2021年高中数学第一章常用逻辑用语1.4.1全称量词1.4.存在量词高效测评新人教A版选修

合集下载

1.4.1、2全称量词、存在量词

1.4.1、2全称量词、存在量词

栏目导引
判断下列命题的真假: (1)∀x∈R,x2+2x+1>0; (2)∃x0∈R,|x0|≤0; (3)∀x∈N*,log2x>0; (4)∃x0∈R,sin x0=π2.
工具
第一章 常用逻辑用语
栏目导引
解答本题可根据命题中所含量词的含义进行判断.
工具
第一章 常用逻辑用语
栏目导引
[规范作答] (1)∵当x=-1时,x2+2x+1=0,
工具
第一章 常用逻辑用语
栏目导引
2.下列全称命题中假命题的个数是( )
①2x+1是整数(x∈R) ②对所有的x∈R,x>3 ③对任意 一个x∈Z,2x2+1为奇数
A.0
B.1
C.2
D.3
工具
第一章 常用逻辑用语
栏目导引
解析: 对于①,当 x=14时,2x+1=32不是整数,假命 题.对于②,当 x=0 时,0<3,假命题.对于③,当 x∈Z 时,2x2 是偶数,进而 2x2+1 是奇数,所以①②是假命题, 故选 C.
存在一个 、 至少有一个 、 有些 、 有的 .
含有
∃ 存在量词 的命题
形式
“记存为在M“∃中x的0∈一M个;xp0,(x0使)”p(x0)成立. ”,可用符号
工具
第一章 常用逻辑用语
栏目导引
1.将“x2+y2≥2xy”改写成全称命题,下列说法正确的是 ()
A.∀x,y∈R,都有x2+y2≥2xy B.∃x0,y0∈R,使x+y≥2x0y0 C.∀x>0,y>0,都有x2+y2≥2xy D.∃x0<0,y0<0,使x+y≤2x0y0 解析: 这是一个全称命题,且x,y∈R,故选A. 答案: A

高中数学第一章常用逻辑术语1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词a21

高中数学第一章常用逻辑术语1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词a21

课后课时精练
[解] (1)三角形的三条边的中线的交点叫做三角形的重心,所有三角形 的重心都在三角形内部,所以有些三角形的重心在某一边上是假命题.
(2)∃x0=π4,T=π2,使 sinπ4+π2=cosπ4=sinπ4= 22,所以是真命题. (3)由于∀x∈R,都有 x2≥0,因而有 x2+2≥2>0,即 x2+2>0.所以命题 “∀x∈R,x2+2>0”是真命题. (4)当直线的倾斜角等于 90°时不存在斜率,故所有的直线都有斜率是假 命题.
12/9/2021
课前自主预习
课堂互动探究
随堂达标自测 第十四页,共三十六页。
课后课时精练
【跟踪训练 2】 判断下列命题的真假. (1)任意两向量 a,b,若 a·b>0,则 a,b 的夹角为锐角; (2)∃x0,y0 为正实数,使 x20+y20=0; (3)在平面直角坐标系中,任意有序实数对(x,y)都对应一点 P.
课后课时精练
答案
探究 2 全称命题与特称命题的真假 例 2 判断下列命题的真假. (1)有些三角形的重心在某一边上; (2)∃x0,T≠2π,使 sin(x0+T)=sinx0; (3)∀x∈R,x2+2>0; (4)所有的直线都有斜率.
12/9/2021
课前自主预习
课堂互动探究
随堂达标自测 第十二页,共三十六页。
12/9/2021
课前自主预习
课堂互动探究
随堂达标自测 第十九页,共三十六页。
课后课时精练
答案
[条件探究] 若把例 3(1)中的“∀”改为“∃”,其他条件不变,求实 数 m 的取值范围.
12/9/2021
课前自主预习
课堂互动探究
随堂达标自测 第二十页,共三十六页。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词课时规范训练 新人教A版高二选修2-1数学

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词课时规范训练 新人教A版高二选修2-1数学

1.4 全称量词与存在量词基础练习1.命题“所有能被2整除的整数都是偶数”的否定是( ) A .所有不能被2整除的整数都是偶数 B .所有能被2整除的整数都不是偶数 C .存在一个不能被2整除的整数是偶数 D .存在一个能被2整除的整数不是偶数 【答案】D【解析】原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数. 2.给出下列几个命题:①至少有一个x 0,使x 20+2x 0+1=0成立; ②对任意的x ,都有x 2+2x +1=0成立; ③对任意的x ,都有x 2+2x +1=0不成立; ④存在x 0,使x 20+2x 0+1=0成立. 其中是全称命题的个数为( ) A .1 B .2 C .3 D .0【答案】B【解析】命题②③都含有全称量词“任意的”,故②③是全称命题. 3.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2【答案】B【解析】选项A 中锐角三角形的内角是锐角或钝角是全称命题;选项B 中x =0时,x 2=0,所以选项B 既是特称命题又是真命题;选项C 中因为3+(-3)=0,所以选项C 是假命题;D 中对于任一个负数x ,都有1x<0,所以选项D 是假命题.4.已知命题p :∀x ∈R ,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )【答案】B【解析】因为x =-1时,2-1>3-1,所以命题p :“∀x ∈R,2x <3x”为假命题,则¬p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0,所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :“∃x 0∈R ,x 30=1-x 20”为真命题.则(¬p )∧q 为真命题.故选B .5.命题“∃x 0∈R ,x 20-x 0+3=0”的否定是__________. 【答案】∀x ∈R ,x 2-x +3≠0【解析】∵命题“∃x ∈R ,x 2-x +3=0”是特称命题,∴其否定命题为“∀x ∈R ,x 2-x +3≠0”.6.给出下列命题: ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.其中是全称命题的是________;是特称命题的是________.(填序号) 【答案】①②③④【解析】①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.7.判断下列命题的真假,并写出这些命题的否定. (1)∀x ∈N ,x 3>x 2;(2)所有可以被5整除的整数,末位数字都是0; (3)∃x ∈R ,x 2-x +1≤0;(4)存在一个四边形,它的对角线互相垂直且平分.解:(1)当x =1时,13=12,∴x =1时,x 3>x 2不成立,即此命题是假命题. 命题的否定:∃x 0∈N ,x 30≤x 20.(2)15可以被5整除,但15的末位数字不是0, ∴此命题是假命题.命题的否定:有些可以被5整除的整数,末位数字不是0.(3)∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,∴此命题是假命题.命题的否定:∀x ∈R ,x 2-x +1>0.(4)菱形的对角线互相垂直且平分,∴此命题是真命题.命题的否定:任何一个四边形,它的对角线不互相垂直或不互相平分.8.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,某某数a的取值X围.解:若命题p:“∀x∈[1,2],x2-a≥0”为真命题,则a≤x2在区间[1,2]恒成立,所以a≤(x2)min=1.若命题q:“∃x∈R,x2+2ax+2-a=0”为真命题,则Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.命题“p且q”为真命题,即命题p,q都为真命题,所以取两个X围的交集,实数a的取值X围为a≤-2或a=1.能力提升9.(2019年某某某某模拟)已知函数f(x)的定义域为(a,b),若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则f(a+b)的值为( )A.-1 B.0C.1 D.2【答案】B【解析】若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则“∀x∈(a,b),f(x)+f(-x)=0”是真命题,即f(-x)=-f(x),则函数f(x)是奇函数,则a+b=0,即f(a+b)=f(0)=0.10.(2019年某某某某期中)下列关于函数f(x)=x2与函数g(x)=2x的描述,正确的是( )A.∃a0∈R,当x>a0时,总有f(x)<g(x)B.∀x∈R,f(x)<g(x)C.∀x<0,f(x)≠g(x)D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解【答案】A【解析】在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),选项A正确,选项B,C,D均错误.11.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0.则m的取值X围是________.【答案】(-4,-2)【解析】由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则f (x )必须开口向下,即m <0.f (x )=0的两根x 1=2m ,x 2=-m -3,则x 1-x 2=3m +3.(1)当x 1>x 2,即m >-1时,必须大根x 1=2m <1,即m <12;(2)当x 1<x 2,即m <-1时,大根x 2=-m -3<1,即m >-4;(3)当x 1=x 2,即m =-1时,x 1=x 2=-2<1也满足条件.∴满足条件①的m 的取值X 围为-4<m <0.若∃x ∈(-∞,-4),f (x )g (x )<0,则满足方程f (x )=0的小根小于-4.(1)当m >-1时,小根x 2=-m -3<-4且m <0,无解;(2)当m <-1时,小根x 1=2m <-4且m <0,解得m <-2;(3)当m =-1时,f (x )=-(x +2)2≤0恒成立,∴不满足②.∴满足①②的m 的取值X 围是-4<m <-2.12.已知命题p :∃x ∈R ,使得x 2-2ax +2a 2-5a +4=0;命题q :∀x ∈[0,1],都有(a 2-4a +3)x -3<0.若“p 或q ”为真命题,“p 且q ”为假命题,某某数a 的取值X 围.解:若p 为真命题,则Δ=4a 2-4(2a 2-5a +4)≥0, 解得1≤a ≤4.对于q ,令f (x )=(a 2-4a +3)x -3,若q 为真命题,则f (0)<0且f (1)<0,即⎩⎪⎨⎪⎧-3<0,a 2-4a <0,解得0<a <4.由“p 或q ”为真命题,“p 且q ”为假命题,知p ,q 一真一假,所以⎩⎪⎨⎪⎧1≤a ≤4,a ≤0或a ≥4或⎩⎪⎨⎪⎧a <1或a >4,0<a <4.解得0<a <1 或a =4.故a 的取值X 围是{a |0<a <1 或a =4}.。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1 全称量词 1.4.2 存在量

