一、几何与函数问题参考答案

合集下载

(完整版)《一次函数与几何图形综合》专题

(完整版)《一次函数与几何图形综合》专题

《一次函数与几何图形综合》专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。

一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。

1.代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2.几何(1)基本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3.代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)函数与几何综合题的解题思想方法:“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1.综合使用分析法和综合法。

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)1.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+72.如图,直线l:与y轴交于点A,将直线l绕点A顺时针旋转75°后,所得直线的解析式为()A.y=x+B.y=x﹣C.y=﹣x+D.y=x+3.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10B.y=﹣2x+14C.y=2x+2D.y=﹣x+5 4.将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+3 6.将直线y=﹣2x+1向下平移2个单位,平移后的直线表达式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x﹣1D.y=﹣2x+3 7.将直线y=x平移,使得它经过点(﹣2,0),则平移后的直线为()A.y=x﹣2B.y=x+1C.y=﹣x﹣2D.y=x+28.将一次函数y=3x向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离()A.4B.6C.6D.129.把直线y=2x﹣1向下平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 11.将直线y=3x沿y轴向下平移1个单位长度后得到的直线解析式为()A.y=3x+1B.y=3x﹣1C.y=x+1D.y=x﹣112.在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2B.y=2x﹣5C.y=2x+1D.y=2x﹣113.将直线y=2x+1向上平移3个单位后得到的解析式为.14.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.16.将直线y=2x﹣5向上平移3个单位长度,所得直线的解析式为.17.把直线y=﹣2x+5向下平移2个单位,得到的直线解析式是.18.在平面直角坐标系xOy中,将函数y=3x+3图象向右平移5个单位长度,则平移后的图象与x轴、y轴分别交于A、B两点,则△AOB的面积为.19.将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.20.将直线y=﹣2x+3向下平移5个单位,得到直线.21.将直线y=2x向上平移2个单位后得到的直线解析式为.22.在平面直角坐标系中,把直线y=x沿y轴向上平移后得到直线AB,如果点P(m,n)是直线AB上的一点,且m﹣n+8=0,那么直线AB的函数表达式为.23.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.24.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x轴交点的坐标;(3)在(2)的条件下,直接写出y>0时,x的取值范围.25.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小红对函数y=的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象:x…﹣10123456…y……(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于y轴对称;②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.(3)若直线y=x+b与函数y=的图象只有一个交点,求b的值.26.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A,B两点.(1)在图中画出该一次函数并求其表达式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.27.有这样一个问题:探究函数y=|x+1|的图象与性质.小明根据学习一次函数的经验,对函数y=|x+1|的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)如表是x与y的几组对应值.x…﹣5﹣4﹣3﹣2﹣10123…y…432m01234…m的值为;(3)在如图网格中,建立平面直角坐标系xOy,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当x>﹣1时,y随x的增大而增大;③图象关于过点(﹣1,0)且垂直于x轴的直线对称.小明得出的结论中正确的是.(只填序号)28.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.29.一次函数y=2x+a的图象与x轴交与点(2,0),(1)求出a的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.30.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.31.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点.(1)求一次函数的解析式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.32.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x、y轴分别相交于点A、B,此直线向下平移后与y轴相交于点C、与x轴相交于点D,四边形ABCD的面积为18.(1)求直线CD的表达式;(2)如果点E在直线CD上,四边形ABED是等腰梯形,求点E的坐标.参考答案1.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.2.解:由直线l:可知,直线与x轴的夹角为60°,∴与y轴的夹角为30°,∴直线l绕点A顺时针旋转75°后的直线与y轴的夹角为45°,∴旋转后的直线的斜率为1,∵直线l:与y轴交于点A,∴A(0,).∴旋转后的直线解析式为:y=x+,故选:D.3.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.4.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.5.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+1+2,即y=﹣2x+3故选:D.6.解:由题意得:平移后的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,即.所得直线的表达式是y=﹣2x﹣1.故选:C.7.解:设平移后直线的解析式为y=x+b.把(﹣2,0)代入直线解析式得0=﹣2+b解得b=2所以平移后直线的解析式为y=x+2.故选:D.8.解:设平移的距离为k(k>0),则将一次函数y=3x向左平移后所得直线解析式为:y =3(x+k)=3x+3k.易求得新直线与坐标轴的交点为(﹣k,0)、(0,3k)所以,新直线与坐标轴所围成的三角形的面积为:•3k=24,解得k=4或﹣4(舍去).故选:A.9.解:根据题意,把直线y=2x﹣1向下平移1个单位后得到的直线解析式为:y=2x﹣1﹣1,即y=2x﹣2,故选:A.10.解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.11.解:由“上加下减”的原则可知:将直线y=3x沿y轴向下平移1个单位长度后,其直线解析式为y=3x﹣1.故选:B.12.解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选:D.13.解:由“上加下减”的原则可知,把直线y=2x+1上平移3个单位长度后所得直线的解析式为:y=2x+1+3,即y=2x+4,故答案为:y=2x+4.14.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.15.解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移3个单位所得函数的解析式为y=2x﹣5+3,即y=2x﹣2.故答案为:y=2x﹣2.17.解:由“上加下减”的原则可知,把直线y=﹣2x+5向下平移2个单位后所得直线的解析式为:y=﹣2x+5﹣2,即y=﹣2x+3.故答案为:y=﹣2x+3.18.解:根据题意知,平移后直线方程为y=3(x﹣5)+3=3x﹣12.所以A(4,0),B(0,﹣12).故OA=4,OB=12.所以S△AOB=OA•OB==24.故答案是:24.19.解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.20.解:原直线的k=﹣2,b=3.向下平移5个单位长度得到了新直线,那么新直线的k=﹣2,b=3﹣5=﹣2.∴新直线的解析式为y=﹣2x﹣2.故答案为:y=﹣2x﹣2.21.解:直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.故答案为y=2x+2.22.解:设直线AB的解析式为y=x+b.将(m,n)代入y=x+b,得m+b=n,则m﹣n+8=0,∴b=8,∴直线AB的解析式为y=x+8.故答案为y=x+8.23.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;24.解:(1)当x=2时,y=﹣3,∴﹣3=2k﹣4,则,∴,(2)图象向上平移6个单位长度,∴,当y=0时,x=﹣4,∴平移后的图象与x轴交点的坐标为(﹣4,0),(3)y>0时,x的取值范围为x>﹣4.25.解:(1)补充表格:x…﹣10123456…y…﹣2﹣1012222…画出函数图象如图所示:(2)由图象可知,正确的性质为②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.故答案为②③;(3)直线y=x+b与函数y=的图象只有一个交点,根据图象直线y=+b经过点(3,2),∴2=+b,∴b=.26.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,5),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=3x+2;(2)点(a﹣3,﹣a)在该一次函数y=3x+2的图象上,∴﹣a=3(a﹣3)+2,解得,a=,即a的值是;(3)把y=3x+2向下平移3个单位后可得:y=3x+2﹣3=3x﹣1,图象如图:27.解:(1)在函数y=|x+1|中,自变量x的取值范围是x为任意实数,故答案为:x为任意实数;(2)当x=﹣2时,m=|﹣2+1|=1,故答案为1;(3)画出函数的图象如图:;(4)由函数图象可知,①函数有最小值为0,正确;②当x>﹣1时,y随x的增大而增大,正确;③图象关于过点(﹣1,0)且垂直于x轴的直线对称,正确;.故答案为:①②③.28.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;29.解:(1)∵一次函数y=2x+a的图象与x轴交与点(2,0),∴4+a=0,解得a=﹣4;(2)将一次函数y=2x﹣4的图象向上平移5个单位长度,得到y=2x﹣4+5,即y=2x+1,故平移后的函数解析式为y=2x+1.30.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或.31.解:(1)∵一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点,∴,解得,即该一次函数的表达式是y=2x﹣1;(2)点(a﹣3,﹣a)在该一次函数y=2x﹣1的图象上,∴﹣a=2(a﹣3)﹣1,解得,a=,即a的值是;(3)把y=2x﹣1向下平移3个单位后可得:y=2x﹣1﹣3=2x﹣4,图象如图:32.解:(1)∵直线y=﹣x+8与x、y轴分别相交于点A、B,∴A(6,0)B(0,8),∴OA=6,OB=8,∴AB===10,∴S△AOB==24,四边形ABCD的面积为18.∴S△COD=24﹣18=6,∵AB∥CD,∴△COD∽△BOA,∴=()2,即=,∴OC=4,∴C(0,4),∴直线CD的解析式为:y=﹣x+4;(2)作DM⊥AB于M,EN⊥AB于N,∵四边形ABED是等腰梯形,∴AD=BE,∠DAB=∠EBA,∵∠DMA=∠ENB=90°,∴△ADM≌△BEN(AAS),∴AM=BN,∵直线CD的解析式为:y=﹣x+4,∴D(3,0),∴OD=3,∴AD=6﹣3=3,∵∠AMD=∠AOB,∠DAM=∠BAO,∴△ADM∽△ABO,∴=,即,∴AM=,∴BN=AM=,∴MN=10﹣2×=,∴ED=MN=,∵OD=3,OC=4,∴CD==5,∴CE=DE﹣CD=﹣5=,作EH⊥x轴于H,则EH∥OC,∴,即=,∴OH=,∴E的横坐标为﹣,把x=﹣代入直线CD:y=﹣x+4得y=,∴点E的坐标为(﹣,).。

