =-2i +a -ai +b =(a +b )-(2+a )i =1+i ,所以⎩⎪⎨⎪⎧a +b =1,-(2+a )=1,解得⎩⎪⎨⎪⎧a =-3,b =4.18.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围. 【解】 (1)当a =-2时,f (x )=x 3-32x 2+3x +1, f ′(x )=3x 2-62x +3.令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞, 2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1, 2+1)上是减函数;当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数.(2)由f (2)≥0,得a ≥-54.当a ≥-54,x ∈(2,+∞)时,f ′(x )=3(x 2+2ax +1)≥3⎝ ⎛⎭⎪⎫x 2-52x +1=3⎝ ⎛⎭⎪⎫x -12(x -2)>0, 所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,+∞.19.(本小题满分12分)设等差数列{a n }的公差为d ,S n 是{a n }中从第2n -1项开始的连续2n -1项的和,即 S 1=a 1, S 2=a 2+a 3,S 3=a 4+a 5+a 6+a 7, ……S n =a 2n -1+a 2n -1+1+…+a 2n -1, ……若S 1,S 2,S 3成等比数列,问:数列{S n }是否成等比数列?请说明你的理由.【解】 ∵S 1,S 2,S 3成等比数列, ∴S 1=a 1≠0,且S 1·S 3=S 22,由S 1·S 3=S 22,得a 1(a 4+a 5+a 6+a 7)=(a 2+a 3)2,即a 1(4a 1+18d )=(2a 1+3d )2,2a 1d =3d 2.∴d =0或a 1=32d . 当d =0时,S n =2n -1a 1≠0,S n +1S n =2n a 12n -1a 1=2(常数),n ∈N +,{S n }成等比数列; 当a 1=32d 时,S n =a 2n -1+a 2n -1+1+a 2n -1=2n -1a 2n -1+2n -1(2n -1-1)2d=2n -1[a 1+(2n -1-1)d ]+2n -1(2n -1-1)2d=2n -1⎝ ⎛⎭⎪⎫32d ·2n -1+a 1-32d =32d ·4n -1≠0, S n +1S n =32d ·4n32d ·4n -1=4(常数),n ∈N +,{S n }成等比数列.综上所述,若S 1,S 2,S 3成等比数列,则{S n }成等比数列.20.(本小题满分12分)已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f (x )的解析式;(2)设函数g (x )=14f (x )+ax 3+92x 2-b (x ∈R ),其中a ,b ∈R ,若函数g (x )仅在x =0处有极值,求a 的取值范围.【解】 (1)因为f (x )在区间(0,+∞)上是单调增函数, 所以-m 2+2m +3>0,即m 2-2m -3<0, 所以-1<m <3,又m ∈Z ,所以m =0,1,2. 而m =0,2时,f (x )=x 3不是偶函数,m =1时, f (x )=x 4是偶函数, 所以f (x )=x 4.(2)由(1)知g (x )=14x 4+ax 3+92x 2-b ,则g ′(x )=x (x 2+3ax +9),显然x =0不是方程x 2+3ax +9=0的根. 为使g (x )仅在x =0处有极值, 必须x 2+3ax +9≥0恒成立,即有Δ=9a 2-36≤0,解不等式得a ∈[-2,2]. 这时,g (0)=-b 是唯一极值,所以a ∈[-2,2].21.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.【解】 (1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1, 因为a n >0,所以a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0,所以a 2=2-1,由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3,得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N +).证明:①当n =1时, a 1=1-0=1,命题成立; ②假设n =k (k ≥1,k ∈N +)时, a k =k -k -1成立,则n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k , 即a k +1=12⎝⎛⎭⎪⎫a k +1+1a k +1 -12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0. 所以a k +1=k +1-k ,则n =k +1时,命题成立. 则①②知,n ∈N +,a n =n -n -1.22.(本小题满分12分)设函数f (x )=a e x ln x +b ex -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.【解】 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+bx e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1.章末综合测评(一) 推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】C2.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①【解析】结合反证法的证明步骤可知,其正确步骤为③①②.【答案】B3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.【答案】B4.用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是()A.假设a,b,c都小于0B.假设a,b,c都大于0C.假设a,b,c中都不大于0D.假设a,b,c中至多有一个大于0【解析】用反证法证明“a,b,c中至少有一个大于0”,应先假设要证命题的否定成立.而要证命题的否定为:“假设a,b,c中都不大于0”,故选C.【答案】C5.用数学归纳法证明“5n-2n能被3整除”的第二步中,当n=k+1时,为了使用假设,应将5k+1-2k+1变形为()A.(5k-2k)+4·5k-2kB.5(5k-2k)+3·2kC.(5-2)(5k-2k)D.2(5k-2k)-3·5k【解析】5k+1-2k+1=5k·5-2k·2=5k·5-2k·5+2k·5-2k·2=5(5k-2k)+3·2k.【答案】B6.已知n为正偶数,用数学归纳法证明1-12+13-14+…-1n=2⎝⎛⎭⎪⎫1n+2+1n+4+…+12n时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n=________时等式成立.()A.k+1B.k+2C.2k+2D.2(k+2)【解析】根据数学归纳法的步骤可知,n=k(k≥2且k为偶数)的下一个偶数为n=k+2,故选B.【答案】B7.已知{b n}为等比数列,b5=2,则b1·b2·b3·b4·b5·b6·b7·b8·b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为()A.a1a2a3…a9=29B.a1+a2+a3+…+a9=29C.a1a2a3…a9=2×9D.a1+a2+a3+…+a9=2×9【解析】根据等差、等比数列的特征知,a1+a2+…+a9=2×9.【答案】D8.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B.【答案】 B9.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19且n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 11=1,则有( )A.b 1·b 2·…·b n =b 1·b 2·…·b 19-nB.b 1·b 2·…·b n =b 1·b 2·…·b 21-nC.b 1+b 2+…+b n =b 1+b 2+…+b 19-nD.b 1+b 2+…+b n =b 1+b 2+…+b 21-n 【解析】 令n =10时,验证即知选B. 【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a 2 016-5=( )图1 A.2 018×2 014 B.2 018×2 013 C .1 010×2 012 D.1 011×2 013【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5=(n -1)(n +6)2,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A.1 006B.1 007C.1 008D.1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C12.记集合T ={0,1,2,3,4,5,6,7,8,9},M =⎩⎨⎧⎭⎬⎫a 110+a 2102+a 3103+a 4104|a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104B.510+5102+7103+2104C.510+5102+7103+3104D.710+9102+9103+1104【解析】 因为a 110+a 2102+a 3103+a 4104 =1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1 14.观察下列等式: 13=1, 13+23=9,13+23+33=36,13+23+33+43=100, ……照此规律,第n 个等式可为__________.