中考数学总复习第4章三角形第一节平面图形与相交线平行线作业课件

合集下载

赤壁市九中七年级数学下册第4章相交线与平行线4.1平面上两条直线的位置关系4.1.1相交与平行课件新

赤壁市九中七年级数学下册第4章相交线与平行线4.1平面上两条直线的位置关系4.1.1相交与平行课件新

A
C
E2
1
B
3F
D
变式1
A
C
2
E1
3
B
F
D
变式2
34
平行线的判定方式二
两条直线被第三条直线所截 , 如果内错角相等 , 那 么这两条直线平行.
简单说成: 内错角相等 , 两直线平行.
符号语言 : 如下图
∵ ∠3=∠4〔已知〕
∴ a∥b
4
〔内错角相等 , 两直线平行〕
c a
3
b
如下图 , ∠1与∠2互补 , 直线a与直线b平行吗 ?
2. 同位角相等 , 两直线平行。
c
1
a
2
b
如下图【: 符号语言]
∵ ∠1=∠2〔已知〕
∴ a∥b〔同位角相等 , 两直线平行〕
火眼金睛 , 请找出图中的平行线
D B
A E C
如果∠ADE=∠ABC,那么_DE_∥ B_C_ 如果∠ACD=∠F, 那么_C_D ∥ B_F_
如果∠DEC=∠BCF,那么_DE_∥ B_C_
AB 和 DC , AD 和 BC 既不 相交 , 也不重合
我们把两支铅笔看成向两方延长的直线 , 桌面看成 一个平面 , 在桌面上摆一摆 , 两条直线的位置关系可能 有几种?用自己的语言描述 :
在同一平面内两条直线有什么位置关系呢?
同一平面内的两条直线有三种位置关系 : 相交、重合、 既不相交也不重合. 今后如果没有特别说明 , 两条重合的直线只当做一条.
条直线也互相平行。)
自我测试
1.填空〔认真思考〕
1.如果∠A=∠3 , 那么 ∥AD , BE
〔 同位角相等,〕两直线平行.

2021年福建中考数学复习练习课件:§4.1 角、相交线与平行线

2021年福建中考数学复习练习课件:§4.1 角、相交线与平行线
A.两点之间,线段最短 B.平行于同一条直线的两条直线平行 C.垂线段最短 D.两点确定一条直线 答案 A 由题意可知,曲桥增加的长度是相对于两点之间直接连线而言的,因为两点之间线段最短,所 以曲桥增加了桥的长度.故选A.
5.(2017北京,1,3分)如图所示,点P到直线l的距离是 ( )
A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度 答案 B 直线外一点到这条直线的垂线段的长度,叫做该点到这条直线的距离.因为PB⊥l,所以点P到 直线l的距离为线段PB的长度.故选B.
A.∠1=2∠2 B.∠1+∠2=180° C.∠1=∠2 D.∠1+∠2=90°
答案 D 如图.∵AD∥BC,∴∠1=∠3, ∵∠2+∠3=90°,∴∠1+∠2=90°, 故选D.
2.(2019龙岩二检,5)下列图形中,∠1一定大于∠2的是 ( )
答案 C 由对顶角相等知∠1=∠2,故A不符合要求. 两直线平行,内错角相等,故B不符合要求. 由三角形外角大于任何一个与它不相邻的内角,知∠1>∠2,故C符合要求. 由圆周角定理的推论知∠1=∠2,故D不符合要求.故选C.
一题多解 本题还可以直接使用量角器度量角的大小.
考点二 相交线和平行线 1.(2020河北,1,3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有( )
A.0条 C.2条
B.1条 D.无数条
答案 D 过已知直线m上(或外)一点作已知直线m的垂线有且只有一条,在平面内作已知直线m的垂线 有无数条,故选D.
7.(2016厦门,20,7分)如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.
证明 ∵OC=OE, ∴∠E=∠C. ∵∠C=25°, ∴∠E=25°, ∴∠DOE=∠E+∠C=25°+25°=50°. ∴∠A=∠DOE=50°, ∴AB∥CD.

2013年中考数学第四单元三角形

2013年中考数学第四单元三角形

图15-16
第15讲┃ 几何初步、相交线与平行线
解:如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140° . 又∵BF,EF分别平分∠ABC,∠CED, 1 1 ∴∠ABF= ∠ABC,∠DEF= ∠DEC, 2 2 1 ∴∠ABF+∠DEF= (∠ABC+∠DEC)=70° . 2 过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF, ∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70° .
第16讲┃ 三角形与全等三角形
7.如图16-4,一个直角三角形纸片,剪去直角后,得到一个四边 270 形,则∠1+∠2=________度.
图16-4
[解析] 如图,根据题意可知∠5=90° , ∴∠3+∠4=90° ,∴∠1+∠2=2∠5+∠3+∠4=2×90° +90° =270° .
错角相等,或结合三角形的外角性质求证即可.
第15讲┃ 几何初步、相交线与平行线
解:如图:
图15-15
第15讲┃ 几何初步、相交线与平行线
(1)∠APC=∠PAB+∠PCD; 证明:过点P作AB∥PF, ∵AB∥PF,∴AB∥CD∥PF, ∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等). (2)∠APC+∠PAB+∠PCD=360°; (3)∠APC=∠PAB-∠PCD; (4)∵AB∥CD,∴∠POB=∠PCD. ∵∠POB是△AOP的外角, ∴∠APC+∠PAB=∠POB, ∴∠APC=∠POB-∠PAB, ∴∠APC=∠PCD-∠PAB.
[解析] 设第三边的长为x,则7-3<x<7+3,所以4<x<10.又x为 整数,所以x可取5,6,7,8,所以这个三角形的周长的最小值为15.

