七年级数学下一元一次不等式组重点题型练习题

合集下载

七年级下一元一次不等式组100题(有答案)

七年级下一元一次不等式组100题(有答案)

解不等式不等式组100题1.3(2x +5)<2(4x +6)2.10-4(x -3)≤2(x -2)3.3x -2(9-x )>3(7+2x )-(11-6x )4.2(3x -1)-3(4x +5)≤x -4(x -7)5.2(x -1)-x >3(x -1)-3x +56.3[y -2(y -7)]≤4y7.15-(7+5x )≤2x +(5-3x )8.2(x -4)-3<1-3(x -2)9.2+≤2-3(y +1)8y -3410.0.5x +3(1+0.2x )>0.4x -0.611.2[x -]≤x 43(x -2312)3412.-≥0.04x +0.090.050.3+0.2x 0.3x -5213.7(4-x )-2(4-3x )<-4x14.2+<3+3(y +1)8y -1415.+<1x 3x -1216.3[x -2(x -2)]>x -3(x -3)17.x ++<1+x 2x +13x +8618.x -4<3243(1+x )(x -216)19.5-≥-x 3122x +1420.+1<+3y +137y -352(y -2)1521.-1<x +523x +2222.{2x -5<3x>x -22x 323.{->-1x 2x 32-3>-6(x -3)(x -2)24.{+4≤1x2x -8>2(x +2)25.{x -3<4(x -2)≥x -12x +1326.{2≤10-4(x -3)(x +8)-<1x -124x +1627.{->x3x -322x +13<112[x -2(x +3)]28.{x -3>1-x x -5>5-x 2x -4>x 229.4≤<73x -2-230.2x -1≤x -5≤4-x 3231.y -≤+13y -832(10-y )732.>(1-)(+1)(1+y 3)(+1y 2)y -22y 233.{3x -2<82x -1>234.{5-7x ≥2x -41-<0.534(x -1)35.2x <1-x ≤x +536.{3<2(x +9)(1-x)-≤-14x -30.5x +40.237.{-3x ≤04x +7>038.{x -1<x122x -4>3x +339.{2x -5<3x >x -22x 340.{->-1x 2x 32-3>-6(x -3)(x -2)41.{+4≤1x 2x -8>2(x +2)42.{5x -3≥2x <43x -1243.{2x +7>3x -1≥0x -2544.{>x -11+2x34<3x -4(x -1)45.-1<<1-2-3x446.{2-1≥3(x +1)4+x <747.{2x -1≥3(x -2)-2x <448.{3x +1>x +32x -1<x +149.{x +3>42x <650.{2x -5≥3(x -1)-<1x 3x -1251.{x<2x +13x -2≤4(x -1)52.{x +3>02+3≥3x(x -1)53.{3x +1<2(x +2)-x ≤x +2135354.{>0x +132≥6(x -1)(x +5)55.{5x -9<3(x -1)1-x ≤x -1321256.{2≤5x +5(x -3)4x <3x +157.{2x +3≤x +6>x +22x +3358.{-3≤4-x(x -2)>x -11+2x359.{4x -3<5x +≤x-42x +261360.{<212(x +4)x -3>5(x -1)61.{x ->-31+3x 25x -12≤2(4x -3)62.{1-2(x -1)≤5<x +3x -221263.{+3>x +1x -321-3≤8-x(x -1)解不等式不等式组100题64.{5x +2>3(x -1)7-x ≥x -1321265.{2<x +4(x +2)≥x 3x +1466.{2x +5≤3(x +2)x -1<x2367.{3≥x +4(x +2)<1x -1268.{2-x >0+1≥5x +122x -1369.{-3x ≤5616(x +5)2-9x >5[x -2(x -3)](x +19)70.{3x -2≤x +6+1>x 5x -2271.{2x +2≥3x +3-<-2x-13x +4272.{5x +3(x -2)≤10>x -11+3x273.{+2≥xx -241-3<9-x (x -2)74.{5x -2>3(x +1)x -1≤7-x 123275.{4x -10<05x +2>3x11-2x ≥1+3x 76.{-≤12x -135x +125x -1<3(x +1)77.{2x -3<1+2≥-x x -1278.{3+4<5x (x -2)-x ≥3x +1x -1279.{x -3(x -2)≥4<2x -15x +1280.{>2+x 22x -135-2≤x -1(x -3)81.{5x -2<3x +4>-x x +8382.{10-4(x -3)≥2(x -1)x -1>1-2x383.{5x -2<3(x +1)≤x -222x +3384.{3>2(x +9)(1-x)-≤-14x -30.5x +40.285.{2-x >0+1≥5x +122x -1386.{-3-<8(x +1)(x -3)-≤12x +131-x287.{5x -2≤3(x +1)x -1≤7+x 123288.{1-≤x +2x +12x >x (x +3)(x +1)89.{-≤12x -135x +125x -1<3(x +1)90.{5x +4<3(x +1)≥x -122x -1591.{2x +7>3x -1≥0x -2592.{1-2(x -1)≤5<x +3x -221293.{2≤3x +3(x +2)<x 3x +1494.{3x -1<2(x +1)≥1x +3295.{3x -2>x +2x -1≤7-x 123296.{3x -1<2x +11-2≤3+5(x -1)(x +1)97.{x -(2x -1)≤432>2x -11+3x298.{+3<x -1x -231-3≥6-x(x +1)99.{2x -1≥03x +1>03x -2<0100.≤5|-2x +13|解不等式不等式组100题答案12345678910x >32x ≥133x <-4x ≥-15x >4y ≥6x ≥34x <185y ≤35x >-36711121314151617181920x ≥35x ≤9x <-203y <3x <95x <3x <65x >152x ≥-572y >33821222324252627282930x >12x >6-6<x <6x <-121<x ≤4-10<x ≤1无解x >8-4<x ≤-2x ≤-431323334353637383940y ≤256y >65<x <32103无解-2≤x <13x >-3x ≥0无解x >6-6<x <641424344454647484950x <-121≤x <32≤x <8x <0-2<x <231≤x <3-2<x ≤51<x <21<x <3-3<x ≤-251525354555657585960-1<x ≤2-3<x ≤1-1≤x <3-1<x ≤41≤x <3-<x <11130<x ≤31≤x <4-3<x ≤3X <-161626364656667686970-2≤x <5-1≤x <3-2≤x <1-<x ≤452无解-1≤x <31≤x <3-1≤x <20≤x <40<x ≤471727374757677787980-2<x ≤-1-3<x ≤8-<x ≤212<x ≤452-1<x ≤2-1≤x <2-1≤x <2-1<x ≤-37-7<x ≤14≤x <881828384858687888990-2<x <3<x ≤445-12≤x <52-4≤x <-3-1≤x <2-2<x ≤1-8≤x ≤52-1≤x <0-1≤x <2无解9192939495969798991002≤x <8-1≤x <31≤x <3-1≤x <32<x ≤4﹣1≤x <2﹣≤x <354无解≤x <1223-7≤x ≤8。

七年级下册数学一元一次不等式组应用题专项练习附答案

七年级下册数学一元一次不等式组应用题专项练习附答案

七年级下册数学一元一次不等式组应用题专项练习附答案七年级下册数学一元一次不等式组应用题专项练习附答案一、综合题(共11题;共108分)1.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.4.某商店需要购进甲、乙两种商品共130件,其进价和获利情况如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于3000元,且销售完这批商品后总获利多于1048元,请问有哪些购货方案?5.某校组织夏令营活动,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租一辆,而且还有一辆没有坐满,但超过30人,问:(1)该校有多少人参加夏令营活动?(2)已知36座客车每辆租金400元,42座客车每辆租金440元,请你帮该校设计一种最省钱得租车方案。

七年级数学下册一元一次不等式组练习题

七年级数学下册一元一次不等式组练习题

七年级数学下册一元一次不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.不等式组23x x >-⎧⎨>⎩的解集是__________________. 2.已知方程组23325x y m x y m -=+⎧⎨+=-⎩①②,以下说法:①无论m 和y 取何值,x 的值一定等于2:①当3m =时,x 与y 互为相反数;①当方程组的解满足25x y +=时,1m =-;①方程组的解不可能为20x y =-⎧⎨=⎩,其中正确的是____________(填序号).3.判断下列不等式组是否为一元一次不等式组:(1)276331y x -<⎧⎨+>⎩__________;(2)12x x <⎧⎨>-⎩__________; (3)2111x x+=⎧⎪⎨<⎪⎩ __________;(4)271330a a ->⎧⎨+<⎩__________ 4.若关于x 的不等式组3410x x x a ≤+⎧⎨-<⎩,恰有2个整数解,则a 的取值范围为___. 5.若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________. 6.已知点(2,)P m m -关于原点对称的点在第三象限,则m 的取值范围是_______.二、单选题7.新定义:对非负实数x “四舍五入”到个位的值记为x 〈〉,即:当n 为非负整数时,如果1122n x n -≤<+,则x n 〈〉=;反之,当n 为非负整数时,如果x n 〈〉=,则1122n x n -≤<+.例如:00.480〈〉=〈〉=,0.64 1.491〈〉=〈〉=,33〈〉=,3.5 4.124〈〉=〈〉=,…如果13x 〈-〉=,则实数x 的取值范围为( )A .3.5 4.5x <≤B .3.5 4.5x ≤<C .3.5 4.5x ≤≤D .3.5 4.5x <<8.把不等式组1034x x +>⎧⎨+⎩的解集表示在数轴上,下列选项正确的是( ) A . B .C .D .9.如果 57x y a b +和-3132y x a b -是同类项,则x ,y 的值是( )A .﹣3,2B .2,﹣3C .﹣2,3D .3,﹣210.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程11322ay y y --=---有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .711.若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m > B .3m ≥ C .3m ≤ D .3m <12.如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( )A .102m -<<B .12m >-C .0m <D .12m <-三、解答题13.解不等式组510032x x x-≤⎧⎨+>-⎩,并把解集在数轴上表示出来.14.数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是;数轴上表示1和﹣4的两点之间的距离是.(2)数轴上表示x和6的两点之间的距离表示为;数轴上表示x和﹣3的两点之间的距离表示为.若|x+3|=4,则x=.(3)若x表示一个有理数,则|x﹣1|+|x+4|的最小值=.(4)若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的值为,则满足条件的所有整数x的和为.(5)若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣4|有最小值为.15.一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?参考答案:1.3x>【分析】找出两个不等式的解的公共部分即为不等式组的解集.【详解】不等式组23xx>-⎧⎨>⎩的解集是3x>,故答案为:3x>.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.2.①①①【分析】把m看作已知数求出x的值,进而表示出y,进而判断即可.【详解】解:23325x y m x y m -=+⎧⎨+=-⎩①②, ①+①得:48x =,解得:2x =,①正确;当2x =时,12m y --=,3m =可得2y =-,x 与y 互为相反数,①正确; 25x y +=时,12252m --⨯+=,即3m =-,①错误; 由2x =,可知20x y =-⎧⎨=⎩不可能是方程的解,①正确, 综上,正确的有①①①.故答案为:①①①.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.3. 不是 是 不是 是【解析】略4.0<a ≤1【分析】先求出不等式组的解集(含有字母a ),利用不等式组有2个整数解,逆推出a 的取值范围即可.【详解】解:解不等式3x ≤4x +1得:x ≥-1,解不等式x -a <0得:x <a①不等式组的解集为:-1≤x <a ,∵不等式组3410x x x a ≤+⎧⎨-<⎩恰有2个整数解, ∴2个整数解为:-1,0,∴0<a ≤1,解得:0<a ≤1,,故答案为:0<a ≤1.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a 的不等式组.5.m >0且m ≠1【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+,①分式方程的解大于1,①11m +>,解得:0m >,又分式方程的分母不为0,①12m 且12m ,解得:1m ≠且3m ≠-, ①m 的取值范围是m >0且m ≠1.故答案为:m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 6.2m >【分析】根据关于原点对称的点的性质可得点P 在第一象限,进而得出不等式组,再解不等式组即可.【详解】解:①点P (m −2,m )关于原点对称的点在第三象限,①点P (m −2,m )在第一象限,①200m m ->⎧⎨>⎩, 解得:m >2,故答案为:m >2.【点睛】此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.7.B【分析】根据题目的定义进行求解即可.【详解】解:①n 为非负整数时,如果1122n x n -≤<+,则x n 〈〉=,13x 〈-〉=, ①1131322x -≤-<+, ①3.5 4.5x ≤<,故选B .【点睛】本题主要考查了新定义,解一元一次不等式组,正确理解题意是解题的关键.8.D【分析】求出不等式组的解集,即可得【详解】解:1034x x +>⎧⎨+⎩①②, 由①得:1x >-,由①得:1x ,∴不等式组的解集为11x -<,在数轴上表示该不等式组的解集只有D 选项符合题意;故选D .【点晴】本题考查解一元一次不等式组,解题的关键是掌握解不等式的步骤,能求出不等式组中各不等式的公共解集.9.B【分析】根据同类项的定义构造关于x 、y 的方程组求解即可【详解】解:①57x y a b +和-3132y x a b -是同类项,①51372x y y x =-⎧⎨+=⎩, 解得:23x y =⎧⎨=-⎩. 故选:B .【点睛】本题考查了同类项即含有字母相同且相同字母的指数相同,方程组的解法,熟练掌握同类项定义,准确求解方程组是解题的关键.10.A【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,再根据其解集是x a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【详解】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩得:5x a x ⎧⎨<⎩, 解集是x a ,5a ∴<;由关于y 的分式方程11322ay y y --=---得1136ay y -+=-+,63y a ∴=+, 有非负整数解, ∴603a +, 35a ∴-<<,0a =(舍去,此时分式方程为增根),2a =-,1a =-,3a =,(1a =,2或4时,y 不是整数), 它们的和为0.故选:A .【点睛】本题综合考查了含参数的一元一次不等式,含参数的分式方程的问题,需要考虑的因素较多,属于易错题.11.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +<-,得:3x >,x m >且不等式组的解集为3x >,3m ∴,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.D【分析】根据第三象限点的特征,横纵坐标都为负,列出一元一次不等式组,进而即可求解.【详解】解:①点P (m ,1+2m )在第三象限内,①0120m m <⎧⎨+<⎩①②, 解不等式①得:0m <,解不等式①得:12m <-, ①不等式组的解集为:12m <-, 故选D .【点睛】本题考查了第三象限的点的坐标特征,一元一次不等式组的应用,掌握各象限点的坐标特征是解题的关键.13.12x -<≤;解集表示见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,并在数轴上表示出来即可.【详解】解:原不等式组为510032x x x -≤⎧⎨+>-⎩①②, 解不等式①,得2x ≤;解不等式①,得1x >-.①原不等式组的解集为12x -<≤ ,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式组,掌握解一元一次不等式组的方法是解题的关键.14.(1)4,5(2)|x ﹣6|;|x +3|;1或﹣7(3)5(4)﹣1或0或1或2或3;5(5)3,6【分析】(1)数轴上两点间的距离等于两个数的差的绝对值;(2)数轴上两点间的距离等于两个数的差的绝对值;(3)根据绝对值几何意义即可得出结论.(4)分情况讨论计算即可得出结论;(5)|2||3||4|x x x ++-+-表示数轴上某点到表示2-、3、4三点的距离之和,依此即可求解. (1)解:数轴上表示2和6两点之间的距离是|62|4-=,数轴上表示1和4-的两点之间的距离是|1(4)|5.故答案为:4,5;(2)数轴上表示x 和6的两点之间的距离表示为6x -;数轴上表示x 和3-的两点之间的距离表示为|(3)||3|x x --=+;若|x +3|=4,则x +3=4或﹣4,①x =1或﹣7,故答案为:|x ﹣6|;|x +3|;1或﹣7;(3)根据绝对值的定义有:|1||4|x x -++可表示为点x 到1与4-两点距离之和,根据几何意义分析可知: 当x 在4-与1之间时,|1||4|x x -++的最小值为5.故答案为:5;(4)当1x <-时,|1||3|13224x x x x x ++-=--+-=-+=,解得:1x =-,此时不符合1x <-,舍去;当13x -时,|1||3|134x x x x ++-=++-=,此时1x =-或0x =,1x =,2x =,3x =;当3x >时,|1||3|13224x x x x x ++-=++-=-=,解得:3x =,此时不符合3x >,舍去.此时满足条件的所有整数x 的和:﹣1+0+1+2+3=5,故答案为:﹣1或0或1或2或3;5;(5)式子|2||3||4|x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当x 为3时,|2||3||4|x x x ++-+-有最小值,|2||3||4|x x x ∴++-+-的最小值|32||33||34|6=++-+-=.故答案为:3,6.【点睛】此题考查了绝对值,两点间的距离公式,明确|2||3||4|x x x ++-+-的几何意义是解题的关键. 15.(1)22(125832)m x x y x +-++(2)铺地砖的总费用为8000元【分析】(1)利用长方形和正方形的面积公式分别表示出四个图形的面积,再相加即可;(2)利用代数式分别表示出两部分阴影面积之和,将x=6,y=2代入计算得出阴影部分的面积,再乘以铺地砖每平方米的平均费用为80元,即可得出结论.(1)解:图形的面积为:x2+4x+3y+8(x+4﹣y)=x2+4x+3y+8x+32﹣8y=(x2+12x﹣5y+32)m2;(2)解:阴影部分的面积为:x2+8(x+4﹣y),当x=6,y=2时,阴影部分的面积为:62+8(6+4﹣2)=36+64=100(m2).①铺地砖每平方米的平均费用为80元,①铺地砖的总费用为:100×80=8000(元).答:铺地砖的总费用为8000元.【点睛】本题主要考查了列代数式,求代数式的值、整式的加减,利用图示数据表示出相应的长方形的边长是解题的关键.。

