1.3 几何体的表面展开图

合集下载

小学六年级立体图形三视图及展开图

小学六年级立体图形三视图及展开图

立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。

比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。

对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。

(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。

二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”、“你”、“前”分别表示正方体的________________________。

【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。

【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。

【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。

三视图及展开图

三视图及展开图

如图,右边三幅图分别是从哪个方 向看这种个棱柱得到的?
( 1)
( 2)
( 3)
从上向下 从前向后 从左向右
如图,右边的几何体从正面看得到 A ) 的图形是(
(A)
(B)
(C)
(D)
下面是一个组合图形的三视图,请描述物体形状
正视图
左视图
俯视图
物体形状
活动三:几何体的表面展开图
有些几何体是由一些平面图形围成 的,将它们的表面适当剪开,这样 的平面图形称为相应立体图形的展 开图。
人教版七年级上
马 上 一 中
吕 志 彬
活动一:连连看
正方体
长方体

圆锥
六棱柱
读下面的一首诗,然后谈 谈您的体会!



宋-苏轼 横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
题西林壁
从上面看 俯视图 从左边看
长方体
左视图 从正面看
主视图
俯视图
左视图
主视图
俯视图 左视图
主视图
左视图
俯视图
立体图形和平面图形的转化:
从不同角度看,你能得出什么样的平面图形?
从正面看
从 左 面 看
从上面看
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
活动二:
下面的几何体分别从正面、左面、上 面观察这个图形,各能得到什么图形
主视图
俯视图
左视图
主视图
从上面看
从左面看
从正面看
从你所在的位置看这组几何体,看到的是什么 样子?能否把你所看到的样子画下来?

六年级上册数学课件立体图形的表面展开图苏教版(共24张PPT)

六年级上册数学课件立体图形的表面展开图苏教版(共24张PPT)
么规律? 2、小组讨论这些正方体展开图可以分为几类
?哪几号展开图可以分为一类,为什么?
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
第一类,中间四连方,两侧各一
个,共六种。
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
下面的图形那些是立方体的展开图?
(1)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
(3)
(2) (4)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
1.是不是所有的立体图形都 能展开图成平面图形呢?
2.圆能展开成平面图形吗? 大家试试看
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT) 六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
下面的图形都是正方体的 展开图吗?
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
六年级上册数学课件-1.2 立体图形的表面展开图丨苏教版 (共24张PPT)
巧记正方体的展开图口诀 : “一四一”“一三二”, “一”在同层可任意, “三个二”成阶梯, “二个三”“日”相连, 异层必有“日”, “凹”“田”不能有, 掌握此规律,运用定自如。

4.1.1.3立体图形的表面展开图

4.1.1.3立体图形的表面展开图

圆 展开

展开
圆锥
展开
长方体
长方体的展开图
底面
侧侧 侧
面面 面
长 方
底面
底 侧面 面

侧 侧 侧侧
面 面 面面
底面
下面图形都是由4个三边都相等的三角形组成 的,哪一个可以折叠成多面体呢?动手做做看。
(1)
(2)
(3)
下面4个图是一些多面体的表面展 开图,你能说出这些多面体的名字吗?
正方体
坚 持就是
胜 利
下列的三幅平面图是三棱柱的表面展开 图的有( )



形展如开有图的,一形上种状面牛?的把奶图它形包们分装用别盒线是连如下起面图来哪所。个示立。体图 为了生产这种包装盒,需要先画
出展开图纸样。如图给出的三种
纸样1 ,它们2都正确吗?3
4
A甲
B
C

丙D
下面几个图形是一些常见几何体的展开图, 你能正确说出这些几何体的名字么?
长方体
四棱锥
三棱柱
考考你的空间想象力:
下列图形是哪些多面体的展开图?
(1)
长方体
(Байду номын сангаас) (3)
三棱柱 五棱锥
下面是一些立体图形的展开图,用它们能围成什么样的 立体图形,把它们画在一张硬纸片上,剪下来,折叠、粘 贴,看看得到的图形和你想象的是否相同.
zxxk
学.科.网
制作立体模型的方法:
1.画出展开图;
么规律? 2、小组讨论这些正方体展开图可以分为几类
?哪几号展开图可以分为一类,为什么?
-
-
相 对 两 面 不 相 连
上左
下右