中考数学第四单元“三角形”复习课件

中考数学第四单元“三角形”复习课件

第18讲 │ 考点随堂练
6.∠A 与∠B 互为补角,且∠A>∠B,那么∠B 的余角等于
(A )
A.12(∠A-∠B)
B.12(∠A+∠B)
C.12∠A
D.12∠B
[解析] ∠A 与∠B 互为补角,则∠A+∠B=180°,所以 ∠B=180°-∠A,则∠B 的余角为=90°-(180°-∠A)= ∠A-90°=∠A-12(∠A+∠B)=12(∠A-∠B).
[解析] 经过一个点可以画无数条直线,经过三点可能可以 画 3 条直线,也可能画一条直线,直线可以向两方无限延 伸,所以直线不能比较长短.所以只有 C 是正确的,用直 线上的两个点表示直线,表示时位置可以交换.
第18讲 │ 考点随堂练
4.如图 18-3,已知点 A、B、C、D、E 在同一直线上,且 AC =BD,E 是线段 BC 的中点.
第18讲 │ 考点随堂练
第18讲 │ 归类示例
归类示例
类型之一 线与角的概念和基本性质
► 类型之一 线与角的概念和基本性质 命题角度: 1.线段、射线和直线的性质及计算 2.角的有关性质及计算
如图 18-2,将一副三角板叠放在 一起,使直角顶点重合于 O 点, 则∠AOC+∠DOB=___1_8_0_°__.
A.5 cm
B.6cm
C.10 cm
D.不能确定
图19-1
第18讲 │ 考点随堂练
7.如图 18-5,甲从 A 点出发向北偏东 70°方向走 50 m 至点 B, 乙从 A 出发向南偏西 15°方向走 80 m 至点 C,则∠BAC 的度数 是____1_2_5_°_______.
图 18-5 [解析] 90°-70°=20°,所以∠BAC=20°+90°+15°=125°.

2020年贵州省中考数学基础知识复习课件:第15讲 线段、角、相交线与平行线

2020年贵州省中考数学基础知识复习课件:第15讲 线段、角、相交线与平行线

又∠BEC=∠B+∠C,得∠B=▲.
故AB∥CD(@相等,两直线平行).
则回答正确的是( C )
A.◎代表∠FEC
B.@代表同位角
C.▲代表∠EFC
D.※代表AB
9.(2019·益阳)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=_5_2___度.
温馨提示
利用平行线的性质求角度时,先找准要求角与已知角之间的位置关系, 再利用平行线的性质、相等角间的等量代换等求出要求角的度数,同时在解题时 要注意平角、直角、三角形角平分线定义、三角形内角和定理及其推论等知识 的应用.
考点3 垂线及其性质
1.垂线:两条直线相交所成的四个角中,如果有一个角是直角,就称这两条直 线互相垂直.其中一条直线叫做另一条直线的垂线. 2.垂线段:过直线外一点,作已知直线的垂线,该点与垂足之间的线段. 3.点到直线的距离:从直线外一点到这条直线的垂线段的长度. 4.垂线的基本性质 (1)在同一平面内,过一点有且只有一条直线与已知直线垂直. (2)垂线段最短.(注:两点之间,线段最短.)
1.定义:能明确指出概念、含义或特征的句子,它必须严密. 2.命题:判断一件事情的语句. (1)命题由题设和结论两部分组成. (2)命题的真假:正确的命题称为真命题;错误的命题称为假命题. (3)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的结论,而 第一个命题的结论是第二个命题的题设,那么这两个命题称为互逆命题.每一个 命题都有逆命题.
性质
内错角相等:∠3=∠4判⇌定a∥b
性质
同旁内角互补:∠2+∠4=180°判⇌定a∥b
性质
温馨提示
平行线的性质与判定是互逆的关系;由角的相等或互补(数量关系)的条 件,得到两条直线平行(位置关系),这是平行线的判定;由平行线(位置关系)得 到有关角相等或互补(数量关系),这是平行线的性质.

2020年中考数学一轮复习第4章几何初步与三角形(付)

2020年中考数学一轮复习第4章几何初步与三角形(付)