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)计算题:0011 -330(2017)()3π-+-+ (2)计算题: 124(2)22x x x x ---÷++ (3)解不等式组:3(2)41123x x x x --≤⎧⎪-+⎨<⎪⎩ 【答案】(1)4(2)答案见解析(3)答案见解析【解析】试题分析:(1)根据绝对值、特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题;(3)根据解一元一次不等式组的方法可以解答本题.试题解析:解:(1)原式﹣2﹣1+3 =3+1﹣2﹣1+3=4;(2)原式=2212224x x x x x-+-+⋅+-()() =44224x x x x x ()()+-+⋅+- =﹣(x +4)=﹣x ﹣4;(3)324{1123x x x x --≤-+()①<②,解不等式①,得:x ≥1,解不等式②,得:x <5,∴原不等式组的解集是1≤x <5.32.(1)化简:(31a +﹣a+1)÷2441a a a -++. (2)解不等式组:1422123x x x x ->+⎧⎪+⎨>⎪⎩ 【答案】(1)22a a +-- ,(2)x <﹣1 【解析】【分析】(1)括号内先进行通分,然后进行分式的加减法运算,最后再进行分式的乘除法运算即可;(2)分别求出每一个不等式的解集,然后再确定出解集的公式部分即可得不等式组的解集.【详解】(1)原式=()()()23111·12a a a a a --+++- =()()()2221·12a a a a a +-++- =22a a+-; (2)1422123x x x x ->+⎧⎪⎨+>⎪⎩①②, 由①得:x <﹣1,由②得:x <14, 所以原不等式组的解集为:x <﹣1.33.“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.【答案】(1)采购了100条长条椅,200条弧型椅;(2)有三种方案,见解析;(3)最省钱的租车方案是租用A型卡车15辆、B型卡车5辆,最低运费为23250元.【解析】试题分析:(1)设景区采购长条椅x条,弧型椅y条,然后根据游客人数和花费钱数两个等量关系列出方程组求解即可;(2)设租用A型卡车m辆,则租用B种卡车(20﹣m)辆,根据两种型号卡车装运的休闲椅的数量不小于两种休闲椅的数量列出不等式组,求解即可,再根据车辆数是正整数写出设计方案;(3)设租车总费用为W元,列出W的表达式,再根据一次函数的增减性求出最少费用.试题解析:解:(1)设景区采购长条椅x 条,弧型椅y 条,由题意得: 35130016020056000x y x y +=⎧⎨+=⎩,解得:100200x y =⎧⎨=⎩. 答:采购了100条长条椅,200条弧型椅;(2)设租用A 型卡车m 辆,则租用B 种卡车(20﹣m )辆,由题意得:4122010011720200m m m m +-≥⎧⎨+-≥⎩()(),解得:15≤m ≤17.5,由题意可知,m 为正整数,所以,m 只能取15、16、17,故有三种租车方案可一次性将这批休闲椅运回来,可这样安排:方案一:A 型卡车15辆,B 型卡车5辆,方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆;(3)设租车总费用为W 元,则W =1200m +1050(20﹣m )=150m +21000.∵150>0,∴W 随m 的增大而增大.又∵15≤m ≤17.5,∴当m =15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元.点睛:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,理解数量关系并确定出等量关系和不等量关系是解题的关键,(3)利用一次函数的增减性和自变量的取值范围求最值是常用的方法.34.解不等式组:2132x x x +≥⎧⎨+>⎩,并在所给的数轴上表示解集.【答案】-1≤x<3【解析】分析:根据不等式的解法,先分别求解两个不等式的解集,再根据不等式组的解集的确定方法求出不等式的解集,并表示在数轴上即可.详解:解不等式①,得:1x ≥-解不等式②,得:3x <在数轴上表示解集为:点睛:此题主要考查了不等式组的解法,关键是明确不等式组的解集的确定方法:都大取大,都小取小,大小小大取中间,大大小小无解.35.(1)计算:(﹣12)﹣1﹣°+(π﹣4)0 (2)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩.并写出它的整数解. 【答案】(1)0;(2)整数解为2 , 3【解析】分析:(1)先分别计算有理数的负指数幂、绝对值、特殊角的三角函数值以及零次幂,最后再计算加减即可求得答案;(2)分别求出每个不等式的解集,然后再取它们的公共部分,进而求出整数解即可本题解析:(1)(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2×+1=-2﹣+1++1=0.(2)解:由①得2x ≥由②得4x <∴此不等式组的解集为24x ≤<整数解为2, 336.求不等式组231320x x -≤⎧⎨+>⎩的解集. 【答案】223x -<≤. 【解析】分析:分别解不等式,找出解集的公共部分即可.详解:231,320x x -≤⎧⎨+>⎩①②解不等式①,得 2x ≤;解不等式②,得2 3x >-; 原不等式组的解集为223x -<≤. 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.37.解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩【答案】x ≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集. 详解:解不等式①:2x+2≤3x-1 即x ≥3; 解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x ≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.38.(1)解不等式组:22(1)43x x x x --⎧⎪⎨≤-⎪⎩< (2)解方程:3323x x x x --=- 【答案】(1)0<x ≤3(2)x=32或x=-32 【解析】试题分析:()1分别解不等式找出解集的公共部分即可.()2设3x y x -=,方程变形为:32y y ,-=解方程求出y 的值,再代入3x y x -=,求出x ,注意检验.试题解析:(1)()2214,3x x x x <①②⎧--⎪⎨≤-⎪⎩由①得:0x >,由②得:3x ≤,则不等式组的解集为03x <≤;(2)设3x y x-=,方程变形为:32y y ,-= 去分母得:2230y y --=,解得:1y =-或3y ,= 可得31x x -=-或33x x-=, 解得:32x =或32x =-, 经检验32x =与32x =-都是分式方程的解. 39.解不等式组12655x x x ->⎧⎨≤+⎩①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为 .【答案】(Ⅰ)x >3;(Ⅰ)x ≤5;(Ⅰ)见解析;(Ⅰ)3<x ≤5.【解析】【分析】【详解】解:(Ⅰ)解不等式Ⅰ,得:x >3;(Ⅰ)解不等式Ⅰ,得:x ≤5;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为3<x ≤5.40.解不等式(组),并把它的解集在数轴上表示出来: (1)0.10.81120.63x x x ++-<-; (2)13(1)8321232x x x x --<-⎧⎪--⎨≤-⎪⎩ 【答案】(1) x <3 ;(2) -2<x ≤2【解析】分析:(1)根据一元一次不等式的解法思路有移项、化简(同乘除)可求得;(2)根据求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)可求得.详解:(1)x 0.1x 0.8x 1120.63++-<-, 化简得:2x −x 86+<1−x 13+, 去分母得:3x −(x+8)<6−2(x+1),去括号得:3x −x −8<6−2x −2,移项合并得:4x<12,化系数为1得:x<3.在数轴上表示得:(2)()1318x 3x 21232x x ⎧--<-⎪⎨--≤-⎪⎩①②,由①得:x>−2,由②得:x⩽2,∴原不等式组的解集为:−2<x⩽2;在数轴上表示为:点睛:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。

七年级数学下一元一次不等式组重点题型练习题

七年级数学下一元一次不等式组重点题型练习题

七年级数学下一元一次不等式组重点题型练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一元一次不等式组重点题型练习题1、已知方程⎩⎨⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则( )A. 1m -> B. 1m > C. 1m -< D. 1m <2、若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤D. 1m > 3、若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( )A. 1a -≤ B. 1a -≥ C. 1a -< D. 1a -> 4、如果不等式组213(1)x x x m->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( )A 、m=2B 、m >2C 、m <2D 、m≥25、如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 . 6、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >- B .1a -≥ C .1a ≤ D .1a <7、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = . 8、已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____9、若不等式组530,0x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( ) A.m ≤53 B.m <53 C.m >53 D.m ≥5310、关于x 的不等式组⎩⎪⎨⎪⎧x +152>x -32x +23<x +a只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143 B. -5≤a <-143 C. -5<a ≤-143D. -5<a <-143 11、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是________________。