常见几何体的表面展开图

常见几何体的表面展开图

常见几何体的外表展开图将一个几何体的外外表展开,就像掀开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不一样.那么咱们熟悉的一些几何体,如圆柱、圆锥、棱柱的外表展开图是什么形状呢?(1)圆柱的外表展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的外表展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的外表展开图是两个完全一样的多边形(作底面)和几个长方形(作侧面)(4)正方体的平面展开图在讲义中、习题中会常常碰到让大伙儿识别正方体外表展开图的题目.下面列出正方体的十一种展开图,供大伙儿参考.例1 以下四张图中,通过折叠能够围成一个棱柱的是( )分析:由平面图围成一个棱柱,咱们能够动手实践操作,也能够展开丰硕的想像,但咱们最关键的是要抓住棱柱的特点,棱柱的平面图是由两个完全一样的多边形(且在平面图的双侧)和几个长方形组成的.解:正确答案选C.点评:专门要注意的是两个完全一样的多边形是棱柱的上下两个底面图形(棱柱展开后,这两个图形是位于展开图的双侧),故不选D,另外定几个长方形,究竟是几个呢,它的个数确实是上下底多边形的边数,应选C.例2如以下图的平面图形是由哪几种几何体的外表展开的?(1) (2) (3)分析:找几何体的外表展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.例3如以下图,在正方体的两个相距最远的极点处停留着一只苍蝇和一只蜘蛛,蜘蛛能够从哪条最短的途径爬到苍蝇处?说明你的理由.分析:在解这道题时,正方体的展开图对解题有专门大的帮忙,由于作展开图有各类不同的方式,因此从蜘蛛到苍蝇能够用6种不同方式选择最短途径,而其中每一条途径都通过连结正方体2个极点的棱的中点.解:由于蜘蛛只能在正方体的外表爬行,因此只需作出那个正方体的展开图并用点标出苍蝇和蜘蛛的位置,依照“两点之间线段最短〞这一常识可知,连结这两个点的线段确实是最短的途径.点评:这种求最短路程是多少及求与棱的夹角是多少等问题,同窗们容易犯的错误是:用棱柱来计算路程,可求出的却不是最短的.通过对该节内容的学习,咱们必然要养成擅长观看,随时寻觅规律的良好适应,只有如此,才能把所学知识融会贯穿.。

几何体的表面展开图(动画演示直观形象)优秀课件

几何体的表面展开图(动画演示直观形象)优秀课件

实验学校初一数学组
26
圆 柱
展开
实验学校初一数学组
27
圆锥
展开
实验学校初一数学组
28
棱柱
展开
实验学校初一数学组
29
长方体
展开
实验学校初一数学组
30
下面4个图是一些多面体的表面展 开图,你能说出这些多面体的名字吗?
正方体
长方体
四棱锥
实验学校初一数学组
三棱柱
31
形展如开有图的,一形上种状面牛?的把奶图它形包们分装用别盒线是连如下起面图来哪所。个示立。体图 为了生产这种包装盒,需要先画
GO SKIP
2
将一个正方体的表面沿某些棱剪开,
能展成哪些平面图形?
友情提示:
可以动手剪,也 可以想着画.
1、沿着棱剪
2、展开后是 一个图形
实验学校初一数学组
3
实验学校初一数学组
4
实验学校初一数学组
5
实验学校初一数学组
6
实验学校初一数学组
7
-
实验学校初一数学组
8
-
实验学校初一数学组
9
巧记正方体的展开图口诀 : 中间四个面上下各一面, 中间三个面一二隔河见 , 中间二个面楼梯天天见 , 中间没有面三三成一线, 其中“凹”“田”不能现,
了! 太棒 你们
实验学校初一数学组
KEY: 棒
18
规律: 相对两面不相连: 上下隔一行,左右隔一列。 (简称:隔一相对)
实验学校初一数学组
14 1型19
2 3 1型
实验学校初一数学组
20
3 3型
222型
实验学校初一数学组
21