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1 全称量词 1.4.2 存在量
所以“p或q”是真命题时,实数a的取值范围是(-∞,1]∪[2,+∞).
方法技巧 (1)含参数的全称命题为真时,常转化为不等式的恒成立问题来 处理,最终通过构造函数转化为求函数的最值问题. (2)含参数的特称命题为真时,常转化为方程或不等式有解问题来处理,最 终借助根的判别式或函数等相关知识获得解决.
是错误的,故选C.
方法技巧 (1)全称命题的真假判断
要判定一个全称命题“∀x∈M,p(x)”是真命题,必须对限定集合M中的每个
元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一
个x=x0,使得p(x0)不成立即可. (2)特称命题的真假判断 要判断特称命题“∃x0∈M,p(x0)”为真命题,只需在限定集合M中找出一个 x=x0,使得p(x0)成立即可;要判断特称命题为假命题,就要验证集合M中的每 个元素x都不能满足p(x),即在集合M中,使p(x0)成立的元素x0不存在.
新知探求 课堂探究
新知探求 素养养成
知识点一 全称量词与全称命题
问题1:结合你学过的知识,谈谈你对全称量词的含义的理解.
答案:短语“所有”在陈述中表示所述事物的全体,在逻辑中通常叫做全称量
词.

梳理 全称量词有:所有的、任意一个、任给一个,用符号“
”表示,含
有全∀称x∈量M词,p的(x命) 题,叫做全称命题.“对M中的所有x,p(x)”用符号简记为:
解析:(1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.
(2)含有全称量词“任意”,故是全称命题;
(3)是命题,但既不是全称命题,也不是特称命题;
(4)有一个实数a,a不能取对数. (5)任何数的0次方都等于1吗?
解析:(4)含有存在量词“有一个”,因此是特称命题; (5)不是命题.

2020-2021学年高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词 1

2020-2021学年高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词 1

2020-2021学年高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定课时跟踪训练新人教A版选修2-1年级:姓名:第一章常用逻辑用语[A组学业达标]1.下列命题中为全称命题的是( )A.过直线外一点有一条直线和已知直线平行B.矩形都有外接圆C.存在一个实数与它的相反数的和为0D.0没有倒数解析:命题“矩形都有外接圆”可改写为“每一个矩形都有外接圆”,是全称命题.故选B.答案:B2.下列命题中为特称命题的是( )A.所有的整数都是有理数B.三角形的内角和都是180°C.有些三角形是等腰三角形D.正方形都是菱形解析:A,B,D为全称命题,而C含有存在量词“有些”,故为特称命题.答案:C3.命题“∃x0∈R,2x0<12或x20>x0”的否定是( )A.∃x0∈R,2x0≥12或x20≤x0B.∀x∈R,2x≥12或x2≤xC.∀x∈R,2x≥12且x2≤xD.∃x0∈R,2x0≥12且x20≤x0解析:原命题为特称命题,其否定为全称命题,应选C.答案:C4.下列四个命题中的真命题为( )A.若sin A=sin B,则A=BB.∀x∈R,都有x2+1>0C.若lg x2=0,则x=1D.∃x0∈Z,使1<4x0<3解析:A中,若sin A=sin B,不一定有A=B,故A为假命题,B显然是真命题;C中,若lg x2=0,则x2=1,解得x=±1,故C为假命题;D中,解1<4x<3得14<x<34,故不存在这样的x∈Z,故D为假命题.答案:B5.命题“∀x∈[1,2],x2-a≤0”是真命题的一个充分不必要条件是( ) A.a≥4B.a≤4C.a≥5 D.a≤5解析:当该命题是真命题时,只需a≥(x2)max,x∈[1,2].因为y=x2在[1,2]上的最大值是4,所以a≥4.因为a≥4⇒/ a≥5,a≥5⇒a≥4,故选C.答案:C6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号)①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”,是全称命题;④是特称命题.答案:①②③④7.命题p :∃x 0∈R ,x 20+2x 0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定是綈p :____________,它是________命题(填“真”或“假”).解析:∵x 2+2x +5=(x +1)2+4≥0恒成立,∴命题p 是假命题. 答案:特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真8.若命题“∃x 0∈R ,使得x 20+(1-a )x 0+1<0”是真命题,则实数a 的取值范围是________.解析:由题意可知,Δ=(1-a )2-4=(a -3)(a +1)>0,解得a <-1或a >3. 答案:(-∞,-1)∪(3,+∞) 9.判断下列命题的真假,并说明理由. (1)∀x ∈R ,都有x 2-x +1>23;(2)∃x 0∈R 使sin x 0+cos x 0=2; (3)∀x ,y ∈N ,都有(x -y )∈N ; (4)∃x 0,y 0∈Z ,使2x 0+y 0=3.解析:(1)x 2-x +1>23⇔x 2-x +13>0,由于Δ=1-4×13=-13<0,∴不等式x 2-x +1>23的解集是R ,∴该命题是真命题.(2)∵sin x 0+cos x 0=2sin ⎝⎛⎭⎪⎫x 0+π4,∴-2≤sin x 0+cos x 0≤2<2, ∴该命题是假命题.(3)当x =2,y =4时,x -y =-2∉N ,所以该命题是假命题. (4)当x 0=0,y 0=3时,2x 0+y 0=3,所以该命题是真命题.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π. (1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值.解析:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π.(2)因为綈p 是假命题,所以p 是真命题,所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.[B 组 能力提升]11.已知命题p :∀x ∈R,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q )D .(綈p )∧(綈q )解析:由20=30知,p 为假命题;令h (x )=x 3+x 2-1,则h (0)=-1<0,h (1)=1>0,∴方程x 3+x 2-1=0在(0,1)内有解,∴q 为真命题,∴p ∧q ,p ∧(綈q ),(綈p )∧(綈q )均为假命题,(綈p )∧q 为真命题,故选B.答案:B12.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎨⎧a >0,Δ≤0,即⎩⎨⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.。