【解析】 依题意,注意到13=⎣⎢⎡⎦⎥⎤12×1×(1+1)2,13+23=⎣⎢⎡⎦⎥⎤12×2×(2+1)2=9,13+23+33=⎣⎢⎡⎦⎥⎤12×3×(3+1)2=36,……,照此规律,第n 个等式可为13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤12n (n +1)2. 【答案】 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤12n (n +1)2 15.当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N+时,左边第二个因式可知为a n+a n-1b+…+ab n-1+b n,那么对应的表达式为(a -b)·(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+1.【答案】(a-b)(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+116.如图3,如果一个凸多面体是n(n∈N+)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f(n)对异面直线,则f(4)=________,f(n)=__________.(答案用数字或n的解析式表示)图3【解析】所有顶点所确定的直线共有棱数+底边数+对角线数=n+n+n(n-3)2=n(n+1)2.从题图中能看出四棱锥中异面直线的对数为f(4)=4×2+4×12×2=12,所以f(n)=n(n-2)+n(n-3)2·(n-2)=n(n-1)(n-2)2.【答案】n(n+1)212n(n-1)(n-2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明:(1)如果a,b>0,则lg a+b2≥lg a+lg b2;(2)6+10>23+2.【证明】(1)当a,b>0时,有a+b2≥ab,∴lg a+b2≥lg ab,∴lg a+b2≥12lg ab=lg a+lg b2.(2)要证6+10>23+2,只要证(6+10)2>(23+2)2,即260>248,这是显然成立的,所以,原不等式成立.18.(本小题满分12分)观察以下各等式:sin230°+cos260°+sin 30°cos 60°=3 4,sin 220°+cos 250°+sin 20°cos 50°=34, sin 215°+cos 245°+sin 15°cos 45°=34.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+ 32sin α·cos α-12sin 2α =34sin 2α+34cos 2α =34.19.(本小题满分12分)点P 为斜三棱柱ABC ­A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】 (1)证明:因为PM ⊥BB 1,PN ⊥BB 1,又PM ∩PN =P , 所以BB 1⊥平面PMN ,所以BB 1⊥MN . 又CC 1∥BB 1,所以CC 1⊥MN . (2)在斜三棱柱ABC ­A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2S BCC 1B 1S ACC 1A 1cos α. 其中α为平面BCC 1B 1与平面ACC 1A 1所成的二面角. 证明如下:因为CC 1⊥平面PMN ,所以上述的二面角的平面角为∠MNP . 在△PMN 中,因为PM 2=PN 2+MN 2-2PN · MN cos ∠MNP ,所以PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP ,由于S BCC 1B 1=PN ·CC 1,S ACC 1A 1=MN ·CC 1, S ABB 1A 1=PM ·BB 1=PM ·CC 1,所以S 2 ABB 1A 1=S 2 BCC 1B 1+S 2 ACC 1A 1-2S BCC 1B 1·S ACC 1A 1·cos α.20.(本小题满分12分)如图4,在三棱锥P ­ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:图4(1)直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【证明】 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A . 又因为P A ⊆/平面DEF ,DE 平面DEF , 所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC . 因为AC ∩EF =E ,AC 平面ABC ,EF 平面ABC ,所以DE ⊥平面ABC . 又DE 平面BDE , 所以平面BDE ⊥平面ABC .21.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n(n ≥2).(1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +.下面利用数学归纳法加以证明: ①显然当n =1,2,3,4时,结论成立, ②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即a k =13k -2.那么当n =k +1时,由题设与归纳假设可知:a k +1=(k -1)a kk -a k=(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1)=13k +1=13(k +1)-2. 即当n =k +1时,结论也成立,综上,对任意n ∈N +,a n =13n -2成立.(2)证明:b n =a n ·a n +1a n +a n +1=13n -2·13n +113n -2+13n +1=13n +1+3n -2=13(3n +1-3n -2),所以b 1+b 2+…+b n =13[(4-1)+(7-4)+(10-7)+…+(3n +1-3n -2)] =13(3n +1-1),所以只需要证明13(3n +1-1)<n3⇔3n +1<3n +1⇔3n +1<3n +23n +1⇔0<23n (显然成立),所以对任意的n ∈N +,都有b 1+b 2+…+b n <n 3.22.(本小题满分12分)记U ={1,2,…,100},对数列{a n }(n ∈N +)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N +)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .【解】 (1)由已知得a n =a 1·3n -1,n ∈N +.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,故30a 1=30,即a 1=1.所以数列{a n }的通项公式为a n =3n -1,n ∈N +.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N +,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集. 令E =C ∩∁U D ,F =D ∩∁U C , 则E ≠∅,F ≠∅,E ∩F =∅.于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D 得S E ≥S F . 设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l . 由(2)知,S E <a k +1.于是3l -1=a l ≤S F ≤S E <a k +1=3k , 所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1.从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1. 综合①②③得,S C +S C ∩D ≥2S D .章末综合测评(二) 变化率与导数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某质点沿直线运动的位移方程为f (x )=-2x 2+1,那么该质点从x =1到x =2的平均速度为( )A.-4B.-5C.-6D.-7【解析】Δy Δx =f (2)-f (1)2-1=(-2×22+1)-(-2×12+1)1=-6.【答案】 C2.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( )A.1B.12C.-12 D.-1【解析】 y ′=2ax ,于是切线斜率k =f ′(1)=2a ,由题意知2a =2,∴a =1. 【答案】 A3.下列各式正确的是( ) A.(sin α)′=cos α(α为常数) B.(cos x )′=sin xC.(sin x)′=cos xD.(x-5)′=-15x-6【解析】由导数公式知选项A中(sin α)′=0;选项B中(cos x)′=-sin x;选项D中(x -5)′=-5x-6.【答案】C4.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a等于()【解析】令f(x)=ax-ln(x+1),则f′(x)=a-1x+1.由导数的几何意义可得在点(0,0)处的切线的斜率为f′(0)=a-1.又切线方程为y=2x,则有a-1=2.∴a=3.【答案】D5.已知二次函数f(x)的图像如图1所示,则其导函数f′(x)的图像大致形状是()图1A B C D【解析】由图像知f(x)=ax2+c(a<0),∴f′(x)=2ax(a<0),故选B.【答案】B6.已知函数y=x-1,则它的导函数是()A.y′=12x-1 B.y′=x-12(x-1)C.y′=2x-1x-1 D.y′=-x-12(x-1)【解析】u=x-1,y′=(u)′·u′=12u=12x-1=x-12(x-1).【答案】B7.