一次函数—3.4一次函数几何应用2新定义问题、翻折问题、公共点问题鲁教版(五四制)九年级数学复习训练

一次函数—3.4一次函数几何应用2新定义问题、翻折问题、公共点问题鲁教版(五四制)九年级数学复习训练

一次函数几何图形3本习题为一次函数与新定义问题、翻折问题、公共点问题等类型一:新定义【经典例题1】对于正数x,用符号[x]表示x的整数部分,例如:[0.1]=0,[2.5]=2,[3]=3.点A(a,b)在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直.其中垂直于y轴的边长为a,垂直于x轴的边长为[b]+1,那么,把这个矩形覆盖的区域叫做点A的矩形域.例如:点的矩形域是一个以为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点的矩形域,该矩形域的面积是;(2)点的矩形域重叠部分面积为1,求a的值;(3)已知点B(m,n)(m>0)在直线y=x+1上,且点B的矩形域的面积S 满足4<S<5,那么m的取值范围是.(直接写出结果)【解析】(1)点(2,)的矩形域如图所示:该该矩形域的面积是8.(2)如图所示,因为点P(2,),Q(a,)(a>0)的矩形域重叠部分面积为1,且平行于y轴的边长均为4,所以点P(2,),Q(a,)(a>0)的矩形域重叠部分也是一个矩形,且平行于y轴的边长为4,平行于x轴的边长为.①当0<a<2时,a+=1+,解得a=;②当a>2时,a﹣=3﹣,解得a=.所以a的值为或.(3)当m=1时,S=3,当m=2时,S=8,∵4<S<5,∴1<m<2,∴平行于y轴的矩形的边长为3,∴平行于x轴的矩形的边长m的范围为<m<.故答案为<m<.练习1-1对于平面直角坐标系xOy中的点和⊙O,给出如下定义:过点A的直线l交⊙O于B,C两点,且A、B、C三点不重合,若在A、B、C三点中,存在位于中间的点恰为以另外两点为端点线段的中点时,则称点A为⊙O的价值点.(1)如图1,当⊙O的半径为1时.①分别判断在点D(,),E(﹣1,),F(2,3)中,是⊙O的价值点有;②若点P是⊙O的价值点,点P的坐标为(x,0),且x>0,则x的最大值为.(2)如图2,直线y=﹣x+3与x轴,y轴分别交于M、N两点,⊙O半径为1,直线MN上是否存在⊙O的价值点?若存在,求出这些点的横坐标的取值范围,若不存在,请说明理由;(3)如图3,直线y=﹣x+2与x轴、y轴分别交于G、H两点,⊙C的半径为1,且⊙C在x轴上滑动,若线段GH上存在⊙C的价值点P,求出圆心C 的横坐标的取值范围.【解析】(1)①如图1中,观察图象可知,D、E是⊙O的价值点.②如图2中,当P点坐标为(3,0)时,x的值最大.x的最大值为3.故答案为D,E;3.(2)当点A在⊙O内部时,点A必为价值点,当点A在⊙O外部时,∵⊙O的半径为1,∴BC的最大值为2,人2点A为价值点,则AB=CB=2,∴OA=3,故以O为圆心,半径为3的圆内的点(不包括⊙O上的点)均为价值点,对于函数y=﹣x+3,令y=0,则x=3,∴M(3,0),令x=0,则y=3,∴N(0,3),∴tan∠ONM===,∴∠ONM=60°,∴OP=ON•sin∠ONM=3×=>1,∴直线MN上的点均在圆外,如图3中,以O为圆心,ON为半径画圆,交直线MN于点G,则OG=ON=3,∴⊙O的价值点必在线段NG上,∵∠ONM=60°,OG=ON=3,∴△ONG是等边三角形,∴∠NOG=60°,∴∠MOG=30°,过点G作GH⊥OM于点H∵OG=3,∴OH=OG•cos30°=,∴价值点横坐标的取值范围为0≤x≤.(3)对于函数y=﹣x+2,令y=0,则x=6,∴G(6,0),令x=0,则y=2,∴H(0,2),∴tan∠HGO===,∴∠HGO=30°,过点O作OK⊥HG于K,则OK=OG=3,∴当⊙C的圆心在点O时,HG上恰好存在⊙C的价值点K,∵⊙C的价值点是在以点C为圆心,半径为3的圆内(不包括⊙C上的点),∴当点C的坐标为(9,0)时,⊙C的价值点为点C,∴圆心C的横坐标的取值范围为0≤x≤9.练习1-2定义:对于平面直角坐标系xOy中的点P(a,b)和直线y=ax+b,我们称点P(a,b)是直线y=ax+b的关联点,直线y=ax+b是点P(a,b)的关联直线.特别地,当a=0时,直线y=b(b为常数)的关联点为P(0,b).如图,已知点A(﹣2,﹣2),B(4,﹣2),C(1,4).(1)点A的关联直线的解析式为;直线AB的关联点的坐标为;(2)设直线AC的关联点为点D,直线BC的关联点为点E,点P在y轴上,且S△DEP=2,求点P的坐标.(3)点M(m,n)是折线段AC→CB(包含端点A,B)上的一个动点.直线l 是点M的关联直线,当直线l与△ABC恰有两个公共点时,直接写出m的取值范围.【解析】(1)设直线AB的解析式为:y=kx+b,把点A(﹣2,﹣2),B(4,﹣2)代入得:,解得:,∴直线AB的解析式为:y=﹣2,∴点A的关联直线的解析式为y=﹣2x﹣2;直线AB的关联点的坐标为:(0,﹣2);故答案为:y=﹣2x﹣2,(0,﹣2);(2)∵点A(﹣2,﹣2),B(4,﹣2),C(1,4).∴直线AC的解析式为y=2x+2,直线BC的解析式为y=﹣2x+6,∴D(2,2),E(﹣2,6).∴直线DE的解析式为y=﹣x+4,∴直线DE与y轴交于点F(0,4),如图1,设点P(0,y),∵S△DEP=2,∴S△DEP=S△EFP+S△DFP=×|﹣2|+=2,解得y=5或y=3,∴P(0,5)或P(0,3).(3)①当M在线段AC上时,如图2,∵AC:y=2x+2,∴设M(m,2m+2)(﹣2≤m≤1),则关联直线l:y=mx+2m+2,把C(1,4)代入y=mx+2m+2得:m+2m+2=4,m=,∴﹣2≤m<;②当M在线段BC上时,如图3,∵BC:y=﹣2x+6,∴设M(m,﹣2m+6)(1≤m≤4),则关联直线l:y=mx﹣2m+6,把C(1,4)代入y=mx﹣2m+6得:m﹣2m+6=4,m=2,∴2<m≤4;综上,﹣2≤m<,或2<m≤4.练习1-3【数学阅读】如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.小尧的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC 的面积可以证得:PD+PE=CF.【推广延伸】如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.【解决问题】如图4,在平面直角坐标系中有两条直线l1、l2,分别是函数y1=﹣x+3,和y2:y=3x+3的图象,l1,l2与x轴的交点分别为A,B.(1)两条直线的交点C的坐标为;(2)说明△ABC是等腰三角形;(3)若l2上的一点M到l1的距离是1,运用上面的结论,求点M的坐标.【解析】【数学阅读】如图②,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP+S△ACP=S△ABC,∴AB•PD+AC•PE=AB•CF,又∵AB=AC,∴PD+PE=CF;【推广延伸】猜想:PD﹣PE=CF,证明:如图③,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP﹣S△ACP=S△ABC,∴AB•PD﹣AC•PE=AB•CF,又∵AB=AC,∴PD﹣PE=CF;【解决问题】(1)由题意得,解得,则两条直线的交点C的坐标为(0,3),故答案为:(0,3);(2)l1:y=﹣x+3,令y=0,则x=4,∴A(4,0).l2:y=3x+3,令y=0,则x=﹣1,∴B(﹣1,0),∴AB=5,在Rt△AOC中,∠AOC=90°,∴AC2=AO2+CO2 ,∴AC=5,∴AB=AC=5,∴△ABC是等腰三角形.(3)当M在线段BC上时,过M分别作MP⊥x轴,MQ⊥AC,垂足分别为P、Q,∵l2上的一点M到l1的距离是1,∴MQ=1,由图②的结论得:MP+MQ=3,∴MP=2,∴M点的纵坐标为2,又∵M在直线y=3x+3,∴当y=2时,x=﹣,∴M坐标为(﹣,2);同理,由前面结论可知当M点在线段AC外时,有|MP﹣MQ|=OC,可求得MP=4或MP=﹣2,即M点的纵坐标为4或﹣2,分别代入y=3x+3,可求得x=或x=(舍,因为它到l1的距离不是1),∴M点的坐标为(,4);综上可知M点的坐标为(﹣,2)或(,4).练习1-4知识再现:如果M(x1,y1),N(x2,y2),则线段MN的中点坐标为(,);对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数图象平行,则k1=k2且b1≠b2;若两个一次函数图象垂直,则k1•k2=﹣1.提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.在平面直角坐标系中,已知点A(0,8),B(6,0).(1)如图1,把直线AB向右平移使它经过点P(6,4),如果平移后的直线交y轴于点A′,交x轴于点B′,请确定直线A′B′的解析式.(2)如图2,连接BP,求B′P的长.(3)已知点C是直线y=﹣x上一个动点,以AB为对角线的四边形ACBD是平行四边形,当CD取最小值时,请在图3中画出满足条件的▱ACBD,并直接写出此时C点坐标.【解析】(1)设直线AB的解析式为:y=kx+b,且过点A(0,8),B(6,0).∴∴∴直线AB的解析式为:y=﹣x+8∵直线AB向右平移使它经过点P(6,4),∴直线A'B'的解析式为:y=﹣x+b,且过点P(6,4)∴4=﹣×6+b ∴b=12∴直线A'B'的解析式为:y=﹣x+12(2)∵直线A'B'交y轴于点A′,交x轴于点B’∴当x=0时,y=12,当y=0时,x=9∴点A'坐标(0,12),点B'坐标(9,0)∵P(6,4),B(6,0),点B'坐标(9,0)∴PB⊥x轴,BP=4,BB'=3∴B'P==5(3)如图,设AB与CD的交点为E,∵四边形ACBD是平行四边形∴EC=DE=CD,AE=BE,∴要使CD取最小值,即CE的值最小,由垂线段最短可得:当CE⊥CO时,CE的值最小,即CD的值最小,∵点A(0,8),B(6,0),且AE=BE∴点E(3,4)∵CD⊥CO,直线CO解析式为:y=﹣x∴设CE解析式为:y=x+n,且过点E(3,4)∴4=3+n∴n=1∴CE解析式为:y=x+1∴联立直线CE和OC的解析式成方程组,得解得∴点C(﹣,)类型二:翻折问题【经典例题2】如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD 的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【解析】(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.练习2-1如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(I)OE=,OF=(用含t的代数式表示)(II)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=0.求S与b之间的函数关系式,并求出自变量b的取值范围.【解析】(I)∵O(0,0),A(6,0),C(0,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点F从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相等的速度沿AO向终点O运动.∴当点E的运动时间为t(秒)时,AE=t,OF=+t,则OE=OA﹣AE=6﹣t;故答案为:6﹣t,+t;(II)①当t=1时,OF=1+=,OE=6﹣1=5,则CF=OC﹣OF=3﹣=,由折叠可知:△OEF≌△DEF,∴OF=DF=,由勾股定理,得:CD=1,∴D(1,3);∵E(5,0),∴设直线DE的解析式为:y=mx+n(k≠0),把D(1,3)和E(5,0)代入得:,解得:,∴直线DE的解析式为:y=﹣x+;②∵MN∥DE,∴MN的解析式为:y=﹣x+b,当y=3时,﹣x+b=3,x=(b﹣3)=b﹣4,∴CM=b﹣4,分三种情况:i)当M在边CB上时,如图2,∴BM=6﹣CM=6﹣(b﹣4)=10﹣b,DM=CM﹣1=b﹣5,∵0≤DM<5,即0≤b﹣5<5,∴≤b<,∴S===15﹣2b=﹣2b+15(≤b<);ii)当M与点B重合时,b=,S=0;iii)当M在DB的延长线上时,如图3,∴BM=CM﹣6=b﹣10,DM=CM﹣1=b﹣5,∵DM>5,即b﹣5>5,∴b>,∴S===2b﹣15(b>);综上,S=.类型三公共点【经典例题3】如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.(1)求直线AC的表达式;(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;(3)直线l:y=kx+10与矩形OABC没有公共点,直接写出k的取值范围.【解析】(1)∵OA=8,OC=6,∴A(8,0),C(0,6),设直线AC表达式为y=kx+b,∴,解得,∴直线AC表达式为y=﹣x+6;(2)∵直线y=x+b可以看到是由直线y=x平移得到,∴当直线y=x+b过A、C时,直线与矩形OABC有一个公共点,如图1,当过点A时,代入可得0=8+b,解得b=﹣8,当过点C时,可得b=6,∴直线y=x+b与矩形OABC有公共点时,b的取值范围为﹣8≤b≤6;(3)∵y=kx+10,∴直线l过D(0,10),且B(8,6),如图2,直线l绕点D旋转,当直线过点B时,与矩形OABC有一个公共点,逆时针旋转到与y轴重合时与矩形OABC有公共点,当过点B时,代入可得6=8k+10,解得k=﹣,∴直线l :y =kx +10与矩形OABC 没有公共点时k 的取值范围为k >﹣.练习3-1函数1()23()2x m x m y x m x m ⎧-≤⎪⎪=⎨⎪-+>⎪⎩的图象记为G (m 为常数),当G 与x 轴存在两个交点时,设交点为A 和B (点A 在点B 的左侧),(1)当0m =时,直接写出与时间之间的函数的关系式;(2)当6m =时,求出点A 和点B 的坐标;(3)当G 在0x ≤部分的最高点到x 轴的距离为2时,求m 的值;(4)点M 的坐标为()5,3--,点N 的坐标为()1,3-,当G 与线段MN 有且仅有一个公共点时,直接写出m 的取值范围.【答案】(1)()()00x x y x x ⎧≤⎪=⎨->⎪⎩;(2)()()3,0,9,0A B ;(3)4或-4;(4)483m -<≤ 或1643m -<≤- 【解析】(1)将m=0代入函数即可得出结果;(2)将m=6代入得到函数解析式,再令y=0即可得到结果;(3)分两种情况讨论即可:①当m >0时,①当m<0时;(4)将()1,3-,()5,3--分别代入解析式即可得出结果.解:(1)()()00x x y x x ⎧≤⎪=⎨->⎪⎩(2)将m=6时,代入解析式得到()()3696x x y x x ⎧-≤⎪=⎨-+>⎪⎩,当0y =时,1239x x =⎧⎨=⎩,则()()3,0,9,0A B ; (3)当0m >时,0x ≤的最高点即为10,2m ⎛⎫- ⎪⎝⎭, 则12,42m m -==-(舍),12,42m m -=-=, 当0m <时,0x ≤的最高点即为1,2m m ⎛⎫ ⎪⎝⎭, 则12,42m m ==(舍),12,42m m =-=-, (4)()1,3-代入1,82y x m m =-=, ()1,3-代入34,23y x m m =-+=-, ()5,3--代入1,42y x m m =-=-, ()5,3--代入316,23y x m m =-+=-, 483m -<≤或1643m -<≤-. 练习3-1(附)如图:在平面直角坐标系xOy 中,过点A (﹣2,0)的直线l 1和直线l 2:y =2x 相交于点B (2,m ).(1)求直线l 1的表达式;(2)过动点P (n ,0)(n <0)且垂直于x 轴的直线与l 1、l 2的交点分别为C ,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.【解析】(1)将点B的坐标代入y=2x得,m=2×2=4,故点B(2,4),设直线l1的表达式为y=kx+b,将点A、B的坐标代入上式并解得:,解得,故直线l1的表达式为:y=x+2;(2)①当n=﹣1时,如下图,从图中可以看出,整点个数为1,即点(0,1);②如上图,当n=﹣2时,△BCD的内部(不含边上)恰有3个整点,故﹣2≤n<﹣1.练习3-2如图,墙面OC与地面OD垂直,一架梯子AB长5米,开始时梯子紧贴墙面,梯子顶端A沿墙面匀速每分钟向下滑动1米,x分钟后点A滑动到点A′,梯子底端B沿地面向左滑动到点B′,OB′=y米,滑动时梯子长度保持不变.(1)当x=1时,y=米;(2)求y关于x的函数关系式,并写出自变量x的取值范围;(3)梯子底端B沿地面向左滑动的速度是A.匀速B.先加速后减速C.减速D.先减速后加速(4)研究(2)中函数图象及其性质.①在所给的坐标系中画出函数图象;②观察图象,你发现,它到的距离都是个单位(5)梯子在滑动过程中,它的中点Q的运动路径长.【解析】(1)x=1时,A′B=5﹣1=4,A′B′=5,∵∠O=90°,∴y=OB′==3.故答案为3;(2)y==,(0≤x≤5);(3)如图2中,在半径OQ上取AB=BC,过A、B、C作x轴的垂线交圆弧于D、E、F,作DM⊥BE,EN⊥CF,延长DE交CF于G.那么GN=EM,∵GN>FN,∴EM>FN,即点A移动的距离大于点B移动的距离,∴是减速,故选C.(4)填表:②图象如图所示:∵y=,∴y2+(5﹣x)2=52,即PQ2=PR2+RQ2=25,∴PQ=5,∴P到点Q(5,0)的距离是5个单位,故答案为:Q(5,0),5;(5)(4)可知,函数图象是以Q为圆心的圆弧,∴它的中点Q的运动路径长==π.故答案为:π.练习3-3在平面直角坐标系中,直线ABy=kx﹣1分别交x轴、y轴于点A、B,直线CDy=x+2分别交x轴、y轴于点D、C,且直线AB、CD交于点E,E的横坐标为﹣6.(1)如图①,求直线AB 的解析式;(2)如图①,点P 为直线BA 第一象限上一点,过P 作y 轴的平行线交直线CD 于G ,交x 轴于F ,在线段PG 取点N ,在线段AF 上取点Q ,使GN =QF ,在DG 上取点M ,连接MN 、QN ,若①GMN =①QNF ,求DGDM 的值; (3)在(2)的条件下,点E 关于x 轴对称点为T ,连接MP 、TQ ,若MP①TQ ,且GN :NP =4:3,求点P 的坐标.【解析】将x =﹣6代入y =x+2中得y =﹣4①E(﹣6,﹣4),将E(﹣6,﹣4)代入y =kx ﹣1中,得﹣4=﹣6k ﹣1,解得k =, ①直线AB 的解析式为y =x ﹣1(2)解:如图①,延长GF 至H ,使FH =FQ ,连接QH ,①①QFH =90°,GN =QF①QH = FQ = GN ,①NHQ =45°在y=x+2中令x=0,得y=2,令y=0,得x=﹣2,①C(0,2),D(﹣2,0),①OC=OD=2①①COD=90°①①OCD=①ODC=45°①FG①OC①①DGF=①DCO=45°,①DFG=①COD=90°①DG=FG,①MGN=①NHQ=45°①①GMN=①QNF①①GMN①①HNQ①①NH=MG①GN=FQ=FH①FN+GN=FN+FH,即FG=NH①DG=FG=NH=× MG=2MG①DG=DM+MG=2MG①DM=MG=DG① = =(3)解:如图①,点T与E关于x轴对称,①T(﹣6,4)①点P在直线BA第一象限上①设点P坐标为(p,p﹣1)(p>2)①FG①y轴①F(p,0),G(p,p+2),①PF=p﹣1,GF=p+2①GP=GF﹣PF=p+3①GN:NP=4:3①FQ=GN=GP=①x Q=p﹣,即Q( ,0)设直线TQ解析式为:y=ax+b① 解得:a=① = ,即点M为DG中点①M( ,)设直线MP解析式为:y=cx+d① 解得:c=①MP①TQ①a=c,即解得:p=8①点P坐标为(8,3)练习3-4如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE=S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.【解析】(1)∵直线y=﹣x+b分别与x轴交于A(6,0),∴b=6,∴直线AB的解析式是:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,∴OC=2,∴C(﹣2,0)设BC的解析式是y=kx+b,∴解得,直线BC的解析式是:y=3x+6;(2)存在.理由如下:如图1中,∵S△BDF=S△BDE,∴只需DF=DE,即D为EF中点,∵点E为直线AB与EF的交点,∴∴点E(,)∵点F为直线BC与EF的交点,∴∴点F(,)∵D为EF中点,∴+,∴a=0舍去,a=(3)K点的位置不发生变化.理由如下:如图2中,过点Q作CQ⊥x轴,设PA=m,∵∠POB=∠PCQ=∠BPQ=90°,∴∠OPB+∠QPC=90°,∠QPC+∠PQC=90°,∴∠OPB=∠PQC,∵PB=PQ,∴△BOP≌△PCQ(AAS),∴BO=PC=6,OP=CQ=6+m,∴AC=QC=6+m,∴∠QAC=∠OAK=45°,∴OA=OK=6,∴K(0,﹣6).练习3-5如图,已知直线y=kx+4(k≠0)经过点(﹣1,3),交x轴于点A,y 轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.(1)当0<t<4时,求证:FC=FD;(2)连接CD,若△FDC的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,+是否为定值?若是,请求出这个定值;若不是,请说明理由.【解析】(1)证明:连接OF,如图1所示:∵直线y=kx+4(k≠0)经过点(﹣1,3),∴﹣k+4=3,解得:k=1,∴直线y=x+4,当y=0时,x=﹣4;当x=0时,y=4;∴A(﹣4,0),B(0,4),∴OA=OB=4,∵∠AOB=90°,∴△AOB是等腰直角三角形,∴∠CBF=45°,∵F为线段AB的中点,∴OF=AB=BF,OF⊥AB,∠DOF=∠AOB=45°=∠CBF,∴∠OFB=90°,∵DF⊥CF,∴∠DFC=90°,∴∠OFD=∠BFC,在△BCF和△ODF中,,∴△BCF≌△ODF(ASA),∴FC=FD;(2)解:①当0<t<4时,连接OF,如图2所示:由题意得:OC=t,BC=4﹣t,由(1)得:△BCF≌△ODF,∴BC=OD=4﹣t,∴CD2=OD2+OC2=(4﹣t)2+t2=2t2﹣8t+16,∵FC=FD,∠DFC=90°,∴△FDC是等腰直角三角形,∴FC2=CD2,∴△FDC的面积S=FC2=×CD2=(2t2﹣8t+16)=t2﹣2t+4;②当t≥4时,连接OF,如图3所示:由题意得:OC=t,BC=t﹣4,由(1)得:△BCF≌△ODF,∴BC=OD=t﹣4,∴CD2=OD2+OC2=(t﹣4)2+t2=2t2﹣8t+16,∵FC=FD,∠DFC=90°,∴△FDC是等腰直角三角形,∴FC2=CD2,∴△FDC的面积S=FC2=×CD2=(2t2﹣8t+16)=t2﹣2t+4;综上所述,S与t的函数关系式为S=t2﹣2t+4;(3)解:+为定值;理由如下:①当0<t<4时,如图4所示:当设直线CF的解析式为y=ax+t,∵A(﹣4,0),B(0,4),F为线段AB的中点,∴F(﹣2,2),把点F(﹣2,2)代入y=ax+t得:﹣2a+t=2,解得:a=(t﹣2),∴直线CF的解析式为y═(t﹣2)x+t,当y=0时,x=,∴G(,0),∴OG=,∴+=+==;②当t≥4时,如图5所示:同①得:+=+==;综上所述,+为定值.。