2020_2021学年高中数学第一章常用逻辑用语1.4.1全称量词1.4.2存在量词1.4.3含有一

2020_2021学年高中数学第一章常用逻辑用语1.4.1全称量词1.4.2存在量词1.4.3含有一

1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定内容标准学科素养1.理解全称量词、存在量词的含义.2.掌握全称命题与特称命题的真假判断.3.能正确地对含有一个量词的命题进行否定.应用直观想象发展逻辑推理提升数学运算授课提示:对应学生用书第13页[基础认识]知识点一全称量词与全称命题预习教材P21-22,思考并完成以下问题什么是命题?命题的结构形式是什么?提示:命题是可以判断真假的陈述句,命题由条件和结论构成.下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x>3;(2)2x+1是整数;(3)对所有的x∈R,x>3;(4)对任意一个x∈Z,2x+1是整数.提示:语句(1)(2)含有变量x,由于不知道变量x代表什么数,无法判断它们的真假,因而不是命题.语句(3)在(1)的基础上,用短语“对所有的”对变量x进行限定;语句(4)在(2)的基础上,用短语“对任意一个”对变量x进行限定,从而使(3)(4)成为可以判断真假的语句,因此语句(3)(4)是命题.知识梳理全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题的表述形式:对M中任意一个x,有p(x)成立,可简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(4)全称命题的真假判断:要判断一个全称命题是真命题,必须对限定集合M中的每一个元素x,验证p(x)成立;但要判断一个全称命题是假命题,只需列举出一个x0∈M,使得p(x0)不成立即可.知识点二存在量词与特称命题预习教材P22-23,思考并完成以下问题下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)2x+1=3;(2)x能被2和3整除;(3)存在一个x0∈R,使2x0+1=3;(4)至少有一个x0∈Z,x0能被2和3整除.提示:容易判断,(1)(2)不是命题.语句(3)在(1)的基础上,用短语“存在一个”对变量x 的取值进行限定;语句(4)在(2)的基础上,用“至少有一个”对变量x的取值进行限定,从而使(3)(4)变成了可以判断真假的语句,因此语句(3)(4)是命题.知识梳理存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题的表述形式:存在M中的一个x0,使p(x0)成立,可简记为:∃x0∈M,p(x0),读作“存在M中的元素x0,使p(x0)成立”.(4)特称命题的真假判断:要判断一个特称命题是真命题,只要在限定集合M中,能找到一个x0,使得命题p(x0)成立即可;否则这一命题就是假命题.知识点三含有一个量词的命题的否定预习教材P24-26,思考并完成以下问题命题“所有的四边形都是平行四边形”的否定是“所有的四边形都不是平行四边形”吗?若不是,应怎样写出?其含义是什么?提示:由p与綈p的真假性相反可知,不是.该命题的否定是:并非所有的四边形都是平行四边形.其含义是“存在一个”四边形“不是平行四边形”.写出下列命题的否定:(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x∈R,x2-2x+1≥0.这些命题和它们的否定在形式上有什么变化?提示:命题(1)的否定是“并非所有的矩形都是平行四边形”,也就是说,存在一个矩形不是平行四边形;命题(2)的否定是“并非每一个素数都是奇数”,也就是说,存在一个素数不是奇数;命题(3)的否定是“并非所有的x∈R,x2-2x+1≥0”,也就是说,∃x0∈R,x20-2x0+1<0.知识梳理全称命题与特称命题的否定1.给出下列命题:①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.其中全称命题的个数为( ) A.0 B.1C.2 D.3答案:C2.下列命题中,既是真命题又是特称命题的是( ) A.存在一个θ,使tan θ=tan(90°-θ)B.存在实数x0,使sin x0=π2C.对一切θ,使sin θ=sin(180°-θ)D.sin(α-β)=sin αcos β-cos αsin β答案:A3.命题“存在一个三角形,内角和不等于180°”的否定为( ) A.存在一个三角形的内角和等于180°B.所有三角形的内角和都等于180°C.所有三角形的内角和都不等于180°D.很多三角形的内角和不等于180°答案:B授课提示:对应学生用书第15页探究一全称命题和特称命题的概念及真假判断[阅读教材P22-23例1、例2]判断下列全称命题和特称命题的真假:(1)所有的素数是奇数;(2)∀x∈R,x2+1≥1;(3)对每一个无理数x,x2也是无理数;(4)∃x0∈R,x20+2x0+3=0;(5)存在两相交平面垂直于同一条直线;(6)有些整数只有两个正因数.题型:全称命题真假的判断方法步骤:要判断全称命题“∀x∈M,p(x)”是真命题,需要对M中的每个元素x证明p(x)成立.如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称命题就是假命题.[例1] 判断下列命题是全称命题还是特称命题?(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)有些素数的和仍是素数;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解析](1)可以改写为所有的凸多边形的外角和都等于360°,故为全称命题.(2)含有存在量词“有的”,故为特称命题.(3)含有全称量词“任意”,故为全称命题.(4)含有存在量词“有些”,故为特称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.[例2]判断下列命题的真假:(1)p:任意等比数列的公比不能等于0;(2)q:存在等差数列,其前n项和S n=n2+2n-1;(3)r:∀x∈R,sin x+cos x≥-1;(4)s:∃x0∈R,x20-2x0+3<0.[解析](1)这是全称命题,由等比数列的定义知,等比数列中任意项a n≠0,所以其公比q=a n+1a n≠0(n∈N+),故该命题为真命题.(2)这是特称命题,对于任意等差数列{a n},若设其公差为d,则前n项和S n=na1+n n -12d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,因此不可能是S n =n 2+2n -1这种形式,故该命题是假命题.(3)这是全称命题,因为对∀x ∈R ,sin x +cos x = 2 sin ⎝ ⎛⎭⎪⎫x +π4≥-2,所以存在x 0∈R ,sin x +cos x ∈[-2,-1),故该命题为假命题.(4)这是特称命题,因为对任意x ∈R ,x 2-2x +3=(x -1)2+2≥2>0,所以不存在x 0∈R ,使x 20-2x 0+3<0,故命题为假命题.方法技巧 1.判定一个命题是全称命题还是特称命题时,主要方法是看命题中是否含有全称量词或存在量词.当然有些全称命题中并不含全称量词,这时要根据命题所涉及的意义去判断.2.全称命题与特称命题真假的判断方法:(1)要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 证明p (x )成立;但要判定全称命题是假命题,只要能举出集合M 中的一个x 0,使得p (x 0)不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个特称命题是真命题,只要在限定集合M 中,能找到一个x 0使p (x 0)成立即可;否则,这个特称命题就是假命题.跟踪探究 1.将下列命题用“∀”或“∃”表示. (1)实数的平方是非负数;(2)方程ax 2+2x +1=0(a <1)至少存在一个负根; (3)若直线l 垂直于平面α内任一直线,则l ⊥α. 解析:(1)∀x ∈R ,x 2≥0.(2)∃x 0<0,ax 20+2x 0+1=0(a <1). (3)若∀a ⊂α,l ⊥a ,则l ⊥α. 2.判断下列命题的真假. (1)∀x ∈R ,x 2-x +1>12;(2)∃α,β,cos(α-β)=cos α-cos β; (3)存在一个函数既是偶函数又是奇函数; (4)每一条线段的长度都能用正有理数表示. 解析:(1)真命题, ∵x 2-x +1-12=x 2-x +12=⎝ ⎛⎭⎪⎫x -122+14≥14>0, ∴x 2-x +1>12恒成立. (2)真命题,例如α=π4,β=π2,符合题意.(3)真命题,函数f (x )=0既是偶函数又是奇函数. (4)假命题,如:边长为1的正方形的对角线长为2,它的长度就不是有理数.探究二 含有一个量词的命题的否定[阅读教材P 24-25例3、例4]写出下列命题的否定: (1)p :所有能被3整除的整数都是奇数; (2)p :每一个四边形的四个顶点共圆; (3)p :对任意x ∈Z ,x 2的个位数字不等于3; (4)p :∃x 0∈R ,x 20+2x 0+2≤0; (5)p :有的三角形是等边三角形; (6)p :有一个素数含三个正因数. 类型:全称命题和特称命题的否定.方法步骤:(1)先确定命题是全称命题还是特称命题.(2)根据全称命题的否定是特称命题,特称命题的否定是全称命题,正确地写出命题的否定.[例3]写出下列命题的否定,并判断其真假.(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+3x +7≤0; (4)s :至少有一个实数x ,使x 3+1=0. [解析](1)綈p :∃x ∈R ,x 2-x +14<0,是假命题. ∵∀x ∈R ,x 2-x +14=⎝ ⎛⎭⎪⎫x -122≥0恒成立, ∴綈p 是假命题.(2)綈q :至少存在一个正方形不是矩形,是假命题. (3)綈r :∀x ∈R ,x 2+3x +7>0,是真命题. ∵∀x ∈R ,x 2+3x +7=⎝ ⎛⎭⎪⎫x +322+194>0恒成立, ∴綈r 是真命题.(4)綈s :∀x ∈R ,x 3+1≠0,是假命题. ∵当x =-1时,x 3+1=0, ∴綈s 是假命题.方法技巧对全称命题和特称命题进行否定的步骤与 方法(1)确定类型:是特称命题还是全称命题.(2)改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词. (3)否定性质:原命题中“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.注意:无量词的全称命题要先补回量词再否定. 跟踪探究 3.写出下列命题的否定,并判断其真假. (1)p :不论m 取何实数,方程x 2+x -m =0必有实数根;(2)q :存在一个实数x 0使得x 20+x 0+1≤0; (3)s :对任意角α,都有sin 2α+cos 2α=1.解析:(1)綈p :至少存在一个实数m 0,方程x 2+x -m 0=0无实数根,真命题. (2)綈q :所有的实数x ,都有x 2+x +1>0,真命题. (3)綈s :存在一个角α0,使得sin 2α0+cos 2α≠1,假命题. 探究三 全称命题与特称命题的应用[例4](1)命题p :∀x ∈R ,sin x cos x ≥m ,若命题p 是真命题,某某数m 的取值X 围; (2)命题q :∃x 0∈R ,sin x 0cos x 0≥m ,若命题q 是真命题,某某数m 的取值X 围. [解析]令f (x )=sin x cos x =12sin 2x ,∵x ∈R ,∴f (x )∈⎣⎢⎡⎦⎥⎤-12,12.(1)若命题p 是真命题,则m ≤-12.(2)若命题q 是真命题,则m ≤12.方法技巧含有一个量词的命题与参数X 围的求解 策略(1)对于全称命题“∀x ∈M ,a >f (x )(或a <f (x ))”为真的问题,实质就是不等式恒成立问题,通常转化为求函数f (x )的最大值(或最小值),即a >f (x )max (a <f (x )min ).(2)对于特称命题“∃x 0∈M ,a >f (x 0)(或a <f (x 0))”为真的问题,实质就是不等式能成立问题,通常转化为求函数f (x )的最小值(或最大值),即a >f (x )min (或a <f (x )max ).(3)若全称命题为假命题,通常转化为其否定形式——特称命题为真命题解决,同理,若特称命题为假命题,通常转化为其否定形式——全称命题为真命题解决.跟踪探究 4.已知函数f (x )=x 2-2x +5.(1)是否存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立,并说明理由; (2)若存在一个实数x 0,使不等式m -f (x 0)>0成立,某某数m 的取值X 围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时,只需m>-4.(2)不等式m-f(x0)>0可化为m>f(x0),若存在一个实数x0,使不等式m>f(x0)成立,只需m>f(x)min.又f(x)=(x-1)2+4,∴f(x)min=4,∴m>4.∴所某某数m的取值X围是(4,+∞).授课提示:对应学生用书第16页[课后小结](1)判定一个命题是全称命题还是特称命题的主要方法是看命题中含有哪种量词,判定时要特别注意省略量词的全称命题.(2)要判定一个全称命题为真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题,只要举出一个反例即可;对特称命题真假的判定方法正好与之相反.(3)全称命题与特称命题的否定,其模式是固定的,即把相应的全称量词改为存在量词,存在量词改为全称量词,并把命题的结论加以否定.(4)利用全称命题和特称命题的真假求参数的取值X围问题时,转化恒成立或有解的数学问题来解决.[素养培优]1.对含有一个量词的命题进行否定时,未改变量词致误写出命题“∀x∈R,若y>0,则x2+y>0”的否定.易错分析写已知命题的否定时,没有改变量词,只改变结论致误.考查直观想象的学科素养.高考自我纠正该命题的否定为:∃x0∈R,若y0>0,则x20+y0≤0.2.对含有一个量词的命题进行否定时,改变条件致误命题p:∃x0<3,x20>9的否定綈p为____________.易错分析写已知命题的否定时,既改变了命题的条件,也改变了命题的结论致误.考查直观想象和逻辑推理的学科素养.自我纠正原命题的否定为:∀x<3,x2≤9.答案:∀x<3,x2≤9- 11 - / 11。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词(含解析)1数学教案