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0【解析】切线l的斜率k=4,设y=x4的切点的坐标为(x0,y0),则k=4x30=4,∴x0=1,∴切点为(1,1),即y-1=4(x-1),∴4x-y-3=0.【答案】A8.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N +)的前n 项和是( )A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 【解析】 ∵f ′(x )=mx m -1+a =2x +1,∴m =2,a =1,∴f (x )=x 2+x ,∴1f (n )=1n 2+n =1n (n +1)=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.故选A.【答案】 A9.如图2,下列图像中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图像,则f (-1)等于( )图2A.-13B.13C.73D.-13或73【解析】 f ′(x )=x 2+2ax +(a 2-1)=[x +(a -1)][x +(a +1)].显然(2)(4)不符合,若(1)是f ′(x )的图像,则有a =0,与已知矛盾,故(3)是f ′(x )的图像,∴a =-1.∴f (-1)=-13-1+1=-13.【答案】 A10.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A.2x +y +2=0 B.3x -y +3=0 C.x +y +1=0 D.x -y +1=0 【解析】 y ′=2x +1,设所求切线的切点为(x 0,x 20+x 0+1), 则x 20+x 0+1x 0+1=2x 0+1,∴x 0=0或x 0=-2.当x 0=0时,曲线y =x 2+x +1在点(0,1)处的切线斜率为1,方程为y -1=x ,即x -y +1=0.当x 0=-2时,切线方程为3x +y +3=0. 【答案】 D11.点P 是曲线x 2-y -2ln x =0上任意一点,则点P 到直线4x +4y +1=0的最短距离是( )A.22(1-ln 2)B.22(1+ln 2) C.22⎝ ⎛⎭⎪⎫12+ln 2D.12(1+ln 2)【解析】 y ′=2x -1x =-1⇒x =12⇒y =14+ln 2,所以切点为⎝ ⎛⎭⎪⎫12,14+ln 2,切点到直线的距离就是两平行线间的距离,由点到直线的距离公式求得d =⎪⎪⎪⎪⎪⎪4×12+4×⎝ ⎛⎭⎪⎫14+ln 2+142+42=22(1+ln 2),故选B.【答案】 B12.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4 B.⎣⎢⎡⎭⎪⎫π4,π2 C.⎝ ⎛⎦⎥⎤π2,3π4 D.⎣⎢⎡⎭⎪⎫3π4,π 【解析】 因为y =4e x+1, 所以y ′=-4e x(e x +1)2=-4e xe 2x +2e x +1=-4e x +1ex +2. 因为e x >0,所以e x +1e x≥2,所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫3π4,π.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.设函数y =f (x )是一次函数,若f (1)=-1,且f ′(2)=-4,则f (x )=________. 【解析】 ∵y =f (x )是一次函数,∴设f (x )=ax +b , ∴f ′(x )=a ,则f (1)=a +b =-1,又f ′(2)=a =-4.即a =-4,b =3,∴f (x )=-4x +3. 【答案】 -4x +314.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.【解析】 ∵y ′=2x -1, ∴当x =-2时,y ′=-5. 又P (-2,6+c ), ∴6+c -2=-5,∴c =4. 【答案】 415.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a f ′(a )+bf ′(b )+cf ′(c )=________. 【解析】 ∵f ′(x )=(x -b )(x -c )+(x -a )·(x -c )+(x -a )·(x -b ), ∴f ′(a )=(a -b )(a -c ), 同理f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ),代入原式中得值为0. 【答案】 016.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=____. 【解析】 f ′(x )=-sin (3x +φ)·(3x +φ)′=-3sin (3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2 cos ⎝ ⎛⎭⎪⎫3x +φ+π3,当f (x )+f ′(x )为奇函数时,φ+π3=k π+π2,k ∈Z ,∴φ=k π+π6,k ∈Z ,∵0<φ<π,∴φ=π6.【答案】 π6三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求下列函数的导数. (1)y =3x 2+x cos x ;(2)y =tan x x ;(3)y =x 2-2x +5x 3.【解】 (1)y ′=(3x 2)′+(x cos x )′ =6x +x ′cos x +x (cos x )′ =6x +cos x -x sin x .(2)法一:y ′=(tan x )′·x -tan xx 2=xcos 2x -tan x x 2=x -cos 2x ·tan x x 2cos 2x =x -sin x cos x x 2cos 2x .法二:y ′=⎝ ⎛⎭⎪⎫sin x x cos x ′=(sin x )′x cos x -sin x (x cos x )′x 2cos 2x=x cos 2x -sin x (cos x -x sin x )x 2cos 2x=x -sin x cos x x 2cos 2x .(3)∵y =1x -2x 2+5x 3=x -1-2x -2+5x -3,∴y ′=-x -2-2×(-2)x -3+5×(-3)x -4=-1x 2+4x 3-15x 4.18.(本小题满分12分)已知曲线y =f (x )=x 3-8x +2. (1)求曲线在点(0,2)处的切线方程;(2)过原点作曲线的切线l :y =kx ,求切线l 的方程.【解】 (1)∵f (x )=x 3-8x +2,∴f ′(x )=3x 2-8,则f ′(0)=-8,所以曲线在点(0,2)处的切线方程为y -2=-8(x -0),即8x +y -2=0.(2)设切点为P (a ,a 3-8a +2),切线斜率k =3a 2-8,则切线方程y -(a 3-8a +2)=(3a 2-8)(x -a ),又因为切线过原点,所以0-(a 3-8a +2)=(3a 2-8)(0-a ),即2a 3-2=0,所以a =1,即切线l 斜率为k =-5,切线l 方程为y =-5x ,即5x +y =0.19.(本小题满分12分)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.【解】 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知得3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4.又因为点P 0在第三象限,所以切点P 0的坐标为(-1,-4).(2)因为直线l ⊥l 1,l 1的斜率为4,所以直线l 的斜率为-14, 因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.20.(本小题满分12分)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求过点(2,f (2))且与切线y =(e -1)x +4垂直的直线方程l .【解】 (1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.∴⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知k l =11-e ,且f (2)=2e +2, ∴y -(2e +2)=11-e(x -2).即所求直线l 的方程为y =11-e x +21-e +2e +2.21.(本小题满分12分)已知函数f (x )=a ln x +x 2. (1)若a =1,求f (x )在点(1,f (1))处的切线方程;(2)对于任意x ≥2使得f ′(x )≥x 恒成立,求实数a 的取值范围.【解】 (1)当a =1时,f (x )=ln x +x 2,则f ′(x )=1x +2x ,故在点(1,f (1))处的切线斜率为k =f ′(1)=3,又f (1)=1,即切点为(1,1),故切线方程为y -1=3(x -1),即3x -y -2=0.(2)当x ≥2时,f ′(x )≥x ,即ax +2x ≥x (x ≥2)恒成立,即a ≥-x 2在x ∈[2,+∞)上恒成立. 令t =-x 2,当x ∈[2,+∞)时,易知t max =-4,为使不等式a ≥-x 2恒成立,则a ≥-4,故实数a 的取值范围为[-4,+∞).22.(本小题满分12分)已知两曲线f (x )=x 3+ax ,g (x )=ax 2+bx +c 都经过点P (1,2),且在点P 有公切线.(1)求a ,b ,c 的值;(2)设k (x )=f (x )g (x ),求k ′(-2)的值.【解】 (1)依题意,⎩⎪⎨⎪⎧1+a =2,a +b +c =2,即⎩⎪⎨⎪⎧a =1,b +c =1.故f (x )=x 3+x ,g (x )=x 2+bx +1-b ,所以f ′(x )=3x 2+1,g ′(x )=2x +b ,由于两曲线在点P (1,2)处有公切线,故f ′(1)=g ′(1),即4=2+b , 所以b =2. 故c =1-b =-1.