一次函数和几何综合题含答案

一次函数和几何综合题含答案

一次函数和几何综合题含答案1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共10小题)1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.(2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.(3)本题分三种情况进行讨论,设点P的坐标为(t,0):①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值.②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①.③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②.综合上面三种情况即可求出符合条件的t的值.解答:解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF==,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y=x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP=.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°=×=.DG=BD•sin60°=×=.∴OH=EG=,DH=∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP=,BE=2,AB=4,则有,解得BG=,DG=;∴OH=,DH=;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG=t,∴DH=2+t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在y轴上时,根据勾股定理求出BD==OP,∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t,∴GH=BF=2﹣(﹣t)=2+t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t≤时,如图3,BD=OP=﹣t,DG=﹣t,∴DH=﹣t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2+t)]=,解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).点评:本题综合考查的是一次函数的应用,包括待定系数法求解析式、旋转的性质、相似三角形的判定和性质、三角形面积公式的应用等,难度较大.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.专题:压轴题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,当t=﹣=时,S矩形PEFQ的最大,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题.专题:压轴题.分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过解一元二次方程x2﹣(+1)x+=0,求得方程的两个根,从而得到A、B两点的坐标,再根据两点之间的距离公式可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标;(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=QA三种情况讨论可求Q点的坐标.解答:解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q4(1,).点评:考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;角平分线的性质;勾股定理;菱形的性质.专题:计算题.分析:(1)根据A的坐标求出AH、OH,根据勾股定理求出即可;(2)根据菱形性质求出B、C的坐标,设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得到方程组,求出即可;(3)①过M作MN⊥BC于N,根据角平分线性质求出MN,P在AB上,根据三角形面积公式求出即可;P 在BC上,根据三角形面积公式求出即可;②求出P在AB的最大值和P在BC上的最大值比较即可得到答案.解答:(1)解:∵A(﹣3,4),∴AH=3,OH=4,由勾股定理得:AO==5,答:OA的长是5.(2)解:∵菱形OABC,∴OA=OC=BC=AB=5,5﹣3=2,∴B(2,4),C(5,0),设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得:,解得:,∴直线AC的解析式为,当x=0时,y=2.5∴M(0,2.5),答:直线AC的解析式是,点M的坐标是(0,2.5).(3)①解:过M作MN⊥BC于N,∵菱形OABC,∴∠BAC=∠OCA,∵MO⊥CO,MN⊥BC,∴OM=MN,当0≤t<2.5时,P在AB上,MH=4﹣2.5=,S=×BP×MH=×(5﹣2t)×=﹣t+,∴,当t=2.5时,P与B重合,△PMB不存在;当2.5<t≤5时,P在BC上,S=×PB×MN=×(2t﹣5)×=t﹣,∴,答:S与t的函数关系式是(0≤t<2.5)或(2.5<t≤5).②解:当P在AB上时,高MH一定,只有BP取最大值即可,即P与A重合,S最大是×5×=,同理在BC上时,P与C重合时,S最大是×5×=,∴S的最大值是,答:S的最大值是.点评:本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.解答:(1)证明:∵∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,∵,∴△AOG≌△ADG(HL);(2)解:PG=OG+BP.由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,所以,2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,故∠PAG=∠DAG+∠DAP=45°,∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP;(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,AG=2OG,AG2=AO2+OG2,∴OG=,则G点坐标为:(,0),CG=3﹣,在Rt△PCG中,PG=2CG=2(3﹣),PC==3﹣3,则P点坐标为:(3,3﹣3),设直线PE的解析式为y=kx+b,则,解得,所以,直线PE的解析式为y=x﹣3.点评:本题考查了一次函数的综合运用.关键是根据正方形的性质证明三角形全等,根据三角形全等的性质求角、边的关系,利用特殊角解直角三角形,求P、G两点坐标,确定直线解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.考点:一次函数综合题.专题:压轴题;探究型.分析:(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P(1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.解答:解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数的性质和点的意义表示出相应的线段的长度,再结合三角形全等和等腰三角形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.考点:一次函数综合题.专题:综合题;数形结合.分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.解答:解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:开放型.分析:(1)已知直线解析式,令y=0,求出x的值,可求出点A,B的坐标.联立方程组求出点P的坐标.推出AO=QO,可得出∠PAB=45°.(2)先根据CQ:AO=1:2得到m、n的关系,然后求出S△AOQ,S△PAB并都用字母m表示,根据S四边形PQOB=S△PAB ﹣S△AOQ积列式求解即可求出m的值,从而也可求出n的值,继而可推出点P的坐标以及直线PA与PB的函数表达式.(3)本题要依靠辅助线的帮助.求证相关图形为平行四边形,继而求出D1,D2,D3的坐标.解答:解:(1)在直线y=x+m中,令y=0,得x=﹣m.∴点A(﹣m,0).在直线y=﹣3x+n中,令y=0,得.∴点B(,0).由,得,∴点P(,).在直线y=x+m中,令x=0,得y=m,∴|﹣m|=|m|,即有AO=QO.又∵∠AOQ=90°,∴△AOQ是等腰直角三角形,∴∠PAB=45°.(2)∵CQ:AO=1:2,∴(n﹣m):m=1:2,整理得3m=2n,∴n=m,∴==m,而S四边形PQOB=S△PAB﹣S△AOQ=(+m)×(m)﹣×m×m=m2=,解得m=±4,∵m>0,∴m=4,∴n=m=6,∴P().∴PA的函数表达式为y=x+4,PB的函数表达式为y=﹣3x+6.(3)存在.过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3.①∵PD1∥AB且BD1∥AP,∴PABD1是平行四边形.此时PD1=AB,易得;②∵PD2∥AB且AD2∥BP,∴PBAD2是平行四边形.此时PD2=AB,易得;③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.∵BD3∥AP且B(2,O),∴y BD3=x﹣2.同理可得y AD3=﹣3x﹣12,得,∴.点评:本题的综合性强,主要考查的知识点为一次函数的应用,平行四边形的判定以及面积的灵活计算.难度较大.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)先求出A、B两点的坐标,再由一个角等于30°,求出AC的长,从而计算出面积;(2)过P作PD⊥x轴,垂足为D,先求出梯形ODPB的面积和△AOB的面积之和,再减去△APD的面积,即是△APB的面积;根据△APB与△ABC面积相等,求得m的值;(3)假设存在点Q,使△QAB是等腰三角形,求出Q点的坐标即可.解答:解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD==,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q2(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.。

2020中考数学:压轴题常见的6种类型

2020中考数学:压轴题常见的6种类型

2020中考数学:压轴题常见的6种类型其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。

第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。

而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。

由此可见,压轴题也并不可怕。

我给听课的6000多名讲了几种中考数学常考的压轴题类型,课后很多同学都反映很有用,今天我就分享给大家,希望对数学有困难的同学有帮助。

(1)线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

(2)一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

(3)多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

所以在中考中面对这类问题,一定要做到避免失分。

(4)列方程(组)解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。

反比例函数与几何的综合应用及答案

反比例函数与几何的综合应用及答案

专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程组,解方程组即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x 6x>0的图象交于Am,6,B3,n 两点. 1求一次函数的解析式;2根据图象直接写出使kx +b<x 6成立的x 的取值范围; 3求△AOB 的面积.第1题2.如图,点A,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,AO =CD =2,AB =DA=,反比例函数y =x kk >0的图象过CD 的中点E.1求证:△AOB ≌△DCA ; 2求k 的值;3△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.第2题反比例函数与四边形的综合反比例函数与平行四边形的综合3.如图,过反比例函数y =x 6x >0的图象上一点A 作x 轴的平行线,交双曲线y =-x 3x <0于点B,过B 作BC ∥OA 交双曲线y =-x 3x <0于点D,交x 轴于点C,连接AD 交y 轴于点E,若OC =3,求OE 的长.第3题反比例函数与矩形的综合4.如图,矩形OABC 的顶点A,C 的坐标分别是4,0和0,2,反比例函数y =x kx>0的图象过对角线的交点P 并且与AB,第4题BC 分别交于D,E 两点,连接OD,OE,DE,则△ODE 的面积为________.5.如图,在平面直角坐标系中,矩形OABC 的对角线OB,AC 相交于点D,且BE ∥AC,AE ∥OB. 1求证:四边形AEBD 是菱形;2如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.第5题反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数y =x 3的图象第6题经过A,B 两点,则菱形ABCD 的面积为A .2B .4C .2D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =x kk>0,x>0的图象上,点D 的坐标为4,3.1求k 的值;2若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =x kk>0,x>0的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.第7题反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,反比例函数y =x kx >0,k ≠0的图象经过线段BC 的中点D1求k 的值;2若点Px,y 在该反比例函数的图象上运动不与点D 重合,过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q,记四边形CQPR 的面积为S,求S 关于x 的函数解析式并写出x 的取值范围.第8题反比例函数与圆的综合第9题9.如图,双曲线y =x kk>0与⊙O 在第一象限内交于P,Q 两点,分别过P,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为1,3,则图中阴影部分的面积为________.10.如图,反比例函数y =x kk <0的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.第10题专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =m -1x |m|-2是反比例函数,则m 的取值为A .1B .-1C .±1D .任意实数2.某学校到县城的路程为 5 km ,一同学骑车从学校到县城的平均速度v km /h 与所用时间t h 之间的函数解析式是A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 是x 的反比例函数:①xy =-31;②y =5-x ;③y =5x -2;④y =x 2aa 为常数且a ≠0. 其中________是反比例函数.填序号 2个方法:画反比例函数图象的方法 4.已知y 与x 的部分取值如下表:1试猜想y 与x 的函数关系可能是你学过的哪类函数,并写出这个函数的解析式; 2画出这个函数的图象. 求反比例函数解析式的方法5.已知反比例函数y =x k的图象与一次函数y =x +b 的图象在第一象限内相交于点A1,-k +4.试确定这两个函数的解析式.6.如图,已知A -4,n,B2,-4是一次函数y =kx +b 的图象和反比例函数y =x m的图象的两个交点.求:1反比例函数和一次函数的解析式;2直线AB 与x 轴的交点C 的坐标及△AOB 的面积; 3方程kx +b -x m=0的解请直接写出答案;4不等式kx +b -x m <0的解集请直接写出答案.第6题2个应用反比例函数图象和性质的应用7.画出反比例函数y =x 6的图象,并根据图象回答问题: 1根据图象指出当y =-2时x 的值;2根据图象指出当-2<x<1且x ≠0时y 的取值范围; 3根据图象指出当-3<y<2且y ≠0时x 的取值范围. 反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x 单位:吨,库存的原料可使用的时间为y 单位:小时.1写出y 关于x 的函数解析式,并求出自变量的取值范围.2若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内1个技巧:用k 的几何性质巧求图形的面积9.如图,A,B 是双曲线y =x k k ≠0上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为A .34B .38C .3D .4第9题第10题10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x 2和y =-x 4的图象于A,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =x 3与函数y =x 6在第一象限内的图象,点P 是y =x 6的图象上一动点,PA ⊥x 轴于点A,交y =x 3的图象于点C,PB ⊥y 轴于点B,交y =x 3的图象于点D.1求证:D 是BP 的中点; 2求四边形ODPC 的面积.第11题答案1.解:1∵Am,6,B3,n 两点在反比例函数y =x 6x>0的图象上, ∴m =1,n =2,即 A1,6,B3,2.又∵A1,6,B3,2在一次函数y =kx +b 的图象上,∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8.第1题2根据图象可知使kx +b<x 6成立的x 的取值范围是0<x<1或x>3.3如图,分别过点A,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E,C,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D4,0.∵A1,6,B3,2,∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8.2.1证明:∵点A,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA. 2解:在Rt △ACD 中,∵CD =2,DA =,∴AC ==1.∴OC =OA +AC =2+1=3.∴D 点坐标为3,2.∵点E 为CD 的中点,∴点E 的坐标为3,1.∴k =3×1=3.3解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称,∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为1,3.∵1×3=3,∴点G1,3在反比例函数的图象上.3.解:∵BC ∥OA,AB ∥x 轴,∴四边形ABCO 为平行四边形.∴AB =OC =3.设A a 6,则B a 6,∴a -3·a 6=-3.∴a =2. ∴A2,3,B -1,3.∵OC =3,C 在x 轴负半轴上,∴C -3,0,设直线BC 对应的函数解析式为y =kx +b, 则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29.解方程组,3得y1=3,x1=-1,.3∴D 23.设直线AD 对应的函数解析式为y =mx +n, 则,3解得.9∴直线AD 对应的函数解析式为y =83x +49. ∴E 49.∴OE =49.4.415点拨:因为C0,2,A4,0,由矩形的性质可得P2,1,把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x 2.因为D 点的横坐标为4,所以AD =42=21.因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415.5.1证明:∵BE ∥AC,AE ∥OB, ∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =21AC,DB =21OB,AC =OB. ∴DA =DB.∴四边形AEBD 是菱形.2解:如图,连接DE,交AB 于F,∵四边形AEBD 是菱形,∴DF =EF =21OA =23,AF =21AB =1.∴E ,19.设所求反比例函数解析式为y =x k ,把点E ,19的坐标代入得1=29,解得k =29.∴所求反比例函数解析式为y =2x 9.第5题第7题6.D 7.解:1如图,过点D 作x 轴的垂线,垂足为F.∵点D 的坐标为4,3,∴OF =4,DF =3.∴OD =5.∴AD =5.∴点A 的坐标为4,8.∴k =xy =4×8=32.2将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32x>0的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′.∵DF =3,∴D ′F ′=3.∴点D ′的纵坐标为3.∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332.∴FF ′=332-4=320.∴菱形ABCD 沿x 轴正方向平移的距离为320.8.解:1∵正方形OABC 的边OA,OC 分别在x 轴,y 轴上,点B 的坐标为2,2,∴C0,2.∵D 是BC 的中点,∴D1,2.∵反比例函数y =x k x >0,k ≠0的图象经过点D,∴k =2.2当P 在直线BC 的上方,即0<x <1时,∵点Px,y 在该反比例函数的图象上运动,∴y =x 2.∴S 四边形CQPR =CQ ·PQ =x ·-22=2-2x ;当P 在直线BC 的下方,即x >1时,同理求出S 四边形CQPR =CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41.1.B 3.①③④4.解:1反比例函数:y =-x 6.2如图所示.第4题 5.解:∵反比例函数y =x k 的图象经过点A1,-k +4,∴-k +4=1k ,即-k +4=k,∴k =2,∴A1,2.∵一次函数y =x +b 的图象经过点A1,2,∴2=1+b,∴b =1.∴反比例函数的解析式为y =x 2,一次函数的解析式为y =x +1.6.解:1将B2,-4的坐标代入y =x m ,得-4=2m ,解得m =-8.∴反比例函数的解析式为y =x -8.∵点A -4,n 在双曲线y =x -8上,∴n =2.∴A -4,2.把A -4,2,B2,-4的坐标分别代入y =kx +b,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2.2令y =0,则-x -2=0,x =-2.∴C -2,0.∴OC =2.∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6.3x 1=-4,x 2=2.4-4<x<0或x>2.7.解:如图,由观察可知:1当y =-2时,x =-3;2当-2<x<1且x ≠0时,y<-3或y>6;3当-3<y<2且y ≠0时,x<-2或x>3.第7题点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:1库存原料为2×60=120吨,根据题意可知y 关于x 的函数解析式为y =x 120.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.2根据题意,得y ≥24,所以x 120≥24.解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:1由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.2要使机器不停止运转,需y ≥24,解不等式即可.第9题9.B 点拨:如图,过点B 作BE ⊥x 轴于点E,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =21BE.设A x k ,则B 2x k ,CD =4x k ,AD =x k -4x k .∵△ADO 的面积为1,∴21AD ·OC =1,即214x k ·x =1.解得k =38.10.311.1证明:∵点P 在双曲线y =x 6上,∴设P 点坐标为,m 6.∵点D 在双曲线y =x 3上,BP ∥x 轴,D 在BP 上,∴D 点坐标为,m 3.∴BD =m 3,BP =m 6,故D 是BP 的中点.2解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6.∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3.。