七年级数学下册《一元一次不等式组》练习题及答案

七年级数学下册《一元一次不等式组》练习题及答案

七年级数学下册《一元一次不等式组》练习题及答案一、单项选择题1.如图,在数轴上所表示的关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >-1D .-1<x≤22.若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .⎩⎪⎨⎪⎧x≥-2x<3 B .⎩⎪⎨⎪⎧x≤-2x≥3 C .⎩⎪⎨⎪⎧x≥-2x≤3 D .⎩⎪⎨⎪⎧x>-2x≤33.不等式组⎩⎪⎨⎪⎧x +1>2,x -1≤2 的解集是( )A .x <1B .x ≥3C .1≤x <3D .1<x≤34.不等式组⎩⎪⎨⎪⎧x -1≤0,①x +23-x 2<1②的解集在数轴上表示正确的是( )5.关于x 的不等式组⎩⎪⎨⎪⎧x >a ,x >1 的解集为x >1,则a 的取值范围是()A .a >1B .a <1C .a ≥1D .a ≤16.不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x -1≤7-32x的非负整数解有( )A .4个B .5个C .6个D .7个7.若关于x 的不等式组⎩⎪⎨⎪⎧x <3a +2x >a -4 无解,则a 的取值范围是( )A .a ≤-3B .a <-3C .a >3D .a ≥3二、填空题8.关于x 的不等式组⎩⎪⎨⎪⎧2x>4,x -5≤0 的解集是_________.9.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为____.10.已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b , 其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为____.11.关于x 的不等式组⎩⎪⎨⎪⎧2x +1>3,a -x >1 的解集为1<x <3,则a 的值为____.三、解答题12.解不等式组:(1)⎩⎪⎨⎪⎧3x -2<4,2(x -1)≤3x+1;(2)⎩⎪⎨⎪⎧5x -3>2x ,2x -13<x 2.13.解不等式组,并把它的解集在数轴上表示出来.(1)⎩⎪⎨⎪⎧10-x 3≤2x+1,x -2<0;(2)⎩⎪⎨⎪⎧4x -2≥3(x -1),①x -52+1>x -3.②14. 解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.15.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =a +2,x -2y =4a -10 的解为正数,且x 的值小于y 的值,求a 的取值范围.16.已知关于x 的不等式组⎩⎪⎨⎪⎧x>-1,x ≤1-k. (1)如果这个不等式组无解,求k 的取值范围(2)如果这个不等式组有解,求k 的取值范围(3)如果这个不等式组恰好有2021个整数解,求k 的取值范围.参考答案1-7 AADCD BA8. 2<x≤59. 010. x >a11. 412. 解:(1) 解不等式3x -2<4,得x<2,解不等式2(x -1)≤3x+1得x≥-3,则不等式组的解集为-3≤x<2(2) 解不等式5x -3>2x ,得x >1,解不等式2x -13 <x 2得x <2,则不等式组的解集为1<x <213. 解:(1) 不等式组的解集是1≤x<2,它的解集在数轴上表示为:(2) 解:由①,得x≥-1,由②,得x <3∴原不等式组的解集为-1≤x<3,它的解集在数轴上表示为:14. 解:解不等式组得0≤x≤3,所以不等式组的整数解之和为0+1+2+3=615. 解:解方程组得⎩⎪⎨⎪⎧x =2a -2,y =4-a , 根据题意得 ⎩⎪⎨⎪⎧2a -2>0,4-a >0,2a -2<4-a , 解得1<a <216. 解:(1)根据题意,得-1≥1-k ,解得k≥2(2)根据题意,得-1<1-k ,解得k <2(3)∵不等式恰好有2021个整数解∴-1<x <2021,∴2020≤1-k <2021,解得-2020<k≤-2019。

七下数学一元一次不等式组题型分类练习(非常经典)

七下数学一元一次不等式组题型分类练习(非常经典)

一元一次不等式组题型分类练习当时,x >b ;(同大取大) 当时,x <a ;(同小取小)当时,a <x <b ;(大小小大取中间) 当时无解,(大大小小无解)题型一 求不等式组的解集1、在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值范围为( ) A .-1<m <3B .m >3C .m <-1D .m >-12、解下列不等式① ②3、解不等式组 并写出该不等式组的最大整数解.⎪⎩⎪⎨⎧+≤+)(<1x 31-x 5121x 5-31-x 2≥+x32-13x 1-x 37-)(<⎩⎨⎧+≥--≥+xx x x 2236523⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x题型三 知道不等式组的解集,求字母取值①已知不等式组 的解集为x >3,则a 的取值范围是 .②已知不等式组 的解集为x >a ,则a 的取值范围 .③已知不等式组 无解,则a 的取值范围 .④已知不等式组 有解,则a 的取值范围 .变式:1、不等式组 的解集是x >2,求m 的取值范围.题型四 不等式组与方程的综合题1、若方程组 的解满足-1<x+y <3,求a 的取值范围.题型五 确定方程或不等式组中的字母取值1、已知关于x 的不等式组 只有2个非负整数解,则实数a 的取值范围是?⎩⎨⎧3x ax >>⎩⎨⎧3x ax >>⎩⎨⎧3x ax <>⎩⎨⎧3x ax <>⎩⎨⎧+++1m x 1x 59x ><⎩⎨⎧=+-=+72y x 1y x 2a ⎩⎨⎧≥-12x -50>a x2、如果的整数解为1、2、3,求整数a 、b 的值。

题型六 不等式组的应用练习:1、甲,乙两家超市以相同的价格出售同样的商品,为了吸引顾客,•各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,•超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超过部分按原价8.5折优惠.设顾客预计累计购物x 元(x>300). (1)请用含x 的代数式分别表示顾客在两家超市购物所付的费用; (2)试比较顾客到哪家超市购物更优惠?说明你的理由.课堂小测1. “a 与5的和是正数且a 的一半不大于3”用不等式组表示,正确的是( )A.⎪⎩⎪⎨⎧≤>+32105a aB. ⎪⎩⎪⎨⎧<>+32105a aC. ⎪⎩⎪⎨⎧≥>+32105a aD. ⎪⎩⎪⎨⎧≤≥+32105a a 2.关于x 的不等式组恰好只有两个整数解,则a 的取值范围为( )A .5≤a <6B .5<a ≤6C .4≤a <6D .4<a ≤6 ⎩⎨⎧≥0b -8x 0a -9x <5.(本题满分8分)关于x ,y 的方程组1331x y mx y m -=+⎧⎨+=+⎩(1)当2y =时,求m 的值; (2)若方程组的解x 与y 满足条件2x y +>,求m 的取值范围.6.(本题满分8分)养牛场的李大叔分三次购进若干头大牛和小牛.其中有一次购买大牛和小牛的价格同时打折,(1)李大叔以折扣价购买大牛和小牛是第 次;(2)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折相同),且总价不低于8100元,那么他共有哪几种购买方案?。

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。

一元一次不等式组必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

一元一次不等式组必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

专题05 一元一次不等式组必刷常考题选择题必练1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y 2.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1B.>C.﹣a<﹣b D.ac<bc4.不等式2x<10的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴上表示为()A.B.C.D.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折7.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣18.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.9.不等式组的最小整数解为()A.﹣1B.0C.1D.210.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.711.下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.12.适合不等式组的全部整数解的和是()A.﹣1B.0C.1D.2填空题必练13.不等式5x﹣3<3x+5的最大整数解是.14.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.15.不等式3x﹣2>4的解是.解答题必练16.解不等式:≤﹣1,并把解集表示在数轴上.17.解不等式组,并将它的解集在数轴上表示出来.18.解一元一次不等式组,并把解在数轴上表示出来.19.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.20.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元,并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?21.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)专题05 一元一次不等式组必刷常考题选择题必练1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y 【答案】D【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.2.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【答案】C【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1B.>C.﹣a<﹣b D.ac<bc【答案】A【解答】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1,故A选项是正确的;B、a<b,不成立,故B选项是错误的;C、﹣a>﹣b,不成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选:A.4.不等式2x<10)A.B.C.D.【答案】D【解答】解:不等式的两边同时除以2得,x<5,在数轴上表示为:故选:D.5.不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解答】解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【答案】B【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.7.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣1【答案】D【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.8.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【答案】C【解答】解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选:C.9.不等式组的最小整数解为()A.﹣1B.0C.1D.2【答案】B【解答】解:不等式组解集为﹣1<x≤2,其中整数解为0,1,2.故最小整数解是0.故选:B.10.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.7【答案】C【解答】解:∵解不等式①得:x>﹣0.5,解不等式②得:x≤5,∴不等式组的解集为﹣0.5<x≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C.11.下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解答】解:由图一得甲>40,图二得甲<50则40<甲<50在数轴上表示为故选:C.12.适合不等式组的全部整数解的和是()A.﹣1B.0C.1D.2【答案】B【解答】解:,∵解不等式①得:x>﹣,解不等式②得:x≤1,∴不等式组的解集为﹣<x≤1,∴不等式组的整数解为﹣1,0,1,﹣1+0+1=0,故选:B.填空题必练13.不等式5x﹣3<3x+5的最大整数解是.【答案】3【解答】解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.14.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.【答案】10n﹣5(20﹣n)>90【解答】解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.15.不等式3x﹣2>4的解是.【答案】x>2【解答】解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.解答题必练16.解不等式:≤﹣1,并把解集表示在数轴上.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.17.解不等式组,并将它的解集在数轴上表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:18.解一元一次不等式组,并把解在数轴上表示出来.【解答】解:由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:19.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.20.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元,并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【解答】解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.21.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)【解答】解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40.∵x取非负整数,∴x为38,39,40.∴有三种生产方案①A型38台,B型62台;②A型39台,B型61台;③A型40台,B型60台.答:有三种生产方案,分别是A型38台,B型62台;A型39台,B型61台;A型40台,B型60台.(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x,∴当x=38时,W最大=5620(万元),答:生产A型38台,B型62台时,获得最大利润.(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;当m=10时,m﹣10=0则三种生产方案获得利润相等;当m>10,则x=40时,W最大,即生产A型40台,B型60台.答:当0<m<10时,生产A型38台,B型62台获利最大;当m=10时,3种方案获利一样;当m>10时,生产A型40台,B型60台获利最大.。