(2)由(1)可得f (x )=x 3+x ,g (x )=x 2+2x -1, 故k (x )=f (x )g (x )=x 3+x x 2+2x -1,故k ′(x )=(x 3+x )′(x 2+2x -1)-(x 3+x )(x 2+2x -1)′(x 2+2x -1)2=(3x 2+1)(x 2+2x -1)-(x 3+x )(2x +2)(x 2+2x -1)2=x 4+4x 3-4x 2-1(x 2+2x -1)2. 故k ′(-2)=16-32-16-1(4-4-1)2=-33.章末综合测评(三) 导数应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.物体运动的方程为s =14t 4-3,则t =5时的瞬时速度为( ) A.5 B.25 C.125 D.625【解析】 ∵v =s ′=t 3,∴t =5时的瞬时速度为53=125. 【答案】 C2.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞)【解析】 f ′(x )=(x -2)e x ,由f ′(x )>0,得x >2,所以函数f (x )的单调递增区间是(2,+∞). 【答案】 D3.函数f (x )=ax 3+x +1有极值的充要条件是( ) A.a ≥0 B.a >0 C.a ≤0 D.a <0 【解析】 f ′(x )=3ax 2+1,当a =0时,f ′(x )=1>0,f (x )单调增加,无极值;当a ≠0时,只需Δ=-12a >0,即a <0即可. 【答案】 D4.函数f (x )的导函数f ′(x )的图像如图1所示,那么f (x )的图像最有可能的是( )图1A B C D【解析】 数形结合可得在(-∞,-2),(-1,+∞)上,f ′(x )<0,f (x )是减函数;在(-2,-1)上,f ′(x )>0,f (x )是增函数,从而得出结论.【答案】 B5.若函数y =a (x 3-x )的递增区间是⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,则a 的取值范围是( )A.a >0B.-1<a <0C.a >1D.0<a <1【解析】 依题意得y ′=a (3x 2-1)>0的解集为⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞,∴a >0.【答案】 A6.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A.3f (1)<f (3) B.3f (1)>f (3) C.3f (1)=f (3) D.f (1)=f (3) 【解析】 由于f (x )>xf ′(x ),⎝ ⎛⎭⎪⎫f (x )x ′=f ′(x )x -f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数,∴f (3)3<f (1)1,即3f (1)>f (3),故选B.【答案】 B7.若函数f (x )=-x 3+3x 2+9x +a 在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )A.-5B.7C.10D.-19【解析】 ∵f (x )′=-3x 2+6x +9=-3(x +1)(x -3), 所以函数在[-2,-1]内单调递减, 所以最大值为f (-2)=2+a =2, ∴a =0,最小值为f (-1)=a -5=-5. 【答案】 A8.函数y =12x -2sin x 的图像大致是( )【解析】 因为y ′=12-2cos x ,所以令y ′=12-2cos x >0,得cos x <14,此时原函数是增函数;令y ′=12-2cos x <0,得cos x >14,此时原函数是减函数,结合余弦函数图像,可得选项C 正确.【答案】 C9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1)【解析】 f ′(x )=-x +bx +2,由题意知f ′(x )≤0在(-1,+∞)上恒成立,即b ≤x 2+2x 在(-1,+∞)上恒成立,即b ≤(x +1)2-1,则b ≤-1,故选C.【答案】 C10.已知y =f (x )是定义在R 上的函数,且f (1)=1,f ′(x )>1,则f (x )>x 的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞) D.(-∞,-1)∪(1,+∞)【解析】 不等式f (x )>x 可化为f (x )-x >0, 设g (x )=f (x )-x ,则g ′(x )=f (x )′-1, 由题意g ′(x )=f ′(x )-1>0,∴函数g (x )在R 上单调递增,又g (1)=f (1)-1=0, ∴原不等式⇔g (x )>0⇔g (x )>g (1),∴x >1,故选C. 【答案】 C11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎢⎡⎦⎥⎤-6,-98C.[-6,-2]D.[-4,-3] 【解析】 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4.当x ∈[-2,-1)时,φ′(x )<0.当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2. 【答案】 C12.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A.a ≥0 B.a <-4 C.a ≥0或a ≤-4 D.a >0或a <-4【解析】 f ′(x )=2x +2+ax ,x ∈(0,1), ∵f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,∴2x +2+a x ≥0或2x +2+ax ≤0在(0,1)上恒成立,即a ≥-2x 2-2x 或a ≤-2x 2-2x 在(0,1)上恒成立.设g (x )=-2x 2-2x =-2⎝ ⎛⎭⎪⎫x +122+12,则g (x )在(0,1)上单调递减,∴g (x )max =g (0)=0,g (x )min =g (1)=-4.∴a ≥g (x )max =0或a ≤g (x )min =-4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 【解析】 因为f (x )=(2x +1)e x , 所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3. 【答案】 314.函数f (x )=12e x (sin x +cos x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.【解析】 ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎫π2,即12≤f (x )≤12e π2.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π2 15.已知函数f (x )=x 3+ax 2+bx +a 2,在x =1时有极值10,则a +b =________. 【解析】 f ′(x )=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f (1)=a 2+a +b +1=10,⎩⎪⎨⎪⎧2a +b =-3,a 2+a +b =9,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11,∴a +b =-7.【答案】 -716.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3.【解析】 设矩形的长为x ,则宽为10-x (0<x <10),由题意可知所求圆柱的体积V =πx 2(10-x )=10πx 2-πx 3,∴V ′(x )=20πx -3πx 2.由V ′(x )=0,得x =0(舍去),x =203,且当x ∈⎝ ⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫203,10时,V ′(x )<0,∴当x =203时,V (x )取得最大值为4 00027π cm 3.【答案】 4 00027π三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)若函数f (x )=x 3+3ax 2+3(a +2)x +3既有极大值又有极小值,求实数a 的取值范围.【解】 ∵f ′(x )=3x 2+6ax +3(a +2), 令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0,∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实数根,即Δ=4a 2-4a -8>0,解得a >2或a <-1.故实数a 的取值范围是(-∞,-1)∪(2,+∞).18.(本小题满分12分)设函数f (x )=x 3-3ax 2+3bx 的图像与直线12x +y -1=0相切于点(1,-11).(1)求a ,b 的值;(2)讨论函数f (x )的单调性.【解】 (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图像与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12, 即⎩⎪⎨⎪⎧1-3a +3b =-11,3-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6x -9=3(x 2-2x -3) =3(x +1)(x -3).令f ′(x )>0,解得x <-1或x >3; 又令f ′(x )<0,解得-1<x <3.故当x ∈(-∞,-1)和x ∈(3,+∞)时,f (x )是增函数,当x ∈(-1,3)时,f (x )是减函数.。

武汉外国语学校高中数学选修2-2第二章《变化率与导数》检测(答案解析)

武汉外国语学校高中数学选修2-2第二章《变化率与导数》检测(答案解析)