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)近日,举行了一次关于一次函数与几何图形综合的专题讲座。

在思想方法方面,介绍了函数方法和数形结合法。

函数方法是通过观察运动和变化来分析数量关系,并将其抽象升华为函数模型,从而解决问题的方法。

数形结合法则是将数与形结合起来,分析研究并解决问题的一种思想方法,对于与函数有关的问题,使用数形结合法能够事半功倍。

在知识规律方面,讲座介绍了常数k和b对直线y=kx+b(k≠0)位置的影响。

当b大于0时,直线与y轴的正半轴相交;当b等于0时,直线经过原点;当b小于0时,直线与y轴的负半轴相交。

当k和b异号时,即b大于0时,直线与x轴正半轴相交;当k和b同号时,即k和b的乘积小于0时,直线与x轴负半轴相交。

当k大于0且b大于0时,图象经过第一、二、三象限;当k大于0且b等于0时,图象经过第一、三象限;当b大于0且b小于0时,图象经过第一、三、四象限;当k小于0且b大于0时,图象经过第一、二、四象限;当k小于0且b等于0时,图象经过第二、四象限;当b小于0且b小于0时,图象经过第二、三、四象限。

讲座还介绍了直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系。

当b大于0时,将直线y=kx向上平移b个单位,即可得到直线y=kx+b;当b小于0时,将直线y=kx向下平移|b|个单位,即可得到直线y=kx+b。

另外,当k1不等于k2时,y1与y2相交;当k1等于k2且b1不等于b2时,y1与y2平行但不重合;当k1等于k2且b1等于b2时,y1与y2重合。

最后,讲座还通过一个例题对知识规律进行了精讲。

题目是直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB。

要求求出AC的解析式。

的性质,需要灵活运用几何知识和代数知识。

在解答过程中,要注意清晰的逻辑思路和准确的计算,避免出现错误。

2) 在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q。

我们来探究一下BP与PQ的数量关系,并证明结论。

中考复习之代几综合问题知识讲解

中考复习之代几综合问题知识讲解

代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

中考数学专题几何函数压轴题专题1.如图,抛物线y=ax2-bx+3 交x 轴于B(1,0),C(3,0)两点,交y 轴于点A,连接AB,点P 为抛物线上一动点.(1)求抛物线的解析式;(2)当点P 到直线AB 的距离为7 10时,求点P 的横坐标;9(3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图2.如图1,在平面直角坐标系中,直线y=x+4 与抛物线y =-1x2 +bx +c (b,c 2是常数)交于A,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.(1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A,B 重合).①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D,求PD的最大值;OD②如图3,若点P 在x 轴上方,连接PC,以PC 为一边作正方形CPEF.随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.23. 如图,抛物线y=ax2+bx+4(a≠0)交x 轴于点A(4,0),B(-2,0),交y 轴于点C.(1)求抛物线的解析式.(2)点Q 是x 轴上位于点A,B 之间的一个动点,点E 为线段BC 上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE 的面积为S,点Q 的横坐标为m,求出S 关于m 的函数关系式,并求出当S 取最大值时点Q 的坐标.(3)点P 为抛物线上位于AC 上方的一个动点,过点P 作PF⊥y 轴,交直线AC 于点F,点D 的坐标为(2,0),若O,D,F 三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =-3x2 +bx +c 与x 轴交于A,B 两点,与y 轴交于点C,直4线y =3x + 3 经过点A,C.4(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM∥y 轴交直线AC 于点M,设点P 的横坐标为t.①若以点C,O,M,P 为顶点的四边形是平行四边形,求t 的值.②当射线MP,MC,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2 与x 轴交于A,B 两点,与y 轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH⊥EO,垂足为H.设PH 的长为a,点P 的横坐标为m,求a 关于m 的函数关系式(不必写出m 的取值范围),并求出a 的最大值.(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值.(2)点E 是直角三角形ABC 斜边AB 上一动点(点A,B 除外),过点E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E 的坐标.(3)在(2)的条件下:①求以点E,B,F,D 为顶点的四边形的面积;② 在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,直接写出所有点P 的坐标;若不存在,说明理由.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x 轴于A,C 两点,与直线y=x-1 交于A,B 两点,直线AB 与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P 在直线AB 上方的抛物线上运动,若△ABP 的面积最大,求此时点P 的坐标;(3)在平面直角坐标系中,以点B,E,C,D 为顶点的四边形是平行四边形,请直接写出符合条件点D 的坐标.8.如图,已知抛物线y =ax2 +3x + 4 的对称轴是直线x=3,且与x 轴相交于A,2B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A,B 两点的坐标.(2)若点P 是抛物线上B,C 两点之间的一个动点(不与B,C 重合),则是否存在一点P,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N,当MN=3 时,求点N 的坐标.9.如图,抛物线y=1x2 +bx +c 经过点A( 2 3(1)求该抛物线的解析式;,0)和点B(0,-2).(2)若△OAB 以每秒2 个单位长度的速度沿射线BA 方向运动,设运动时间为t,点O,A,B 的对应点分别为D,E,C,直线DE 交抛物线于点M.①当点M 为DE 的中点时,求t 的值;②连接AD,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图310.如图,抛物线y=ax2+bx-2 的对称轴是直线x=1,与x 轴交于A,B 两点,与y 轴交于点C,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD⊥x 轴于点D,交直线BC 于点E.(1)求抛物线解析式.(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N,使得以点B,D,M,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0),抛物线y=-x2+bx+c 经过A,B 两点.(1)求抛物线的解析式.(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D,交线段AB 于点E,使PE 1DE .2①求点P 的坐标和△PAB 的面积.②在直线PD 上是否存在点M,使△ABM 为直角三角形?若存在,直接写出符合条件的所有点M 的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+2 与直线y=-x 交第二象限于点E,与x 轴交于A(-3,0),B 两点,与y 轴交于点C,EC∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y=-x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.13. 如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4 交于B,D 两点.(1)求抛物线的解析式及点D 的坐标;(2)点P 为直线BD 下方抛物线上的一个动点,求△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B,D 的动点,过点Q 作QF⊥x 轴于点F,交抛物线于点G,当△QDG 为直角三角形时,直接写出点Q 的坐标.1314.如图,抛物线y=ax2+bx+c 交x 轴于点A(1,0)和点B(3,0),交y 轴于点C,抛物线上一点D 的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,PE∥x 轴,PF∥y 轴,求线段EF 的最大值;(3)如图2,点M 是线段CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M 的坐标.15.如图,已知抛物线y=ax2+4x+c 与x 轴交于点M,与y 轴交于点N,抛物线的对称轴与x 轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO 为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM 中有一边的长等于MP 时,请直接写出点 A 的坐标.16.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1 过A,B 两点,并与过点A 的直线y =-1x -1 交于点C.2(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C 为顶点的三角形与△AOC 相似?若存在,求出点N 的坐标;若不存在,请说明理由.17.如图,直线l:y =1x +m 与x 轴交于点A(4,0),与y 轴交于点B,抛物线2y=ax2+bx+c(a≠0)经过A,B 两点,且与x 轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P 是抛物线上一动点,当点P 在直线l 下方的抛物线上运动时,过点P 作PM∥x 轴交l 于点M,过点P 作PN∥y 轴交l 于点N,求PM+PN 的最大值;(3)在(2)的条件下,当PM+PN 的值最大时,将△PMN 绕点N 旋转,当点M 落在x 轴上时,直接写出此时点P 的坐标.18.如图,已知抛物线y=ax2+x+c 与y 轴交于点C(0,3),与x 轴交于点A 和点B(3,0),点P 是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P 是点B 与点C 之间的抛物线上的一个动点,过点P 向x 轴作垂线,交BC 于点D,求线段PD 长度的最大值;(3)当点P 移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.19.在平面直角坐标系内,直线y =1x + 2 分别与x 轴、y 轴交于点A,C.抛物2线y =-1x2 +bx +c 经过点A 与点C,且与x 轴的另一个交点为点B.点D2在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D 到直线AC 的最大距离以及此时△ADC 的面积;(3)过点D 作DF⊥AC,垂足为点F,连接CD.若△CFD 与△AOC 相似,求点D 的坐标.20.如图,抛物线y=ax2+bx-3 过A(1,0),B(-3,0),直线AD 交抛物线于点D,点D 的横坐标为-2,点P(m,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式.(2)过点P 的直线垂直于x 轴,交抛物线于点Q,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.21.如图,抛物线y=-x2+bx+c 交x 轴于A,B 两点,交y 轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上的一动点,求△BCP 面积S 的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M 的坐标.21参考答案:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。

二次函数中几何的最值问题

二次函数中几何的最值问题

二次函数中几何的最值问题一、解答题1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,0)、B (6,0)、C(0,-2),抛物线y=a+bx+c(a≠0)经过A、B、C三点。

(1)求直线AC的解析式;(2)求此抛物线的解析式;(3)若抛物线的顶点为D,试探究在直线AC上是否存在一点P,使得△BPD的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。