初中数学《七下》第九章 不等式与不等式组-一元一次不等式 考试练习题

初中数学《七下》第九章 不等式与不等式组-一元一次不等式 考试练习题

初中数学《七下》第九章不等式与不等式组-一元一次不等式考试练习题姓名:_____________ 年级:____________ 学号:______________l 知识点:一元一次不等式【答案】(1 )y1=100+10x,y2=18x;(2 )办VIP不划算,理由见解析;(3 ) 13【分析】(1 )先求出打折后单次的价格,再根据方案一、方案二,表示题中的数量关系,即可列出函数关系式;(2 )将x=10 代入(1 )中的函数关系式,即可求出方案一及方案二的费用,继而判断是否需要办VIP;(3 )根据题意可得 100+10x<18x,进而解不等式即可求得答案.【详解】解:(1 )根据题意可得:20×50% = 10 (元 / 次),20×90% = 18 (元 / 次),∴y1=100+10x,y2=18x,(2 )办VIP不划算,理由如下:当x=10 时,方案一的费用为y1=100+10×10 = 200 ,方案二的费用为y2=18×10 = 180 ,∵200 > 180 ,∴y1>y2,∴ 办VIP不划算;(3 )由题意可得:y1<y2,∴100+10x<18x,解得:x>12.5 ,∴x的最小整数解为13 ,∴ 去俱乐部健身至少 13 次办VIP卡才合算,故答案为:13 .【点睛】本题考查了一次函数与一元一次不等式的实际应用,体现了数学来源于生活又服务于生活,考查了学生的运算能力,应用能力等,本题关键在于能够用函数关系式表示量与量之间的关系,并进行比较,做出独立判断.2、解不等式组请结合题意填空,完成本题的解答.(1 )解不等式① ,得 _______________ ;(2 )解不等式② ,得 ________________ ;(3 )把不等式① 和② 的解集在数轴上表示出来:(4 )原不等式组的解集为 ____________.知识点:一元一次不等式【答案】(1 );(2 );(3 )见解析;(4 ).【分析】直接解一元一次不等式组即可得解.【详解】解:解不等式① ,得,;解不等式② ,得;把不等式① 和② 的解集在数轴上表示如解图:原不等式组的解集为:.故答案为:(1 );(2 );(3 )见上图;(4 ).【点睛】本题考查的知识点是解一元一次不等式组,属于容易题目,失分原因:(1 )移项时未变号导致出错;(2 )解不等式时出错;(3 )在数轴上表示解集时,未能掌握“&lt;” 和“&gt;” 在数轴上表示为空心圆圈,“≤” 和“≥” 在数轴上表示为实心圆点;(4 )不会确定不等式组的解集.3、不等式组的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:解不等式① ,得:x ≥-1 ,解不等式② ,得:x<2 ,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x<2 ,故选:D .【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.4、若三角形的两边长分别为3 和 5 ,则第三边m的值可能是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,列出不等式组,进而结合选项求得第三边的值.【详解】三角形的两边长分别为3 和 5 ,第三边m故选B【点睛】本题考查了根据三角形三边关系确定第三边的范围,掌握三角形的三边关系是解题的关键.5、定义新运算“” ,规定:.若关于x的不等式的解集为,则m的值是()A .B .C . 1D . 2知识点:一元一次不等式【答案】B【分析】题中定义一种新运算,仿照示例可转化为熟悉的一般不等式,求出解集,由于题中给出解集为,所以与化简所求解集相同,可得出等式,即可求得m.【详解】解:由,∴,得:,∵解集为,∴∴,故选:B .【点睛】题目主要考查对新运算的理解、不等式的解集、一元一次方程的解等,难点是将运算转化为所熟悉的不等式.6、城乡学校集团化办学已成为西宁教育的一张名片.“ 五四” 期间,西宁市某集团校计划组织乡村学校初二年级 200 名师生到集团总校共同举办“ 十四岁集体生日” .现需租用A,B两种型号的客车共10 辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A型客车x辆,租车总费用为y元.(1 )请写出y与x的函数关系式(不要求写自变量取值范围);(2 )据资金预算,本次租车总费用不超过 11800 元,则A型客车至少需租几辆?(3 )在(2 )的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案.知识点:一元一次不等式【答案】(1 );(2 ) 1 辆;(3 )租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B 型客车租7 辆;最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【分析】(1 )根据租车总费用=每辆A型号客车的租金单价× 租车辆数+每辆B型号客车的租金单价× 租车辆数,即可得出y与x之间的函数解析式,再由全校共200 名师生需要坐车及x ≤10 可求出x的取值范围;(2 )由租车总费用不超过 11800 元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案;(3 )由题意得出,求出x的取值范围,分析得出即可.【详解】解:(1 ),∴;(2 )根据题意,得:,解得,∵x应为正整数,∴∴A型客车至少需租1 辆;(3 )根据题意,得,解得,结合(2 )的条件,,∵x应为正整数,∴x取1 , 2 , 3 ,∴ 租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B型客车租7 辆.∵,∴y随x的增大而减小,∴ 当时,函数值y最小,∴ 最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.7、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多可以购买多少个 A 型放大镜?知识点:一元一次不等式【答案】(1 )每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )最多可以购买 35 个 A 型放大镜.【详解】分析:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;(2 )由题意列出不等式求出即可解决问题.详解:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,可得:,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.8、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多l ,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.9、不等式2x ﹣ 1 > 3 的解集为 _____ .知识点:一元一次不等式【答案】x > 2【详解】解:移项得:2x > 3+1 ,合并同类项得:2x > 4 ,不等式的两边都除以2 得x > 2 ,∴ 不等式 2x ﹣ 1 > 3 的解集为 x > 2 .10、不等式﹣4x﹣1≥ ﹣ 2x+1 的解集,在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】不等式移项,合并,把x系数化为1 ,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x﹣1≥ ﹣ 2x+1 ,移项得:﹣4x+2x ≥1 + 1 ,合并得:﹣2x ≥2 ,解得:x ≤ ﹣ 1 ,数轴表示,如图所示:故选:D.【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.11、不等式组的解集,在数轴上表示正确的是()A. B .C .D .知识点:一元一次不等式【答案】C【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以解答本题.【详解】解:,由① 得:,由② 得:,故原不等式组的解集为:,故选:C .【点睛】本题主要考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解不等式组的方法.12、不等式的解集是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】按照解不等式步骤:移项,合并同类项,系数化为1 求解.【详解】解:,,,.故选:B.【点睛】本题考查解不等式,熟练掌握不等式的基本性质是解题关键.13、若点在一次函数的图象上,且,则的取值范围为__ .知识点:一元一次不等式【答案】【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m −n>2 ,即可得出b<−2 ,此题得解.【详解】解:点在一次函数的图象上,,即:.,,即.故答案是:.【点睛】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征并结合不等式是解题的关键.14、我市对居民生活用水实行“ 阶梯水价” .小李和小王查询后得知:每户居民年用水量 180 吨以内部分,按第一阶梯到户价收费;超过 180 吨且不超过 300 吨部分,按第二阶梯到户价收费;超过 300 吨部分,按第三阶梯到户价收费.小李家去年 1~9 月用水量共为 175 吨, 10 月、 11 月用水量分别为 25 吨、 22 吨,对应的水费分别为 118.5 元、 109.12 元.(1 )求第一阶梯到户价及第二阶梯到户价(单位:元 / 吨);(2 )若小王家去年的水费不超过 856 元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).知识点:一元一次不等式【答案】(1 )第一阶梯 3.86 元 / 吨,第二阶梯 4.96 元 / 吨;(2 )不超过 212 吨【分析】(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,然后根据10 月和 11 月的收费列出方程组求解即可;(2 )设小王甲去年的用水量为m,由于,则m<300 ,然后不等式求解即可.【详解】解:(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,由题意得:解得,∴ 第一阶梯到户价为 3.86 元,第二阶梯到户价为 4.96 元,答:第一阶梯到户价为3.86 元,第二阶梯到户价为 4.96 元;(2 )设小王甲去年的用水量为m,∵,∴ 当m小于180 是符合题意∵,∴m<300当180≤m &lt;300,解得,∴ 小王家去年年用水量不超过 212 吨,答:小王家去年年用水量不超过212 吨.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次不等式的实际应用,解题的关键在于能够根据题意找到数量关系式进行求解.15、为庆祝中国共产党成立周年,某校组织了党史知识竞赛,共道题,记分规则为:若答对,每题记分;若答错或不答,每题记分.小明的参赛目标是超过分,则他至少要答对_______ 道题.l ∴x可取的最小值为18 .故答案为:18 .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16、不等式的解集是()A .x ≤4B .x ≥4C .x ≤1D .x=1知识点:一元一次不等式【答案】A【分析】通过移项,合并同类项,未知数系数化为1 ,即可求解.【详解】解:,移项得:,解得:,故选A .【点睛】本题主要考查解一元一次不等式,掌握“ 移项,合并同类项,未知数系数化为1” 是解的关键.17、关于的不等式的解集是___________ .知识点:一元一次不等式【答案】【分析】先去分母,再移项,最后把未知数的系数化“” ,即可得到不等式的解集.【详解】解:去分母得:>移项得:故答案为:【点睛】本题考查的是一元一次不等式的解法,掌握解不等式的方法是解题的关键.18、小美打算买一束百合和康乃馨组合的鲜花,在“ 母亲节” 祝福妈妈.已知买 2 支百合和 1 支康乃馨共需花费 14 元, 3 支康乃馨的价格比 2 支百合的价格多 2 元.(1 )求买一支康乃馨和一支百合各需多少元?(2 )小美准备买康乃馨和百合共 11 支,且百合不少于 2 支.设买这束鲜花所需费用为元,康乃馨有支,求与之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.知识点:一元一次不等式【答案】(1 )买一支康乃馨需 4 元,一支百合需 5 元;(2 ),,当购买康乃馨9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【分析】(1 )设买一支康乃馨需x元,一支百合需y元,然后根据题意可得,进而求解即可;(2 )由(1 )及题意可直接列出与之间的函数关系式,进而可得,然后根据一次函数的性质可进行求解.【详解】解:(1 )设买一支康乃馨需x元,一支百合需y元,由题意得:,解得:,答:买一支康乃馨需4 元,一支百合需 5 元.(2 )由(1 )及题意得:百合有(11-x)支,则有,,∵ 百合不少于 2 支,∴,解得:,∵-1 < 0 ,∴w随x的增大而减小,∴ 当x =9 时,w取最小值,最小值为,∴ 当购买康乃馨 9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【点睛】本题主要考查一次函数的应用及一元一次不等式与二元一次方程组的应用,熟练掌握一次函数的应用及一元一次不等式与二元一次方程组的应用是解题的关键.19、2021 年是中国共产党建党 100 周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送 549 名学生和 11 名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1 )共需租 ________ 辆大客车;(2 )最多可以租用多少辆甲种型号大客车?(3 )有几种租车方案?哪种租车方案最节省钱?知识点:一元一次不等式【答案】(1 ) 11 ;(2 ) 3 辆;(3 ) 3 种,租用 3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【分析】(1 )根据学生和老师的总人数、乙种客车的载客量,以及每辆汽车上至少要有一名教师进行计算即可得;(2 )设租用辆甲种型号大客车,从而可得租用辆乙种型号大客车,根据甲、乙两种型号的大客车的载客量、学生和老师的总人数建立不等式,解不等式求出的取值范围,再结合且为正整数即可得;(3 )根据(2 )中的取值范围可得出租车方案,再分别求出各租车方案的费用即可得.【详解】解:(1 )(辆)(人),(辆),共需租11 辆大客车,故答案为:11 ;(2 )设租用辆甲种型号大客车,则租用辆乙种型号大客车,由题意得:,解得,因为且为正整数,所以最多可以租用3 辆甲种型号大客车;(3 )由(2 )可知,租用甲种型号大客车的辆数可以为辆,则有三种租车方案:① 租用 1 辆甲种型号大客车, 10 辆乙种型号大客车;② 租用 2 辆甲种型号大客车, 9 辆乙种型号大客车;③ 租用 3 辆甲种型号大客车, 8 辆乙种型号大客车;方案① 的费用为(元),方案② 的费用为(元),方案③ 的费用为(元),所以租用3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【点睛】本题考查了一元一次不等式的实际应用,正确建立不等式是解题关键.20、不等式的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】求出不等式的解集,再根据“ 大于向右,小于向左,不包括端点用空心,包括端点用实心” 的原则将解集在数轴上表示出来.【详解】解:解不等式,去分母得:,去括号得:,移项合并得:,系数化为得:,表示在数轴上如图:故选:B .【点睛】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ 向右画;<,≤ 向左画),在表示解集时“≥” ,“≤”要用实心圆点表示;“ <” ,“ >” 要用空心圆点表示.。