一、选择题1.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f ′(1)=( ) A .1 B .3 C .4 D .5 2.函数f (x )=22x x -+ 在点 (1,2) 处的切线方程为( ) A .x +y +1=0B .x -y -1=0C .x -y +1=0D .x +y -1=03.曲线()2(1)ln ,y f x x a x a R ==--∈,在点()()1,1Pf 处的切线与直线210x y ++=垂直,则a =( )A .1-B .2-C .3-D .4-4.①若直线l 与曲线:()C y f x =有且只有一个公共点,则直线l 一定是曲线()y f x =的切线;②若直线l 与曲线:()C y f x =相切于点00(,)P x y ,且直线l 与曲线:()C y f x =除点P 外再没有其他的公共点,则在点P 附近,直线l 不可能穿过曲线()y f x =;③若'0()f x 不存在,则曲线()y f x =在点00(,())x f x 处就没有切线; ④若曲线()y f x =在点00(,())x f x 处有切线,则'0()f x 必存在.则以上论断正确的个数是( ) A .0个B .1个C .2个D .3个5.若曲线224y x x p =-+与直线1y =相切,则p 的值为( ) A .1-B .1C .3D .46.已知()4cos 72f x ax b x x =++-.若()20186f '=,则()2018f '-=( ) A .6- B .8- C .6D .87.已知曲线()3:x ,C f x ax a =-+若过点A (1.1)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( ) A .38B .1C .98D .1588.已知点P 在曲线y=41xe +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值 范围是( ) A .[0,4π) B .[,)42ππC .3(,]24ππD .3[,)4ππ 9.设点P ,Q 分别是曲线x y xe -=(e 是自然对数的底数)和直线+3y x =上的动点,则P ,Q 两点间距离的最小值为( )A .22B .322C .(41)22e - D .(41)22e + 10.直线l 经过点(0,)A b ,且与直线y x =平行,如果直线l 与曲线2y x 相切,那么b等于( ) A .14-B .12-C .14D .1211.已知直线y x m =-+ 是曲线23ln y x x =-的一条切线,则m 的值为( ) A .0B .2C .1D .312.函数()ln 0y x x =>的图象与直线12y x a =+相切,则a 等于( ) A .ln 21-B .ln21+C .ln 2D .2ln 2二、填空题13.已知函数()3221y f x x x x ==-++,过点()()1,1A f 作()y f x =的切线l ,则直线l 的方程为__________________.14.已知221111x xf x x--⎛⎫= ⎪++⎝⎭,则曲线()y f x =在点()()2,2f处的切线的斜率为___________.15.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.16.函数f (x )=ax 3+x+1在x=1处的切线与直线4x ﹣y+2=0平行,则a=_____. 17.若直线1y x =+与函数()ln f x ax x =-的图像相切,则a 的值为__________. 18.已知实数a ,b 满足225ln 0a a b --=,R c ∈,则22()()a c b c -++的最小值为__________.19.若对()0,,x ∀∈+∞都有ln x ax ≤恒成立,则实数a 的取值范围为__________ 20.设()0sin f x x =,()()10'f x f x =,()()21'f x f x =,…,()()1'n n f x f x +=,n N ∈,则()20170f = __________三、解答题21.已知函数31()ln ()2f x x ax x a R =--∈. (Ⅰ)若曲线()y f x =在点()1,(1)f 处的切线经过点,求a 的值;(Ⅱ)若()f x 在(1,2)上存在极值点,求a 的取值范围. 22.已知函数,,曲线在处的切线方程为.(Ⅰ)求的解析式;(Ⅱ)若对,恒有成立,求的取值范围.23.已知函数的图像在点处切线的斜率为,记奇函数的图像为.(1)求实数的值;(2)当时,图像恒在的上方,求实数的取值范围;(3)若图像与有两个不同的交点,其横坐标分别是,设,求证:.[来24.已知函数图象上一点,且在点处的切线与直线平行. (1)求函数的解析式; (2)求函数在区间上的最大值和最小值;(3)关于的方程在区间上恰有两个相异的实根,求实数的取值范围.25.已知函数的图像过坐标原点,且在点处的切线斜率为. (1) 求实数的值; (2) 求函数在区间上的最小值;(3) 若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围. 26.已知函数32()f x x bx cx d =+++有两个极值点121,2x x ==,且直线61y x =+与曲线()y f x =相切于P 点. (1) 求b 和c(2) 求函数()y f x =的解析式;(3) 在d 为整数时,求过P 点和()y f x =相切于一异于P 点的直线方程【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据切线的定义得到()13f =,()'11f =,相加得到答案.【详解】根据题意知:()1123f =+=,()'11f =,故()()'114f f +=.故选:C.【点睛】本题考查了切线方程,属于简单题.2.C解析:C 【分析】 求出()'fx ,()'1f ,点斜式写出切线方程,再化为一般式,即得答案.【详解】()()2'2,21f x x x f x x =-+∴=-, ()'12111f ∴=⨯-=.∴函数()f x 在点()1,2处的切线方程为21y x -=-,即10x y -+=. 故选:C . 【点睛】本题考查导数的几何意义,考查直线的方程,属于基础题.3.B解析:B 【分析】由导数的几何意义得出切线的斜率为k a =-,结合垂直关系,即可得出a 的值. 【详解】()2(1)af x x x'=--,则在点()()1,1P f 处的切线的斜率为k a =-由切线与直线210x y ++=垂直,可得2a -=,则2a =-故选:B 【点睛】本题主要考查了导数的几何意义的应用,属于中档题.4.B解析:B 【分析】根据导数的定义,瞬时变化率的概念,以及导数的几何意义,逐项判定,即可求解. 【详解】对于①中,根据函数在点A 处的切线定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A ,这样直线AB 的极限位置就是曲线在点A 的切线. 直线0y =与曲线22(0)y px p =>有且只有一个公共点,但直线0y =不是切线.注:曲线的切线与曲线的公共点不一定只有一个,例1y =是正弦曲线sin y x =的切线,但切线1y =与曲线sin y x =有无数多个公共点,所以不正确; 对于②中,根据导数的定义:(1)导数:'()()()limx f x x f x f x x ∆→+∆-=∆,(2)左导数:'()()()lim x f x x f x f x x --∆→+∆-=∆,(3)右导数:'()()()lim x f x x f x f x x++∆→+∆-=∆,函数()f x 在点0x x =处可导当且仅当函数()f x 在点0x x =处的左导数和右导数都存在,且相等. 例如三次函数3y x =在0x =处的切线0y =,所以不正确; 对于③中,切线与导数的关系:(1)函数()f x 在0x x =处可导,则函数()f x 在0x x =处切线一定存在,切线方程为'000()()()y f x f x x x -=-(2)函数()f x 在0x x =处不可导,函数()f x 在0x x =处切线可能存在,可能不存在,所以不正确;对于④中,根据导数的几何意义,可得曲线()y f x =在点00(,())x f x 处有切线,则'0()f x 必存在,所以是正确的.故选:B. 【点睛】本题主要考查了导数的概念,瞬时变化率,导数的几何意义等概念的综合应用,着重考查了分析问题和解答问题的能力.5.C解析:C 【分析】设切点坐标为()0,1x ,求导得到44y x '=-,计算得到答案. 【详解】设切点坐标为()0,1x ,∵44y x '=-,由题意知,0440x -=,∴01x =,即切点为()1,1,∴124p =-+,∴3p =.故选:C . 【点睛】本题考查了根据切线求参数,意在考查学生的计算能力.6.D解析:D 【分析】分析()f x 的导函数()f x ',构造关于()f x '的新函数,借助新函数奇偶性即可计算()2018f '-的值.【详解】因为()4cos 72f x ax b x x =++-,所以()34sin 7f x ax b x '=-+, 所以()374sin f x ax b x '-=-,令()()374sin g x f x ax b x '=-=-,所以()()34sin g x ax x g x -=-+=-且函数()g x 定义域为R 关于原点对称,所以()g x 是奇函数,所以()()201820180g g +-=,所以()()20187201870f f ''-+--=⎡⎤⎡⎤⎣⎦⎣⎦,所以()20181468f '-=-=. 故选:D. 【点睛】本题考查函数奇偶性的应用,难度一般.一般地,形如()()()0g x f x c c =+≠的函数中,已知()f x 为奇函数,根据()f a 的值求解()f a -的值的方法:构造新函数()g x c -,根据新函数的奇偶性求解()f a -的值.7.D解析:D 【分析】设切点()3000,x x ax a -+,利用导数的几何意义求切线方程,并且求切点,由题意可知切线在切点处的导数和为0,求a . 