第四章几何初步与三角形第一节线段、角、相交线与平行线姓名:________ 班级:________ 用时:______分钟1.(2018·浙江金华中考)如图,∠B的同位角可以是( )A.∠1 B.∠2C.∠3 D.∠42.(2018·江苏宿迁中考)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C =24°,则∠D的度数是( )A.24° B.59°C.60° D.69°3.(2018·山东枣庄中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20° B.30°C.45° D.50°4.(2018·湖南益阳中考)如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是( )A.∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°5.(2018·山东聊城中考)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( )A.110° B.115°C.120° D.125°6.(2018·浙江金华模拟)若∠α=35°,则∠α的补角为__________度.7.(2018·湖南衡阳中考)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC 的度数为__________.8.(2018·湖南永州中考)一副透明的三角板,如图叠放,直角三角板的斜边AB,CE相交于点D,则∠BDC=__________.9. (2018·重庆中考B卷)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE 交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.10.(2017·湖北十堰中考)如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=( )A.40° B.50°C.60° D.70°11.如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm.如果点C是OB上一个动点,则PC的最小值为( )A.2 cm B.2 3 cm C.4 cm D.4 3 cm12.如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°13.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F =____________.14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 的长是______.15.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B=__________.16.(2018·湖北鄂州中考)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E,F分别为DB,BC的中点,连结AE,EF,AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系.17.已知O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,∠COF和∠BOE之间有何数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并加以证明.18.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数;(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC 的数量关系,并说明理由.参考答案【基础训练】1.D 2.B 3.D 4.C 5.C 6.145 7.75° 8.75°9.解:∵∠EFG=90°,∠E=35°, ∴∠FGH=55°.∵GE 平分∠FGD,AB∥CD, ∴∠FHG=∠HGD=∠FGH=55°. ∵∠FHG 是△EFH 的外角, ∴∠EFB=55°-35°=20°. 【拔高训练】 10.B 11.C 12.C 13.9.5° 14.3 15.95°16.(1)证明:∵点E ,F 分别为DB ,BC 的中点, ∴EF 是△BCD 的中位线,∴EF=12CD.又∵DB=DC ,∴EF=12DB.在Rt△ABD 中,∵点E 为DB 的中点, ∴AE 是斜边BD 上的中线, ∴AE=12DB ,∴AE=EF.(2)解:如图,∵AE=EF ,AF =AE ,∴AE=EF =AF , ∴△AEF 是等边三角形,∴∠AEF=60°. ∵EF 是△BCD 的中位线, ∴EF∥CD,∴∠BEF=∠CDB=β,∴β+∠2=60°.又∵∠2=∠1+∠ADB=∠1+α,∴∠1+α+β=60°,∴∠1=60°-α-β. ∵AE 是斜边BD 上的中线, ∴AE=DE ,∴∠1=∠ADB=α, ∴α=60°-α-β,∴2α+β=60°. 17.解:(1)∠BOE=2∠COF.理由如下: ∵∠COE=90°, ∴∠BOE=90°-∠AOC,∠COF=∠AOF-∠AOC=12(90°+∠AOC)-∠AOC=12(90°-∠AOC),∴∠BOE =2∠COF.(2)不发生变化.证明如下:∵∠COE=90°,∴∠COF=90°-∠EOF,∠BOE=180°-2∠EOF. ∴∠BOE=2∠COF. (3)∠BOE+2∠COF=360°.证明如下:∵∠COE=90°,∴∠COF=90°+∠EOF,∠BOE=90°+∠BOC=90°+90°-2∠EOF=180°-2∠EOF. ∴∠BOE+2∠COF=360°. 【培优训练】18.解:(1)∵OM 平分∠BOC, ∴∠MOC=∠MOB.又∵∠BOC=110°,∴∠MOB=55°. ∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°. (2)11或47(3)∠AOM-∠NOC=20°.理由如下:∵∠MON=90°,∠AOC=70°, ∴∠A OM =90°-∠AON,∠NOC=70°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,∴∠AOM与∠NOC的数量关系为∠AOM-∠NOC=20°.第二节三角形的基础姓名:________ 班级:________ 用时:______分钟1.(2018·广西柳州中考)如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个2.已知,如图,在△ABC中,BO和CO分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E.若DE=8,则线段BD+CE的长为( )A.5 B.6 C.7 D.83.(2018·湖北黄石中考)如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75° B.80° C.85° D.90°4.(2017·四川巴中中考)若a,b,c为三角形的三边,且a,b满足a-9+(b-2)2=0,第三边c为奇数,则c=______.5.(2017·四川乐山中考)点A,B,C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是_________.6.如图,在△ABC 中,AB =AC ,AD⊥BC,垂足为点D ,AD =18,点E 在AC 上,且CE =12AC ,连结BE ,与AD 相交于点F.若BE =15,则△DBF 的周长是________.7.(2018·湖北宜昌中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E. (1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.8. (2019·易错题)如图,在长方形网格中,每个小长方形的长为2,宽为1,A,B两点在网格格点上.若点C也在网格格点上,以A,B,C为顶点的三角形面积为2,则满足条件的点C个数是( )A.2 B.3 C.4 D.59.如图,在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )A.4.8 B.4.8或3.8C.3.8 D.510.(2017·辽宁大连中考)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E 是AB的中点,CD=DE=a,则AB的长为( )A.2a B.22aC.3a D.43 3a11.如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E,F分别是AD,CD的中点,连结BE,BF,EF.若四边形ABCD的面积为6,则△BEF的面积为( )A.2 B.94C.52D.312.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连结EF交AP于点G.给出以下五个结论:①∠B=∠C=45°;②AE=CF;③AP=EF;④△EPF是等腰直角三角形;⑤四边形AEPF的面积是△ABC面积的一半.其中正确的结论是( )A.只有① B.①②④C.①②③④ D.①②④⑤13.(2017·四川达州中考)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是______________.14.(2019·改编题)已知点G是面积为27 cm2的△ABC的重心,那么△AGC的面积等于______cm2.15.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点.若S△BFC=1,则S△ABC=______.16.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设该组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.17.(2017·山东德州中考)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9 s.已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80 km/h,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)18.如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=________;若∠A=a°,则∠BEC=________.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC =________;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.参考答案【基础训练】1.C 2.D 3.A 4.9 5.3556.247.解:(1)∵在Rt△ABC 中,∠ACB=90°,∠A=40°, ∴∠ABC=90°-∠A=50°, ∴∠CBD=130°. ∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°, ∴∠CEB=90°-65°=25°. ∵DF∥BE,∴∠F=∠CEB=25°. 【拔高训练】8.C 9.A 10.B 11.C 12.D 13.1<m<4 14.9 15.416.解:(1)设三角形的第三边长为x. ∵每个三角形有两条边的长分别为5和7, ∴7-5<x<5+7,即2<x<12,∴其中一个三角形的第三边的长可以为10(不唯一). (2)∵2<x<12,它们的边长均为整数, ∴x=3,4,5,6,7,8,9,10,11, ∴该组中最多有9个三角形,∴n=9.