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析1. 不等式组{x>−1x≤1的解集是( )A. x<1B. x≥1C. −1<x≤1D. 1≤x<−12. 不等式组{x+2<0x+3<0的解集是( )A. x<−2B. x<−3C. −3<x<−2D. x>−23. 下列各式中一元一次不等式是( )A. x≥5xB. 2x>1−x2C. x+2y<1D. 2x+1≤3x4. 若代数式2a+7的值不大于3则a的取值范围是( )A. a≤4B. a≤−2C. a≥4D. a≥−25. 已知a>b>0则下列不等式不一定成立的是( )A. ab>b2B. a+c>b+cC. 1a <1bD. ac>bc6. 不等式4x−511<1的正整数解为( )A. 1个B. 3个C. 4个D. 5个7. 不等式组{x+1≤02x+3<5的解集是( )A. x≤−1或x>1B. −1≤x<1C. x≤−1D. x>18. 亮亮准备用自己节省的零花钱买一台英语复读机他现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.设x个月后他至少有300元则可以用于计算所需要的月数x的不等式是( )A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3009. 关于x的不等式组{x+43>x2+1x+a<0的解集为x<2则a的取值范围是( )A. a≤−2B. a≥−2C. a≤2D. a≥210. 如果a<b<0下列不等式中错误的是( )A. ab>0B. a+b<0C. ab<1 D. a−b<011. 不等式12x>−3的解集是______.12. 不等式x+2>12x的负整数解______.13. 不等式组:{x−1<0x>0的解集是______.14. 不等式组{2x+1>x−1x+8>4x−1的正整数解是______.15. 某生物兴趣小组要在温箱里培养A B两种菌苗A种菌苗的生长温度x(℃)的范围是35≤x≤38 B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)d的范围是______.16. 已知不等式3x −a ≤0的正整数解只有1 2 3 那么a 的取值范围是______.17. 若不等式组{x −a >2b −2x >0的解集是−1<x <1 则(a +b)2014等于______. 18. 已知关于x 的不等式组{5−2x ≥1x −a ≥0无解 则a 的取值范围是______. 19. 一位老师说 他班学生的一半在学数学 四分之一的学生在学音乐 七分之一的学生在学外语 还剩不足6名同学在操场上踢足球 则这个班的学生最多有______人.20. 几个小朋友分糖块 如果每人分4块糖 则多余8块糖 如果每人分8块糖 则有一人分到了糖块但不足8块 请你猜想 共有______位小朋友______块糖.21. 解下列不等式 并把它们的解集在数轴上表示出来.(1)−3(1−x)+6>1+4x(2)x −12+1≥x. 22. 解下列不等式组:(1){3x −1<52x +6>0(2){3(x +1)>5x +4x −12≤2x −13. 23. 已知关于x 的方程5x −2m =3x −6m +1的解为x 满足−3<x ≤2 求m 的整数值.24. 某软件公司开发一种图书软件 前期投入的开发、广告宣传费用共50000元 且每售出一套软件 软件公司还需支付安装调试费200元.如果每套定价700元 软件公司至少要售出多少套才能确保不亏本?25. 一本科普读物共98页 晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了.已知小敏平均每天比晓芬多读3页 那么晓芬平均每天读多少页?(答案取整数)26. 扬州火车站有某公司待运的甲种货物1530吨 乙种货物1150吨 现计划用50节A 、B 两种型号的车厢将这批货物运至北京、已知每节A 型货厢的运费是0.5万元 每节B 型货厢的运费是0.8万元 甲种货物35吨和乙种货物15吨可装满一节A 型货厢 甲种货物25吨和乙种货物35吨可装满一节B 型货厢 按此要求安排A 、B 两种货厢的节数 共有几种方案?请你设计出来 并说明哪种方案的运费最少 最少运费是多少?参考答案与解析1.【答案】C【解析】解:把解集表示在数轴上如下:所以不等式组的解集是−1<x ≤1.故选:C.把两个解集表示在数轴上 再找公共部分即可.本题考查一元一次不等式组的解集 熟练掌握在数轴上表示不等式的解集是解题关键.2.【答案】B【解析】解:{x +2<0①x +3<0②由①得:x <−2由②得:x <−3则不等式组的解集为x <−3.故选:B.分别求出不等式组中两不等式的解集 找出两解集的公共部分即可.此题考查了解一元一次不等式组 熟练掌握不等式组的解法是解本题的关键.3.【答案】D【解析】解:A 、不是整式 不符合题意B 、未知数的最高次数是2 不符合题意C 、含有2个未知数 不符合题意D 、是只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式 符合题意故选D.找到只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式即可.考查一元一次不等式的定义:只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式叫做一元一次不等式.4.【答案】B【解析】解:依题意得2a +7≤32a ≤−4a≤−2.故选:B.根据题意列出不等式利用不等式的性质来求a的取值范围.本题考查了解一元一次不等式.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.【答案】D【解析】解:A、ab>b2成立B、a+c>b+c成立C、1a <1b成立D、ac<bc不一定成立.故选:D.根据不等式的性质分析判断.不等式两边同时乘以或除以同一个数或式子时一定要注意不等号的方向是否改变.6.【答案】B【解析】解:解不等式得x<4则不等式4x−511<1的正整数解为123共3个.故选:B.首先利用不等式的基本性质解不等式然后找出符合题意的正整数解.本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.【答案】C【解析】解:解不等式x+1≤0得:x≤−1解不等式2x+3<5得:x<1则不等式组的解集为x≤−1故选C.分别求出每一个不等式的解集根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.8.【答案】B【解析】解:x个月可以节省30x元根据题意得30x+45≥300.故选:B.此题中的不等关系:现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.至少即大于或等于.本题主要考查简单的不等式的应用解题时要注意题目中的“至少”这类的词.9.【答案】A【解析】解:根据题意得:x<2x+a<0∴x<−a∴a=−2或a<−2∴a≤−2故选A.根据题意知道不等式组的解集为x<2再由x+a<0直接求出a的取值范围.本题考查了不等式的解集解题的关键是根据题意及不等式的解集直接求出a的取值范围.10.【答案】C【解析】解:A、如果a<b<0则a、b同是负数因而ab>0故A正确B、因为a、b同是负数所以a+b<0故B正确C、a<b<0则|a|>|b|则ab >1也可以设a=−2b=−1代入检验得到ab<1是错误的.故C错误D、因为a<b所以a−b<0故D正确故选:C.根据不等式的性质分析判断.利用特殊值法验证一些式子错误是有效的方法.11.【答案】x>−6【解析】解:去分母得故答案为:x>−6.直接把不等式的两边同时乘以2即可得出结论.本题考查的是解一元一次不等式熟知不等式的基本性质是解答此题的关键.12.【答案】−3−2−1【解析】解:不等式x +2>12xx −12x >−2 12x >−2 解得x >−4故不等式x +2>12x 的负整数解有−3、−2、−1.故答案为:−3、−2、−1.首先利用不等式的基本性质解不等式 再从不等式的解集中找出非负整数解即可.本题考查了一元一次不等式的整数解 正确解不等式 求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】0<x <1【解析】解集:由(1)得 x <1由(2)得 x >0所以不等式组{x −1<0x >0的解集是0<x <1. 分别求出两个不等式的解集 求其公共解集.求不等式的公共解集 要遵循以下原则:同大取较大 同小取较小 小大大小中间找 大大小小解不了.14.【答案】1 2【解析】解:{2x +1>x −1①x +8>4x −1②解不等式①得:x >−2解不等式②得:x <3∴原不等式组的解集为:−2<x <3∴该不等式组的正整数解为:1 2故答案为:1按照解一元一次不等式组的步骤 进行计算可得−2<x <3 然后再找出此范围内的正整数即可. 本题考查了一元一次不等式组的整数解 准确熟练地进行计算是解题的关键.15.【答案】35≤t ≤36【解析】解:由题意可得不等式组{35≤x ≤3834≤y ≤36根据求不等式解集的方法可知温箱里的温度t ℃应该设定在35≤t ≤36故答案为:35≤t ≤36.温箱里的温度T ℃应该设定在能使A B 两种菌苗同时满足的温度 即35≤x ≤38与34≤y ≤36的公共部分.此题考查的是不等式的解集.求不等式组的解集 应注意:同大取较大 同小取较小 小大大小中间找 大大小小解不了.16.【答案】9≤x <12【解析】解:不等式的解集是:x ≤a 3∵不等式的正整数解恰是1 2 3∴3≤a 3<4 ∴a 的取值范围是9≤a <12.故答案为:9≤a <12.首先确定不等式组的解集 利用含a 的式子表示 再根据整数解的个数就可以确定有哪些整数解 然后根据解的情况可以得到关于a 的不等式 从而求出a 的范围.本题考查了一元一次不等式的整数解 正确解出不等式的解集 正确确定a 3的范围 是解决本题的关键.解不等式时要用到不等式的基本性质.17.【答案】1【解析】解:{x −a >2①b −2x >0②解不等式①得 x >2+a解不等式②得 x <b 2所以 不等式组的解集是2+a <x <b 2∵不等式组的解集是−1<x <1∴{2+a =−1b 2=1 解得{a =−3b =2所以故答案为:1.先去用a 、b 表示出不等式组的解集 然后根据不等式组的解集列出关于a 、b 的方程组并求出a 、b 最后代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法 难点在于用a 、b 表示出不等式组的解集再列出方程组.18.【答案】a>2【解析】解:解不等式5−2x≥1得:x≤2解不等式x−a≥0得:x≥a∵不等式组的无解∴a>2故答案为:a>2.分别求出每一个不等式的解集根据口诀:大大小小找不到并结合不等式组的解集可得答案.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.19.【答案】28【解析】解:设这个班的学生共有x人依题意得:x−12x−14x−17x<6解之得:x<56又∵x为2、4、7的公倍数∴这个班的学生最多共有28人.本题考查一元一次不等式的应用将现实生活中的事件与数学思想联系起来读懂题列出不等关系式即可求解.解决问题的关键是读懂题意找到关键描述语找到所求的量的等量关系.20.【答案】3 20【解析】解:设x个小朋友y块糖由题意可知y−4x=81≤y−8(x−1)<8∴y=8+4x代入不等式可知2<x≤154∵x为整数所以x为3则y为20所以共有3位小朋友20块糖.故答案为3可以设x个小朋友y块糖列出不等式从而根据条件求解x和y的值.本题考查了一元一次不等式的应用解决问题的关键是读懂题意根据实际情况依题意列出不等式进行求解.21.【答案】解:(1)−3(1−x)+6>1+4x−3+3x+6>1+4x3x−4x>1+3−6−x >−2x <2将解集表示在数轴上如图所示:(2)x −12+1≥x x −1+2≥2xx −2x ≥1−2−x ≥−1x ≤1..【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得 然后在数轴上表示出解集即可.本题主要考查解一元一次不等式的基本能力 严格遵循解不等式的基本步骤是关键 尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.【答案】解:(1){3x −1<5①2x +6>0②解不等式①得:x <2解不等式②得:x >−3则不等式组的解集为−3<x <2(2){3(x +1)>5x +4①x −12⩽2x −13② 解不等式①得:x <−12解不等式②得:x ≥−1则不等式组的解集为−1≤x <−12.【解析】分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.23.【答案】解:解方程5x −2m =3x −6m +1 得x =12−2m.∵−3<x ≤2∴{12−2m ≤212−2m>−3解得−34≤m <134∴m 的整数值是0 1. 【解析】先用m 的式子表示x 再根据−3<x ≤2 列出不等式组 求出不等式组的解集 再从中找出m 的整数值.此题考查的是一元一次不等式组的解法和一元一次方程的解 根据x 的取值范围 得出a 的整数解.24.【答案】解:设软件公司要售出x 套软件才能确保不亏本则有:700x ≥50000+200x解得:x ≥100.答:软件公司至少要售出100套软件才能确保不亏本.【解析】要使公司不赔本 那么销售软件的收入≥投资的总费用 然后得出自变量的取值范围.本题考查一元一次不等式的应用 将现实生活中的事件与数学思想联系起来 读懂题列出不等式关系式即可求解.25.【答案】解:设晓芬平均每天读x 页 则小敏平均每天读(x +3)页依题意得:{7x <987(x +3)>98解得:11<x <14又∵x 为整数∴x =12或13.答:晓芬平均每天读12页或13页.【解析】设晓芬平均每天读x 页 则小敏平均每天读(x +3)页 根据“晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了” 即可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再取其中的整数值即可得出结论.本题考查了一元一次不等式组的应用 根据各数量之间的关系 正确列出一元一次不等式组是解题的关键.26.【答案】解:设A 型货厢的节数为x 则B 型货厢的节数为(50−x)节.{35x +25(50−x)≥153015x +35(50−x)≥1150解得:28≤x ≤30.∵x 为正整数∴x 可为28 29∴方案为①A型货厢28节B型货厢22节②A型货厢29节B型货厢21节③A型货厢30节B型货厢20节总运费为:0.5x+0.8×(50−x)=−0.3x+40∵−0.3<0∴x越大总运费越小∴x=30最低运费为:−0.3×30+40=31万元.答:A型货厢30节B型货厢20节运费最少最少运费是31万元.【解析】关系式为:A型货厢装甲种货物吨数+B型货厢装甲种货物吨数≥1530A型货厢装乙种货物吨数+B型货厢装乙种货物吨数≥1150把相关数值代入可得一种货厢节数的范围进而求得总运费的等量关系根据函数的增减性可得最少运费方案及最少运费.考查一元一次不等式组的应用及方案的选择问题得到所运货物吨数的两个关系式及总运费的等量关系是解决本题的关键。

七年级数学下册一元一次不等式(组)计算题专项练习

七年级数学下册一元一次不等式(组)计算题专项练习

七年级数学下册一元一次不等式(组)计算题专项练习一、解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. xx 4923+≥-3. 2x-19<7x+31. 4.-2x+1>0;5.x+8≥4x-1; 6. )1(5)32(2+<+x x7. 0)7(319≤+-x 8. 3(2x+5)<2(4x+3);9 10-4(x-3)≤2(x-1) 10. )1(281)2(3--≥-+y y11.2(x -4)-3<1-3(x -2) 12.1213<--m m 13.31222+≥+x x 14.223125+<-+x x 15.312643-≤-x x 16.⎪⎭⎫⎝⎛+<-+223224102x x 17213-x (x-1)≥1; 18234-≥--x19 )7(4)54(3)13(2-->+--x x x x 2042713752--≥+-x x x ;二 、解下列关于x 的不等式组1. ⎩⎨⎧-≤+>+145321x x x x , 2314,2 2.x x x ->⎧⎨<+⎩3. 512,324.x x x x ->+⎧⎨+<⎩421,24 1.x x x x >-⎧⎨+<-⎩5.3(1)5412123x x x x +>+⎧⎪⎨--⎪⎩①≤②6⎪⎩⎪⎨⎧-≥-->+356634)1(513xx x x7251,3311.48x x x x ⎧+>-⎪⎪⎨⎪-<-⎪⎩8.()324,12 1.3x x x x --≥⎧⎪⎨+>-⎪⎩9.253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩10.⎪⎪⎩⎪⎪⎨⎧-<-+<-.3212112)2(31x x x x11.-2≤523x-≤1.12.-1<213-x ≤413⎩⎨⎧-≤+>+145321x x xx 14314,2 2.x x x ->⎧⎨<+⎩15512,324.x x x x ->+⎧⎨+<⎩1621,24 1.x x x x >-⎧⎨+<-⎩27. 已知不等式6x -1>2(x +m )-3.(1)若它的解集与不等式+1<x +3的解集相同,求m 的值;x -52(2)若它的解都是不等式+1<x +3的解,求m 的取值范围.x -5228. 已知m ,n 是整数,关于x 的不等式2x +3m >5m -4n 的最小整数解为8,关于y 的不等式y +3m +3n +10<5m -9的最大整数解为-8.(1)求m ,n 的值;(2)若|x -n|=x -n ,|x -m|=m -x ,求符合题意的x 的最小整数解和最大整数解.29.(2019·安徽模拟)已知x =3是关于x 的不等式3x ->的解,则a 的取值范ax +222x3围是 W.30.小明在解一个一元一次不等式时,发现不等式的右边有个数被墨迹污染看不清,所看到的不等式是-1≥.他查看练习题的答案后,知道这个不等式的解集是x≤1-2x 2x +■3-,那么“■”表示的数是 W.78。