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词(含解析)1数学教案

全称量词与存在量词预习课本P21~25,思考并完成以下问题1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?[新知初探]1.全称量词与全称命题全称量词所有的、任意一个、一切、每一个、任给符号__∀__全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可用符号简记为“∀x∈M,p(x)”存在量词存在一个、至少有一个、有一个、有些、有的符号表示__∃__特称命题含有存在量词的命题形式“存在M中的一个x0,使p(x0)成立”可用符号简记为“∃x0∈M,p(x0)”知识点原命题命题的否定全称命题p:∀x∈M,p(x)綈p:∃x0∈M,綈p(x0)的否定特称命题p:∃x0∈M,p(x0)綈p:∀x∈M,綈p(x)的否定[(1)全称命题的否定全称命题的否定是一个特称命题,否定全称命题时关键是找出全称量词,明确命题所提供的性质.(2)特称命题的否定特称命题的否定是一个全称命题,否定特称命题时关键是找出存在量词,明确命题所提供的性质.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略( )(2)“有的等差数列也是等比数列”是特称命题( )(3)“三角形内角和是180°”是全称命题( )答案:(1)×(2)√(3)√2.命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0答案:C3.下列全称命题为真命题的是( )A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是5答案:B4.命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p:______________.答案:特称命题假∀x∈R,x2+2x+5≥0全称命题与特称命题的判断[典例](1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判断一个语句是全称命题还是特称命题的思路[注意] 全称命题可能省略全称量词,特称命题的存在量词一般不能省略. [活学活用]用全称量词或存在量词表示下列语句: (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立; (4)方程3x -2y =10有整数解.解:(1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立. (4)存在一对整数x ,y ,使3x -2y =10成立.全称命题、特称命题的真假判断[典例] A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 2>0D .∀x ∈R ,e x>0(2)下列命题中的真命题是( )A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 [解析] (1)对于A ,x =1时,lg x =0; 对于B ,x =k π+π4(k ∈Z)时,tan x =1;对于C ,当x =0时,x 2=0,所以C 中命题为假命题; 对于D ,e x>0恒成立.(2)对于A ,当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;对于B ,令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝ ⎛⎭⎪⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题; 对于C ,向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;对于D ,|x |≤1,即-1≤x ≤1,故充分性成立,若x ≤1,则|x |≤1不一定成立,所以“|x |≤1”为“x ≤1”的充分不必要条件,故D 为假命题.[答案] (1)C (2)B指出下列命题是全称命题,还是特称命题,并判断真假. (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)存在两个相交平面垂直于同一条直线. (4)∃x 0∈R ,使x 20+1<0. 解:(1)是全称命题.∵a x>0(a >0,且a ≠1)恒成立,∴命题(1)是真命题. (2)是全称命题.存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π, ∴命题(2)是假命题. (3)是特称命题.由于垂直于同一条直线的两个平面是互相平行的, ∴命题(3)是假命题. (4)是特称命题.对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.全称命题与特称命题的否定[典例] p n n2n pA.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[解析] (1)因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.[答案] (1)C (2)D全称命题与特称命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.判断下列命题的真假,并写出它们的否定.(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.解:(1)三角形的内角和为180°,是全称命题,是真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,其内角和不等于180°.(2)每个二次函数的图象都开口向下,是全称命题,是假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)存在一个四边形不是平行四边形,是特称命题,是真命题.命题的否定:所有的四边形都是平行四边形.利用全称命题与特称命题求参数[典例] 若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a ”是真命题,求实数a 的取值范围.[解] 法一:由题意,∀x ∈[-1,+∞), 令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2≥a 可转化为∀x ∈[-1,+∞),f (x )min ≥a 恒成立, 而∀x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,1+a 2+2-a 2,a <-1.由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]. 法二:x 2-2ax +2≥a , 即x 2-2ax +2-a ≥0, 令f (x )=x 2-2ax +2-a ,所以全称命题转化为∀x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧Δ=4a 2-42-a >0,a <-1,f -1≥0,即-2≤a ≤1或-3≤a <-2.所以-3≤a ≤1. 综上,所求实数a 的取值范围是[-3,1].利用全称命题与特称命题求参数范围的两类题型(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.命题p :∃x 0∈[0,π],使sin ⎝⎛⎭⎪⎫x 0+π3<a ,若p 是真命题,则实数a 的取值范围为________.解析:由0≤x ≤π,得π3≤x +π3≤4π3,所以-32≤sin ⎝⎛⎭⎪⎫x +π3≤1. 而命题p :∃x 0∈[0,π],使sin ⎝ ⎛⎭⎪⎫x 0+π3<a ,因为p 为真命题,所以a >-32. 答案:⎝ ⎛⎭⎪⎫-32,+∞ 2.已知命题p :∃x 0∈R ,使x 20-mx 0+1=0,命题q :∀x ∈R ,有x 2-2x +m >0.若命题q ∨(p ∧q )为真,綈p 为真,求实数m 的取值范围.解:由于綈p 为真,所以p 为假,则p ∧q 为假. 又q ∨(p ∧q )为真,故q 为真,即p 假、q 真.命题p 为假,即关于x 的方程x 2-mx +1=0无实数解,则m 2-4<0,解得-2<m <2; 命题q 为真,则4-4m <0,解得m >1. 故实数m 的取值范围是(1,2).层级一 学业水平达标1.已知命题p :∀x >0,总有e x>1,则綈p 为( ) A .∃x 0≤0,使得e x 0≤1 B .∃x 0>0,使得e x 0≤1 C .∀x >0,总有e x≤1D .∀x ≤0,总有e x<1解析:选B 因为全称命题的否定是特称命题,所以命题p 的否定綈p 为∃x 0>0,使得e x 0≤1.故选B.2.下列四个命题中的真命题为( ) A .若sin A =sin B ,则A =B B .∀x ∈R ,都有x 2+1>0 C .若lg x 2=0,则x =1 D .∃x 0∈Z ,使1<4x 0<3解析:选B A 中,若sin A =sin B ,不一定有A =B ,故A 为假命题,B 显然是真命题;C 中,若lg x 2=0,则x 2=1,解得x =±1,故C 为假命题;D 中,解1<4x <3得14<x <34,故不存在这样的x ∈Z ,故D 为假命题.3.命题“∃x 0∈R,2x 0<12或x 20>x 0”的否定是( )A .∃x 0∈R,2x 0≥12或x 20≤x 0B .∀x ∈R,2x ≥12或x 2≤xC .∀x ∈R,2x ≥12且x 2≤xD .∃x 0∈R,2x 0≥12且x 20≤x 0解析:选C 原命题为特称命题,其否定为全称命题,应选C. 4.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:选B A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:选D 当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号) ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③ ④7.命题“至少有一个正实数x 满足方程x 2+2(a -1)x +2a +6=0”的否定是________. 解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定. 答案:所有正实数x 都不满足方程x 2+2(a -1)x +2a +6=08.已知命题“∃x 0∈R,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:原命题等价于“∀x ∈R,2x 2+(a -1)x +12>0”是真命题,即Δ=(a -1)2-4<0,解得-1<a <3.答案:(-1,3)9.判断下列命题的真假,并写出它们的否定. (1)∀α,β∈R ,sin(α+β)≠sin α+sin β; (2)∃x 0,y 0∈Z,3x 0-4y 0=20;(3)在实数范围内,有些一元二次方程无解; (4)正数的绝对值是它本身.解:(1)当α=β=0时,sin(α+β)=sin α+sin β,故命题为假命题.命题的否定为:∃α0,β0∈R ,sin(α0+β0)=sin α0+sin β0.(2)真命题.命题的否定为:∀x ,y ∈Z,3x -4y ≠20.(3)真命题.命题的否定为:在实数范围内,所有的一元二次方程都有解.(4)省略了量词“所有的”,该命题是全称命题,且为真命题.命题的否定为:有的正数的绝对值不是它本身.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π.(1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值. 解:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π. (2)因为綈p 是假命题,所以p 是真命题, 所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.层级二 应试能力达标1.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 解析:选D 由正弦函数的图象,知∀x ∈⎝⎛⎭⎪⎫0,π2,sin x <x ,又3<π,∴当x ∈⎝⎛⎭⎪⎫0,π2时,3sin x <πx ,即∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0恒成立,∴p 是真命题.又全称命题的否定是特称命题,∴綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0. 2.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cos x 0= 2.则下列判断正确的是( )A .p 是真命题B .q 是假命题C .p ,q 都是假命题D .綈q 是假命题解析:选D p :2x 2+2x +12=2⎝ ⎛⎭⎪⎫x 2+x +14=2x +122≥0,∴p 为假命题,綈p 为真命题.q :sin x 0-cos x 0=2sin ⎝⎛⎭⎪⎫x 0-π4,∴x 0=34π时成立.故q 为真,而綈q 为假命题. 3.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+12x +34>0.给出下列结论:①命题p 是真命题; ②命题q 是假命题; ③命题(綈p )∧q 是真命题; ④命题p ∨(綈q )是假命题. 其中正确的是( ) A .②④ B .②③ C .③④D .