2、如图,已知抛物线y=-+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)。

(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标。

3、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值。

4、如图,抛物线y=+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标。

中考数学二次函数和几何综合汇编经典和答案解析1

中考数学二次函数和几何综合汇编经典和答案解析1

中考数学二次函数和几何综合汇编经典和答案解析1一、二次函数压轴题1.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()()1, 0, 3, 0A B -两点,点C 为抛物线的顶点.点(0,)M m 为y 轴上的动点,将抛物线绕点M 旋转180︒,得到新的抛物线,其中B C 、旋转后的对应点分别记为’'B C 、.(1)若1a =,求原抛物线的函数表达式;(2)在(1)条件下,当四边形''BCB C 的面积为40时,求m 的值;(3)探究a 满足什么条件时,存在点M ,使得四边形' 'BCB C 为菱形?请说明理由.2.综合与探究如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,()2,0A -,()4,0B ,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式:(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积;(3)在直线l 上有一点P ,连接AP ,CP ,则AP CP 的最小值为______;(4)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (﹣12,0),B (2,0)两点,与y 轴交于点C (0,1).(1)求抛物线的函数表达式;(2)如图1,点D 为第一象限内抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第四象限内是否存在这样的点P ,使△BPQ ∽△CAB .若存在,请直接写出所有符合条件的点P 的坐标,若不存在,请说明理由.4.如图,抛物线y =x 2﹣2x ﹣8与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q . (1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A 、C 、Q 为顶点的三角形是等腰三角形?若存在,请求出此时点Q 的坐标;若不存在,请说明理由.5.小明结合自己的学习经验,对新函数y =21b kx +的解析式、图象、性质及应用进行探究:已知当x =0时,y =2;当x =1时,y =1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为: . (2)函数图象探究:①根据解析式,补全如表,则m = ,n = .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象. x …… ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 0121 2 n 4 ……y……21715 25m85285 12515 217…… (3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质: .(4)综合应用:已知函数y =|715x ﹣815|的图象如图所示,结合你所画的函数图象,直接写出不等式|715x ﹣815|≤21bkx +.6.如果抛物线C 1:2y ax bx c =++与抛物线C 2:2y ax dx e =-++的开口方向相反,顶点相同,我们称抛物线C 2是C 1的“对顶”抛物线.(1)求抛物线247y x x =-+的“对顶”抛物线的表达式;(2)将抛物线247y x x =-+的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线247y x x =-+形成两个交点M 、N ,记平移前后两抛物线的顶点分别为A 、B ,当四边形AMBN 是正方形时,求正方形AMBN 的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C 1与C 2的顶点位于x 轴上,那么系数b 与d ,c 与e 之间的关系是确定的,请写出它们之间的关系.7.某校九年级数学兴趣社团的同学们学习二次函数后,有兴趣的在一起探究“函数2||y x x =-的有关图象和性质”.探究过程如下:(1)列表:问m =______. x …3- 2- 1- 0 1 2 122…y (6)20 0 2 m…(2)请在平面直角坐标系中画出图象.(3)若方程2||x x p -=(p 为常数)有三个实数根,则p =______.(4)试写出方程2||x x p -=(p 为常数)有两个实数根时,p 的取值范围是______. 8.定义:如果一条直线把一个封闭的平面图形分成面积相等的两部分,我们把这条直线称为这个平面图形的一条中分线.如三角形的中线所在的直线是三角形的一条中分线.(1)按上述定义,分别作出图1,图2的一条中分线.(2)如图3,已知抛物线2132y x x m =-+与x 轴交于点(2,0)A 和点B ,与y 轴交于点C ,顶点为D .①求m 的值和点D 的坐标;②探究在坐标平面内是否存在点P ,使得以A ,C ,D ,P 为顶点的平行四边形的一条中分线经过点O .若存在,求出中分线的解析式;若不存在,请说明理由.9.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n nn A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推. (1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________. (3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.10.如图1,在平面直角坐标系中,已知抛物线y=a x 2+b x+3经过A(1,0) 、B(-3,0)两点,与y 轴交于点C .直线BC 经过B 、C 两点.(1)求抛物线的解析式及对称轴;(2)将△COB 沿直线 BC 平移,得到△C 1O 1B 1,请探究在平移的过程中是否存在点 O 1落在抛物线上的情形,若存在,求出点O 1的坐标,若不存在,说明理由;(3)如图2,设抛物线的对称轴与x 轴交于点E ,连结AC ,请探究在抛物线上是否存在一点F ,使直线EF ∥AC ,若存在,求出点F 的坐标,若不存在,说明理由.二、中考几何压轴题11.如图(1),已知点G 在正方形ABCD 的对角线AC 上,,GE BC ⊥垂足为点,E GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AGBE的值为_ _; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转a 角)045(a ︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:若24AB EC ==,正方形CEGF 在绕点C 旋转过程中,当A E G 、、三点在一条直线上时,则BE = .12.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明. 13.几何探究: (问题发现)(1)如图1所示,△ABC 和△ADE 是有公共顶点的等边三角形,BD 、CE 的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC 和△ADE 是有公共顶点的含有30角的直角三角形,(1)中的结论还成立吗?请说明理由; (拓展延伸)(3)如图3所示,△ADE 和△ABC 是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE 绕点A 自由旋转,若22BC =,当B 、D 、E 三点共线时,直接写出BD 的长.14.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A 、B 、C 在⊙O 上,∠ABC 的平分线交⊙O 于点D ,连接AD 、CD . 求证:四边形ABCD 是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD 中,AB =AD ,连接AC ,AC 是否平分∠BCD ?请说明理由; (升华运用)(3)如图3,在等补四边形ABCD 中,AB =AD ,其外角∠EAD 的平分线交CD 的延长线于点F .若CD =6,DF =2,求AF 的长. 15.综合与实践 操作探究(1)如图1,将矩形ABCD 折叠,使点A 与点C 重合,折痕为EF ,AC 与EF 交于点G .请回答下列问题:①与AEG △全等的三角形为______,与AEG △相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接AF 、CE ,请判断四边形AFCE 的形状:______.并证明你的结论; 拓展延伸(2)如图2,矩形ABCD 中,2AB =,4BC =,点M 、N 分別在AB 、DC 边上,且AM NC =,将矩形折叠,使点M 与点N 重合,折痕为EF ,MN 与EF 交于点G ,连接ME .①设22m AM AE =+,22n ED DN =+,则m 与n 的数量关系为______; ②设AE a =,AM b =,请用含a 的式子表示b :______; ③ME 的最小值为______.16.综合与实践.特例感知.两块三角板△ADB 与△EFC 全等,∠ADB =∠EFC =90°,∠B =45°,AB =6.将直角边AD 和EF 重合摆放.点P 、Q 分别为BE 、AF 的中点,连接PQ ,如图1.则△APQ 的形状为 .操作探究(1)若将△EFC 绕点C 顺时针旋转45°,点P 恰好落在AD 上,BE 与AC 交于点G ,连接PF ,如图2. ①FG :GA = ;②PF 与DC 的位置关系为 ; ③求PQ 的长; 开放拓展(2)若△EFC 绕点C 旋转一周,当AC ⊥CF 时,∠AEC 为 . 17.综合与实践动手实践:一次数学兴趣活动,张老师将等腰Rt AEF 的直角顶点A 与正方形ABCD 的顶点A 重合(AE AD >),按如图(1)所示重叠在一起,使点E 在CD 边上,连接BF .则可证:ADE ≌△△______,______三点共线;发现问题:(1)如图(2),已知正方形ABCD ,E 为DC 边上一动点,DC nDE =,AF AE ⊥交CB 的延长线于F ,连结EF 交AB 于点G .若2n =,则AG BG =______,AGE BGFS S =△△______; 尝试探究:(2)如图(3),在(1)的条件下若3n =,求证:5AG GB =;拓展延伸:(3)如图(4),在(1)的条件下,当n =______时,AG 为GB 的6倍(直接写结果,不要求证明). 18.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD 是正方形,四边形BEDF 是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE .求证:AE ⊥CE .”并展示了如下的证明方法:证明:如图3,分别连接AC ,BD ,EF ,AF .设AC 与BD 相交于点O . ∵四边形ABCD 是正方形,∴OA =OC =12AC ,OB =OD =12BD ,且AC =BD . 又∵四边形BEDF 是矩形,∴EF经过点O,∴OE=OF=1EF,且EF=BD.2∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=31,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.19.(1)问题发现如图1,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP 长度的最小值及此时点N的坐标.20.如图,已知ABC和ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.B解析:(1)2 23;y x x =--(2)416m m ==-或;(3)3a ≥M ,使得四边形''BCB C 为菱形,理由见解析【分析】(1)因为1a =,所以2y x bx c =++,将()()1, 0, 3, 0A B -代入得关于b 和c 的二元一次方程组,解方程组得到b 和c 即可求得原抛物线的解析式;(2)连接','CC BB ,延长BC 与y 轴交于点E ,根据题(1)可求出点B 、C 的坐标,继而求出直线BC 的解析式及点E 的坐标,根据题意易知四边形''BCB C 是平行四边形,继而可知()1312BCM MBE MCE S S S ME ME ∆∆∆=-=⨯-⨯=,由此可知ME =10,继而即可求解点M 的坐标;(3)如图,过点C 作CD y ⊥轴于点D ,当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,继而可证MOB CDM ∆∆,根据相似三角形的性质可得MO MD BO CD •=•代入数据即可求解.【详解】解:(1)∵1a =,∴2y x bx c =++将()()1, 0, 3, 0A B -代入得:10930b c b c -+=⎧⎨++=⎩解得:23b c =-⎧⎨=-⎩∴原抛物线的函数表达式为:2 23y x x =--;(2)连接','CC BB ,并延长BC 与y 轴交于点E ,二次函数2 23y x x =--的项点为(1,4,)-()1,4,C ∴-()3, 0,B∴直线BC 的解析式为: 2 6.y x =--()0,6E ∴-抛物线绕点M 旋转180︒','MB MB MC MC ==∴四边形''BCB C 是平行四边形,()1312BCM MBE MCE S S S ME ME ∆∆∆∴=-=⨯-⨯= 10ME416m m ∴==-或(3)如图,过点C 作CD y ⊥轴于点D当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,当MB MC ⊥时,MOB CDM ∆∆,MO BO CD MD∴= 即MO MD BO CD •=•二次函数()()13y a x x =+-的顶点为()()()1,4,0,,3,0a M m B - 1,,4,3CD MO m MD m a ON ∴==-=+=,()43m m a ∴-+=,∴2430m am ,216120,0a a ∆-≥>a ∴≥所以a ≥M ,使得四边形''BCB C 为菱形.【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.2.A解析:(1)233642y x x =--;(2)454;(3)134)存在,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭ 【分析】(1)把A 、B 两点坐标代入26y ax bx =+-可得关于a 、b 的二元一次方程组,解方程组求出a 、b 的值即可得答案;(2)过D 作DG x ⊥轴于G ,交BC 于H ,根据抛物线解析式可得点C 坐标,利用待定系数法可得直线BC 的解析式,设233,642D x x x ⎛⎫-- ⎪⎝⎭,根据BC 解析式可表示出点H 坐标,即可表示出DH 的长,根据△BCD 的面积列方程可求出x 的值,即可得点D 坐标,利用三角形面积公式即可得答案;(3)根据二次函数的对称性可得点A 与点B 关于直线l 对称,可得BC 为AP +CP 的最小值,根据两点间距离公式计算即可得答案;(4)根据平行四边形的性质得到MB //ND ,MB =ND ,分MB 为边和MB 为对角线两种情况,结合点D 坐标即可得点N 的坐标.【详解】(1)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,()2,0A -,()4,0B ,∴426016460a b a b --=⎧⎨+-=⎩, 解得:3432a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为:233642y x x =--. (2)如图,过D 作DG x ⊥轴于G ,交BC 于H ,当0x =时,6y =-,∴()0,6C -,设BC 的解析式为y kx b =+,则640b k b =-⎧⎨+=⎩, 解得326k b ⎧=⎪⎨⎪=-⎩, ∴BC 的解析式为:362y x =-, 设233,642D x x x ⎛⎫-- ⎪⎝⎭,则3,62H x x ⎛⎫- ⎪⎝⎭, ∴2233336632424DH x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵BCD △的面积是92, ∴1922DH OB ⨯=, ∴213943242x x ⎛⎫⨯⨯-+= ⎪⎝⎭, 解得:1x =或3,∵点D 在直线l 右侧的抛物线上,∴153,4D ⎛⎫- ⎪⎝⎭, ∴ABD △的面积11154562244AB DG ⨯=⨯⨯=;(3)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,∴点A 与点B 关于直线l 对称,∴BC 为AP +CP 的最小值,∵B (4,0),C (0,-6),∴AP +CP 的最小值=BC =2246+=213. 故答案为:213(4)①当MB 为对角线时,MN //BD ,MN =BD ,过点N 作NE ⊥x 轴于E ,过当D 作DF ⊥x 轴于F ,∵点D (3,154-), ∴DF =154, 在△MNE 和△BDF 中,NEM DFB NMB DBF MN BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MNE ≌△BDF ,∴DF =NE =154, ∵点D 在x 轴下方,MB 为对角线,∴点N 在x 轴上方,∴点N 纵坐标为154, 把y =154代入抛物线解析式得:215336442x x =--, 解得:1114x =-,2114x =+, ∴1N (114-,154),2N (114+,154)如图,当BM 为边时,MB //ND ,MB =ND ,∵点D (3,154-), ∴点N 纵坐标为154-, ∴233156424x x --=-, 解得:11x =-,23x =(与点D 重合,舍去),∴3N (1-,154-),综上所述:存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题. 3.A解析:(1)2312y x x =-++;(2)DE AE 的最大值为45;(3)914511924145(P -+-+或9177317()P --+ 【分析】(1)用待定系数法求出函数解析式即可;(2)构造出△AGE ∽△DEH ,可得DE DH AE AG=,而DE 和AG 都可以用含自变量的式子表示,最后用二次函数最大值的方法求值.