一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂

一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂

9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)1. 下列不等式组是一元一次不等式组的是( )A. ()2012x x x ->⎧⎨-≤⎩B. 1010x y +>⎧⎨-<⎩C. 203x x ->⎧⎨<-⎩D. 30110x x>⎧⎪⎨+<⎪⎩(2020春·四川巴中·七年级统考期末)2. 下列不等式组中,是一元一次不等式组的是( )A. 203x x ->⎧⎨<-⎩B. 1010x y +>⎧⎨-<⎩C. ()()320230x x x ->⎧⎨-+>⎩ D. 30110x x>⎧⎪⎨+>⎪⎩(2020春·浙江台州·七年级台州市书生中学校考期中)3. 下列不等式组是一元一次不等式组的是( )A. 00x y x y ->⎧⎨+<⎩B. 1132341x x x x ⎧+>⎪⎨⎪≠-⎩C. 320(2)(3)0x x x ->⎧⎨-+>⎩D. 320x y x y +=⎧⎨>-⎩(2022春·全国·七年级假期作业)4. 下列不等式组:①23x x >-⎧⎨<⎩,②024x x >⎧⎨+>⎩,③22124x x x ⎧+<⎨+>⎩,④307x x +>⎧⎨<-⎩,⑤1010x y +>⎧⎨-<⎩.其中一元一次不等组的个数是( )A. 2个 B. 3个 C. 4个 D. 5个考查题型二 求不等式组的解集(2022春·山西晋城·七年级统考期末)5. 不等式组211238x x ->⎧⎨-<⎩的解集是( ).A. 1x >B. 2<<1x -C. 2x >-D. 无解(2022春·海南海口·七年级琼山中学校考阶段练习)6. 不等式组21390x x >-⎧⎨-+≥⎩的解集是( )A. 3x ≤- B. 12x >- C. 132x -<≤ D. 132x ≤<(2022春·福建厦门·七年级统考期末)7. 将不等式组23x x >⎧⎨≥⎩的解集表示在数轴上,正确的是( )A. B. C.D.(2022春·宁夏吴忠·七年级校考期末)8. 不等式组13x x -≤-⎧⎨<⎩的解集在数轴上可以表示为( )A. B. C.D.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)9. 不等式组2313252x x x +>⎧⎨≤-⎩的非负整数解的个数是( )A. 6个B. 5个C. 4个D. 3个(2022春·四川眉山·七年级统考期末)10. 已知56m <≤,则关于x 的不等式组01112m x x x ->⎧⎪⎨-≤-⎪⎩的整数解共有()A. 6个B. 5个C. 4个D. 3个(2022春·四川乐山·七年级统考期末)11. 已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( )A. 21a -<<-B. 21a -<-C. 21a -<-D. 21a - (2022春·安徽合肥·七年级统考期末)12. 一元一次不等式组3620x x x -<⎧⎨+≥⎩的解集中,最大的整数解是( )A. 2 B. 3 C. 2- D. 1-考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)13. 若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A. 13a ≥B. 1314a <<C. 1314a ≤<D. 1314a <≤(2023春·安徽六安·七年级校考阶段练习)14. 不等式组2x x a ≥⎧⎨<⎩无解,则a 的取值范围是( )A. 2a < B. 2a > C. 2a ≤ D. 2a ≥(2022春·江苏扬州·七年级校考阶段练习)15. 如果不等式组212x m x m >+⎧⎨>+⎩的解集是x >-1,那么m 的值是( )A. 1 B. 3 C. -1 D. -3(2022春·河南驻马店·七年级校考期中)16. 如果不等式组262x x x m x-+<-⎧⎨>-⎩的解集是x >4,那么m 的取值范围是( )A. m ≥4 B. m ≤4 C. m <4 D. m =4考查题型五 不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)17. 关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A. 5 B. 2 C. 4 D. 6(2022春·重庆忠县·七年级校考期中)18. 若关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,则满足条件的所有整数a 的和为( )A. 14B. 15C. 16D. 17(2022春·内蒙古呼伦贝尔·七年级校考期末)19. 如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解为正数,则a 的取值范围是( )A. 45a -<<B. 54a -<<C. 4a <-D. 5a >(2021春·福建南平·七年级统考期末)20. 已知2321x y k x y k +=⎧⎨+=+⎩,且01x y <-<,则k 的取值范围为( )A. 112k << B. 102k <<C. 01k << D. 112k -<<-考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)21. 七年级下册数学课本有如下6章:《相交线与平行线》、《实数》、《平面直角坐标系》、《二元一次方程组》、《不等式与不等式组》、《数据的收集、整理与描述》.期末试卷编题要求,每章至少有3个题,全卷总题数不超过26题,若本次期末试卷的全卷总题数为x ,则x 的取值范围是______.(2020春·黑龙江佳木斯·七年级统考期末)22. 若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____(2020春·江西南昌·七年级校联考期末)23. 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是______.(2020春·广西崇左·七年级统考期中)24. 方程组431,65x y kx y-=+⎧⎨+=⎩的解x、y满足条件0<3x-7y<1,则k的取值范围______.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)25. 习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?(2019·四川泸州·统考中考真题)26. 某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.(2020·湖南邵阳·中考真题)27. 2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?(2023·广东深圳·二模)28. 某初三某班计划购买定制钢笔和纪念卡册两种毕业纪念礼物,已知购买1支定制钢笔和4本纪念卡册共需130元,购买3支定制钢笔和2本纪念卡册共需140元.(1)求每支定制钢笔和每本纪念卡册的价格分别为多少元?(2)该班计划购买定制钢笔和纪念卡册共60件,总费用不超过1600元,且纪念卡册本数小于定制钢笔数量的3倍,那么有几种购买方案,请写出设计方案?考查题型八用一元一次不等式组解决方案选择问题(2022·四川遂宁·统考中考真题)29. 某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?(2021·广西贵港·统考中考真题)30. 某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱,计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?(2019·贵州遵义·中考真题)31. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?(2023·湖南湘潭·湘潭县云龙中学校考一模)32. 随着新能源汽车的发展,某公交公司将用新能源汽车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆.若购买A 型公交车1辆和B型公交车2辆共需300万元;且购买一辆A型公交车的费用比购买一辆B型公交车的费用少30万元.(1)求A型和B型公交车的单价分别为多少万元?(2)预计在该条线路上A型和B型公交车每辆日均载客量为160人次和200人次,若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的日均载客量总和不少于1800人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)【1题答案】【答案】C【解析】【分析】根据一元一次不等式组的定义逐个判断即可.【详解】解:A .最高二次,不是一元一次不等式组,故本选项不符合题意;B .有两个未知数,不是一元一次不等式组,故本选项不符合题意;C .是一元一次不等式组,故本选项符合题意;D .第二个不等式中有的式子不是整式,不是一元一次不等式组,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次不等式组的定义,能熟记一元一次不等式组的定义是解此题的关键,含有相同字母的几个不等式,如果每个不等式都是一次不等式,那么这几个不等式组合在一起,就叫一元一次不等式组.(2020春·四川巴中·七年级统考期末)【2题答案】【答案】A【解析】【分析】根据一元一次不等式组的概念逐一辨析.【详解】A. 203x x ->⎧⎨<-⎩是一元一次不等式组,故正确; B. 1010x y +>⎧⎨-<⎩是二元一次不等式组,故不正确; C. ()()320230x x x ->⎧⎨-+>⎩是一元二次不等式组,故不正确;D.30110xx>⎧⎪⎨+>⎪⎩是分式不等式组,故不正确;故选A.【点睛】本题考查了对一元一次不等式组概念的理解,深刻理解基本定义是解决这类问题的关键.(2020春·浙江台州·七年级台州市书生中学校考期中)【3题答案】【答案】B【解析】【分析】根据不等式组中只含有一个未知数并且未知数的次数是一次的,可得答案.【详解】A、是二元一次不等式组,故A错误;B、是一元一次不等式组,故B正确;C、是一元二次不等式组,故C错误;D、不是一元一次不等式组,故D错误;故选:B.【点睛】本题考查了一元一次不等式组的定义,不等式组中只含有一个未知数并且未知数的最高次的次数是一次的.(2022春·全国·七年级假期作业)【4题答案】【答案】B【解析】【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是1,对各选项判断再计算个数即可【详解】根据一元一次不等式组的定义,①②④都只含有一个未知数,所含未知数相同,并且未知数的最高次数是1,所以都是一元一次不等式组.③含有一个未知数,但是未知数的最高次数是2;⑤含有两个未知数,所以③⑤不是一元一次不等式组故选B【点睛】此题主要考查一元一次不等式组的定义考查题型二求不等式组的解集(2022春·山西晋城·七年级统考期末)【5题答案】【答案】A【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可.【详解】解:211 238xx->⎧⎨-<⎩①②,解①得,1x>,解②得,2x>-,∴不等式组的解集是1x>.故选A.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.(2022春·海南海口·七年级琼山中学校考阶段练习)【6题答案】【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:21 390xx>-⎧⎨-+≥⎩①②∵解不等式①得:12 x>-,解不等式②得:3x≤,∴不等式组的解集为13 2x-<≤,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此(2022春·福建厦门·七年级统考期末)【7题答案】【答案】D【解析】【分析】先定界点,再定方向即可得.【详解】解:不等式组23x x >⎧⎨≥⎩的解集在数轴上表示如下:,故选:D .【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点;二是定方向,注意“实心点”、“空心点”的用法.(2022春·宁夏吴忠·七年级校考期末)【8题答案】【答案】B【解析】【分析】先解出不等式组的解集,然后在数轴上表示出来即可.【详解】解:13x x -≤-⎧⎨<⎩①②,解不等式1x -≤-得:1x ≥,∴该不等式组的解集是13x ≤<,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是掌握解一元一次不等式的方法.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)【答案】A【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,最后在解集中找到非负整数解即可.【详解】解不等式231x +>,得:x >-1,解不等式3252x x ≤-,得:5x ≤,∴该不等式组的解集为:15x -<≤,∴该不等式组的非负整数解为:0、1、2、3、4、5,共有6个.故选A .【点睛】本题主要考查解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.(2022春·四川眉山·七年级统考期末)【10题答案】【答案】C【解析】【分析】先解不等式组求出不等式组的解集,再根据56m <≤即可得.【详解】解:01112m x x x ->⎧⎪⎨-≤-⎪⎩①②,解不等式①得:x m <,解不等式②得:43x ≥, 不等式组有整数解,43x m ∴≤<,又56m <≤ ,∴不等式组的整数解为2,3,4,5,共有4个,故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.(2022春·四川乐山·七年级统考期末)【答案】C【解析】【分析】分别求出每一个不等式的解集,根据不等式组的解集的情况得出a 的范围.【详解】解:由0x a ->,得:x a >,由320x ->,得:32x <, 不等式组有3个整数解,∴不等式组的整数解为1、0、1-,21a ∴-<- ,故选:C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.(2022春·安徽合肥·七年级统考期末)【12题答案】【答案】A【解析】【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【详解】解:3620x x x -⎧⎨+≥⎩<①②,解不等式①得:x <3,解不等式②得:x ≥-2,∴原不等式组的解集为:-2≤x <3,∴该不等式组的最大的整数解是2,故选:A .【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)【13题答案】【答案】D【解析】【分析】先求出不等式组的解集,再根据题意求a 的取值范围即可.【详解】解:51222x x x x a +⎧<-⎪⎨⎪+<+⎩①②,解①得7x >,解②得2x a <-,所以不等式组的解集为72x a <<-,因为不等式组只有4个整数解,所以11212a <-≤,所以1314a <≤.故选:D .【点睛】本题考查了求不等式组的解集和根据解集求取值范围,正确求出2a -的取值范围是解题的关键.(2023春·安徽六安·七年级校考阶段练习)【14题答案】【答案】C【解析】【分析】利用不等式组的解集是无解可知,x 应该是大大小小找不到.【详解】解:∵不等式组2x x a ≥⎧⎨<⎩无解,∴2a ≤,故选:C .【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,x a <),没有交集也是无解,但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2022春·江苏扬州·七年级校考阶段练习)【15题答案】【答案】D【解析】【分析】根据不等式组的解集口诀“同大取大”,可分两种情况:212m m +≥+和212m m +<+讨论求解即可.【详解】解:由题意,分两种情况:当212m m +≥+即m ≥1时,2m +1=-1,解得:m =-1,不合题意,舍去;当212m m +<+即m <1时,m +2=-1,解得:m =-3,符合题意,故选:D .【点睛】本题考查解一元一次不等式组,解答关键是将不等式组解集口诀“同大取大,同小取小,大小小大取中间,大大小小找不到(无解)”逆用,即已知不等式组解集求m 的范围,注意分类讨论思想的运用,以防漏解.(2022春·河南驻马店·七年级校考期中)【16题答案】【答案】B【解析】【分析】先求出第一个不等式的解集,再根据不等式组的解集为x >4得出答案即可.【详解】解:262x x x m x -+-⎧⎨-⎩<①>②解不等式①得:4x >,解不等式②得:x m >,∵不等式组的解集为x >4,∴4m ≤,故B 正确.故选:B .【点睛】本题主要考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.考查题型五不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)【17题答案】【答案】C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.(2022春·重庆忠县·七年级校考期中)【18题答案】【答案】B【解析】【分析】先将二元一次方程组128x y ax y+=+⎧⎨+=⎩的解用a表示出来,然后再根据题意列出不等式组求出的取值范围,进而求出所有a的整数值,最后求和即可.【详解】解:解关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩,得267x ay a=-⎧⎨=-⎩,∵关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩的解为正数,∴260 70aa->⎧⎨->⎩,∴3<a<7,∴满足条件的所有整数a的和为4+5+6=15.故选:B.【点睛】本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a的取值范围是解答本题关键.(2022春·内蒙古呼伦贝尔·七年级校考期末)【19题答案】【答案】A【解析】【分析】将a看做已知数求出方程组的解表示出x与y,根据x与y都为正数,取出a的范围即可.【详解】解:解方程组322x yx y a+=⎧⎨-=-⎩,得:4353axay+⎧=⎪⎪⎨-⎪=⎪⎩,方程组的解为正数,∴03503a >⎪⎪⎨-⎪>⎪⎩,解得:45a -<<,故选:A .【点睛】此题考查了二元一次方程组的解, 方程组的解即为能使方程组中两方程成立的未知数的值.(2021春·福建南平·七年级统考期末)【20题答案】【答案】B【解析】【分析】两个方程相减得出x ﹣y =1﹣2k ,由0<x ﹣y <1知0<1﹣2k <1,解之即可得出答案.【详解】解:两个方程相减,得:x ﹣y =1﹣2k ,∵0<x ﹣y <1,∴0<1﹣2k <1,解得0<k <12,故选:B .【点睛】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)【21题答案】【答案】1826x ≤≤【解析】【分析】设本次期末试卷的全卷总题数为x ,根据七年级下册数学课本有6章,每章至少有3个题,全卷总题数不超过26题,即可列出关于x 的不等式组.【详解】解:设本次期末试卷的全卷总题数为x ,根据题意得,26x ⎨≤⎩,解得1826x ≤≤.故答案为:1826x ≤≤.【点睛】本题考查了一元一次不等式组的应用,解题的关键是理解题意得到不等关系.(2020春·黑龙江佳木斯·七年级统考期末)【22题答案】【答案】()142626x x ≤+--<【解析】【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.(2020春·江西南昌·七年级校联考期末)【23题答案】【答案】1483x <≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618x x -≤⎧⎨-->⎩①②,解不等式①,得:8x ≤,解不等式②,得:143x >,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.(2020春·广西崇左·七年级统考期中)【24题答案】【答案】43<k<53【解析】【分析】将两个等式相减,可得3x-7y=3k-4,再根据0<3x-7y<1即可解出k 的范围.【详解】解:43165x y kx y-=+⎧⎨+=⎩①,②,①-②,得3x-7y=3k-4,则0<3k-4<1,解得43<k<53,故答案为:43<k<53.【点睛】此题主要考查二元一次方程组与不等式的综合,熟知二元一次方程组的解法是解题的关键.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)【25题答案】【答案】(1)两种书的单价分别为35元和30元;(2)共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【解析】【分析】(1)设购买《北上》和《牵风记》的单价分别为x、y,根据“购买2本《北上》和1本《牵风记》需100元”和“ 购买2本《北上》和1本《牵风记》需100元”建立方程组求解即可;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.【详解】解:(1)设购买《北上》和《牵风记》的单价分别为x、y由题意得:210067x yx y+=⎧⎨=⎩解得3530xy=⎧⎨=⎩答:两种书的单价分别为35元和30元;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n根据题意得()()15023530501600n nn n⎧≥-⎪⎨⎪+-≤⎩解得:216203n≤≤则n可以取17、18、19、20,当n=17时,50-n=33,共花费17×35+33×30=1585元;当n=18时,50-n=32,共花费17×35+33×30=1590元;当n=19时,50-n=31,共花费17×35+33×30=1595元;当n=20时,50-n=30,共花费17×35+33×30=1600元;所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【点睛】本题考查了二元一次方程组和不等式组的应用,弄清题意、确定等量关系和不等关系是解答本题的关键.(2019·四川泸州·统考中考真题)【26题答案】【答案】(1)A型汽车每辆的价格为25万元,B型汽车每辆的价格为30万元;(2)费用最省的方案是购买A型汽车4辆,B型汽车6辆,该方案所需费用为280万元.【解析】【分析】(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,根据购买A 型汽车4辆,B 型汽车7辆,共需310万元;购买A 型汽车10辆,B 型汽车15辆,共需700万元,列方程组进行求解即可;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,根据总费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,列不等式组进行求解得出购买方案,然后再讨论即可得.【详解】解:(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,由题意得:473101015700x y x y +=⎧⎨+=⎩,解得2530x y =⎧⎨=⎩,答:A 型汽车每辆的价格为25万元,B 型汽车每辆的价格为30万元;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,由题意得:102530(10)285m m m m <-⎧⎨+-≤⎩,解得:35m ≤<,因为m 是整数,所以3m =或4,当3m =时,该方案所需费用为:253307285⨯+⨯=万元;当4m =时,该方案所需费用为:254306280⨯+⨯=万元,答:费用最省的方案是购买A 型汽车4辆,B 型汽车6辆,该方案所需费用为280万元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意,找准题中的等量关系、不等关系是解题的关键.(2020·湖南邵阳·中考真题)【27题答案】【答案】(1)A 型风扇、B 型风扇进货的单价各是10元和16元;(2)丹4种进货方案分别是:①进A 型风扇72台,B 型风扇28台;②进A 型风扇73台,B 型风扇27台;③进A 型风扇74台,B 型风扇26台;①进A 型风扇75台,B 型风扇24。