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。

高一数学空间图形的展开图

高一数学空间图形的展开图

§1.3.1 空间图形的展开图教学目标:1.了解平面展开图的概念,会识别一些简单多面体的平面展开图2.了解直棱柱、正棱柱、正棱锥、正棱台、圆柱、圆锥、圆台的侧面积的计算公式3.会用展开图解决具体问题教学重点:1.正棱柱、正棱锥、正棱台的概念的理解2.多面体的平面展开图,及展开图的应用教学难点:多面体的平面展开图的应用教学过程:1.问题情境(1)情景:多媒体播放棱柱、棱锥、棱台、圆柱、圆锥、圆台这些几何体图片(2)问题:如果你是装潢公司的一名员工,想给这些几何体的侧面贴上一些装饰画。

你能否测算出所需装饰纸的面积?我们解决这个问题,就必须测算这些几何体的侧面积,如何计算这些几何体的侧面积呢?它们的侧面积计算公式之间有怎样的关系呢?2.直棱柱、正棱柱、正棱锥、正棱台(1)概念直棱柱:侧棱和底面垂直的棱柱叫做直棱柱.正棱柱:底面为正多边形的直棱柱叫做正棱柱.正棱锥:底面是正多边形,顶点在底面的正投影是底面多边形的中心的棱锥叫做正棱锥,正棱锥的侧棱长相等.正棱台:正棱锥被平行于底面的平面所截,截面和底面之间的部分叫做正棱台.(2)性质直棱柱:每个侧面都是矩形,底面是多边形.正棱柱:每个侧面都是全等的矩形,底面是正多边行.正棱锥:侧面是全等的等腰三角形,底面是正多边形,每条侧棱都相等.正棱台:侧面是全等的等腰梯形,底面是正多边形,每条侧棱都相等.注:当且仅当正棱锥,正棱台时才有斜高.3.多面体的平面展开图的概念一些简单多面体沿着它的某些棱剪开而形成的平面图形叫做该多面体的平面展开图.平面展开图的面积称为该多面体的表面积,侧面展开图的面积称为该多面体的侧面积.下面我们就来研究直棱柱、正棱柱、正棱锥、正棱台这些简单多面体的展开图问题.4.简单几何体的侧面积(1)直棱柱、正棱柱、正棱锥、正棱台侧面积请同学们分别画出一个直四棱柱、正四棱锥、正四棱台的侧面展开图.你能说出它们的侧面积计算公式吗?○1把直(正)棱柱的侧面沿一条侧棱剪开后展在一个平面上,侧面展开图是矩形,这个矩形的长等于直(正)棱柱的底面周长c,宽等于直(正)棱柱的高h,因此直(正)棱柱的侧面积是S ch=直棱柱侧.○2把正棱锥的侧面沿一条侧棱剪开后展在一个平面上,侧面展开图是由多个全等的等腰三角形组成的图形,若正棱锥的底面周长为c,斜高为h'(侧面等腰三角形底边上的高),由图可知它的侧面积是12S ch'=正棱锥侧.(证明:设正n棱锥底面边长为a,则1122S n ah ch'' ==侧)○3与正棱锥的的侧面展开图类似,正棱台的侧面展开图是由多个全等的等腰梯形组成的图形,若正棱台的上、下底面的周长分别为,c c ',斜高为h '(侧面等腰梯形的高),则其侧面积4正棱柱、正棱锥、正棱台的侧面积公式之间的关系可用下图表示: 011()22c c c S ch S c c h S ch ''=='''=←−−−=+−−−→=正棱柱侧正棱台侧正棱锥侧(2)圆柱、圆锥、圆台的侧面积分别画出一个圆柱、圆锥、圆台的侧面展开图. 圆柱的侧面展开图是一个矩形,圆锥的侧面展开图是一个扇形,圆台的侧面展开图是一个扇环.注:球的表面不可展开. 类比正棱柱、正棱锥、正棱台的侧面积计算公式,探究圆柱、圆锥、圆台的侧面积计算公式:(公式推导课后看教材5253P -)2S cl rl π==圆柱侧,12S cl rl π==圆锥侧,()()12S c c l r r l π''=+=+圆台侧(c 为(下)底面周长,c '为上底面周长,l 为母线长),它们之间的关系可用下图表示:()0112()22c c c S cl rl S c c l r r l S cl rlπππ''==''==←−−−=+=+−−−→==圆柱侧圆台侧圆锥侧5.例题讲解例1.已知11ABB A 是圆柱的轴截面(经过圆柱旋转轴的截面),15AA =,2AB =,一动点P 绕圆柱侧面一圈从1A 移动到A ,求动点P 经过的最短路程。