(3)∵当x =4,6,8,10时,该三角形周长为偶数, ∴该三角形周长为偶数的概率是49.17.解:(1)如图,过点A 作AD⊥BC 于点D ,则AD =10 m.∵在Rt△ACD 中,∠C =45°, ∴Rt△ACD 是等腰直角三角形. ∴CD=AD =10 m.在Rt△A BD 中,tan B =ADBD,∵∠B=30°,∴BD=3AD , ∴BD=10 3 m.∴BC=BD +DC =(10+103)m. 答:B ,C 之间的距离是(10+103)m. (2)这辆汽车超速.理由如下: 由(1)知BC =(10+103)m. 又3≈1.7,∴BC≈27 m, ∴汽车速度v =270.9=30(m/s).又∵30 m/s=108 km/h , 此地限速为80 km/h ,且108>80, ∴这辆汽车超速. 【培优训练】18.解:131° 90°+12a°【探究】 (1)60°+23a°(2)∠BOC=12∠A.理由如下:由三角形的外角性质得,∠ACD =∠A+∠ABC, ∠OCD=∠BOC+∠OBC,∵O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点, ∴∠ABC=2∠OBC,∠ACD=2∠OCD, ∴∠A+∠ABC=2(∠BOC+∠OBC), ∴∠A=2∠BOC,∴∠BOC=12∠A.(3)∠BOC=90°-12∠A.理由如下:∵O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC=12(180°-∠ABC)=90°-12∠ABC,∠OCB=12(180°-∠ACB)=90°-12∠ACB,在△OBC 中,∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠ABC)-(90°-12∠ACB)=12(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A,∴∠BOC=12(180°-∠A)=90°-12∠A.第三节 全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( ) A .两个等边三角形一定全等 B .腰对应相等的两个等腰三角形全等 C .形状相同的两个三角形全等 D .全等三角形的面积一定相等2.如图,在▱ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A .BE =DFB .BF =DEC .AE =CFD .∠1=∠23.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个4.(2017·四川眉山中考)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F.若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB =4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.9.(2018·陕西中考)如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连结AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD 是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥CD,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF.在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.1816.证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF=90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC ,∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠ACD=90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC ,∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD =180°-∠ABC-∠BAO-∠CAE =180°-60°-60°=60°. 【培优训练】19.解:(1)∵AM⊥BM, ∴∠AMB=∠AMC=90°. ∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM. ∵AB=32,∴AM=BM =3. ∵BC=5,∴MC=2,∴AC=AM 2+CM 2=13.(2)证明:如图,延长EF 到点G ,使得FG =EF ,连结BG.∵DM=MC ,∠BMD=∠AMC=90°,BM =AM , ∴△BMD≌△AMC,故AC =BD. 又CE =AC ,因此BD =CE.∵点F 是线段BC 的中点, ∴BF=FC ,由BF =FC ,∠BFG=∠EFC,FG =FE , ∴△BFG≌△CFE,故BG =CE ,∠G=∠CEF, ∴BD=CE =BG ,∴∠BDG=∠G,∴∠BDF=∠CEF.第四节 等腰三角形姓名:________ 班级:________ 用时:______分钟1.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于D ,连结AD.若AD =AC ,∠B=25°,则∠C=( )A .70° B.60° C.50° D.40°2.(2017·四川南充中考)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(3,1)C .(3,3)D .(1,3)3.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有( ) A .4个 B .3个 C .2个D .1个4. (2018·四川绵阳中考)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB的顶点A 在△ECD 的斜边DE 上,若AE =2,AD =6,则两个三角形重叠部分的面积为( )A. 2B .3- 2 C.3-1D .3- 35.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF=BE +CF ; ②∠BOC=90°+12∠A;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①③④6.(2018·黑龙江绥化中考)已知等腰三角形的一个外角为130°,则它的顶角的度数为__________________.7.(2018·湖南娄底中考)如图,△ABC 中,AB =AC ,AD⊥BC 于点D ,DE⊥AB 于点E ,BF⊥AC 于点F ,DE =3 cm ,则BF =______cm .8.(2018·浙江嘉兴中考)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE⊥AB,DF⊥BC,垂足分别为点E ,F ,且DE =DF.求证:△ABC 是等边三角形.9. (2018·江苏镇江中考)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为( )A.2 B.2 3C. 3 D.311.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°12.(2019·易错题)在一张长为8 cm,宽为6 cm的矩形纸片上,要剪下一个腰长为5 cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有( )A.1种B.2种C.3种D.4种13.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.14.(2018·辽宁葫芦岛中考)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1的右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM,ON于点B2,A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM,ON于点B3,A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为__________________.(用含正整数n的代数式表示)15.(2018·浙江绍兴中考)数学课上,张老师举了下面的例题:例1. 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2. 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.16. (2018·青海中考)请认真阅读下面的数学小探究系列,完成所提出的问题. (1)探究1:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.求证:△BCD 的面积为12a 2;(提示:过点D 作BC 边上的高DE ,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt △ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.请用含a 的式子表示△BCD 的面积,并说明理由;(3)探究3:如图3,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.试探究用含a 的式子表示△BCD 的面积,要有探究过程.17.如图,已知AG⊥BD,AF⊥CE,BD ,CE 分别是∠ABC 和∠ACB 的平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为________.参考答案【基础训练】1.C 2.D 3.B 4.D 5.A 6.50°或80° 7.68.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt△ADE≌Rt△CDF,∴∠A=∠C, ∴BA=BC ,∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形.9.(1)证明:∵AB=AC ,∴∠B=∠ACF. 在△ABE 和△ACF 中,∵⎩⎪⎨⎪⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)75 【拔高训练】 10.C 11.D 12.C13.72° 14.(32)2n -2×3315.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x 2≠x,即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数. 16.(1)证明:过点D 作DE⊥CB 交CB 的延长线于点E , ∴∠BED=∠ACB=90°.由旋转知AB =BD ,∠ABD=90°, ∴∠ABC+∠DBE=90°. 又∵∠A+∠ABC=90°, ∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴DE=a =BC , ∴S △BCD =12BC·DE=12a 2.(2)解:过点D 作DE⊥CB,交CB 的延长线于点E ,由(1)得∠BED=∠ACB=90°.∵线段AB 绕点B 顺时针旋转90°得到线段BD , ∴AB=BD ,∠ABD=90°. ∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴BC=DE =a.∵S △BCD =12BC·DE,∴S △BCD =12a 2.