【详解】()23f x x a '=-,设切点为()3000,x x ax a -+,()2003f x x a '∴=-∴过切点的切线方程为:()()()3200003y x ax a x a x x --+=--,切线过点()1,1A ,()()()320000131x ax a x a x ∴--+=-- ,整理为:32002310x x -+= , 化简为:()()2001210x x -+= ,01x ∴=或012x =-,()13f a '=-,1324f a ⎛⎫'-=- ⎪⎝⎭,由两条切线的倾斜角互补,得 3304a a -+-=,解得158a =.故选:D 【点睛】本题考查导数的几何意义,求切线方程,并且求参数,意在考查转化与化归和计算能力.8.D解析:D 【详解】 试题分析:因为,所以34παπ≤<,选A. 考点:导数的几何意义、正切函数的值域.9.B解析:B 【分析】对曲线y =xe ﹣x 进行求导,求出点P 的坐标,分析知道,过点P 直线与直线y =x +2平行且与曲线相切于点P ,从而求出P 点坐标,根据点到直线的距离进行求解即可. 【详解】∵点P 是曲线y =xe ﹣x 上的任意一点,和直线y =x +3上的动点Q ,求P ,Q 两点间的距离的最小值,就是求出曲线y =xe ﹣x 上与直线y =x +3平行的切线与直线y =x +3之间的距离.由y ′=(1﹣x )e ﹣x ,令y ′=(1﹣x )e ﹣x =1,解得x =0,当x =0,y =0时,点P (0,0),P ,Q 两点间的距离的最小值,即为点P (0,0)到直线y =x +3的距离, ∴d min 322故选B. 【点睛】此题主要考查导数研究曲线上某点的切线方程以及点到直线的距离公式,利用了导数与斜率的关系,这是高考常考的知识点,是基础题.10.A解析:A 【分析】先表示出直线方程为y x b =+,求导计算切点为11(,)24,代入直线方程得到答案. 【详解】直线l 经过点(0,)A b ,且与直线y x =平行,则直线方程为:y x b =+ 直线l 与曲线2y x 相切,1'212y x x,切点为11(,)24代入直线方程 解得:14b =- 故选A【点睛】本题考查了切线问题,也可以联立方程利用0∆=计算答案.11.B解析:B 【分析】根据切线的斜率的几何意义可知0003|21x x y x x ='=-=-,求出切点,代入切线即可求出m . 【详解】 设切点为00(,)x y 因为切线y x m =-+, 所以0003|21x x y x x ='=-=-, 解得0031,2x x ==-(舍去) 代入曲线23ln y x x =-得01y =,所以切点为1,1()代入切线方程可得11m =-+,解得2m =. 故选B. 【点睛】本题主要考查了函数导数的几何意义,函数的切线方程,属于中档题.12.A解析:A 【分析】欲求出a 的大小,只须求出切线的方程即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率,结合题中条件求出切点的坐标,代入直线方程即得. 【详解】()1'y x x=, 由112x =得切点为(2,ln2), 代入12y x a =+, 得ln 21a =-. 故选A . 【点睛】本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.二、填空题13.或【分析】求出设切点为利用导数的几何意义得出解出最后由点斜式写出切线方程【详解】设切点为由得则整理得解得或则或所以直线的方程为或即或故答案为:或【点睛】本题主要考查了导数几何意义的应用属于中档题解析:450x y +-=或1y = 【分析】求出()1f ,设切点为()320000,21x x x x -++,利用导数的几何意义得出3200025410x x x -+-=,解出0x ,最后由点斜式写出切线方程.【详解】()321121111f =-⨯++=设切点为()320000,21x x x x -++,由()2341f x x x '=-+得()2000341f x x x '=-+则3220000002113411x x x x x x -++-=-+- 整理得()23200000125410102x x x x x ⎛⎫-+-=⇒--= ⎪⎝⎭,解得012x =或01x = 则()014fx '=-或()00f x '= 所以直线l 的方程为11(1)4y x -=--或1y =,即450x y +-=或1y = 故答案为:450x y +-=或1y = 【点睛】本题主要考查了导数几何意义的应用,属于中档题.14.【分析】利用官员发先求得函数的解析式再求得导函数即可求得在点处的切线的斜率【详解】已知令则所以则∵求得导函数可得∴由导数几何意义可知在点处的切线的斜率为故答案为:【点睛】本题考查了利用换元法求函数解 解析:29-【分析】利用官员发先求得函数()f x的解析式,再求得导函数,即可求得在点)f处的切线的斜率. 【详解】已知221111x x f x x--⎛⎫= ⎪++⎝⎭,令11xt x-=+,则11t x t -=+,所以()22211211111t t t f t t t t -⎛⎫- ⎪+⎝⎭==+-⎛⎫+ ⎪+⎝⎭, 则()221xf x x =+∵求得导函数可得()()222221x f x x -'=+,∴29f '=-.由导数几何意义可知在点)f处的切线的斜率为29-, 故答案为:29- 【点睛】本题考查了利用换元法求函数解析式,由导数几何意义求得切线斜率,属于中档题.15.0【解析】【分析】通过求导数得y =x2+3x 在点(-1-2)处的切线再直线与曲线相切于点求导可得解方程组即可得解【详解】由得∴当时则曲线在点处的切线方程为即设直线与曲线相切于点由得∴解之得∴答案:0解析:0 【解析】 【分析】通过求导数得y =x 2+3x 在点(-1,-2)处的切线1y x =-,再直线1y x =-与曲线ln y ax x =+相切于点()00,x y ,求导可得000000111a x y x y ax lnx⎧+=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,解方程组即可得解.【详解】由23y x x =+得'23y x =+, ∴当1x =-时,'1y =,则曲线23y x x =+在点()1,2--处的切线方程为21y x +=+,即1y x =-, 设直线1y x =-与曲线ln y ax x =+相切于点()00,x y ,由ln y ax x =+得1'(0)y a x x=+>, ∴000000111a x y x y ax lnx⎧+=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,解之得01x =,00y =,0a =. ∴0a =. 答案:0. 【点睛】本题考查导数几何意义的应用,解答此类问题的关键是求出切点坐标.若切点已知,则直接求导即可得切线的斜率,若切点未知,在解题时首先要设出切点,然后根据切点在曲线上及导数的几何意义得到关于切点坐标的方程,求出切点坐标后可得切线方程.16.1【解析】【分析】由题意知f (x )在x=1处的切线的斜率为4根据导数的几何意义即可求解【详解】因为f (x )在x=1处的切线与直线4x ﹣y+2=0平行所以f (x )在x=1处的切线的斜率为4又所以解得故解析:1 【解析】 【分析】由题意知,f (x )在x=1处的切线的斜率为4,根据导数的几何意义即可求解. 【详解】因为f (x )在x=1处的切线与直线4x ﹣y+2=0平行, 所以f (x )在x=1处的切线的斜率为4 又2()31f x ax '=+,所以(1)314f a ='+=,解得1a =,故填1. 【点睛】本题主要考查了导数的几何意义,属于中档题.17.2【解析】【分析】设直线与曲线的的切点坐标为根据导数的几何意义求得切线的斜率为求得进而得到切点的坐标代入曲线的方程即可求解【详解】设直线与函数的的切点坐标为因为函数则所以切线的斜率为则所以代入切线的解析:2 【解析】 【分析】设直线1y x =+与曲线的的切点坐标为00(,)P x y ,根据导数的几何意义,求得切线的斜率为01k a x =-,求得011x a =-,进而得到切点的坐标,代入曲线的方程,即可求解. 【详解】设直线1y x =+与函数()ln f x ax x =-的的切点坐标为00(,)P x y , 因为函数()ln f x ax x =-,则1()f x a x'=-,所以切线的斜率为001()k f x a x =-'=, 则011a x -=,所以011x a =-,代入切线的方程得01111ay a a =+=--,即1(,)11a P a a --, 把点P 代入曲线的方程可得11ln 111a a a a a =⨯+---, 整理得1ln 01a =-,解得2a =. 【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中根据函数在某点处的导数等于该点处的切线的斜率,求得切点的坐标,代入函数的解析式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.18.【解析】分析:分别设则表曲线上的点到直线的距离则最小值表示与直线平行的切线之间的距离求出曲线的切线方程根据平行线之间的距离公式即可求解详解:分别设则表曲线上的点到直线的距离所以最小值表示与直线平行的解析:2【解析】分析:分别设()223ln (0),y f x x x x y x ==->=-()y f x =上的点到直线y x =-y x=-平行的切线之间的距离,求出曲线的切线方程,根据平行线之间的距离公式,即可求解. 详解:分别设()223ln (0),y f x x x x y x ==->=-,()y f x =上的点到直线y x =-的距离,y x =-平行的切线之间的距离,因为()225ln f x x x =-,所以()54f x x x='-, 令()541f a a a=-=-',解得1a =,所以()12f b ==, 所以曲线过点(1,2)的切线方程为2(1)y x -=--,即30x y +-=,所以直线30x y +-=与直线y x =-间的距离为2d ==,即22()()a c b c -++最小值322.点睛:本题主要考查了利用导数研究曲线在某点处的切线方程,以及两条平行线之间的距22()()a c b c -++y x =-平行的切线之间的距离上解答的关键,着重考查了转化与化归思想,以及推理与计算能力,试题属于中档试题.19.