①②③解析:选C 对于命题p ,因为函数y =sin x 的值域为[-1,1],所以命题p 为假命题; 对于命题q ,因为函数y =x 2+12x +34的图象开口向上,最小值在x =-14处取得,且f ⎝ ⎛⎭⎪⎫-14=1116>0,所以命题q 为真命题. 由命题p 为假命题和命题q 为真命题可得:命题(綈p )∧q 是真命题,命题p ∨(綈q )是假命题.故③④正确.4.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:选D 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.5.有下列四个命题:①∀x ∈R,2x 2-3x +4>0; ②∀x ∈{1,-1,0},2x +1>0; ③∃x 0∈N ,x 20≤x 0;④∃x 0∈N *,x 0为29的约数. 其中真命题有________个.解析:易知①③④正确.当x =-1时,2x +1<0,故②错误. 答案:36.已知命题p :∃c >0,y =(3-c )x在R 上为减函数,命题q :∀x ∈R ,x 2+2c -3>0.若p ∧q 为真命题,则实数c 的取值范围为________.解析:由于p ∧q 为真命题,所以p ,q 都是真命题,所以⎩⎪⎨⎪⎧0<3-c <1,2c -3>0,解得2<c <3.故实数c 的取值范围为(2,3).答案:(2,3)7.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围.解:法一:由题意知,x 2+2ax +2-a >0在[1,2]上有解,令f (x )=x 2+2ax +2-a ,则只需f (1)>0或f (2)>0,即1+2a +2-a >0,或4+4a +2-a >0.整理得a >-3或a >-2.即a >-3.故参数a 的取值范围为(-3,+∞). 法二:綈p :∀x ∈[1,2],x 2+2ax +2-a >0无解, 令f (x )=x 2+2ax +2-a , 则⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0.解得a ≤-3.故命题p 中,a >-3. 即参数a 的取值范围为(-3,+∞).8.已知f (t )=log 2t ,t ∈[2,8],若命题“对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立”为真命题,求实数x 的取值范围.解:易知f (t )∈⎣⎢⎡⎦⎥⎤12,3. 由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2,则g (m )>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g 3>0,即⎩⎪⎨⎪⎧12x -2+x -22>0,3x -2+x -22>0,解得x >2或x <-1.故实数x 的取值范围是(-∞,-1)∪(2,+∞).(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:选B 根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.2.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.3.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析:选D ①的逆命题为1a <1b则,a >b ,若a =-2,b =3,则不成立.故A 错;②的逆命题为若(x +2)(x -3)≤0,则-2≤x ≤0是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.4.已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题B .命题p 是特称命题C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题解析:选C 命题p :实数的平方是非负数,是全称命题,且是真命题,故綈p 是假命题.5.下列命题中,真命题是( ) A .命题“若|a |>b ,则a >b ”B .命题“若“a =b ,则|a |=|b |”的逆命题C .命题“当x =2时,x 2-5x +6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等”,是真命题,故选D.6.已知命题p :若实数x ,y 满足x 3+y 3=0,则x ,y 互为相反数;命题q :若a >b >0,则1a <1b.下列命题p ∧q ,p ∨q ,綈p ,綈q 中,真命题的个数是( )A .1B .2C .3D .4解析:选B 易知命题p ,q 都是真命题,则p ∧q ,p ∨q 都是真命题,綈p ,綈q 是假命题.7.已知f (x )=e x+x -1,命题p :∀x ∈(0,+∞),f (x )>0,则( ) A .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 B .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0 C .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 D .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0解析:选B 由于函数y =e x 和y =x -1在R 上均是增函数,则f (x )=e x+x -1在R 上是增函数,当x >0时,f (x )>f (0)=0,所以p 为真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0,故选B.8.下列关于函数f (x )=x 2与函数g (x )=2x的描述,正确的是( ) A .∃a 0∈R ,当x >a 0时,总有f (x )<g (x ) B .∀x ∈R ,f (x )<g (x ) C .∀x <0,f (x )≠g (x )D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解解析:选A 在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),其余三命题均错误.9.已知p:x≥k,q:3x+1<1,如果p是q的充分不必要条件,则实数k的取值范围是( )A.[1,+∞) B.(2,+∞)C.[-1,+∞) D.(-∞,-1)解析:选B3x+1<1⇔x<-1或x>2.又p是q的充分不必要条件,则k>2,故选B.10.下列判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N*,x3>x2”的否定是“∃x0∈N*,x30<x20”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析:选D 选项A是全称命题,不正确;选项B应该是∃x0∈N*,x30≤x20,不正确;对于选项C,f(x)=cos2ax-sin2ax=cos 2ax,周期T=2π2a=πa,当a=1时,周期是π,当周期是π时,a=1,所以“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的充要条件;选项D正确,故选D.11.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( )A.x<0 B.x<0或x>4C.|x-1|>1 D.|x-2|>3解析:选C 由f(x)=x2-4x>0,得x<0或x>4.由|x-1|>1,得x<0或x>2.由|x-2|>3,得x<-1或x>5,所以只有C是必要不充分条件.故选C.12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.命题“若a ∉A ,则b ∈B ”的逆否命题是________. 解析:逆否命题既否定其条件又否定其结论,然后交换其顺序. 答案:若b ∉B ,则a ∈A14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的为________.解析:p 为假命题,q 为真命题,故p ∨q 为真命题,綈p 为真命题. 答案:p ∨q ,綈p15.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.解析:p :a -4<x <a +4,q :2<x <3. 由綈p 是綈q 的充分条件可知,q 是p 的充分条件,即q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案:[-1,6]16.已知在实数a ,b 满足某一前提条件时,命题“若a >b ,则1a <1b”及其逆命题、否命题和逆否命题都是假命题,则实数a ,b 应满足的前提条件是________.解析:由题意,知ab ≠0,当ab >0时,1a <1b ⇔ab ·1a <1b·ab ⇔b <a ,所以四种命题都是正确的.当ab <0时,若a >b ,则必有a >0>b ,故1a>0>1b ,所以原命题是假命题;若1a <1b,则必有1a<0<1b,故a <0<b ,所以原命题的逆命题也是假命题.由命题的等价性,可知四种命题都是假命题,故填ab <0.答案:ab <0三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x>2;(4)∃x 0∈Z ,log 2x 0>2.解:(1)命题中隐含了全称量词“所有的”,因此命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,且为真命题. (3)命题中含有全称量词“∀”,是全称命题,且为假命题. (4)命题中含有存在量词“∃”,是特称命题,且为真命题.18.(本小题满分12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2; (3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.解:(1)若一个数能被6整除,则这个数为偶数,是真命题. (2)若a -1+|b +2|=0,则a =1且b =-2,真命题. (3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.19.(本小题满分12分)已知c >0,设命题p :y =c x为减函数,命题q :函数f (x )=x +1x >1c 在x ∈⎣⎢⎡⎦⎥⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可.若p 真,由y =c x为减函数,得0<c <1.当x ∈⎣⎢⎡⎦⎥⎤12,2时,由不等式x +1x ≥2(x =1时取等号)知, f (x )=x +1x 在⎣⎢⎡⎦⎥⎤12,2上的最小值为2.若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12;若p 假q 真,则c ≥1,c >12,所以c ≥1.综上可得,c ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 20.(本小题满分12分)已知k ∈R 且k ≠1,直线l 1:y =k 2x +1和l 2:y =1k -1x -k .(1)求直线l 1∥l 2的充要条件;(2)当x ∈[-1,2]时,直线l 1恒在x 轴上方,求k 的取值范围.解:(1)由题意得⎩⎪⎨⎪⎧k 2=1k -1,k -1≠0,-k ≠1,解得k =2.当k =2时,l 1:y =x +1,l 2:y =x -2,此时l 1∥l 2. ∴直线l 1∥l 2的充要条件为k =2.(2)设f (x )=k2x +1.由题意,得⎩⎪⎨⎪⎧f-1>0,f 2>0,即⎩⎪⎨⎪⎧k2×-1+1>0,k 2×2+1>0,解得-1<k <2.∴k 的取值范围是(-1,2).21.(本小题满分12分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.由-1<x <1,得m ∈⎣⎢⎡⎭⎪⎫-14,2,故M =⎣⎢⎡⎭⎪⎫-14,2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N . ①当a >2-a ,即a >1时,N =(2-a ,a ),则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N =(a,2-a ),则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N . 综上可得a ∈⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫94,+∞. 22.(本小题满分12分)已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,求实数a 的取值范围.解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max ,得m >2, 即B ={m |m >2}.(2)不等式(x -3a )(x -a -2)<0,①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a },若x ∈A 是x ∈B 的充分不必要条件,则A B ,∴2+a ≥2,此时a ∈(1,+∞);②当3a =2+a ,即a =1时,解集A =∅,若x ∈A 是x ∈B 的充分不必要条件,则A B 成立;③当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a },若x ∈A 是x ∈B 的充分不必要条件,则A B 成立,∴3a ≥2,此时a ∈⎣⎢⎡⎭⎪⎫23,1.综上①②③可得a ∈⎣⎢⎡⎭⎪⎫23,+∞.。