(3)解:如图,过点A 作AF⊥BC 于点F ,过点D 作DE⊥CB,交CB 的延长线于点E ,∴∠AFB=∠E=90°,BF =12BC =12a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD. ∵线段BD 是由线段AB 旋转得到的, ∴AB=BD.在△AFB 和△BED 中, ∵⎩⎪⎨⎪⎧∠AFB=∠E,∠FAB=∠EBD,AB =BD ,∴△AFB≌△BED,∴BF=DE =12a.∵S △BCD =12BC·DE,∴S △BCD =12a·12a =14a 2.∴△BCD 的面积为14a 2.【培优训练】 17.30第五节 直角三角形与勾股定理姓名:________ 班级:________ 用时:______分钟1.(2018·海南中考)如图,在△ABC 中,AB =8,AC =6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°,得到△AB 1C 1,连结BC 1,则BC 1的长为( )A .6B .8C .10D .122.(2019·改编题)下列条件中,能判定两个直角三角形全等的是( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等3.(2017·贵州毕节中考)如图,在Rt △ABC 中,∠ACB=90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .124.(2018·山东德州中考)如图,OC 为∠AOB 的平分线,CM⊥OB,OC =5,OM =4,则点C 到射线OA 的距离为______.5.(2018·浙江宁波中考)如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1 200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为_____________________米(结果保留根号).6.(2017·湖南常德中考)如图,已知在Rt△ABE中,∠A=90°,∠B=60°,BE=10,D 是线段AE上的一动点,过点D作CD交BE于点C,并使得∠CDE=30°,则CD长度的取值范围是________________.7.(2018·湖北襄阳中考)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为__________.8.(2018·四川广安中考)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形;(2)画一个底边长为4,面积为8的等腰三角形;(3)画一个面积为5的等腰直角三角形;(4)画一个一边长为22,面积为6的等腰三角形.9.已知直角三角形的周长为14,斜边上的中线长为3,则该直角三角形的面积为( ) A.5 B.6 C.7 D.810.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.90 B.100C.110 D.12111.(2018·江苏无锡中考)已知△ABC中,AB=10,AC=27,∠B=30°,则△ABC的面积等于______________.12.(2017·湖北襄阳中考)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=8,AB=10,则CD的长为_______.13.如图,在平面直角坐标系中,将含30°角的三角尺的直角顶点C落在第二象限,其斜边两端点A ,B 分别落在x 轴、y 轴上,且AB =12 cm .(1)若OB =6 cm , ①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离; (2)点C 与点O 的距离的最大值=________cm .14.如图,在Rt △ABC 中,∠ACB=90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.15.某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图1△ABC 中,M 是BC 的中点,P 是射线MA 上的点,设APPM=k ,若∠BPC=90°,则称k 为勾股比.(1)如图1,过B,C分别作中线AM的垂线,垂足为E,D.求证:CD=BE.(2)①如图2,当k=1,且AB=AC时,AB2+AC2=________BC2(填一个恰当的数).②如图1,当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;③对任意锐角或钝角三角形,如图1,3,请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).参考答案【基础训练】1.C 2.D 3.A 4.3 5.1 200(3-1) 6.0<CD≤5 7.23或27 8.解:(1)如图(1)所示. (2)如图(2)所示. (3)如图(3)所示. (4)如图(4)所示.【拔高训练】 9.C 10.C11.153或10 3 12.25813.解:(1)①如图,过点C 作y 轴的垂线,垂足为点D ,在Rt△AOB 中,AB =12,则BC =6.∵OB=6=BC ,AB =AB , ∴Rt△ABC≌Rt△ABO, ∴∠BAO=30°,∠AB O =60°. 又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°, ∴BD=3,CD =33, ∴OD=BD +OB =3+6=9,∴点C 的坐标为(-33,9).②如图,设点A 向右滑动的距离为x ,根据题意得点B 向上滑动的距离也为x.∴AO=AB·cos∠BAO=12×cos 30°=6 3. ∴A′O=63-x ,B′O=6+x ,A′B′=AB =12. 在△A′OB′中,由勾股定理,得 (63-x)2+(6+x)2=122, 解得x 1=0(舍去),x 2=6(3-1). ∴滑动的距离为6(3-1)cm. (2)12 【培优训练】 14.1815.(1)证明:∵M 是BC 的中点,∴BM=CM. ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°. 在△BME 和△CMD 中, ⎩⎪⎨⎪⎧∠E=∠CDM=90°,∠BME=∠CMD,BM =CM ,∴△BME≌△CMD(AAS),∴CD=BE. (2)①AB 2+AC 2=2.5BC 2②结论仍然成立.设EM =DM =a ,则AE =AM +a ,AD =AM -a.在Rt△ABE 中,AB 2=AE 2+BE 2=(AM +a)2+BE 2=AM 2+2AM·a+a 2+BE 2, 在Rt△ACD 中,AC 2=AD 2+CD 2=(AM -a)2+CD 2=AM 2-2AM·a+a 2+CD 2, ∴AB 2+AC 2=2AM 2+(a 2+BE 2)+(a 2+CD 2). ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°,∴a 2+BE 2=BM 2=14BC 2,a 2+CD 2=CM 2=14BC 2,∴AB 2+AC 2=2AM 2+12BC 2.∵APPM=1,∴AP=PM. ∵∠BPC=90°,AM 是△ABC 的中线, ∴PM=12BC.若△ABC 是锐角三角形,则AM =AP +PM =PM +PM =2PM =BC , ∴AB 2+AC 2=2BC 2+12BC 2=52BC 2,即AB 2+AC 2=2.5BC 2.③结论:锐角三角形:AB 2+AC 2=k 2+2k +22BC 2,钝角三角形:AB 2+AC 2=k 2-2k +22BC 2.第六节 尺规作图姓名:________ 班级:________ 用时:______分钟1.(2018·湖北宜昌中考)尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )2.(2018·河北中考)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2018·山东潍坊中考)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连结BD,BC.下列说法不正确的是( )A .∠CBD=30°B .S △BDC =34AB 2 C .点C 是△ABD 的外心 D .sin 2A +cos 2D =14. (2018·吉林中考)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为________________.5.(2018·内蒙古通辽中考)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连结AD.若AB =BD ,AB =6,∠C=30°,则△ACD 的面积为______.6.(2018·辽宁抚顺中考)如图,▱ABCD 中,AB =7,BC =3,连结AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连结AE ,则△AED 的周长是________.7.(2018·北京中考)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(________)(填推理的依据).8.如图,∠BAC内有一点P,过点P作直线L∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q,R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连结EF;②过P作直线l2∥EF,分别交两直线AB,AC于Q,R两点,则Q,R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q,R即为所求.下列判断正确的是( )A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确9.如图,在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD,分别以A,D为圆心,A到C的距离为半径画弧,两弧交于E,以A为圆心,O到E的距离为半径画弧,交⊙O于F,则△ACF面积是__________.10.(2018·四川自贡中考)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)11.(2018·山东济宁中考)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图;(保留画图痕迹,不写画法)(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10 m,请你求出这个环形花坛的面积.参考答案【基础训练】 1.B 2.D 3.D4.(-1,0) 5.9 3 6.10 7.(1)解:直线PQ 如图所示.(2)AP CQ 三角形中位线定理 【拔高训练】 8.A 9.3+3410.解:(1)⊙O 如图所示.(2)如图,作OH⊥BC 于H. ∵AC 是⊙O 的切线, ∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO 是矩形, ∴OE=CH =52,BH =BC -CH =32.在Rt△OBH 中,OH =(52)2-(32)2=2, ∴EC=OH =2,BE =EC 2+BC 2=2 5. ∵∠EBC=∠EBD,∠BED=∠C=90°, ∴△BCE∽△BED, ∴DE EC =BD BE ,∴DE 2=525, ∴DE= 5.【培优训练】11.解:(1)如图,点O即为所求.(2)如图,设EF与小圆切点为C,连结OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5 m,∴OM2-OC2=CM2=25,∴S圆环=π·OM2-π·OC2=25π(m2).。