七年级数学下册《一元一次不等式和一元一次不等式组》练习题及答案(冀教版)

七年级数学下册《一元一次不等式和一元一次不等式组》练习题及答案(冀教版)

七年级数学下册《一元一次不等式和一元一次不等式组》练习题及答案(冀教版)一、选择题1.若m >n ,则下列不等式正确的是( )A.m -2<n -2B.m 4>n 4C.6m <6nD.-8m >-8n 2.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A.a>bB.ab<0C.b-a>0D.a+b>03.下列数值中不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.24.若(a ﹣1)x<a ﹣1的解集为x >1,那么a 的取值范围是( )A.a >0B.a <0C.a <1D.a >15.不等式2x ﹣6>0的解集在数轴上表示正确的是( ) A.B. C.D. 6.不等式组的解集在数轴上表示为( ) A. B. C. D.7.如果不等式组⎩⎨⎧2x -1>3(x -1),x<m的解集是x <2,那么m 的取值范围是( ) A.m =2 B.m >2 C.m <2 D.m ≥28.若不等式组无解,则m 的取值范围为( )A.m ≤2B.m <2C.m ≥2D.m >29.某种出租车的收费标准:起步价7元(即行驶距离不超过3 km 都需付7元车费),超过3 km 后,每增加1 km ,加收2.4元(不足1 km 按1 km 计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A.5 kmB.7 kmC.8 kmD.15 km10.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有( )A.4种B.3种C.2种D.1种11.如果的不等式3x -m ≤0的正整数解是1、2、3,那么m 的取值范围是( )A.9<m <12B.9≤m <12C.m <12D.m ≥912.关于x 的不等式组⎩⎨⎧x -a ≤02x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( ) A.3 B.2 C.1 D.23 二、填空题 13.如果a >0,b >0,那么ab 0.14.关于x 的不等式(m -2)x >1的解集为x >1m -2,则m 的取值范围是________. 15.当k 时,代数式23(k -1)的值不小于代数式1-16(5k-1)的值. 16.不等式3(x +1)≥5x ﹣3的正整数解是 .17.已知不等式3x -m ≤0只有2个正整数解,则m 的取值范围是 .18.某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对______道题,成绩才能在60分以上.三、解答题19.解不等式:10-4(x-2)≤3(x-1)..20.解不等式:x-12[x-12(x-1)]<23(x-1).21.解不等式组:.22.解不等式组:.23.若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.24.定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x的取值范围.25.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b 元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.26.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).阶梯一户居民每月用电量x(单位:度) 电费价格(单位:元/度)一档 0<x≤180 a二档 180<x≤280 b三档 x>280 0.82,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?参考答案1.B.2.A3.D4.C5.A6.A7.D8.A9.C10.C11.B12.B13.答案为:>.14.答案为:m>2.15.答案为:x≥11 9.16.答案为:1,2,3.17.答案为:6≤m<9.18.答案为:1219.解:x≥3.20.解:x<-5.21.解:﹣7<x≤1.22.解:﹣2<x≤1.23.解:(1)①﹣②得,x﹣y=﹣2m+3﹣4=﹣2m﹣1;(2)由题意,得﹣2m﹣1>﹣8解得m<3.5∵m 为正整数∴m=1、2或3.24.解:3△x =3x -3-x +1=2x -2根据题意得:⎩⎨⎧2x -2>5,2x -2<9,解得:72<x <112. 25.解:(1)根据题意得:a=22.5÷15=1.5;b=(50-20×1.5)÷(30-20)=2;(2)根据题意列不等式组得:60≤20×1.5+2(x-20)≤90 解得:35≤x ≤50即该用户六月份的用水量x 的取值范围为35≤x ≤50.26.解:(1)由题意得:解得:答:a 的值是0.52,b 的值是0.57;(2)∵当小华家用电量x=280时,180×0.52+×0.57=150.6<208 ∴小华家用电量超过280度.设小华家六月份用电量为m 度,根据题意得:0.52×180+×0.57+(m ﹣280)×0.82≤208解得:m ≤350答:小华家六月份最多可用电350度.。

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0,② 2103x +=③x -(3x+1)=-5 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是________ (2)若不等式组 112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可)(3)若方程 3-x=2x ,3+x= 122x ⎛⎫+ ⎪⎝⎭都是关于 x 的不等式组 22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)20x -= ;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)先求出不等式组的解集,求出不等式组的整数解,再写出方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)解方程3x ﹣1=0得:x =13,解方程23x +1=0得:x =﹣32,解方程x ﹣(3x +1)=﹣5得:x =2,解不等式组25312x x x x -+-⎧⎨--+⎩>>得:34<x <72,所以不等式组25312x xx x-+-⎧⎨--+⎩>>的关联方程是③.故答案为③;(2)解不等式组112132xx x⎧-⎪⎨⎪+-+⎩<>得:14<x<32,这个关联方程可以是x﹣1=0.故答案为x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+12)得:x=2,解不等式组22x x mx m-⎧⎨-≤⎩<得:m<x≤2+m.∵方程3﹣x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m-⎧⎨-≤⎩<的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.【点睛】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式组等知识点,能理解关联方程的定义是解答此题的关键.92.(1)分解因式:3x3﹣27x;(2)解不等式组:21111(21)3x xx x+>-⎧⎪⎨-≤-⎪⎩【答案】(1)3x(x+3)(x﹣3);(2)不等式组的解集为﹣2<x≤3.【解析】分析:(1)先提取公因式3x,再利用平方差公式分解可得;(2)分别求出各不等式的解集,再求出其公共解集.详解:(1)原式=3x(x2-9)=3x(x+3)(x-3);(2)解不等式①,得:x >-2,解不等式②,得:x ≤2,则不等式组的解集为-2<x ≤2.点睛:本题考查的是因式分解和解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.93.解不等式组:426113x x x x >-⎧⎪+⎨≥-⎪⎩,并把解集表示在数轴上.【答案】32x -<≤,将不等式组解集表示在数轴上如图见解析.【解析】【分析】先分别解不等式,再求不等式组的解集,再在数轴上表示解集.【详解】解:解不等式426x x >-,得:3x >-, 解不等式113x x +≥-,得:2x ≤, ∴不等式组的解集为:32x -<≤,将不等式组解集表示在数轴上如图:【点睛】本题考核知识点:解不等式组.解题关键点:分别求不等式的解集.94.(1)计算:2sin45°+(π﹣1)0﹣2|;(2)解不等式组:35131 212 x xxx-<+⎧⎪⎨--≥⎪⎩【答案】(1)1;(2)不等式组的解集为1≤x<3.【解析】分析:(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.详解:(1)原式=2×2+1﹣+1=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥312x-,得:x≥1,则不等式组的解集为1≤x<3.点睛:本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.95.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x6=0-的解为x=3,不等式组x20,x5->⎧⎨<⎩的解集为2x5<<,因为235<<,所以,称方程2x6=0-为不等式组x20,x5->⎧⎨<⎩的关联方程.(1)在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号) (2)若不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<,>的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程21+2x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组22x x m x m-⎧⎨-≤⎩<,的关联方程,求m 的取值范围. 【答案】(1)③;(2)答案不唯一,只要所给一元一次方程的解为1x =即可,如方程:211x -=(3)m 的取值范围是1≤m <2.【解析】分析:(1)求出所给的3个方程的解及所给不等式组的解集,再按“关联方程”的定义进行判断即可;(2)先求出所给不等式组的整数解,再结合“关联方程”的定义进行分析解答即可;(3)先求出所给不等式组的解集和所给的两个方程的解,再结合“关联方程的定义”和“已知条件”进行分析解答即可.详解:(1)解方程 ①520x -=得 :25x =;解方程②3104x +=得:43x =-; 解方程③()315x x -+=-得:2x =;解不等式组 2538434x x x x ->-⎧⎨-+<-⎩ 得:735x <<, ∵上述3个方程的解中只有2x =在735x <<的范围内, ∴不等式组 2538434x x x x ->-⎧⎨-+<-⎩的关联方程是方程③; (2)解不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<>得:1594x <<, ∴原不等式组的整数解为1,∵原不等式组的关联方程的解为整数,∴解为1x =的一元一次方程都是原不等式组的关联方程,∴本题答案不唯一,如:211x -=就是原不等式组的一个关联方程;(3)2? 2? x x m x m -⎧⎨-≤⎩<①② 解不等式①,得:x >m ,解不等式②,得:x ≤m+2,∴原不等式组的解集为m <x ≤m+2,解方程:2x-1= x+2得:x=3,解方程:1322x x ⎛⎫+=+ ⎪⎝⎭ 得:x=2, ∵方程2x-1= x+2和方程方程1322x x ⎛⎫+=+ ⎪⎝⎭都是原不等式组的关联方程, ∵2x =和3x =都在m <x ≤m+2的范围内,∵m 的取值范围是1≤m <2.点睛:“读懂题意,理解“关联方程”的定义,熟练掌握一元一次不等式组的解法”是解答本题的关键.96.解不等式组:3(1)5192.4x x x x -≤+⎧⎪⎨-<⎪⎩, 【答案】-2≤x <1.【解析】【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式①,得:x ≥-2.解不等式②,得:x <1.∴不等式组的解集为-2≤x <1.点睛:熟练掌握“解一元一次不等式组的一般步骤及确定不等式组解集的方法:同大取大;同小取小;大小小大,中间找;大大小小,找不了(无解)”是解答本题的关键.97.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩. 【答案】23x -<<.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:()311922x x x x ⎧+>-⎪⎨+>⎪⎩①②由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.98.解不等式组:()()202130x x x -≤⎧⎨---⎩> 【答案】-1<x ≤2.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()202130x x x ,①>,②-≤⎧⎪⎨---⎪⎩解不等式∵得:x ≤2 ,解不等式由∵得:x > –1,∴原不等式组的解集为:-1<x ≤2.点睛:熟记“解一元一次不等式组的方法和一般步骤”是解答本题的关键.99.解不等式组{321351x x x +≥--≥【答案】24x ≤≤【解析】分析:首先求出每个不等式的解集,再求出这些解集的公共部分即可. 详解:解不等式x+3≥2x-1,可得:x ≤4;解不等式3x-5≥1,可得:x ≥2;∴不等式组的解集是2≤x ≤4.点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.100.解不等式组1(1)222323x x x ⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和. 【答案】6.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可. 详解:解不等式12(x+1)≤2,得:x ≤3, 解不等式2323x x ++≥,得:x ≥0, 则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=6.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。