(3)先发现△ABC 是两直角边比为2:1的直角三角形,由△BPQ ∽△CAB ,构造出△BPQ ,表示出Q 点的坐标,代入解析式求解即可.【详解】解:(1)分别将C (0,1)、A (﹣12,0)、B (2,0)代入y =ax 2+bx +c 中得110424201a b c a b c c ⎧++=⎪⎪++=⎨⎪=⎪⎩, 解得:1321a b c =-⎧⎪⎪=⎨⎪=⎪⎩,∴抛物线的函数表达式为2312y x x =-++. (2)过A 作AG ∥y 轴交BC 的延长线于点G ,过点D 作DH ∥y 轴交BC 于点H ,∵B (2,0)C (0,1),∴直线BC :y =12x +1,∵A (-12,0),∴G (-12,54), 设D (23,12m m m -++),则H (1,12m m -+), ∴DH =(2312m m -++)﹣(112m -+), =﹣m 2+2m ,∴AG=54, ∵AG ∥DH , ∴()2224415554DE DH m m m AE AG -+===--+,∴当m =1时,DE AE 的最大值为45. (3)符合条件的点P 914511924145-+-+9177317--+ ∵l ∥BC , ∴直线l 的解析式为:y =-12x ,设P (n ,-12n ),∵A (-12,0),B (2,0),C (0,1),∴AC 2=54,BC 2=5,AB 2=254.∵AC 2+BC 2=AB 2,∴∠ACB =90°.∵△BPQ ∽△CAB , ∴12BP AC BQ BC ==, 分两种情况说明:①如图3,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵∠PNB =∠BMQ =90°, ∠NBP +∠MBQ =90°,∠MQB +∠MBQ =90°,∴∠NBP =∠MQB .∴△NBP ∽△MQB ,∴12PN NB BM MQ ==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴1,2PN n ON n ==, ∴BN =2﹣n ,∴BM =2PN =n ,QM =2BN =4﹣2n ,∴OM =OB +BM =2+n ,∴Q (2+n ,2n ﹣4),将Q 的坐标代入抛物线的解析式得:()()23221242n n n -++++=-, 2n 2+9n ﹣8=0, 解得:)1291459145n n -+--==舍∴P (914511924145,416-+-+). ②如图4,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵△PNB ∽△BMQ ,又∵△BPQ ∽△CAB ,∴2BC QM AC BN==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴Q (2﹣n ,4﹣2n ),将Q 的坐标代入抛物线的解析式得:()()23221422n n n --+-+=-, 化简得:2n 2﹣9n +8=0, 解得:)12917917n n -+==舍, ∴P 9177317--+. 【点睛】本题考查待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程,掌握待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程的关系是解题关键.4.A 解析:(1)A (﹣2,0),B (4,0),C (0,﹣8);(2)存在,Q 点坐标为124(85,858)55Q ,21722(,)77Q . 【分析】(1)解方程2280x x --=,可求得A 、B 的坐标,令0x =,可求得点C 的坐标;(2)利用勾股定理计算出AC =BC 的解析式为28y x =-,可设Q (m ,2m ﹣8)(0<m <4),分三种情况讨论:当CQ =AC 时,当AQ =AC 时,当AQ =QC 时,然后分别解方程求出m 即可得到对应的Q 点坐标.【详解】(1)当0y =,2280x x --=,解得x 1=﹣2,x 2=4,所以(2,0)A -,(4,0)B ,x =0时,y =﹣8,∴(0,8)C -;(2)设直线BC 的解析式为y kx b =+,把(4,0)B ,(0,8)C -代入解析式得:408k b b +=⎧⎨=-⎩,解得28k b =⎧⎨=-⎩, ∴直线BC 的解析式为28y x =-,设Q (m ,2m ﹣8)(0<m <4),当CQ =CA 时,22(288)68m m +-+=,解得,1m =2m =∴Q 8), 当AQ =AC 时,22(2)(28)68m m ++-=,解得:128m 5=(舍去),m 2=0(舍去); 当QA =QC 时,2222(2)(28)(2)m m m m ++-=+,解得177m =, ∴Q 1722(,)77-.综上所述,满足条件的Q 点坐标为18)Q ,21722(,)77Q -. 【点睛】 本题考查了二次函数,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质,会利用待定系数法求函数解析式,理解坐标与图形性质,会利用勾股定理表示线段之间的关系,会运用分类讨论的思想解决数学问题.5.(1) y=221x +;(2)m=1,n=3;(3) 函数存在最大值,当x=0是,y 取得最大值2.(4)-1≤x≤2 【分析】(1)待定系数法求解函数解析式(2)分别将m,n 代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得20111b b k ⎧=⎪⎪+⎨⎪=⎪+⎩ 解得:12k b =⎧⎨=⎩ ∴函数的解析式为y =221x + (2) ①令x =-1, 则y=1, ∴m =1令y =15,则x =±3,∵2<n <4, ∴n =3②(3)函数存在最大值,当x =0是,y 取得最大值2. (4)直接观察图象可知,当|715x ﹣815|≤时,-1≤x ≤2 【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.6.C解析:(1)241y x x =-+-;(2)2;(3)b dc e =-⎧⎨=-⎩【分析】(1)先求出抛物线C 1的顶点坐标,进而得出抛物线C 2的顶点坐标,即可得出结论; (2)设正方形AMBN 的对角线长为2k ,得出B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ),再用点M (2+k ,3+k )在抛物线y =(x −2)2+3上,建立方程求出k 的值,即可得出结论;(3)先根据抛物线C 1,C 2的顶点相同,得出b ,d 的关系式,再由两抛物线的顶点在x 轴,求出c ,e 的关系,即可得出结论. 【详解】解:(1)解:(1)∵y =x 2−4x +7=(x −2)2+3, ∴顶点为(2,3),∴其“对顶”抛物线的解析式为y =−(x −2)2+3, 即y =−x 2+4x −1; (2)如图,由(1)知,A (2,3), 设正方形AMBN 的对角线长为2k ,则点B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ), ∵M (2+k ,3+k )在抛物线y =(x −2)2+3上, ∴3+k =(2+k −2)2+3, 解得k =1或k =0(舍);∴正方形AMBN 的面积为12×(2k )2=2;(3)根据抛物线的顶点坐标公式得,抛物线C 1:y =ax 2+bx +c 的顶点为(2b a-,244ac b a-),抛物线C 2:y =−ax 2+dx +e 的顶点为(2d a ,244ae d a---),∵抛物线C 2是C 1的“对顶”抛物线, ∴22b d a a-=, ∴=-b d ,∵抛物线C 1与C 2的顶点位于x 轴上,∴224444ac b ae d a a ---=-, ∴c e =-,即b d c e =-⎧⎨=-⎩. 【点睛】此题主要考查了抛物线的顶点坐标公式,正方形的性质,理解新定义式解本题的关键. 7.(1)154m =;(2)见解析;(3)0p =;(4)14p =-或0p >.【分析】(1)把x=122代入解析式,计算即可;(2)按照画图像的基本步骤画图即可;(3)一个方程有两个不同实数根,另一个方程有两个相等的实数根和两个方程都有两个不同的实数根,但是有一个公共根;(4)结合函数的图像,分直线经过顶点和在x 轴上方两种情形解答即可. 【详解】(1)当x=122时,2||y x x =-=25)2|(|52- =154, ∴154m =; (2)画图像如下;(3)当x≥0时,函数为2y x x ;当x <0时,函数为2y x x =+;∵方程2||x x p -=(p 为常数)有三个实数根, ∴两个方程有一个公共根,设这个根为a , 则22a a a a -=+, 解得a=0, 当a=0时,p=0, 故答案为:p=0;(4)∵方程2||x x p -=(p 为常数)有两个实数根, ∴p >0; 或△=0 即1+4p=0, 解得14p =-.综上所述,p 的取值范围是14p =-或0p >. 【点睛】本题考查了二次函数图像,二次函数与一元二次方程的关系,熟练掌握抛物线与一元二次方程的关系,灵活运用分类思想,数形结合思想是解题的关键. 8.(1)见解析;(2)①4m =,1(3,)2D -;②存在,76y x =或2y x =或110y x =-【分析】(1)对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线; (2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,抛物线解析式2211134(3)222y x x x =-+=--,顶点为1(3,)2D -;②根据抛物线解析式求出(2,0)A ,(4,0)B ,(0,4)C ,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.Ⅰ.当CD 为对角线时,对角线交点坐标为37(,)24,中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标(1,2).中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为51(,)24-,中分线解析式为110y x =-. 【详解】解:(1)如图,对角线所在的直线为平行四边形的中分线, 直径所在的直线为圆的中分线,(2)①将(2,0)A 代入抛物线2132y x x m =-+,得 143202m ⨯-⨯+=, 解得4m =,∴抛物线解析式2211134(3)222y x x x =-+=--,∴顶点为1(3,)2D -;②将0y =代入抛物线解析式21342y x x =-+,得 234201x x -+=, 解得2x =或4,(2,0)A ∴,(4,0)B , 令0x =,则4y =,(0,4)C ∴,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分, 所以平行四边形的中分线必过对角线的交点. Ⅰ.当CD 为对角线时,对角线交点坐标为14032(,)22-+,即37(,)24,中分线经过点O ,∴中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标为2004(,)22++,即(1,2). 中分线经过点O ,∴中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为10232(,)22-+,即51(,)24-, 中分线经过点O ,∴中分线解析式为110y x =-, 综上,中分线的解析式为式为76y x =或为2y x =或为110y x =-.【点睛】本题考查了二次函数,熟练运用二次函数的性质与平行四边形的性质是解题的关键.9.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m . 【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解. 【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ; 故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2; (3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去), 抛物线的表达式为:y =−(x−1)2 +1; ②y 1n c -=−(m−n +1)2+(n−1)2, y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m . 【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.10.F解析:(1)223y x x =--+,1x =-;(2)O 1)3)满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【分析】(1)把A (1,0),B (-3,0)代入y=ax 2+bx+3即可求解;(2)先求出直线OO 1的解析式为y x =,再根据223x x x --+=,求解即可或是根据23(23)3x x x +---+=得出x 的值,再根据直线OO 1的解析式为y x =求解;(3)先求出直线EF 解析式为 33y x =--,再根据22333x x x --+=--求解即可. 【详解】解:(1)将点A (1, 0),B (-3, 0)代入抛物线解析式y=a x 2+b x+3 得:{309330a b a b ++=-+=解得:{12a b =-=-∴抛物线解析式为 223y x x =--+ ∴2(1)4y x =++ ∴1x =-(2)∵点C 为223y x x =--+与y 轴的交点∴C (0,3) ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y x = 根据题意 得 223x x x --+= 整理得 2330x x +-=解得 1x =2x =∴O 1 )或)解法2 ∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∴OC=3 ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 01C 1=3 ∴23(23)3x x x +---+= 整理得 2330x x +-= 解得 13212x -+=23212x --= ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y=x ∴O 1(3212-+,3212-+ )或(3212--,3212--)(3)∵抛物线对称轴与x 轴交于点E,则点E 的坐标为E(-1,0),过点C 作CF ∥x 轴 根据抛物线的对称性得F 的坐标为F(-2,3) ∴AE=CF=2 ∵CF ∥AE ∴四边形CFEA 为平行四边形 ∴EF ∥CA设直线EF 的解析式为y kx b =+ 得:{320k bk b =-+=-+ 解得:{33k b =-=-∴直线EF 解析式为 33y x =-- 根据题意 得 22333x x x --+=-- 解得12x =- 23x =满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线的判定和性质,解题的关键是学会利用参数构建方程组解决问题,学会用转化的思想思考问题.二、中考几何压轴题11.(1)证明见解析;;(2)线段与之间的数量关系为;(3)或 【分析】(1)①由、结合可得四边形CEGF 是矩形,再由即可得证;②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得; (2解析:(1)①证明见解析;2)线段AG 与BE 之间的数量关系为AG =;(3【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CGCE=GE //AB ,利用平行线分线段成比例定理可得; (2)连接CG ,只需证ACG BCE 即可得;(3)由(2)证出ACGBCE 就可得到BE AG =,再根据A E G 、、三点在同一直线上分在CD 左边和右边两种不同的情况求出AG 的长度,即可求出BE 的长度. 【详解】(1)①证明:四边形ABCD 是正方形,90,45BCD BCA ∴∠=︒∠=︒ ,,GE BC GF CD ⊥⊥90,CEG CFG ECF ∴∠=∠=∠=︒∴四边形CEGF 是矩形,45,CGE ECG ∠=∠=︒,EG EC ∴=∴四边形CEGF 是正方形;②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=,GE ∥AB ,∴AG CGBE CE==(2)如下图所示连接,CG 由旋转性质知,BCE ACG a ∠=∠=在Rt CEG △和Rt CBA 中,45CE cos CG =︒=45CB cos CA =︒=CG CACE CB∴== ,ACGBCE ∴AG CABE CB∴==∴线段AG 与BE 之间的数量关系为2AG BE =;(3)解:①当正方形CEGF 在绕点C 旋转到如下图所示时: 当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CABE CB∴==, 22BE AG ∴=∠CEG=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+=42AC ∴=22222(42)228AE AC CE ∴=-=-=27AE ∴=272AG AE EG ∴=+=+22(272)14222BE AG ∴==⨯+=+②当正方形CEGF 在绕点C 旋转到如下图所示时:当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CA BE CB∴==, 2BE AG ∴=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+= 42AC ∴=22222(42)228AE AC CE ∴=-=-= 27AE ∴=272AG AE EG ∴=-=-22(272)14222BE AG ∴==⨯-=-142142【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.12.(1)是,理由见解析;(2)或或;(3),证明见解析.【分析】(1)证明,可得,又点F 为CD 中点,即可得出结论;(2)当为点构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:和,根解析:(1)是,理由见解析;(2)1211t =或2t =或4t =;(3)M CNF ∠=∠,证明见解析.【分析】(1)证明EDB ABD ∠=∠,可得DE BE AE ==,又点F 为CD 中点,即可得出结论; (2)当MN 为点,,,A B E F 构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:BE AF 和EF AB ∥,根据平行线分线段成比例列方程即可求解;(3)连接BD ,取BD 的中点H ,连接EH ,FH 得两条中位线,根据中位线定理,得平行,可找到相等角和线段,从而可得EFH △是等腰三角形,进而可得M HEF HFE CNF ∠=∠=∠=∠.【详解】解:(1)EF 是四边形ABCD 的准中位线,理由如下:∵DE AE =,。