【南方新中考】2014年中考数学总复习 第四章 第1讲 相交线和平行线提能训练课件(含2013年中考真题)

【南方新中考】2014年中考数学总复习 第四章 第1讲 相交线和平行线提能训练课件(含2013年中考真题)

7.(2011 年广东广州)已知三条不同的直线 a,b,c 在同一 平面内,下列四个命题: ①如果 a∥b,a⊥c,那么 b⊥c;②如果 b∥a,c∥a,那么
b∥c;
③如果 b⊥a,c⊥a,那么 b⊥c;④如果 b⊥a,c⊥a,那么
b∥c.
①②④ 其中真命题的是__________( 填写所有真命题的序号).
图 4-1-5
图 4-1-6
2.(2013 年云南曲靖)如图 4-1-6,直线 AB,CD 相交于点 40° O,若∠BOD=40°,OA 平分∠COE,则∠AOE=________.
名师点评:在有关线、角、三角板等的背景图中,应着眼 于一些比较特殊的平角、角平分线、互余、互补的角、垂直等 概念,立足于基本性质,构建相关量之间的位置及数量大小关 系进行分析与解题.
B.3 个
D.5 个 图 4-1-7
解析:由于∠1 与∠2 互余,所以只要找出所有与∠2 相等
识别命题的真假 5.下列命题中,为真命题的是( A ) A.对顶角相等
B.同位角相等
C.若 a2=b2,则 a=b
D.若 a>b,则-2a>-2b
6.(2012 年四川广元)如图 4-1-8,在△AEC 和△DBF 中, ∠E=∠F,点 A,B,C,D 在同一条直线上.有如下三个关系 式:①AE∥DF;②AB=CD;③CE=BF. (1)请用其中两个关系式作为条件,另一个作为结论,写出 你认为正确的所有命题(用序号写出命题书写格式:如果 tan 60° =
直平分线,常向两端把线连.
1.如图 4-1-1,梯子的各条横档互相平行,若∠1=80°, 则∠2 的度数是( B ) A.80° B.100° C.120° D.150°
Hale Waihona Puke 图 4-1-12.将一直角三角板与两边平行的纸条按图 4-1-2 所示放置, 下列结论:

人教版中考备战策略课件第16讲线段、角、相交线与平行线

人教版中考备战策略课件第16讲线段、角、相交线与平行线
答案:55°
三、解答题(共 4 3 分) 18.(8 分)如图,直线 a∥b,点 B 在直线 b 上, 且 AB⊥BC,∠1=55°,求∠2 的度数.
解:如图,∵AB⊥BC,∴∠1+∠3=90°. ∵∠1=55°,∴∠3=35°. ∵a∥b,∴∠2=∠3=35°.
19.(10 分)如图,已知直线 AB,CD 相交于点 O, OE,OF 为射线,∠AOE=90°,OF 平分∠AOC,∠AOF +∠BOD=51°,求∠EOD 的度数.
【答案】 B
考点二 余角、补角的定义 例 2 (2015·崇左)下列各图中,∠1与∠2互为余 角的是( )
【点拨】A 中,∠1 的对顶角与∠2 是同位角关系, 只能说明∠1=∠2;B 中,∠1 和∠2 是对顶角,∠1 =∠2;C 中,∠1+∠2=90°,∠1 与∠2 互余;D 中, ∠1+∠2=180°,∠1 与∠2 互补.综上所述,选 C.
3.平行线的判定 (1)定义:在同一平面内不相交的两条直线,叫做 平行线; (2)同位角相等,两直线平行; (3)内错角相等,两直线平行; (4)同旁内角互补,两直线平行.
温馨提示: 除上述平行线的判定方法外,还有“在同一平面 内垂直于同一条直线的两条直线平行”及“平行于同 一条直线的两条直线平行”的判定方法.
【解析】∵∠ECA=α°,∴ ∠ECB=180°-∠ECA=
180°- α°.∵CD


∠ECB

∴∠DCB

1 2
∠ECB

12×(180°- α°)=90-α2 °.∵FG∥CD,∴∠GFB=∠DCB
=90-α2 °.
答案:90-α2
16.(2015·泰州)如图,直线 l1∥l2,∠α=∠β, ∠1 =40°,则∠2= .

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。

(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。

立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。

(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。

(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。

(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。

2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。

(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。

2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。

5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。

考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。

中考数学复习线段角相交线与平行线PPT

中考数学复习线段角相交线与平行线PPT

第16课时 线段、角、相交线与平行线
考点演练
考点三
误区警示
平行线的判定与性质
在运用同位角、内错角、同旁内角判定直线是否平行时,一定要 搞清楚这一对角是由哪两条直线被哪一条直线所截而成的,从而 才能确定这两条直线是平行的.
第16课时 线段、角、相交线与平行线
考点演练
考点三 平行线的判定与性质
例4 ( ·莆田)已知直线a∥b,一块直角三角尺按如图所示的方 式放置.若∠1=37°,则∠2=__5_3_°____.
考点一 度、分、秒的运算
例1 ( ·厦门)1°等于( C) A. 10′ B. 12′ C. 60′ D. 100′
思路点拨
根据度、分、秒之间的单位转换可得答案. 1°=60′,故选C.
第16课时 线段、角、相交线与平行线
考点演练
考点二 与角有关的概念和计算
例2 ( ·恩施州)已知∠AOB=70°,以O为端点作射线OC,使 ∠AOC=42°,则∠BOC的度数为( C )
A. 28° B. 112°
思路点拨
C. 28°或112°
D. 68°
根据题意画出图形,利用数形结合及角的和、差求解即可.
第16课时 线段、角、相交线与平行线
考点演练
考点二 与角有关的概念和计算
解:如图,当点C与点C1重合时, ∠BOC=∠AOB-∠AOC=70°-42°=28°; 当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°= 112°. 故选C.
第16课时 线段、角、相交线与平行线
知识梳理
3.尺规作图: (1) 限定只能使用没有___刻__度___的直尺和___圆__规___作图称为尺规 作(2图) 5.种基本作图包括:

2019教育山东专版版中考数学总复习第四章图形的认识41线角相交线与平行线试卷部分课件0917210数学

2019教育山东专版版中考数学总复习第四章图形的认识41线角相交线与平行线试卷部分课件0917210数学

3.(2014济宁,3,3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的 是 ( ) A.两点确定一条直线 B.垂线段最短 C.两点之间线段最短 D.三角形两边之和大于第三边
答案 C
4.(2018日照,2,4分) 一个角是70°39',则它的余角的度数是
.
答案 19°21'
A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME 答案 D A选项,因为AB∥CD,所以∠EMB=∠END(两直线平行,同位角相等),所以A中结论 正确;B选项,因为AB∥CD,所以∠BMN=∠MNC(两直线平行,内错角相等),所以B中结论正确;C 选项,因为AB∥CD,所以∠CNH=∠APH,又因为∠APH与∠BPG是对顶角,所以∠APH=∠ BPG,故∠CNH=∠BPG,所以C中结论正确;D选项,由条件推不出∠DNG=∠AME,故D选项中结 论错误,所以本题选择D. 思路分析 有关平行线的试题,一般需要利用平行线的性质实现角的转化,再结合题目中的其 他条件进行求解.
2.(2018聊城,4,3分) 如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=9 5°,∠CDE=25°,则∠DEF的度数是 ( )
A.110° B.115° C.120° D.125° 答案 C 如图,延长FE交CD于点G,因为AB∥EF,所以∠DGF=∠DCB=95°,所以∠DEF=∠ DGF+∠CDE=95°+25°=120°,故选C.
A.48° B.40° C.30° D.24° 答案 D ∵AB∥CD,∠BAE=48°,∴∠DFE=48°. ∵CF=EF,∴∠C=∠E.又∵∠C+∠E=∠DFE,∴2∠C=48°,解得∠C=24°,故选D.

新华师大版七年级上册数学教学课件 第4章 相交线与平行线 4.2 平行线 4.2.2 平行线的判定

新华师大版七年级上册数学教学课件 第4章 相交线与平行线 4.2 平行线 4.2.2 平行线的判定

∴ ∠1=∠2(等量代换)
a
b
∴ a∥ b(内错角相等,两直线平行)
我们用符号 l “∵”“∴”
分别表示“因 为”“所以”
演绎推理是一种从一般到特殊的推理,借助于一些公认的基本事实 及由此推导得出结论,通过判断,说明最后结论的正确.
例2 如图,在四边形ABCD中,已知∠B=60°,∠C=120°, AB与CD平行吗?AD与BC平行吗?
1
A
D
(2)∵∠D =∠1(已知)
∴AB∥CD( 内错角相等,两直线平行 ) B
C
2.根据题图,在下列解答中,填空: 【教材P188 练习 第2题】 (1)∵∠BAD+∠ABC=180°(已知)
∴( AD)∥( BC )(同旁内角互补,两直线平行)
(2)∵∠BCD+∠ABC=180°(已知)
∴( AB )∥( DC )(同旁内角互补,两直线平行)
∴ ∠1=∠2(角平分线定义). 又∵ ∠1= ∠3(已知),
D
1 2
A
3C B
∴ ∠2=∠3(等量代换),
∴ CD∥AB(内错角相等,两直线平行).
No Image
课堂小结
判定两条直线平行的方法
文字叙述 同位角相等,
两直线平行 内错角相等,
两直线平行
同旁内角
互补,
两直线平行
符号语言
图形
∵∠1=∠2 (已知), c
问题3 上节课我们学了平行线的哪些内容?
1.经过直线外一点,有且只有一条直线与已知直线平行. 2.如果两条直线都与第三条直线平行,那么这两条直线互相平行.
No Image
思考一下
根据平行线的定义,如果同一平面 内的两条直线不相交,就可以判断 这两条直线平行. 由于直线无限延伸,检验它们是否 相交有困难,所以难以直接根据两 条直线是否相交来判定是否平行, 那么有没有其他判定方法呢?

沪科版2014年中考数学复习方案课件第4单元三角形1

沪科版2014年中考数学复习方案课件第4单元三角形1

皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
考点3 三角形的中位线
概念 性质
中点 的线段叫三角形的 连接三角形两边的________ 中位线. 三角形的中位线________ 平行 于第三边,并且等于 它的________. 一半
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
考点4 三角形的三边关系
A.60° B.65°
图 14-2 C.75° D.80°
皖考解读
考点聚焦
皖考探究
当堂检测
第14课时┃ 平面图形及相交线、平行线
解 析
由 AB∥CD 得∠C=∠EFB,由“三角形的
一个外角等于和它不相邻的两个内角和”得∠EFB = ∠A+∠E=75°,所以∠C 为 75°.故选 C.
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时
三角形
第15课时┃ 三角形
皖 考 解 读
考点 考纲要求 年份 三角形的有关 了解 概念 三角形的角平 理解 分线、 中线、 高 2011 三角形的 掌握 2012 中位线 2013 2010 三角形内角和 掌握 2010 定理及推论 2013
皖考解读 考点聚焦 皖考探究
如 图, AE 是△ABC 的角平 分线 ∠ BAE = 1 ∠CAE= ∠BAC. 2 三角形的三条角平分线的交点在三角形的 内 ________ 部.
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
如图,AF 是△ABC 的高∠BFA=∠CFA=90°. 三 角 形 的 高
________ 锐角 三角形的三条高的交点在三角形的内部; 直角 三角形的三条高的交点是直角顶点; ______ 钝角 三 ______ 角形的三条高所在直线的交点在三角形的外部.

黑龙江中考数学复习全套课件

黑龙江中考数学复习全套课件

第3讲┃ 归类示例
(1)进行整式的运算时,一要注意合理选择幂的运算 法则,二要注意结果的符号. (2)不要把同底数幂的乘法和整式的加减法混淆,如 a3²a5 =a8和a3+a3=2a3. (am)n和an²am也容易混淆. (3)单项式的除法关键:注意区别“系数相除”与“ 同底数幂相除”的含义,如6a5÷3a2=(6÷3)a5-2= 2a3, 一定不能把同底数幂的指数相除.
第3讲┃ 归类示例
归类示例
► 类型之一 同类项
命题角度: 1. 同类项的概念; 2. 由同类项的概念通过列方程组求解同类项的指 数中字母的值. 例1 那么a,b的值分别为( D ) A.2,2 B.-3,2 C.2,3
1 a 2 1 3 b [2012²雅安]如果单项式-2x y 与3x y 是同类项,
2±2ab+b2 (a±b)2=a ________ (a+b)2-2ab = (1)a2+b2=____________ (a-b)2+2ab ____________ (2)(a-b)2=(a+b)2-4ab
第3讲┃ 考点聚焦 考点4 因式分解的概念 整式的积的形 把一个多项式化为几个________ 式,像这样的式子变形,叫做多项式 的因式分解
同级运算应 按从左到右的顺序 . 2.零指数幂的意义:a0=
1 (a≠0).
3.负整数指数幂的意义:a-p=
(a≠0,p为整数).
4.正数的任何次幂都为 正数 ,负数的奇次幂为 负数 ,负数的偶次幂为正数 .
5.初中所涉及的三个非负数:|a|, a2, (a≥0).若几个非负数的和为0,则时为0.例
命题角度: 1. 整式的加减乘除运算; 2. 乘法公式. 例2 [2012²湛江] 下列运算中,正确的是( C ) A.3a2 -a2 =2 B .(a2 )3 =a5 C.a3²a6=a9 D.(2a2)2=2a4 [解析] A是合并同类项应为2a2;B为幂的乘方,底数 不变,指数相乘,故不正确;C是同底数幂相乘,底 数不变,指数相加,正确; D是积的乘方与幂的乘方 综合运用,不正确.