七年级下一元一次不等式组100题(有答案)

七年级下一元一次不等式组100题(有答案)

解不等式不等式组100题1.3(2x +5)<2(4x +6)2.10-4(x -3)≤2(x -2)3.3x -2(9-x )>3(7+2x )-(11-6x )4.2(3x -1)-3(4x +5)≤x -4(x -7)5.2(x -1)-x >3(x -1)-3x +56.3[y -2(y -7)]≤4y7.15-(7+5x )≤2x +(5-3x )8.2(x -4)-3<1-3(x -2)9.2+≤2-3(y +1)8y -3410.0.5x +3(1+0.2x )>0.4x -0.611.2[x -]≤x 43(x -2312)3412.-≥0.04x +0.090.050.3+0.2x 0.3x -5213.7(4-x )-2(4-3x )<-4x14.2+<3+3(y +1)8y -1415.+<1x 3x -1216.3[x -2(x -2)]>x -3(x -3)17.x ++<1+x 2x +13x +8618.x -4<3243(1+x )(x -216)19.5-≥-x 3122x +1420.+1<+3y +137y -352(y -2)1521.-1<x +523x +2222.{2x -5<3x>x -22x 323.{->-1x 2x 32-3>-6(x -3)(x -2)24.{+4≤1x2x -8>2(x +2)25.{x -3<4(x -2)≥x -12x +1326.{2≤10-4(x -3)(x +8)-<1x -124x +1627.{->x3x -322x +13<112[x -2(x +3)]28.{x -3>1-x x -5>5-x 2x -4>x 229.4≤<73x -2-230.2x -1≤x -5≤4-x 3231.y -≤+13y -832(10-y )732.>(1-)(+1)(1+y 3)(+1y 2)y -22y 233.{3x -2<82x -1>234.{5-7x ≥2x -41-<0.534(x -1)35.2x <1-x ≤x +536.{3<2(x +9)(1-x)-≤-14x -30.5x +40.237.{-3x ≤04x +7>038.{x -1<x122x -4>3x +339.{2x -5<3x >x -22x 340.{->-1x 2x 32-3>-6(x -3)(x -2)41.{+4≤1x 2x -8>2(x +2)42.{5x -3≥2x <43x -1243.{2x +7>3x -1≥0x -2544.{>x -11+2x34<3x -4(x -1)45.-1<<1-2-3x446.{2-1≥3(x +1)4+x <747.{2x -1≥3(x -2)-2x <448.{3x +1>x +32x -1<x +149.{x +3>42x <650.{2x -5≥3(x -1)-<1x 3x -1251.{x<2x +13x -2≤4(x -1)52.{x +3>02+3≥3x(x -1)53.{3x +1<2(x +2)-x ≤x +2135354.{>0x +132≥6(x -1)(x +5)55.{5x -9<3(x -1)1-x ≤x -1321256.{2≤5x +5(x -3)4x <3x +157.{2x +3≤x +6>x +22x +3358.{-3≤4-x(x -2)>x -11+2x359.{4x -3<5x +≤x-42x +261360.{<212(x +4)x -3>5(x -1)61.{x ->-31+3x 25x -12≤2(4x -3)62.{1-2(x -1)≤5<x +3x -221263.{+3>x +1x -321-3≤8-x(x -1)解不等式不等式组100题64.{5x +2>3(x -1)7-x ≥x -1321265.{2<x +4(x +2)≥x 3x +1466.{2x +5≤3(x +2)x -1<x2367.{3≥x +4(x +2)<1x -1268.{2-x >0+1≥5x +122x -1369.{-3x ≤5616(x +5)2-9x >5[x -2(x -3)](x +19)70.{3x -2≤x +6+1>x 5x -2271.{2x +2≥3x +3-<-2x-13x +4272.{5x +3(x -2)≤10>x -11+3x273.{+2≥xx -241-3<9-x (x -2)74.{5x -2>3(x +1)x -1≤7-x 123275.{4x -10<05x +2>3x11-2x ≥1+3x 76.{-≤12x -135x +125x -1<3(x +1)77.{2x -3<1+2≥-x x -1278.{3+4<5x (x -2)-x ≥3x +1x -1279.{x -3(x -2)≥4<2x -15x +1280.{>2+x 22x -135-2≤x -1(x -3)81.{5x -2<3x +4>-x x +8382.{10-4(x -3)≥2(x -1)x -1>1-2x383.{5x -2<3(x +1)≤x -222x +3384.{3>2(x +9)(1-x)-≤-14x -30.5x +40.285.{2-x >0+1≥5x +122x -1386.{-3-<8(x +1)(x -3)-≤12x +131-x287.{5x -2≤3(x +1)x -1≤7+x 123288.{1-≤x +2x +12x >x (x +3)(x +1)89.{-≤12x -135x +125x -1<3(x +1)90.{5x +4<3(x +1)≥x -122x -1591.{2x +7>3x -1≥0x -2592.{1-2(x -1)≤5<x +3x -221293.{2≤3x +3(x +2)<x 3x +1494.{3x -1<2(x +1)≥1x +3295.{3x -2>x +2x -1≤7-x 123296.{3x -1<2x +11-2≤3+5(x -1)(x +1)97.{x -(2x -1)≤432>2x -11+3x298.{+3<x -1x -231-3≥6-x(x +1)99.{2x -1≥03x +1>03x -2<0100.≤5|-2x +13|解不等式不等式组100题答案12345678910x >32x ≥133x <-4x ≥-15x >4y ≥6x ≥34x <185y ≤35x >-36711121314151617181920x ≥35x ≤9x <-203y <3x <95x <3x <65x >152x ≥-572y >33821222324252627282930x >12x >6-6<x <6x <-121<x ≤4-10<x ≤1无解x >8-4<x ≤-2x ≤-431323334353637383940y ≤256y >65<x <32103无解-2≤x <13x >-3x ≥0无解x >6-6<x <641424344454647484950x <-121≤x <32≤x <8x <0-2<x <231≤x <3-2<x ≤51<x <21<x <3-3<x ≤-251525354555657585960-1<x ≤2-3<x ≤1-1≤x <3-1<x ≤41≤x <3-<x <11130<x ≤31≤x <4-3<x ≤3X <-161626364656667686970-2≤x <5-1≤x <3-2≤x <1-<x ≤452无解-1≤x <31≤x <3-1≤x <20≤x <40<x ≤471727374757677787980-2<x ≤-1-3<x ≤8-<x ≤212<x ≤452-1<x ≤2-1≤x <2-1≤x <2-1<x ≤-37-7<x ≤14≤x <881828384858687888990-2<x <3<x ≤445-12≤x <52-4≤x <-3-1≤x <2-2<x ≤1-8≤x ≤52-1≤x <0-1≤x <2无解9192939495969798991002≤x <8-1≤x <31≤x <3-1≤x <32<x ≤4﹣1≤x <2﹣≤x <354无解≤x <1223-7≤x ≤8。

(完整版)初一数学一元一次不等式练习题汇总(复习用)含答案

(完整版)初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________—π,-0.22______(—0。

2)2; 2. 若2—x <0,x________2;3. 若xy>0,则xy_________0; 4. 代数式536x-的值不大于零,则x__________;5. a 、b 关系如下图所示:比较大小|a|______b ,-;1______,1_________1bb b a ---6. 不等式13-3x >0的正整数解是__________;7. 若|x-y|=y-x ,是x___________y ;8. 若x ≠y ,则x 2+|y|_________0; 9. 不等式组⎩⎨⎧+--023,043 x x 的解集是____________。

二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1。

若|a |>—a ,则a 的取值范围是( )。

(A)a >0; (B )a ≥0; (C )a <0; (D )自然数。

2。

不等式23>7+5x 的正整数解的个数是( ).(A)1个;(B)无数个;(C )3个;(D )4个.3。

下列命题中正确的是( ).(A)若m ≠n ,则|m|≠|n|; (B )若a+b=0,则ab >0;(C)若ab <0,且a <b ,则|a |<|b|; (D)互为例数的两数之积必为正。

4.无论x 取什么数,下列不等式总成立的是( ).(A)x+5>0; (B )x+5<0; (C )—(x+5)2<0;(D)(x-5)2≥0.5.若11|1|-=--x x ,则x 的取值范围是( ). (A)x >1; (B)x ≤1; (C)x ≥1; (D )x <1.三、解答题1. 解不等式(组),并在数轴上表示它们的解集。

(1)213-x (x-1)≥1; (2)21322-++-x x x ;(3)⎪⎩⎪⎨⎧≥--+.052,1372x x x (4)⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x2. x 取什么值时,代数式251x -的值不小于代数式4323+-x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式组重点题型练习题
1、已知方程⎩⎨
⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则( )A. 1m -> B. 1m > C. 1
m -< D. 1m < 2、若不等式组⎩
⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m >
3、若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( )A. 1a -≤ B. 1a -≥ C.
1a -< D. 1a -> 4、如果不等式组213(1)x x x m ->-⎧⎨<⎩
的解集是x <2,那么m 的取值范围是( ) A 、m=2 B 、m >2 C 、m <2 D 、m≥2
5、如果不等式组2223
x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
6、若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是( )A .1a >- B .1a -≥ C .1a ≤ D .1a <
7、关于x 的不等式组12x m x m >->+⎧⎨⎩
的解集是1x >-,则m = . 8、已知关于x 的不等式组0521
x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____ 9、若不等式组530,0x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( ) A.m ≤53 B.m <53 C.m >53 D.m ≥53
10、关于x 的不等式组⎩⎨⎧x +152>x -3
2x +23<x +a 只有4个整数解,则a 的取值范围是 ( )
A. -5≤a ≤-143
B. -5≤a <-143
C. -5<a ≤-143
D. -5<a <-143
11、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩
有五个整数解,这五个整数是____________,a 的取值范围是________________。

12、若m<n ,则不等式组12
x m x n >-⎧⎨<+⎩的解集是 13.若不等式组2113
x a x <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 . 14.已知方程组2420x ky x y +=⎧⎨-=⎩
有正数解,则k 的取值范围是 . 15.若关于x 的不等式组61540
x x x m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围是 . 16、若关于x 的不等式组⎩

⎧>>m x x 2的解集是2>x ,则m 的取值范围是 . 17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩
的解集是( )
.1.0.01.21A x B x C x D x >-><<-<<
18、如果关于x 、y 的方程组322
x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( ) A.-4<a<5 B.a>5 C.a<-4 D.无解
19.已知关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩
,,无解,则a 的取值范围是( )
A.1a ≤- B.12a -<< C.a ≥0 D.2a ≤
20. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩
的解集为 .
21. 不等式组⎩⎨⎧-<+<6
32a x a x 的解集是32+<a x ,则a 的取值 . 22.已知关于x 的不等式组⎩⎨⎧--0
x 230a x >>的整数解共有6个,则a 的取值范围是 。

23、已知不等式组2123x a x b -<⎧⎨->⎩
,的解集为11x -<<,则(1)(1)a b +-的值等于多少?
24、已知关于x 、y 的方程组221243x y m x y m +=+⎧⎨-=-⎩的解是一对正数。

(1)试确定m 的取值范
围;(2)化简
312m m -+-
25、若不等式组x b 0x+a 0<>-⎧⎨⎩的解集为2<x<3,则a ,b 的值分别为【 】
A. -2,3
B.2, -3
C.3,-2
D.-3,2
26、已知关于x ,y 的方程组⎩⎨
⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.
27、已知关于x ,y 的方程组⎩⎨⎧-=-+=+3
4,72m y x m y x 的解为正数,求m 的取值范围.
28、已知⎩⎨
⎧+=+=+1
22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
29、k 取哪些整数时,关于x 的方程5x +4=16k -x 的解大于2且小于10?。

相关文档
最新文档