原创1:1.4.1 全称量词~1.4.2 存在量词

原创1:1.4.1 全称量词~1.4.2 存在量词

判断全称命题∀x∈M,p(x)为假命题:
——在集合M中找到一个元素x0,使得p(x0)不成立
举反例
典例分析
判断下列全称命题的真假:
(1)所有的素数都是奇数;
2是素数
不是奇数
(2)∀x∈R,x2+1≥1;
(3)对每一个无理数x,x2也是无理数.
【解析】
(1)假命题; (2)真命题; (3)假命题.
( 2)2 = 2
还有“有些”
“有一个”
“对某个”
“有的”等 .
知识点二:存在量词
特称命题符号记法:
通常,将含有变量x的语句用p(x), q(x), r(x),…表示,
变量x的取值范围用M表示,那么,
命题“存在M中的一个x0,有p(x0)成立 ”
可用符号简记为:
∃0 ∈ ,(0 )
读作“存在一个x0属于M,使p(x0)成立”.
可用符号简记为:
∀ ∈ ,()
读作“对任意x属于M,有p(x)成立”.
知识探究一:全称命题的真假
下列命题是全称命题吗?是真命题还是假命题?
(1)对任意的n∈Z,2n+1是奇数; 真命题
(2)所有的矩形都是正方形.
假命题
有的矩形不是正方形
判断全称命题∀x∈M,p(x)为真命题:
——需要对集合M中每个元素x,证明p(x)成立
跟踪训练
判断下列特称命题的真假:
(1)∃x0∈R, x0≤0;
(2)至少有一个整数,它既不是合数,也不是素数;
(3)∃x0∈{x|x是无理数},x02是无理数.
解:(1)真命题; (2)真命题;(3)真命题.
归纳小结
判断一个命题是全称命题还是特称命题,

高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词课件 新人教A版选修2-

高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词课件 新人教A版选修2-
提示:常见的全称量词除了“所有的”“任意一个”,还 有“一切”“每一个”“任给”等.
2.全称命题中的“x”,“M”与“p(x)”表达的含义分别是什么? 提示:元素 x 可以表示实数、方程、函数、不等式,也可 以表示几何图形,相应的集合 M 是这些元素的某一特定的范 围.p(x)表示集合 M 的所有元素满足的性质.如“任意一个自 然数都不小于 0”,可以表示为“∀x∈N,x≥0”.
[答一答] 4.常见的存在量词有哪些?
提示:常见的存在量词除了“存在一个”“至少有一个”, 还有“有些”“有一个”“对某个”“有的”等.
5.如何判断特称命题的真假呢?
提示:要判定特称命题“∃x0∈M,p(x0)”是真命题,只需 在集合 M 中找到一个元素 x0,使 p(x0)成立即可;如果在集合 M 中,使 p(x)成立的元素 x 不存在,那么这个特称命题是假命题.
类型一 全称命题与特称命题的判定 【例 1】 判断下列命题是全称命题还是特称命题? (1)凸多边形的外角和等于 360°; (2)有的向量方向不定; (3)对任意角 α,都有 sin2α+cos2α=1; (4)有些素数的和仍是素数; (5)若一个四边形是菱形,则这个四边形的对角线互相垂直. 【分析】 首先看命题中是否含有全称量词或存在量词,若 含有相关量词,则根据量词确定命题是全称命题或者是特称命 题;若没有,要结合命题的具体意义进行判断.
【解】 (1)可以改写为所有的凸多边形的外角和都等于 360°,故为全称命题.
(2)含有存在量词“有的”,故为特称命题. (3)含有全称量词“任意”,故为全称命题. (4)含有存在量词“有些”,故为特称命题. (5)若一个四边形是菱形,也就是所有的菱形,故为全称命 题.
Hale Waihona Puke 判断一个语句是全称命题还是特称命题的步骤 1首先判断语句是否为命题,若不是命题,就当然不是全 称命题或特称命题. 2若是命题,再分析命题中所含的量词,含有全称量词的 命题是全称命题,含有存在量词的命题是特称命题. 3当命题中不含量词时,要注意理解命题含义的实质. 4一个全称命题或特称命题往往有多种不同的表述方法, 有时可能会省略全称量词或存在量词,应结合具体问题多加体 会.

高中数学第一章常用逻辑用语1.4全称量词与存在量词优化练习

高中数学第一章常用逻辑用语1.4全称量词与存在量词优化练习

教学资料范本高中数学第一章常用逻辑用语1.4全称量词与存在量词优化练习编辑:__________________时间:__________________1.4 全称量词与存在量词[课时作业][A组基础巩固]1.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:改变原命题中的三个地方即可得其否定,“∃”改为“∀”,x0改为x,否定结论,即ln x≠x-1.答案:A2.下列语句是真命题的是()A.所有的实数x都能使x2-3x+6>0成立B.存在一个实数x使不等式x2-3x+6<0成立C.存在一条直线与两个相交平面都垂直D.有一条直线和两个相交平面都垂直解析:Δ<0,x2-3x+6>0对x∈R恒成立,故排除B;假设存在这样的直线与两个相交平面垂直,则两个平面必平行,故排除C、D.答案:A3.下列四个命题中的真命题为()A.若sin A=sin B,则A=BB.∀x∈R,都有x2+1>0C.若lg x2=0,则x=1D.∃x0∈Z,使1<4x0<3解析:A中,若sin A=sinB,不一定有A=B,故A为假命题;B显然是真命题;C中,若lgx2=0,则x2=1,解得x=±1,故C为假命题;D中,解1<4x<3得1 4<x<34,故不存在这样的x∈Z,故D项为假命题.答案:B4.有下列四个命题:①∀x∈R,2x2-3x+4>0;②∀x∈{1,-1,0},2x+1>0;③∃x0∈N,使x20≤x0;④∃x0∈N+,使x0为29的约数.其中真命题的个数为()A.1 B.2 C.3 D.4解析:对于①,这是全称命题,由于Δ=(-3)2-4×2×4<0,所以2x2-3x+4> 0恒成立,故①为真命题;对于②,这是全称命题,由于当x=-1时,2x+1>0不成立,故②为假命题;对于③,这是特称命题,当x0=0或x0=1时,有x20≤x0成立,故③为真命题;对于④,这是特称命题,当x0=1时,x0为29的约数成立,所以④为真命题.答案:C5.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2-2x-1>0,则命题綈p:∀x∈R,x2-2x-1<0C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.“x=-1”是“x2-5x-6=0”的必要不充分条件解析:选项A,否命题为“若x2≠1,则x≠1”;选项B,命题綈p:“∀x∈R,x2-2x-1≤0”;选项D,“x=-1”是“x2-5x-6=0”的充分不必要条件,故选C.答案:C6.“存在一个实数x0,使sin x0>cos x0”的否定为________.答案:∀x∈R,sin x≤cos x7.若命题“∀x∈(3,+∞),x>a”是真命题,则a的取值范围是________.解析:由题意知当x>3,有x>a恒成立,则a≤3.答案:(-∞,3]8.若“∀x∈[0,π4],tan x≤m”是真命题,则实数m的最小值为________.解析:原命题等价于tan x ≤m 在区间[0,π4]上恒成立,即y =tan x 在[0,π4]上的最大值小于或等于m ,又y =tanx 在[0,π4]上的最大值为1,所以m ≥1,即m 的最小值为1. 答案:19.用“∀”“∃”写出下列命题的否定,并判断真假: (1)二次函数的图象是抛物线;(2)直角坐标系中,直线是一次函数的图象; (3)有些四边形存在外接圆; (4)∃a ,b ∈R ,方程ax +b =0无解.解析:(1)∃f (x )∈{二次函数},f (x )的图象不是抛物线.它是假命题. (2)在直角坐标系中,∃l ∈{直线},l 不是一次函数的图象.它是真命题. (3)∀x ∈{四边形},x 不存在外接圆.它是假命题. (4)∀a ,b ∈R ,方程ax +b =0至少有一解.它是假命题.10.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围. 解析:法一由题意知:x 2+2ax +2-a >0在[1,2]上有解,令f (x )=x 2+2ax +2-a ,则只需f (1)>0或f (2)>0,即1+2a +2-a >0,或4+4a +2-a >0. 整理得a >-3或a >-2.即a >-3.故参数a 的取值范围为(-3,+∞). 法二 綈p :∀x ∈[1,2],x 2+2ax +2-a >0无解, 令f (x )=x 2+2ax +2-a , 则⎩⎨⎧即⎩⎨⎧1+2a+2-a≤0,4+4a+2-a≤0.解得a ≤-3. 故命题p 中,a >-3.即参数a 的取值范围为(-3,+∞).[B组 能力提升]1.以下四个命题既是特称命题又是真命题的是( ) A.锐角三角形的内角是锐角或钝角 B.至少有一个实数x ,使x 2≤0 C.两个无理数的和必是无理数 D.存在一个负数x ,使1x>2解析:A中锐角三角形的内角是锐角或钝角是全称命题;B中x =0时,x 2=0,所以B既是特称命题又是真命题;C中因为3+(-3)=0,所以C是假命题;D中对于任一个负数x ,都有1x<0,所以D是假命题. 答案:B2.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cosx 0=2,则下列判断正确的是( ) A.p 是真命题 B.q 是假命题 C.綈p 是假命题D.綈q 是假命题解析:p :2x 2+2x +12=2⎝ ⎛⎭⎪⎫x2+x+14=2⎝ ⎛⎭⎪⎫x+122≥0,∴p 为假命题,綈p 为真命题.q :sin x 0-cos x 0=2sin ⎝ ⎛⎭⎪⎫x0-π4, ∴x 0=34π时成立.故而q 为真,而綈q 为假命题. 答案:D3.若命题∀x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则a 的取值范围是________. 解析:只需(a +2)x 2+4x +a -1≥0恒成立,借助二次函数图象可知只需 ⎩⎨⎧a+2>0,Δ解得a ≥2.答案:[2,+∞)4.已知命题p :对∀x ∈R ,∃m 0∈R ,使4x +2x m 0+1=0.若命题綈p 是假命题,则实数m 0的取值范围是________.解析:由题意m 0=-4x+12x ≤-2·2x2x =-2(x ∈R ).答案:(-∞,-2]5.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若“p 且q ”为真命题,求实数a 的取值范围. 解析:由“p 且q ”为真命题,则p ,q 都是真命题.p :x 2≥a 在[1,2]上恒成立,只需a ≤(x 2)min =1, 所以命题p :a ≤1;q :设f (x )=x 2+2ax +2-a ,存在x ∈R 使f (x )=0, 只需Δ=4a 2-4(2-a )≥0, 即a 2+a -2≥0⇒a ≥1或a ≤-2. 所以命题q :a ≥1或a ≤-2. 由⎩⎨⎧a≤1a≥1或a≤-2得a =1或a ≤-2,∴实数a 的取值范围是a =1或a ≤-2.6.q :函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上至少存在一个实数c ,使得f (c )>0,求实数p 的取值范围.解析:綈q :已知函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上不存在一个实数c ,使得f (c )>0,即∀c ∈[-1,1],f (c )≤0, ∴⎩⎨⎧即⎩⎨⎧2p2-p-1≥0,2p2+3p-9≥0,∴⎩⎪⎨⎪⎧p≤-12或p≥1,p≤-3或p≥32,即p ≤-3或p ≥32.故q 为真时的p 的取值范围是-3<p <32.。