中考数学一轮复习 第四章 几何初步与三角形 第一节 基本平面图形和相交线与平行线课件

中考数学一轮复习 第四章 几何初步与三角形 第一节 基本平面图形和相交线与平行线课件

知识点六 尺规作图
圆规
没有(méi yǒu)刻
1.尺规作图:我们把只能使用_____(_y_u和ángu_ī)____度____的直尺
这两种工具去作几何图形的方法称为尺规作图.
2.常见(chánɡ jiàn)的五种基本作图:
(1)作一条线段等于已知线段;
(2)作一个角等于已知角;
(3)作角平分线;
第二页,共三十一页。
3.两点之间的距离
长度 两点之间线段的 ___(_ch_á,ngd叫ù) 做这两点之间的距离.
4.线段的中点:若点M把线段AB分成(fēn chénɡ)相等的两条线段AM与
BM,点M叫做线段AB的中点.这时AM= BM=1 AB(或AB=2AM
=2BM).
2
第三页,共三十一页。
数(dù shu)是(
C)
A.50° B.60°
C.140° D.150°
2.如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的
中点,则BD= __.
3
第十七页,共三十一页。
3.已知∠1的补角(bǔ jiǎo)是133°21′,则它的余角是 4_3_°__2_1_′___; 下午14点半,钟面上的时针与分针的夹角是 ____度.105
第二十三页,共三十一页。
【分析】 由a∥b求得∠ABC,根据直角三角形两锐角(ruìjiǎo)互余,
即可求得答案.
【自主解答】 ∵a∥b,∴∠ABC=∠1=40°. 又∵∠BAC=90°,∴∠2=50°.故选C.
第二十四页,共三十一页。
6. (2013·济南)如图,直线(zhíxiàn)a,b被直线c所截,a∥b, ∠1=130°,则∠2的度数是( C) A.130° B.60° C.50° D.40°

第14节线段、角、相交线与平行线-中考数学一轮知识复习课件

第14节线段、角、相交线与平行线-中考数学一轮知识复习课件

☞命题点3 平行线的性质与判定(必考) 7.(2019·广东 12 题 4 分)如图,已知 a∥b,∠1=
75°,则∠2=___1_0_5_°__.
8.(2020·郴州)如图,直线 a,b 被直线 c, d 所截,下列条件能判定 a∥b 的是( D )
A.∠1=∠3 B.∠2+∠4=180° C.∠4=∠5 D.∠1=∠2
O,OA 平分∠EOC,∠EOC=100°,则∠BOD 的度数
是( C )
A.20°
B.40°
C.50°
D.80°
2.(2020·吉林)如图,某单位要在河岸 l 上建一个 水泵房引水到 C 处,他们的做法是:过点 C 作 CD⊥l 于点 D,将水泵房建在了 D 处.这样做最节省水管长 度,其数学道理是_垂__线__段__最__短___.
针对训练 9.(2020·常德)如图,已知 AB∥DE,∠1 =30°,∠2=35°,则∠BCE 的度数为( B )
A.70° C.30°
B.65° D.5°
10.(2020·武汉)如图,直线 EF 分别与直线 AB,
CD 交于点 E,F.EM 平分∠BEF,FN 平分∠
CFE,且 EM∥FN.求证:AB∥CD.
第四章 三角形
第十四节 线ห้องสมุดไป่ตู้、角、相交线与平行线
课标解读
1.点、线、面、角 (1)会比较线段的长短,理解线段的和、差,以及线 段中点的意义. (2)能运用基本事实:两点确定一条直线和两点之间 线段最短解决相关问题. (3)能比较角的大小,并会计算角的和、差.
2.相交线与平行线 (1)能运用对顶角相等,同角(等角)的余角相等,同 角(等角)的补角相等进行计算或证明. (2)能过一点画已知直线的垂线;能度量点到直线的 距离;掌握基本事实:过一点有且只有一条直线与已 知直线垂直. (3)会辨认同位角、内错角、同旁内角,能运用平行 线的性质定理和判定定理进行计算或证明;能用三角 尺和直尺过已知直线外一点画这条直线的平行线. (4)会用平行于同一条直线的两条直线平行进行推理 证明.

中考数学风向标 第四章 第1讲 相交线和平行线

中考数学风向标 第四章 第1讲 相交线和平行线

1.(2011 年广东清远)已知∠α=35°,则∠α的余角是( A.35° B.55° C.65° D.145°
B)
2.(2012 年广东肇庆)如图 4-1-7,已知 D,E 在△ABC 的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A 的度数为
( C )
A.100° B.90°
C.80°
角平分线的应用 【题型突破】 ►类型:角平分线与平行线的综合
6.已知:如图 4-1-5,BD 平分∠ABC,点 E 在 BC 上,
EF∥AB.若∠CEF=100°,则∠ABD 的度数为( B ) A.60° B.50° C.40° D.30°
图 4-1-5
7.(2012 年湖北恩施州)如图 4-1-6,AB∥CD,直线 EF 交 AB 于点 E,交 CD 于点 F,EG 平分∠BEF,交 CD 于点 G, ∠1=50°,则∠2=( C ) A.50° B.60° C.65° D.90°
③有两边和一角相等的两个三角形全等;
④连接任意四边形各边中点的四边形是平行四边形.
其中正确的个数有( D ) A.4 个 B.3 个 C.2 个 D.1 个
5.(2011 年广东湛江)已知∠1=30°,则∠1 的补角的度数 为________度. 150
6.(2011 年广东广州)已知三条不同的直线 a,b,c 在同一
►类型二:改写命题 9.把命题“对顶角相等”改写成“如果„„,那么„„” 如果两个角是一对对顶角,那么它们相等 的形式___________________________________________. 小结与反思:本题考查命题的真假判断,正确的命题叫做 真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉 课本中的性质定理.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档