【解析】分析:将原问题转化为函数图象之间的关系数形结合即可求得实数的取值范围详解:在区间上绘制函数和函数的图象满足题意时对数函数的图象应该恒不在一次函数图象的上方如图所示为临界条件直线过坐标原点与对解析:1,e ⎡⎫+∞⎪⎢⎣⎭【解析】分析:将原问题转化为函数图象之间的关系,数形结合即可求得实数a 的取值范围. 详解:在区间()0,∞+上绘制函数ln y x =和函数y ax =的图象, 满足题意时,对数函数的图象应该恒不在一次函数图象的上方, 如图所示为临界条件,直线过坐标原点,与对数函数相切, 由ln y x =可得1'y x =,则在切点()00,ln x x 处对数函数的切线斜率为01k x =,切线方程为:()0001ln y x x x x -=-, 切线过坐标原点,则:()00010ln 0x x x -=-, 解得:0x e =,则切线的斜率011k x e==. 据此可得:实数a 的取值范围为1,e⎡⎫+∞⎪⎢⎣⎭.点睛:本题主要考查切线方程的求解,数形结合解题,转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.1【解析】由题意由此可知在逐次求导的过程中所得的函数呈周期性变化从开始计周期是4∵是一周中的第三个函数∴∴故答案为1点睛:本题考查函数的周期性探究过程中用的是归纳推理对其前几项进行研究得出规律求解本解析:1 【解析】由题意()0sin f x x =,()()10cos f x f x x '==,()()21sin f x f x x ='=-,()()32cos f x f x x ='=-,()()43sin f x f x x ='=,由此可知,在逐次求导的过程中,所得的函数呈周期性变化,从0开始计,周期是4,∵201745041=⨯+,()2010f x 是一周中的第三个函数,∴()2017cos f x x =,∴()20170cos01f ==,故答案为1.点睛:本题考查函数的周期性,探究过程中用的是归纳推理,对其前几项进行研究得出规律,求解本题的关键一是要归纳推理的意识,一是对正、余弦函数的导数求法公式熟练掌握.本题易因为判断不准()2010f x 一周期中的第几个数而导致错误,要谨慎.三、解答题21.(Ⅰ)a=﹣2(Ⅱ)111,22⎛⎫-- ⎪⎝⎭【解析】试题分析:(Ⅰ)求出导函数,曲线的斜率以及切点坐标,然后求解切线方程,代入93,2⎛⎫⎪⎝⎭求出a 即可.(2)利用导函数()2132f x a x x =--'为(0,+∞)上的减函数,又因为f (x )在(1,2)上存在极值,即()21302f x a x x -'=-=有解,列出不等式求解即可. 试题 (Ⅰ)()2132f x a x x =--' ()()1111,22f a f a ∴=--=-'-∴曲线y=f (x )在点(1,f (1))处的切线方程为()11122y a a x ⎛⎫++=-+- ⎪⎝⎭ , 代入93,2⎛⎫⎪⎝⎭得a+5=﹣2a ﹣1⇒a=﹣2. (Ⅱ)()2132f x a x x =--' 为(0,+∞)上的减函数, 又因为f (x )在(1,2)上存在极值,即()21302f x a x x -'=-=有解 ()()10111,2022f a f ⎧>⎪⎛⎫∴∴∈--⎨ ⎪<'⎝⎩'⎭⎪ .点睛:本题考查导数几何意义及利用导数研究函数极值的问题,函数的极值点是导函数等于0的变号根,研究导函数的单调性,利用零点存在性定理限制不等式即得解. 22.(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)求出导数,利用导数的几何意义,求出,即可求的解析式; (Ⅱ)对,恒有成立,等价于,即可求的取值范围.试题 (Ⅰ)∵,∴,∴. 令,代入切线方程得切点坐标为,代入函数,得.∴. (Ⅱ)∵,令,得或(舍).列表得:极大值∵,,∴,,∴对恒成立,∴恒成立,,∴恒成立,记,,∴.∵,令,则,列表得:极小值∴,∴.点睛:本题考查导数知识的综合运用,考查导数的几何意义即函数在某点处的导数即在该点处切线的斜率,考查恒成立问题,属于中档题;常见的恒成立有:对于涉及到一个变量恒成立时,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解;对于含有两个变量时,成立,等价于.23.(1);(2);(3)详见解析.【解析】试题分析:(1)根据导数的几何意义,求得,再根据函数是奇函数,可求得;(2)根据(1)的结论,可将问题转化为恒成立,通过讨论自变量的正负,参变分离后可将问题转化为,这样设函数,利用导数求函数的最值,即得的取值范围;(3)点A,B在曲线上,设出点的坐标,经过指对互化,表示,再通过分析法证明.试题解:(1),为奇函数,;(2)由(1)知,,因为当时,图像恒在的上方,所以恒成立,,记,则,由,在单调减,在单调减,在单调增,,,综上,所求实数的取值范围是;(3)由(2)知,设,,,,要证,即证,令,即证,令,即证,,在上单调减,在上单调减,,所以,考点:1.导数的几何意义;2.导数与函数的单调性以及最值;3.分析法.24.(1)(2)答案见解析(3)【解析】试题分析:(1)由及曲线在处的切线斜率为,即可求得,又函数过点,即可求的.(2)由(1)易知,令可得或,然后对进行分类讨论,确定函数在的单调性,即可求出函数在上的最大值和最小值;(3)构造函数,研究函数的单调性,列出该方程有两个相异的实根的不等式组,求出实数的取值范围.试题(1)因为,曲线在处的切线斜率为,即,所以.又函数过点,即,所以.所以.(2)由,.由,得或.①当时,在区间上,在上是减函数,所以,.②当时,当变化时,、的变化情况见下表:020-0++2-2,为与中较大的一个..所以.(3)令,.在上,;在上,.要使在上恰有两个相异的实根,则解得.考点:利用导数求函数的最值;利用导数求参数的范围.25.(1);(2);(Ⅲ)点的横坐标的取值范围为.【解析】试题分析:(1)根据图像过原点得,又切线斜率等于切点处导数值,得,解出;(2)时,对求导以判断函数的单调性,得,令则,令则或,故在单调递减,在单调递增,在单调递减,为极小值点,,为极大值点,,,比较极小值与区间端点处函数值,,得在上的最小值为0,当或1时取得;(3)设,利用横坐标的对称关系得出,由得,于是①,然后对以为分界点分类讨论方程①是否存在解,当时,都有,故方程①无解;当时,,代入①化简得,该方程判别式小于0,故方程无解;当时,代人①化简得,再考虑此方程是否有解,令,求导分析知是增函数,注意到,故的值域是,因此方程①对任意正实数恒有解;当时,由横坐标的对称性同理可得,方程①对任意正实数恒有解,综上可得点的横坐标的取值范围.试题(1)当时,,,依题意,,又,故;...............3分(2)当时,,令有,故在单调递减;在单调递增;在单调递减.又,所以当时,; 6分(3)设,因为中点在轴上,所以,又①,(ⅰ)当时,,当时,.故①不成立 7分(ⅱ)当时,代人①得:,无解; 8分(ⅲ)当时,代人①得:②,设,则是增函数.的值域是. 10分所以对于任意给定的正实数,②恒有解,故满足条件.(ⅳ)由横坐标的对称性同理可得,当时,,代人①得:③设,令,则由上面知的值域是的值域为.所以对于任意给定的正实数,③恒有解,故满足条件. 12分综上所述,满足条件的点的横坐标的取值范围为..........14分考点:1、导数与切线关系;2、函数单调性与最值;3、分类讨论的思想;4、函数与方程的思想.26.(1)9,62b c=-=;(2)329()612f x x x x=-++;(3)15x﹣16y+16=0【解析】【分析】(1)由题意可得:f'(x)=3x2+2bx+c,所以3x2+2bx+c=0的两个根为x1=1,x2=2,进而得到a与b的关系式解决问题.(2)设切点为(x 0,y 0),得f '(x 0)=6,即x 0=3或者x 0=0,即可解出切点的坐标求出函数y =f (x )的解析式.(3)由题意可得:设切点的坐标为(x 1,y 1),所以111y x k -=切=321111962x x x x -+=211962x x -+…①.所以K 切=3x 12﹣9x 1+6…②,所以切点为(94,19964),所以1516k =切,所以切线方程为15x ﹣16y+16=0. 【详解】(1)由题意可得:函数f (x )=x 3+bx 2+cx+d 的导数为:f '(x )=3x 2+2bx+c , 因为函数f (x )=x 3+bx 2+cx+d 有两个极值点x 1=1,x 2=2,所以3x 2+2bx+c =0的两个根为x 1=1,x 2=2,所以2b+c+3=0,并且4b+c+12=0,解得:b =﹣92,c =6. (2)设切点为(x 0,y 0),由(1)可得:f '(x )=3x 2﹣9x+6,因为直线y =6x+1与曲线y =f (x )相切于P 点,所以f '(x 0)=6,即x 0=3或者x 0=0,当x 0=3时,y 0=19,所以函数y =f (x )的解析式为f (x )=x 392-x 2+6x+272. 当x 0=0时,y 0=1,所以函数y =f (x )的解析式为f (x )=x 392-x 2+6x+1. (3)由题意可得:f (x )=x 392-x 2+6x+1,并且P (0,1),设切点的坐标为(x 1,y 1), 所以111y x k -=切=321111962x x x x -+=211962x x -+…①.又因为f '(x )=3x 2﹣9x+6, 所以K 切=3x 12﹣9x 1+6…②,由①②可得:194x =或10x =(舍去), 所以切点为(94,19964),所以1516k =切,所以切线方程为15x ﹣16y+16=0. 所以过P 点和y =f (x )相切于一异于P 点的直线方程为15x ﹣16y+16=0.【点睛】本题考查了导数的几何意义与求导公式,求切线方程时应该首先弄清切线所过的点是否为切点,再根据题意采用不同的方法进行处理,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-2练习题(二)2.1离散型随机变量及其分布列 2.2二项分布及其应用 2.3离散型随机变量的均值与方差 2.4正态分布A 组题(共100分)一.选择题:本大题共5题,每小题7分,共35分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1、投掷质地均匀的硬币一次,可作为随机变量的是( ) A.