1.4 全称量词与存在量词

1.4 全称量词与存在量词
第一章 常用逻辑用语
全国名校高一数学优质学案汇编(附详解) 1.4 全称量词与存在量词
1.4.1 全称量词 1.4.2 存在量词
课前·自主学习
课堂·互动探究
反馈·当堂达标
1.理解全称量词与存在量词的含义. 2.会判断全称命题和特称命题的真假.
数学 选修2-1(配人教版)
课前·自主学习
课堂·互动探究
短语“存在一个”“至少有一个”在逻辑中通常叫做存在 量词,并用符号“∃”表示.
数学 选修2-1(配人教版)
课前·自主学习
课堂·互动探究
反馈·当堂达标
(2)特称命题: 存在量词 的命题,叫做特称命题. ①定义:含有__________ ②一般形式:特称命题“存在 M 中的一个 x0 ,使 p(x0) 成 ∃x0∈M,p(x0) ,读作“存在一个 x0 属 立”可用符号简记为 ________________ 于M,使p(x0)成立”.
数学 选修2-1(配人教版)
课前·自主学习
课堂·互动探究
反馈·当堂达标
全称命题与特称命题的真假判断
(1)下列命题中,真命题是( 1 A.∃x0∈R,sin +cos = 2 2 2 B.∀x∈(0,π),sin x>cos x C.∀x∈(0,+∞),x2+1>x D.∃x0∈R,x2 0+x0=-1
数学 选修2-1(配人教版)
课前·自主学习
课堂·互动探究
反馈·当堂达标
【题后反思】 步骤
判断一个语句是全称命题还是特称命题的
(1)首先判定语句是否为命题,若不是命题,就当然不是全
称命题或特称命题. (2)若是命题,再分析命题中所含的量词,含有全称量词的 命题是全称命题,含有存在量词的命题是特称命题.

高中数学第一章常用逻辑用语4全称量词与存在量词12全称量词与存在量词1课件新人教A版选修2

高中数学第一章常用逻辑用语4全称量词与存在量词12全称量词与存在量词1课件新人教A版选修2

[点评] 解题时要注意存在性量词、全称量词的不同表示形式. 存在性命题p:∃x∈A,p(x),其否定为¬p:∀x∈A,¬p(x). 全称命题q:∀x∈A,q(x),其否定为¬q:∃x∈A,¬q(x).
命题方向二:含有一个量词的命题的否定的真 假判断
[例3] 写出下列命题的否定并判断真假: (1)不论m取何实数,方程x2+x-m=0必有实数根; (2)所有末位数字是0或5的整数都能被5整除; (3)每一个非负数的平方都是正数; (4)有的四边形没有外接圆; (5)某些梯形的对角线互相平分; (6)被8整除的数能被4整除.
因为 x∈0,12,所以 f(x)+2∈0,34.
要使 x∈0,12时 f(x)+2<logax 恒成立. 显然当 a>1 时不可能.
0<a<1, 所以loga12≥34.
解得344≤a<1.
课堂巩固训练
一、选择题
1.判断下列全称命题的真假,其中真命题为( )
A.所有奇数都是素数
B.∀x∈R,x2+1≥1
知能自主梳理
1.短语“对所有的”“ 对任意一个”在逻辑中通常叫做全称量 词,并用符号“ ∀ ”表示,含有全称量词的命题,叫做 全称命题. 2.短语“存在一个”“ 至少有一个 ”在逻辑中通常叫做存在量 词,并用符号“ ∃”表示,含有存在量词的命题,叫做 特称.命题 3.全称命题p:∀x∈M,p(x),它的否定¬p: ∃x∈M,非p(x) . 4.特称命题p:∃x∈M,p(x),它的否定¬p: ∀x∈M,非p(x) <logax在x∈
上恒成立时,求a的取值范围.
[解析] (1)由已知f(x+y)-f(y)=(x+2y+1)x,令x=1,y=0, 得f(1)-f(0)=2,又因为f(1)=0,所以f(0)=-2.

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1、1.4.2 全称量词 存在量

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1、1.4.2 全称量词 存在量

第一章 1.4 1.4.1 1.4.2A 级 基础巩固一、选择题1.下列命题中,全称命题的个数为( C )①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A .0B .1C .2D .3[解析]①②是全称命题,③是特称命题.2.下列特称命题中真命题的个数是( D )①∃x ∈R ,x ≤0;②至少有一个整数,它既不是合数,也不是素数;③∃x ∈{x |x 是整数},x 2是整数.A .0B .1C .2D .3 [解析]①②③都是真命题.3.下列命题中,既是真命题又是特称命题的是( A )A .存在一个α0,使tan(90°-α0)=tan α0B .存在实数x 0,使sin x 0=π2C .对一切α,sin(180°-α)=sin αD .sin(α-β)=sin αcos β-cos αsin β[解析]选项A ,B 为特称命题,故排除C 、D .因π2>1,则不存在实数x 0,使sin x 0=π2,故排除B ,故选A .4.下列命题:①至少有一个x 使x 2+2x +1=0成立;②对任意的x 都有x 2+2x +1=0成立;③对任意的x 都有x 2+2x +1=0不成立;④存在x 使得x 2+2x +1=0成立.其中是全称命题的有( B )A .1个B .2个C.3个D.0个[解析]②③含有全称量词,所以是全称命题.5.下列命题中为特称命题的是(C)A.所有的整数都是有理数B.三角形的内角和都是180°C.有些三角形是等腰三角形D.正方形都是菱形[解析]A、B、D为全称命题,C中含有存在量词“有些”,故为特称命题.6.已知命题p:∃x0∈R,x20+ax0+a<0,若命题p是假命题,则实数a的取值X围是(A) A.[0,4] B.(0,4)C.(-∞,0)∪(4,+∞) D.(-∞,0]∪[4,+∞)[解析]假设p为真,Δ=a2-4a>0即a>4或a<0∵p为假,∴0≤a≤4∴实数a的取值X围[0,4].二、填空题7.命题“有些负数满足不等式(1+x)(1-9x)2>0”用“∃”写成特称命题为__∃x0<0,(1+x0)(1-9x0)2>0__.[解析]根据特称命题的定义改写.8.四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为__0__.[解析]x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题,对∀x∈R,x2+1≠0,∴③为假命题,4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.三、解答题9.用符号表示下列全称命题:(1)对任意a >1,都有函数f (x )=a x 在R 上是增函数;(2)对所有实数m ,都有2-m 2-1<0; (3)对每一个实数x ,都有cos x <1.[解析](1)∀a >1,函数f (x )=a x 在R 上是增函数.(2)∀m ∈R ,2-m 2-1<0. (3)∀x ∈R ,cos x <1.B 级 素养提升一、选择题1.下列命题为特称命题的是( D )A .偶函数的图象关于y 轴对称B .正四棱柱都是平行六面体C .不相交的两条直线是平行直线D .存在大于等于3的实数[解析]选项A ,B ,C 是全称命题,选项D 含有存在量词.故选D .2.下列命题是真命题的是( D )A .∀x ∈R ,(x -2)2>0B .∀x ∈Q ,x 2>0C .∃x 0∈Z,3x 0=812D .∃x 0∈R,3x 20-4=6x 0[解析]A 中当x =2时不成立,B 中由于0∈Q ,故B 不正确,C 中满足3x 0=812的x 0不是整数,故只有D 正确.3.(多选题)已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值可以是( BC )A .-2B .-1C .-12D .1[解析]p 真:m <0.q 真:Δ=m 2-4<0,∴-2<m <2.∵p ∧q 为真命题,∴p 、q 均为真命题,∴-2<m <0,故选BC .4.(多选题)已知命题p :∃x 0∈N ,x 30<x 20;命题q :∀a ∈(0,1)∪(1,+∞),函数f (x )=log a (x -1)的图象过点(2,0),则下列说法错误的是( BCD )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真[解析]由x 30<x 20,得x 20(x 0-1)<0,解得x 0<0或0<x 0<1,在这个X 围内没有自然数, ∴命题p 为假命题;∵对任意的a ∈(0,1)∪(1,+∞),均有f (2)=log a 1=0,∴命题q 为真命题.故选BCD .二、填空题5.下列特称命题是真命题的序号是__①③④__.①有些不相似的三角形面积相等;②存在一实数x 0,使x 20+x 0+1<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大;④有一个实数的倒数是它本身.[解析]①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x ∈R ,x 2+x +1=(x +12)2+34>0,所以不存在实数x 0,使x 20+x 0+1<0,故②为假命题;③中当实数a 大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题,故选①③④.6.给出下列语句:①所有的偶数都是素数;②有些二次函数的图象不过坐标原点;③|x -1|<2;④对任意的实数x >5,都有x >3.其中是全称命题的是__①④__.(填序号)[解析]①④是全称命题,②是特称命题,③不是命题.三、解答题7.判断下列命题的真假:(1)任给x ∈Q ,13x 2+12x +1是有理数; (2)存在α、β∈R ,sin (α+β)=sin α+sin β;(3)存在x 、y ∈Z,3x -2y =10;(4)任给a 、b ∈R ,方程ax +b =0恰有一个解.[解析](1)∵x ∈Q ,∴13x 2与12x 均为有理数,从而13x 2+12x +1是有理数,∴(1)真; (2)当α=0,β=π3时,sin (α+β)=sin α+sin β成立, ∴(2)真;(3)当x =4,y =1时,3x -2y =10,∴(3)真;(4)当a =0,b =1时,0x +1=0无解,∴(4)假.8.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,某某数a 的取值X 围.[解析]由“p 且q ”是真命题,知p 为真命题,q 也为真命题.若p 为真命题,则a ≤x 2对于x ∈[1,2]恒成立.所以a ≤1.若q 为真命题,则关于x 的方程x 2+2ax +2-a =0有实根,所以Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.综上,实数a 的取值X 围为a ≤-2或a =1.。