1.2.2常见几何体的表面展开图

1.2.2常见几何体的表面展开图

(1)这个几何体的名称是 圆柱 ; (2)求这个包装盒的表面积.
课件目录
首页
末页
1.2.2 常见几何体的表面展开图
解:(2)由图形可知:圆柱的底面半径r=5 cm,高h=20 cm,∴S表= S侧+2S底=2πrh+2πr2=200π+50π=250π(cm2).
【点悟】 解决展开与折叠问题的最好方法是亲自动手操作,在这一 过程中感悟展开与折叠、平面与立体的联系,发现问题的实质,从而解 决问题.
1.[2018·陕西]如图是一个几何体的表面展开图,则该几何体是 (C)
A.正方体 C.三棱柱
B.长方体 D.四棱锥
课件目录
首页
末页
1.2.2 常见几何体的表面展开图
2.如图是一个长方体包装盒,则它的平面展开图是( A )
课件目录
首页
末页
1.2.2 常见几何体的表面展开图
3.[2018秋·龙岗区期末]如图所示为几何体的平面展开图,则从左 到右,其对应的几何体名称分别为( D )
(2)这个八棱柱一共有24条棱,其中侧棱的长度都是6 cm,其他棱长 都是5 cm.
(3)将其侧面沿一条棱展开,展开图是一个长方形,长为5×8= 40(cm),宽是6 cm,该长方形的面积是40×6=240(cm2).
课件目录
首页
末页
七年级BS版数学
第一章 2 第2课时
1.2.2 常见几何体的表面展开图
第一章 丰富的图形世界
2 展开与折叠 第2课时 常见几何体的表面展开图
学习指南
知识管理
归类探究 当堂测评
分层作业
课件目录
首页
末页
1.2.2 常见几何体的表面展开图
学习指南

七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)

七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)

七年级苏教版数学复习要点考点专题四:立体图形及三视图知识点一常见立体图形1.立体图形与平面图形①有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形.②有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形.3.常见立体图形的分类曲面体圆柱、圆锥、球体按是否有顶点是棱柱、棱锥、圆锥否圆柱、球体总结:在对几何体分类时首先确定分类的标准,分类标准不同,结果也就不同,不论选择哪种分类标准,都要做到不重、不漏.4、点、线、面、体体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是几何体,几何体也称体.面:包围着体的是面.面有平面和曲面两种.线:面和面相交的地方形成线.点:线和线相交的地方是点.用运动的观点来看:点动成线、线动成面、面动成体.例1(中山区期末)三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.【解答】解:由图形的旋转性质,可知ABC旋转后的图形为C,故选:C.例2(邳州市期末)如图,在下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.【解答】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选:A.例3(皇姑区期末)下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.知识点二几何体的表面展开图1.展开图:有些几何体的表面可以展开成平面图形,这个平面图形称为相应几何体的表面展开图.2.常见立体图形的平面展开图(1)圆柱的表面展开图是两个相同的圆面和一个长方形组成的;(2)圆锥的表面展开图是由一个圆面和一个扇形组成的;(3)棱柱的表面展开图是由两个相同的多边形和一个长方形组成的,侧面展开图是一个长方形。

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解

立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是( ).解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是( ).A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( ).A.4 B.6 C.7 D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是( ).解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图( ).解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
E
考考你
1、如果“你”在前面,那么谁在后面?



你 们

2、“坚”在下,“就”在后,胜利在哪 里?



胜 利

圆柱
圆锥
长方体
三棱柱
三棱锥
上面立体图形的展开图会是什么样呢?
正方体的平面展开图
让我们一起来看一看,正方体的平面 展开图
正方体的平面展开图
同一个立体图形,按不同的方式展开 得到的平面展开图是不同的
正方体的平面展开图
下列什么样的立体图形?
折一折:
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?




拓展:你能将图形(1)、(3)修改后使其能折叠成棱柱吗?
想一想、试一试 同学们猜一猜,这个图 形能围成什么?
如图,是一个正方体的平面展开图, 每个面内部标注了字母, 则展开前与面E相对的是( ) A.面A B.面B C.面C D.面D
A D B F
相关文档
最新文档