初二下学期压轴题练习- 一次函数与几何变换(含答案)

初二下学期压轴题练习- 一次函数与几何变换(含答案)

专题09一次函数与几何变换一.选择题1.(2021春•大同期末)对于一次函数y=﹣2x+4,下列结论正确的是()A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y22.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+3.(2020秋•天桥区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.24.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.(2020•碑林区校级模拟)若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1 6.(2019•嘉祥县三模)在平面直角坐标系中,将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,则下列平移作法正确的是()A.将y1向上平移2个单位长度B.将y1向上平移4个单位长度C.将y1向左平移3个单位长度D.将y2向右平移6个单位长度7.(2018春•雨花区校级月考)如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是()A.3<t<6B.4<t<7C.3<t<7D.<t<7二.填空题8.(2021春•安丘市期末)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA′交y轴于点C,则点C 的坐标为.9.(2021春•东台市月考)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为.10.(2021•广东模拟)如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x 轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为.11.(2020春•黄陂区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.12.(2018秋•福田区校级期中)如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为.13.(2017秋•碑林区校级期末)如图,一次函数y=,的图象向下平移2个单位后得直线l,直线l交x轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A、B重合),过点P分别作PE⊥x 轴点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为.14.(2018春•丰南区期末)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为.15.(2019春•西湖区校级期中)在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.16.(2019•天津二模)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.17.(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过秒该直线可将平行四边形OABC分成面积相等的两部分.三.解答题18.(2021春•古丈县期末)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移5个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.19.(2021春•武汉月考)已知,在平面直角坐标系中,函数y1=2|x﹣a|,(1)若该函数经过点A(1,0),求该函数的解析式,并在图1中画出函数图象;(2)在(1)的条件下,将函数y2=x向上平移m个单位后与函数y1的图象相交于点B和C点,若BC =,求m;(3)如图2,设直线y3=6n与直线y4=2n分别与函数y1=2|x﹣a|相交于点E、F和M、N,点P为直线y3=6n上一点,连接PM、PN并延长交直线y5=kn于点G、H,若2EF=3GH,求k.20.(2021春•河北区期末)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x 轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.21.(2019秋•罗湖区校级期末)如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交y轴于点B,且OA=OB.(1)试求直线l2的函数表达式;(2)若将直线l1沿着x轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD的面积.22.(2018秋•宿迁期末)如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.23.(2019•大渡口区模拟)如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y=x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.24.(2018春•沙坪坝区校级期末)如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.25.(2017春•武昌区期末)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.26.(2017春•安岳县期中)已知直线y=(m+1)x|m|﹣1+(2m﹣1),当x1>x2时,y1>y2,求该直线的解析式.并求该直线经过怎么的上下平移就能过点(2,5)?27.(2016春•大兴区期末)阅读材料:通过一次函数的学习,小明知道:当已知直线上两个点的坐标时,可以用待定系数法,求出这个一次函数的表达式.有这样一个问题:直线l1的表达式为y=﹣2x+4,若直线l2与直线l1关于y轴对称,求直线l2的表达式.下面是小明的解题思路,请补充完整.第一步:求出直线l1与x轴的交点A的坐标,与y轴的交点B的坐标;第二步:在平面直角坐标系中,作出直线l1;第三步:求点A关于y轴的对称点C的坐标;第四步:由点B,点C的坐标,利用待定系数法,即可求出直线l2的表达式.小明求出的直线l2的表达式是.请你参考小明的解题思路,继续解决下面的问题:(1)若直线l3与直线l1关于直线y=x对称,则直线l3的表达式是;(2)若点M(m,3)在直线l1上,将直线l1绕点M顺时针旋转90°.得到直线l4,求直线l4的表达式.28.(2016•河北模拟)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.29.(2015秋•栖霞区期末)课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)专题09一次函数与几何变换一.选择题1.(2021春•大同期末)对于一次函数y=﹣2x+4,下列结论正确的是()A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【思路引导】代入y=0求出与之对应的x值,即可得出A不正确;根据一次函数的系数结合一次函数的性质,即可得知B选项正确、D选项不正确,根据平移的规律求得平移后的解析式,即可判断C不正确,此题得解.【完整解答】解:A、令y=﹣2x+4中y=0,则x=2,∴一次函数的图象与x轴的交点坐标是(2,0),故本选项不符合题意;B、∵k=﹣2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,即函数的图象不经过第三象限,故本选项符合题意;C、根据平移的规律,函数的图象向上平移4个单位长度得到的函数解析式为y=﹣2x+4+4,即y=﹣2x+8,故本选项不符合题意;D、∵k=﹣2<0,∴一次函数中y随x的增大而减小,∴若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1>y2,故本选项不符合题意.故选:B.【考察注意点】本题考查了一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.2.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+【思路引导】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【完整解答】解:∵一次函数y=x+的图像与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,由旋转的性质可知∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.【考察注意点】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.3.(2020秋•天桥区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.2【思路引导】先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.【完整解答】解:如图1,连接BD并且两端延长,直线y=x﹣3中,令y=0,得x=3;令x=0,得y =﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.【考察注意点】本题考查了动点问题的函数图象,一次函数图象与几何变换,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.4.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2【思路引导】根据平移性质可由已知的解析式写出新的解析式.【完整解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.【考察注意点】此题主要考查了一次函数图象与几何变换,解题时注意:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y =kx±|b|.5.(2020•碑林区校级模拟)若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【思路引导】先求出一次函数y=kx+3与y轴交点关于直线x=1的对称点,得到b的值,再求出一次函数y=2x+b与y轴交点关于直线x=1的对称点,代入一次函数y=kx+3,求出k的值即可.【完整解答】解:∵一次函数y=kx+3与y轴交点为(0,3),∴点(0,3)关于直线x=1的对称点为(2,3),代入直线y=2x+b,可得4+b=3,解得b=﹣1,一次函数y=2x﹣1与y轴交点为(0,﹣1),(0,﹣1)关于直线x=1的对称点为(2,﹣1),代入直线y=kx+3,可得2k+3=﹣1,解得k=﹣2.故选:D.【考察注意点】本题考查的是一次函数图象与几何变换,待定系数法求函数解析式,先根据题意得出直线与坐标轴的交点是解决问题的关键.6.(2019•嘉祥县三模)在平面直角坐标系中,将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,则下列平移作法正确的是()A.将y1向上平移2个单位长度B.将y1向上平移4个单位长度C.将y1向左平移3个单位长度D.将y2向右平移6个单位长度【思路引导】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【完整解答】解:∵将直线y1:y=2x﹣2平移后,得到直线y2:y=2x+4,∴2(x+a)﹣2=2x+4,解得:a=3,故将y1向左平移3个单位长度.故选:C.【考察注意点】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.7.(2018春•雨花区校级月考)如图,A(0,1),M(3,2),N(4,4).点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,当M、N位于直线l的异侧时,t应该满足的条件是()A.3<t<6B.4<t<7C.3<t<7D.<t<7【思路引导】分别求出直线l经过点M、点N时的t值,即可得到t的取值范围.【完整解答】解:当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.故选:B.【考察注意点】本题考查了坐标平面内一次函数的图象与性质,关键是利用一次函数图象上点的坐标特征解答.二.填空题8.(2021春•安丘市期末)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA′交y轴于点C,则点C 的坐标为(0,﹣4).【思路引导】依据轴对称的性质可得OB'=OB=,A′B′=AB=1,OA′=OA=2,进而通过证得△A′OB′∽△COA′,求得OC=4,即可证得C的坐标为(0,﹣4).【完整解答】解:∵点A的坐标为(1,),∴AB=1,OB=,∴OA===2,∵将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',∴OB'=OB=,A′B′=AB=1,OA′=OA=2,∴A'(﹣,﹣1),∵过A'作A'C垂直于OA'交y轴于点C,∴∠A′OC+∠A′CO=90°,∵∠A′OB′+∠A′OC=90°,∴∠A′CO=∠A′OB′,∵∠A′B′O=∠OA′C=90°,∴△A′OB′∽△OCA′,∴=,即=,∴OC=4,∴C(0,﹣4),故答案是:(0,﹣4).【考察注意点】本题考查了轴对称的性质,正比例函数的性质,求得对称点的坐标是解题的关键.9.(2021春•东台市月考)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为8.【思路引导】通过图象中(4,0),(7,2),(8,2)可得直线运动到A,D,B三点时所移动距离,从而求出AB长度,再通过添加辅助线构造直角三角形求出平行四边形的高而求解.【完整解答】解:由图象可知,直线经过A时移动距离为4,经过D时移动距离为7,经过B时移动距离为8,∴AB=8﹣4=4.如图,当直线经过点D时,交AB于点E,作DF垂直于AB于点F,由图2可知DE=2,∵直线与AB夹角为45°,∴DF=EF=2,∴ABCD面积为AB•DF=4×2=8.故答案为:8.【考察注意点】本题考查一次函数图象与图形结合问题,解题关键是掌握k=﹣1时直线与x轴所夹锐角为45°.10.(2021•广东模拟)如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x 轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为y=﹣2x+2.【思路引导】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【完整解答】解:设直线AB的解析式为y=kx+b(k≠0),∵点A(﹣1,0)点B(0,﹣2)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x﹣2,∵AB=AD,AO⊥BD,∴OD=OB,∴D(0,2),∴直线CD的函数解析式为:y=﹣2x+2,故答案为:y=﹣2x+2.【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.(2020春•黄陂区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是y=2x﹣1.【思路引导】直接根据“上加下减,左加右减”的原则进行解答即可.【完整解答】解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.(2018秋•福田区校级期中)如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为(2n﹣1,2n).【思路引导】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点B n的坐标.【完整解答】解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),依此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为:(2n﹣1,2n).【考察注意点】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了轴对称的性质.13.(2017秋•碑林区校级期末)如图,一次函数y=,的图象向下平移2个单位后得直线l,直线l交x轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A、B重合),过点P分别作PE⊥x轴点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为(﹣,).【思路引导】利用勾股定理和一次函数图象上点的坐标特征,列出二次函数关系式,结合二次函数最值的求法解答.【完整解答】解:由已知条件得到直线l解析式为:y=﹣2,即y=,设P(a,),所以EF2=a2+()2=a2+a+.当EF取最小值时,a=﹣=﹣,此时,=,即P(﹣,),故答案是:(﹣,).【考察注意点】考查了一次函数图象与几何变换,解题时,利用了二次函数最值的求法,熟记二次函数顶点坐标公式是解题的关键.14.(2018春•丰南区期末)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为y=x﹣.【思路引导】设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式,再根据平移规律即可得到直线l′的函数解析式.【完整解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线l为y=kx,则3=k,k=,∴直线l解析式为y=x,∴直线l向右平移3个单位长度后所得直线l′的函数解析式为y=(x﹣3),即y=x﹣,故答案为:y=x﹣.【考察注意点】此题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.15.(2019春•西湖区校级期中)在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=4x+1以每秒2个单位的速度向下平移,经过6秒该直线可将平行四边形OABC的面积平分.【思路引导】首先连接AC、BO,交于点D,当y=4x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=4x+1的直线解析式,从而可得直线y=4x+1要向下平移,进而可得答案.【完整解答】解:连接AC、BO,交于点D,当y=4x+1经过D点时,该直线可将▱OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=4x+1,∴k=4,∵过D(3,1),∴DE的解析式为y=4x﹣11,∴直线y=4x+1要向下平移12个单位,∴时间为6秒,故答案为:6【考察注意点】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.16.(2019•天津二模)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是y=3x﹣2.【思路引导】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【完整解答】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.【考察注意点】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.17.(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过6秒该直线可将平行四边形OABC分成面积相等的两部分.【思路引导】首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式,从而可得直线y=2x+1要向下平移6个单位,进而可得答案.【完整解答】解:连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=2x+1,∴k=2,∵过D(3,1),∴DE的解析式为y=2x﹣5,∴直线y=2x+1要向下平移6个单位,∴时间为6秒,故答案为:6.【考察注意点】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.三.解答题18.(2021春•古丈县期末)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移5个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.【思路引导】(1)利用待定系数法确定该一次函数的解析式;(2)根据平移规律“上加下减”写出平移后一次函数解析式,然后根据一次函数图象上点的坐标特征求直线与x轴的交点坐标.【完整解答】解:(1)∵一次函数y=kx+b的图象经过点(﹣2,0)和点(2,2),∴.解得k=,b=1.∴一次函数的解析式为:y=x+1;(2)∵一次函数y=x+1向下平移5个单位的解析式为y=x+1﹣5=x﹣4,即y=x﹣4.∴当y=0时,x=8,∴平移后的图象与x轴的交点坐标为(8,0).【考察注意点】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的性质是解答此题的关键.19.(2021春•武汉月考)已知,在平面直角坐标系中,函数y1=2|x﹣a|,(1)若该函数经过点A(1,0),求该函数的解析式,并在图1中画出函数图象;(2)在(1)的条件下,将函数y2=x向上平移m个单位后与函数y1的图象相交于点B和C点,若BC=,求m;(3)如图2,设直线y3=6n与直线y4=2n分别与函数y1=2|x﹣a|相交于点E、F和M、N,点P为直线y3=6n上一点,连接PM、PN并延长交直线y5=kn于点G、H,若2EF=3GH,求k.【思路引导】(1)把点A坐标代入函数,求出a,得到函数y1的解析式,画出图象;(2)设出函数y2的解析式,得到B、C的坐标,根据BC=列出方程,求m的值;(3)由三角形相似得出MN和GH的比例,求出k的值.【完整解答】解:(1)把点A(1,0)代入y1=2|x﹣a|,得:2|1﹣a|=0,解得:a=1,∴y1=2|x﹣1|,图象如右所示.(2)由题意得y2=x+m(m>0),x≤1时,y1=﹣2x+2,x>1时,y1=2x﹣2,由,解得:,∴B(,),由,解得:,∴C(m+2,2m+2),∵BC=,∴(m+2﹣)2+(2m+2﹣)2=128,解得:m1=5,m2=﹣7(舍),∴m=5.(3)∵直线y3=6n与直线y4=2n间的距离为4n,直线y4=2n与x轴间的距离为2n,∴EF=3MN,∵2EF=3GH,∴MN:GH=1:2,∴MN是△PGH的中位线,∴y3=6n与y4=2n间的距离和y3=6n与y5=kn间的距离相等,∴k=﹣2.【考察注意点】本题考查了分段函数图象和函数图象变换,画图的关键顺序是“列表﹣描点﹣连线”,需要注意的是连线的时候要用平滑的曲线连接.20.(2021春•河北区期末)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x 轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.【思路引导】(1)根据题意求得正方形各顶点的坐标,然后根据待定系数法求得直线l的解析式,直线平移,斜率不变,设平移后的直线方程为y=x+b;把点B和D的坐标代入进行解答即可;(2)根据正方形是中心对称图形,当直线l经过对角线的交点时,恰好平分正方形ABCD的面积,求得交点坐标,代入y=x+b,根据待定系数法即可求得直线l此时的解析式,然后求得E、F的坐标,根据待定系数法求得直线BE的解析式,得到与y轴的交点Q的坐标,根据三角形面积公式即可求得.【完整解答】解:(1)∵长为3的正方形ABCD中,点A的坐标为(5,4),∴B(2,4),C(2,1),D(5,1),设直线l的解析式为y=kx,把C(2,1)代入得,1=2k,解得k=,∴直线l为y=,设平移后的直线方程为y=x+b,。