高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词 1.4.3 含有一个量词

高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词 1.4.3 含有一个量词

2016-2017学年高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定高效测评新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定高效测评新人教A版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定高效测评新人教A版选修1-1的全部内容。

第一章常用逻辑用语 1。

4。

1 全称量词 1.4.2 存在量词 1.4.3 含有一个量词的命题的否定高效测评新人教A版选修1—1一、选择题(每小题5分,共20分)1.下列语句不是特称命题的是( )A.有的无理数的平方是有理数B.有的无理数的平方不是有理数C.对于任意x∈Z,2x是偶数D.存在x∈R,2x+1是奇数解析:A、B、D中含有存在量词是特称命题,C中含有全称量词是全称命题.答案: C2.将“x2+y2≥2xy”改写成全称命题,下列说法正确的是( )A.∀x,y∈R,都有x2+y2≥2xyB.∃x0,y0∈R,使x错误!+y错误!≥2x0y0C.∀x〉0,y〉0,都有x2+y2≥2xyD.∃x0〈0,y0〈0,使x错误!+y错误!≤2x0y0解析: 这是一个全称命题,且x,y∈R,故选A。

答案:A3.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数解析:原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数.答案:D4.已知命题p:∀x∈R,ax2+2x+3>0.如果命题¬p是真命题,那么a的范围是( ) A.a<错误!B.0<a≤错误!C.a≤错误!D.a≥错误!解析:¬p为:∃x∈R,使ax2+2x+3≤0。

高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词教案 新人教A版选修2-

高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词教案 新人教A版选修2-

江苏省铜山县高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词教案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词教案新人教A版选修2-1的全部内容。

1.4。

1全称量词 1。

4.2存在量词教学目标:知识与技能目标(1)通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.(2)了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断其命题的真假性.过程与方法目标使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.情感态度价值观通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.教学重点:理解全称量词与存在量词的意义.教学难点:全称命题和特称命题真假的判定.教学用具:多媒体教学方法: 分析法,推理归纳教学过程:1.思考、分析下列语句是命题吗?假如是命题你能判断它的真假吗?(1)2x+1是整数;(2) x>3;(3)如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书;(6)所有有中国国籍的人都是黄种人;(7)对所有的x∈R, x>3;(8)对任意一个x∈Z,2x+1是整数.1.推理、判断(让学生自己表述)(1)、(2)不能判断真假,不是命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学第一章常用逻辑用语1.4.1全称量词1.4.2存在量
词高效测评新人教A版选修
一、选择题(每小题5分,共20分)
1.下列命题中,不是全称命题的是( )
A.任何一个实数乘以0都等于0
B.自然数都是正整数
C.每一个向量都有大小
D.一定存在没有最大值的二次函数
解析:D选项是特称命题.
答案:D
2.给出下列命题:
①存在实数x>1,使x2>1;②全等的三角形必相似;③有些相似三角形全等;④至少有一个实数a,使ax2-ax+1=0的根为负数.
其中特称命题的个数为( )
A.1个B.2个
C.3个D.4个
解析:①③④为特称命题,②为全称命题,所以选C.
答案:C
3.给出下列命题:
(1)所有正方形都是矩形;
(2)每一个有理数都能写成分数的形式;
(3)一切三角形的内角和都等于180°;
(4)有些三角形是直角三角形;
(5)如果两个数的和为正数,那么这两个数中至少有一个是正数;
(6)存在一个实数x,使得x2+x-1=0.
含有全称量词和存在量词的命题分别是( )
A.(1)(3);(4)(6) B.(1)(2);(4)(5)
C.(2)(3);(5)(6) D.(1)(2)(3);(4)(5)(6)
解析:在以上命题的条件中,“所有”、“每一个”、“一切”等都是在指定范围内,表示整体或全部的含义,这些词都是全称量词;“有些”、“至少有一个”、“存在一个”等都表示个别或部分的含义,这些词都是存在量词.
答案:D
4.下列命题中,假命题的个数是( )
①∀x∈R,x2+1≥1;②∃x0∈R,2x0+1=3;③∃x0∈Z,x0能被2和3整除;④∃x0∈R,x20+2x0+3=0.
A.0 B.1
C.2 D.3
解析:①②③都是真命题,而④为假命题.
答案:B
二、填空题(每小题5分,共10分)
5.下列命题中,是全称命题的是________;是特称命题的是________.
①正方形的四条边相等;
②有两个角是45°的三角形是等腰直角三角形;
③正数的平方根不等于0;
④至少有一个正整数是偶数.
答案:①②③④
6.对任意x>3,有x>a恒成立,则实数a的取值范围是________.
解析:对任意x>3,有x>a恒成立,即大于3的数恒大于a,∴a≤3.
答案:(-∞,3]
三、解答题(每小题10分,共20分)
7.判断下列命题是全称命题还是特称命题,并用量词符号“∀”、“∃”表示.
(1)两个有理数之间,都有一个无理数;
(2)有一个凸n边形,外角和等于180°;
(3)存在一个三棱锥,使得它的每个侧面都是直角三角形.
解析:(1)全称命题:∀的两个有理数之间,都有一个无理数.
(2)特称命题:∃一个凸n边形x0,x0的外角和等于180°.
(3)特称命题:∃一个三棱锥x0,x0的每个侧面都是直角三角形.
8.判断下列命题的真假.
(1)∀x∈R,都有x2-x+1>1 2;
(2)∃α,β,使cos(α-β)=cos α-cos β;
(3)∀x,y∈N,都有x-y∈N;
(4)∃x0,y0∈Z,使得2x0+y0=3.
解析: (1)真命题.∵x 2-x +1-12=x 2-x +12=⎝ ⎛⎭⎪⎫x -122+14≥14>0.∴x 2-x +1>12
恒成立.
(2)真命题.例如α=π4,β=π2
,符合题意. (3)假命题.例如x =1,y =5,x -y =-4∉N .
(4)真命题.例如x 0=0,y 0=3符合题意.
9.(10分)已知函数f (x )=x 2
,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],使得f (x 1)≥g (x 2),求实数m 的取值范围.
解析: 因为x ∈[-1,3],所以f (x )∈[0,9],
又因为对∀x 1∈[-1,3],∃x 2∈[0,2],使得f (x 1)≥g (x 2),
即∃x ∈[0,2],g (x )≤0,即⎝ ⎛⎭
⎪⎫12x -m ≤0, 所以m ≥⎝ ⎛⎭⎪⎫12x ,m ≥⎝ ⎛⎭
⎪⎫122,即m ≥14.。

相关文档
最新文档