掷硬币的次数 B.出现正面的次数C. 出现正面或反面的次数D. 出现正面与反面的次数之和2、设随机变量X 的分布为1(),1,2,3()3iP x i a i ==⋅=,则a 的值为( )A.1B.913 C. 1113 D. 27133、若随机变量ξ等可能取值1,2,3,,,n 且P(ξ<4)=0.3,那么n =( ) A.3 B.4 C.10 D.94、将一枚硬币连掷5次,如果出现k 次正面的概率等于出现1k +次正面的概率,那么k 的值为( ) A.0 B. 1 C. 2 D. 35、已知3()5P A =,1()2P B A =,则()P AB =( ) A. 56 B. 910 C. 310 D. 110二.填空题:本大题共4小题,每小题6分,共24分.6、某大学一寝室住有6名大学生,每晚1900∶至2000∶,这6名大学生中任何一位留在寝室的概率都是0.5,则在1900∶至2000∶间至少有3人都在寝室的概率是______ ___.7、甲射击命中目标的概率是12,乙射击命中目标的概率是23,丙射击命中目标的概率是34,现三人同时射击目标,三人同时击中目标的概率是__ ___;目标被击中的概率是 . 8、已知某离散型随机变量X 的数学期望7EX =,X 的分布如下:则a =_____ ___.9、一个袋中有10个大小相同的小球,其中6个红球,4个白球,现从中摸3个,至少摸到2个白球的概率是__________________.三.解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤.10、(本题12分)有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的条件下,第二次抽到次品的概率.11、(本题14分)已知随机变量ξ的分布列为请分别求出随机变量ξ2=X 和ξ2=Y 的分布列.12、(本题14分)设离散型随机变量X 的所有可能值为,4,3,2,1且(),(1,2,3,4)P x k ak k ===⑴求常数a 的值;⑵求X 的分布列;⑶求(24)P x ≤<.B 组题(共100分)四、选择题:本大题共5题,每小题7分,共35分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

13、若随机变量X 服从两点分布,且成功概率为0.7;随机变量Y 服从二项分布,且Y ~B (10,0.8),则EX ,DX ,EY ,DY 分别是( )A 、0.3, 0.21, 2, 1.6B 、0.7, 0.21, 8, 1.6C 、0.7, 0.3, 8, 6.4D 、0.3, 0.7, 2, 6.414、在4次独立重复试验中,随机事件A 恰好发生一次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是( )A 、[0.4, 1)B 、(0, 0.6]C 、(0, 0.4]D 、[0.6, 1)15、位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是21.质点P 移动5次后位于点(2,3)的概率是( ) A 、5)21( B 、525)21(C C 、335)21(C D 、53525)21(C C16、已知随机变量ξ的分布列如下表,则ξ的标准差σξ为( )A 、3.56B 、3. 2C 、2.3D 、56.3 17、若X ~N (10,4)则P (6<X ≤10)=( )A 、0.6826B 、0. 3413C 、0. 9544D 、0. 4772 五、填空题:本大题共4小题,每小题6分,共24分。

18、已知ξ的分布列为P (ξ=k )=k c2(k=1,2,…,6),其中c 为常数,则P (ξ≤2)=__________. 19、随机变量ξ的分布列为那么E (5ξ+4)=______________.20、某人参加考试,需从10道题中随机抽3题,规定至少要做对2题才算合格,已知此人会解其中的6道题,则此人能够合格的概率是__________. 21、已知Y ~N (3,1),则P (4<Y <5)=_____________.六、解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。

22、某考生参加一种测试,需回答三个问题,规定:每题回答正确得100分,回答不正确得-100分。

已知该考生每题回答正确的概率都是0.8,且各题回答正确与否相互之间没有影响. (1)求这名同学回答这三个问题的总得分X 的概率分布列和数学期望; (2)求这名同学总得分不低于100分的概率.23、甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示,若三人各射击一次,恰有n 名选手击中目标的概率为Pn=P (ξ=n )(n=0,1,2,3). (1)求Pn 的分布列;(2)若击中目标的期望值为2,求P 值.24、某突发事件,在不采取任何预防措施的情况下,发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用,单独采用甲、乙预防措施的费用分别为45万元和30万元,采用相应措施后突发事件不发生的概率分别为0.9和0.85,若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请你确定预防方案,并使总费用最少. (总费用=采取预防措施的费用+发生突发事件损失的期望值)C 组题(共50分)七、选择或填空题:本大题共2题。

25、口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{}a n ,⎩⎨⎧=次摸到白球第次摸到红球第n 1n 1-a n ,如果S n 为数列{}a n 的前n 项和,那么37=S 的概率为( ) A 、5257)32()31(C B 、5227)31()32(C C 、5257)31()31(C D 、2237)52()31(C26、已知P 随机变量X ~N (μ,σ2),且其正态曲线在(-∞,80)上是增函数,在 (80,+∞)上为减函数,且6826.0)(8872,=⎰dx x σμϕ,则=⎰dx x )(7264,σμϕ________.八、解答题:本大题共2小题,解答题应写出文字说明、证明过程或演算步骤。

27、某陶瓷厂准备烧制三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4 . 经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6, 0.5, 0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.28、设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程02=++c bx x 实根的个数(重根按一个计).(1)求方程02=++c bx x 有实根的概率; (2)求X 的分布列和数学期望;(3)求在先后两次的点数中有5的条件下,方程02=++c bx x 有实根的概率.A 组答案1~5. BDCCC 6.3221 7.41 , 2423 8.31 9.3110、解:记“第一次抽到次品”的事件为A, “第二次抽到次品”的事件为B,则“第一次和第二次都抽到次品”的事件为AB ,⑴41)(22011915=⋅=A A A A P ⑵191)(22025==A A AB P ⑶19441191)()()(===A P AB P A B P11、解:随机变量ξ1=X 的分布列为:随机变量ξ2=Y 的分布列为:12、解:⑴由条件得:1432=+++a a a a110=∴a 得101=a ⑵由已知可列出X 的分布列如下:⑶)3()2()42(=+==≤x P x P x P <5.03.02.0=+=B 组答案13—17. BABDD 18.2116 19. 15 20. 3221. 0.13522、解:(1)由题知,总得分X 的概率分布列为:∴ E X=()322322338.03008.02.01008.02.0)100(2.0300⋅+⋅⋅⋅+⋅⋅⋅-+⋅-C C=180P (X ≥100)= P (X=100)+P (X=300)=32238.08.02.0+⋅⋅C=0.89623、解:(1)设三人各射击一次,击中的人数为X ,则X 的分布列为(2)由上表知EX=21223)1(2)1()1(21222+=+-++-+-P P P P P P P P ∴ 2P+221= ∴ P=4324、解:(1)若不采取任何预防措施,则总费用为400×0.3=120万元(2)单独采用甲方案,则总费用为45+400×0.1=85万元(3)单独采用乙方案,则总费用为30+400×0.15=90万元(4)若甲、乙方案同时采用,则总费用为45+30+400×0.1×0.15=75.6万元 因此,当联合采用甲、乙两种方案时,总费用最少为75.6万元C 组答案25. B 26. 0.135927、解:分别记甲、乙、丙经过第一次烧制后合格的事件为A 1、A 2、A 3 (1)设E 表示“第一次烧制后恰好有一件合格”的事件∴ P (E )=)()()(321321321A A A P A A A P A A A P ++=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4 =0.38(2)因为每件工艺品经过两次烧制后合格的概率均为P =0.3 ∴ ξ~B(3, 0.3) ∴E ξ= np = 3×0.3 = 0.928、解:(1)设基本事件空间为Ω,记“方程02=++c bx x 有实根”为事件A ,则A={(b ,C )|b 2-4c ≥0,b 、c=1,2,…,6} Ω中的基本事件总数为6×6=36个 A 中的基本事件总数为6+6+4+2+1=19个 ∴所求概率P (A )=3619(2)由题分析知,X 的可能取值为0,1,2,则P (X=0)=3617 P (X=1)=181362= P (X=2)=3617∴X 的分布列为∴X 的数学期望EX=1(3)记“先后两次的点数件有5”的事件为B ,则P (B )=361136251=- P (A ∩B )=3673616=+ ∴P (A|B )=1173611367)()(==B P AB P。

相关文档
最新文档