2023年九年级中考数学高频考点专题强化-一次函数几何问题

2023年九年级中考数学高频考点专题强化-一次函数几何问题

2023年中考数学高频考点专题强化-一次函数几何问题1.(2022秋·辽宁阜新·八年级校考期中)如图,已知一次函数y =kx -3图像经过点M (-2,1),且与x 轴交于点A ,与y 轴交于点B .(1)求k 的值.(2)求A 、B 两点的坐标; (3)求△MOB 的面积.2.(2022秋·山东淄博·七年级校考期末)如图,在平面直角坐标系中,直线l 经过原点O 和点()2,1A ,经过点A 的另一条直线交x 轴于点()4,0B .(1)求直线l 的函数解析式; (2)求AOB 的面积;(3)在直线l 上求一点P ,使12AOB ABP S S =△△,求点P 坐标.3.(2022秋·北京·九年级北京工业大学附属中学校考期中)定义:对于平面直角坐标系xOy 中的两个图形M ,N ,图形M 上的任意一点与图形N 上的任意一点的距离中的最小值,叫做图形M 与图形N 的距离.若图形M 与图形N 的距离小于等于1,称这两个图形互为“近邻图形”.(1)已知点()2,4A ,点()5,4B .①如图1,在点()11,2P ,()23,3P ,394,2P ⎛⎫⎪⎝⎭中,与线段AB 互为“近邻图形”的是______; ②如图2,将线段AB 向下平移2个单位,得到线段DC ,连接AD ,BC ,若直线y x b =+与四边形ABCD 互为“近邻图形”,求b 的取值范围;(2)如图3,在正方形EFGH 中,已知点(),0E m ,点()1,0F m +,若点(),2Q n n -+与正方形EFGH 互为“近邻图形”,直接写出m 的取值范围.4.(2022秋·山东东营·九年级东营市实验中学校考期末)如图,抛物线()230y ax bx a =+-≠与x 轴交于点()1,0A -,点()3,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)在对称轴上找一点Q ,使ACQ 的周长最小,求点Q 的坐标;(3)P 是第四象限内抛物线上的动点,求BPC △面积S 的最大值及此时P 点的坐标.5.(2022春·北京·八年级北京八十中校考期中)在平面直角坐标系xOy 中,若P ,Q 为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x 轴,y 轴平行,则称该菱形为点P ,Q 的“相关菱形”.图1为点P ,Q 的“相关菱形”的一个示意图.已知点A 的坐标为()4,1,点B 的坐标为()0,b ,(1)若3b =,则()0,1D -,()4,5E ,()6,4F ,()8,3G 中能够成为点A ,B 的“相关菱形”顶点的是_________; (2)若点A ,B 的“相关菱形”为正方形,求b 的值;(3)若点A ,B 的“相关菱形”有一条对角线与y 轴重合,当直线12y x b =+与点A ,B 的“相关菱形”有且仅有两个公共点时,直接写出b 的取值范围.6.(2022秋·安徽滁州·九年级统考期中)如图,在平面直角坐标系中,一次函数443y x =-的图象与y 轴相交于点A ,与反比例函数ky x=(k ≠0)在第一象限内的图象相交于点B (m ,4),过点B 作BC y ⊥轴于点C .(1)求k 的值. (2)求△ABC 的面积.7.(2022秋·安徽宣城·八年级校考期中)如图,在平面直角坐标系中,一次函数y kx b =+的图像经过点()2,9A -,且与x 轴相交于点B ,与y 轴交于点D ,与正比例函数3y x =的图像相交于点C ,点C 的横坐标为1.(1)求一次函数的函数解析式;(2)不等式30kx b x +-<的解集是______;(3)M 为直线AB 上一点,过点M 作y 轴的平行线交3y x =于点N ,当2MN OD =时,求点M 的坐标.(补充图形)8.(2022秋·八年级课时练习)如图,直线24y x =-+与x 轴相交于点A ,与y 轴相交于点B .(1)求A ,B 两点的坐标;(2)x 轴上有一点P ,且2OP OA =,求ABP 的面积.9.(2022·全国·九年级专题练习)已知一次函数y =kx +3(k ≠0)的图象经过A (4,0),与y 轴交于点B .(1)求y 关于x 的函数解析式,并在图中画出该函数的图象;(2)已知点C ,E 分别是线段AB ,OB 的中点,若四边形OCEF 是平行四边形.请判断四边形OCEF 是否能为菱形?并说明理由.10.(2022秋·八年级课时练习)如图,在平面直角坐标系xOy 中,直线y =43-x +4与x 轴、y 轴分别交于点A 、点B ,点D (0,﹣6)在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处,直线CD 交AB 于点E .(1)求点A 、B 、C 的坐标; (2)求△ADE 的面积;(3)y 轴上是否存在一点P ,使得PAD S ∆=12ADE S ∆,若存在,请直接写出点P 的坐标;若不存在,请说明理由.11.(2022秋·广东揭阳·八年级统考期中)如图,在平面直角坐标系中,直线l 经过点A (0,2)、B (﹣3,0).(1)求直线l 所对应的函数表达式. (2)若点M (3,m )在直线l 上,求m 的值.(3)若y x n =-+过点B ,交y 轴于点C ,求ABC 的面积.12.(2022春·河南南阳·八年级统考期中)如图,直线1:5l y x =+交y 轴,x 轴于A ,B 两点,直线21:12l y x =--交y 轴,x 轴于C ,D 两点,直线12,l l 相交于P 点.(1)方程组5112y x y x =+⎧⎪⎨=--⎪⎩的解是___________; (2)求直线12,l l 与x 轴围成的三角形面积;(3)过P 点的直线把PAC △面积两等分,直接写出这条直线的解析式.13.(2022春·湖南衡阳·八年级统考期中)如图,在平面直角坐标系中,一次函数1y kx b =+的图象交x 轴与y 轴分别于点A ,B ,且2OB =,与直线2y ax =交于(2,1)P .(1)求函数2y 的表达式;(2)求1y 的表达式及A 点的坐标;(3)点D 为直线1y kx b =+上一点,其横坐标为(2)m m <,过点D 作DF x ⊥轴于点F ,交2y ax =交于点E ,且2DF FE =,求点D 的坐标.14.(2022秋·浙江·九年级专题练习)如图,在平面直角坐标系中,抛物线2143y x bx =-++的对称轴是直线2x =,与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求b 的值及B ,C 两点坐标;(2)M 为第一象限内抛物线上的一个点,过点M 作MN x ⊥轴于点N ,交BC 于点D . ①当线段MD 的长取最大值时,求点M 的坐标; ②连接CM ,当线段CM CD =时,求点M 的坐标.15.(2022春·黑龙江大庆·七年级校考期中)如图,在平面直角坐标系中,直线1l 的解析式为y x =,直线2l 的解析式为132y x =-+,与x 轴、y 轴分别交于点A 、点B ,直线1l 与2l 交于点C .(1)求出点A 、点B 的坐标; (2)求COB △的面积;(3)在x 轴上是否存在一点P ,使得POC △为等腰三角形?若存在,请直接写出点P 坐标,若不存在,请说明理由.16.(2022秋·江苏·八年级专题练习)在平面直角坐标系xOy 中,对于M ,N 两点,若在y 轴上存在点T ,使得90MTN ∠=︒,且MT NT =,则称M ,N 两点互相等垂,其中一个点叫做另一个点的等垂点.已知A 点的坐标是()2,0.(1)如图①,在点()2,2B -,()0,1C ,()2,0D -中,点A 的等垂点是_____;(选填“B ”,“C ”或“D ”) (2)如图②,若一次函数21y x =-的图像上存在点A 的等垂点'A ,求'A 点的坐标;(3)若一次函数()0y kx b k =+≠的图像上存在无数个点A 的等垂点,试写出该一次函数的所有表达式: ______.17.(2022秋·福建漳州·八年级统考期中)如图,将一个长方形OABC 纸片放在平面直角坐标系中,O 为原点,点A 在x 轴正半轴上,点C 在y 轴正半轴上,5OA =,4OC =,将长方形折叠后,点B 恰好落在OA 边上的点E 处,折痕所在直线经过点C 且与AB 边交于点D ,与x 轴的正半轴交于点F .(1)求点D 的坐标及直线CD 的解析式;(2)点P 是线段CF 上的一个动点,若OP 将△COF 的面积分为1:2两部分,求点P 的坐标.18.(2022秋·江苏·八年级期末)如图1,直线y =2x +b 过点A (﹣1,﹣4)和B (m ,8),它与y 轴交于点G ,点P 是线段AB 上的一个动点.(1)求出b 的值,并直接写出m = ,点G 的坐标为 ; (2)点P 关于坐标轴对称的点Q 落在直线y =﹣12x ﹣52上,求点P 的坐标; (3)过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E . ①如图2,将△PGE 沿直线PG 翻折,当点E 的对应点E ′落在x 轴上时,求点P 的坐标; ②在点P 从A 运动到点B 的过程中,点E ′也随之运动,直接写出点E ′的运动路径长为 .参考答案:1.(1)2k =-(2)点A 的坐标为(32-,0),点B 的坐标为(0,-3) (3)32.(1)12y x =;(2)2; (3)33,2P ⎛⎫ ⎪⎝⎭或11,2P ⎛⎫⎪⎝⎭.3.(1)①2P ,3P ;②32b -≤≤(2)2m ≤≤4.(1)2=23y x x --(2)()1,2Q - (3)278,315,24⎛⎫-- ⎪⎝⎭5.(1)D 、E 、G(2)3b =-或5(3)13b -<<且1b ≠6.(1)k =24(2)247.(1)25y x =-+(2)1x >(3)(3,1-)或()17,-8.(1)()2,0A ,()0,4B(2)ABP 的面积为4或129.(1)y =-34x +3 (2)四边形OCEF 不能为菱形10.(1)点A 的坐标为(3,0),点B 的坐标为(0,4),点C 的坐标为(8,0)(2)9(3)y 轴上存在一点P (0,﹣3)或(0,﹣9),使得PAD S ∆=12ADE S ∆11.(1)223y x =+ (2)4m = (3)15212.(1)41x y =-⎧⎨=⎩(2)32(3)124y x =+ 13.(1)212y x = (2)1122y x =-+,()4,0A (3)44,33⎛⎫ ⎪⎝⎭或()4,4-14.(1)43b =,(60)B ,,4(0)C , (2)①(35)M ,;②16(2)3M ,15.(1)点A的坐标为(6,0),点B的坐标为(0,3) (2)3(3)-16.(1)D(2)(3,5)或(13-,53-)(3)y=x+2或y=-x-217.(1)D(5,32);142y x=-+.(2)16433⎛⎫⎪⎝⎭,或8833⎛⎫⎪⎝⎭,18.(1)b=-2,m=5,G(0,-2);(2)1833⎛⎫- ⎪⎝⎭,-或()34,;(3)①5,32⎛⎫⎪⎝⎭;②6.。

初中数学反比例函数k的几何意义基础训练1含答案

初中数学反比例函数k的几何意义基础训练1含答案

反比例函数k的几何意义基础训练1一.选择题(共15小题)1.如图,A、B是反比例函数y=的图象上关于原点O对称的任意两点,过点A作AC⊥x 轴于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.42.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.1B.2C.4D.无法计算3.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣84.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1﹣k2的值等于()A.1B.3C.6D.85.如图,已知双曲线y=上有一点A,过A作AB垂直x轴于点B,连接OA,则△AOB 的面积为()A.1B.2C.4D.86.如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.47.如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为()A.2B.3C.4D.58.如图,点P在y轴正半轴上运动,点C在x轴上运动,过点P且平行于x轴的直线分别交函数和于A、B两点,则三角形ABC的面积等于()A.3B.4C.5D.69.反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是()A.y=B.y=C.y=﹣D.y=﹣10.如图,直线y=kx(k>0)与双曲线y=交于A,B两点,BC⊥x轴于C,连接AC交y轴于D,下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD=.其中正确结论的个数为()A.1个B.2个C.3个D.4个11.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4B.4.2C.4.6D.512.如图,点P在反比例函数y=(k≠0)的图象上,P A⊥x轴于点A,△P AO的面积为2,则k的值为()A.1B.2C.4D.613.如图,矩形ABCD中,点A在x轴上,点C在y轴上,点B在反比例函数y=位于第二象限的图象上,若矩形OABC的面积为6,则k的值是()A.3B.6C.﹣3D.﹣614.位于第二象限的点E在反比例函数y=的图象上,点F在x轴的负半轴上,O是坐标原点,若FO⊥EF,△EOF的面积等于2,则k的值是()A.4B.﹣4C.2D.﹣215.如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A.2B.m﹣2C.m D.4二.填空题(共15小题)16.已知反比例函数y=和y=在第一象限内的图象如图所示,则△AMN的面积为______.17.如图,⊙O的半径为2,双曲线的关系式分别为y=和y=﹣则阴影部分的面积是______.18.如图,点A在函数y=(x>0)的图象上,过点A作AB⊥x轴于点B,则△ABO的面积为______.19.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1﹣k2=______.20.如图,在平面直角坐标系xOy中,点B在y轴上,AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为______.21.反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x 轴于点P,如果△MOP的面积为3,那么k的值是______.22.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴=2,则S1+S2=______.影23.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为______.24.如图,P是反比例函数图象上一点,点P与坐标轴围成的矩形面积为3,则解析式为______.25.反比例函数如图所示,则矩形OAPB的面积是______.26.如图所示,点A是反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=______.27.如图,点P在反比例函数y=(x<0)的图象上,P A⊥x轴于点A,△P AO的面积为5,则k的值为______.28.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于______.29.如图,若点A在反比例函数y=(k≠0)的图象上,且△AOM的面积是3,则k=______.30.双曲线y1=、y2=在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则k的值为______.反比例函数k的几何意义基础训练1参考答案与试题解析一.选择题(共15小题)1.解:由题意可知:△AOC的面积为1,∵A、B关于原点O对称,∴△AOC与△BOC的面积相等,∴S△ABC=2S△AOC=2,故选:B.2.解:∵P A⊥x轴于点A,交C2于点B,∴S△POA=×4=2,S△BOA=×2=1,∴S△POB=2﹣1=1.故选:A.3.解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故选:D.4.解:根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,∴△AOB的面积为﹣,∴﹣=3,∴k1﹣k2=6.故选:C.5.解:根据题意得△OAB的面积=×|4|=2.故选:B.6.解:∵P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=6.∴阴影部分的面积=×矩形OAPB的面积=3.故选:C.7.解:由题意得,点C的坐标(t,﹣),点B的坐标(t,),BC=+,则(+)×t=3,解得k=5,故选:D.8.解:设点P的纵坐标为a,则﹣=a,=a,解得x=﹣,x=,所以点A(﹣,a),B(,a),所以AB=﹣(﹣)=,∵AB平行于x轴,∴点C到AB的距离为a,∴△ABC的面积=••a=3.故选:A.9.解:∵△POM的面积为2,∴S=|k|=2,∴k=±4,又∵图象在第四象限,∴k<0,∴k=﹣4,∴反比例函数的解析式为:y=﹣.故选:D.10.解:①反比例函数与正比例函数若有交点,一定是两个,且关于原点对称,所以正确;②根据A、B关于原点对称,S△ABC为即A点横纵坐标的乘积,为定值1,所以正确;③因为AO=BO,OD∥BC,所以OD为△ABC的中位线,即D是AC中点,所以正确;④在△ADO中,因为AD和y轴并不垂直,所以面积不等于k的一半,即不会等于,所以错误.因此正确的是:①②③,故选:C.11.解:如图,∵A、B两点在双曲线y=上,∴S四边形AEOF=4,S四边形BDOC=4,∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故选:C.12.解:依据比例系数k的几何意义可得,△P AO的面积=|k|,即|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4,故选:C.13.解:设B点的坐标为(x,y),∵矩形OABC的面积为6,∴﹣xy=6,∴xy=﹣6,∵B在y=上,∴k=xy=﹣6,故选:D.14.解:因为位于第二象限的点E在反比例函数y=的图象上,点F在x轴的负半轴上,O是坐标原点,△EOF的面积等于2,所以|k|=2,解得:|k|=4,所以:k=﹣4,故选:B.15.解:设A(x,y),∵直线y=mx与双曲线y=交于A、B两点,∴B(﹣x,﹣y),∴S△BOM=|xy|,S△AOM=|xy|,∴S△BOM=S△AOM,∴S△ABM=S△AOM+S△BOM=2S△AOM=2,S△AOM=|k|=1,则k=±2.又由于反比例函数位于一三象限,k>0,故k=2.故选:A.二.填空题(共15小题)16.解:设A(a,),则M(a,),N(,),∴AN=a﹣=,AM=﹣=,∴△AMN的面积=AN×AM=××=,故答案为:.17.解:双曲线y=和y=﹣的图象关于x轴对称,根据图形的对称性,把第二象限和第四象限的阴影部分的面积拼到第一和第三象限中的阴影中,可以得到阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以:S阴影==2π.故答案为2π.18.解:由k的几何意义可知:△ABO的面积为,当k=4时,∴△ABO的面积为2:故答案为:219.解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=3,解得:k1﹣k2=6.故答案为:620.解:如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为2,∴S△ADO=|k|=1,又反比例函数的图象位于第一象限,k>0,则k=2.故答案为:2.21.解:由题意得:S△MOP=|k|=3,k=±6,又∵函数图象在一象限,∴k=6.故答案是:6.22.解:根据题意得S1+S阴影=S2+S阴影=5,而S阴影=2,所以S1=S2=3,所以S1+S2=6.故答案为6.23.解:设A的坐标是:(m,n).则n=,即mn=2,∵AB=m,AB边上的高是n.∴S△ABC=mn=×2=1,故答案是:1.24.解:∵P是反比例函数图象上一点,∴S=|k|=3,又函数图象位于第二象限,k<0,则k=﹣3.故反比例函数的解析式为y=﹣.故答案为:y=﹣.25.解:设P点的坐标为(x,y),∵P在反比例函数的图象上,∴xy=﹣4,即PB×P A=4,∴矩形OAPB的面积是4,故答案为:4.26.解:设反比例函数的解析式为y=.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第二象限,∴k<0.∴k=﹣4.故答案为:﹣4.27.解:∵S△P AO=5,∴|x•y|=5,即|k|=5,则|k|=10∵图象经过第二象限,∴k<0,∴k=﹣1028.解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OC=••b=5.故答案为:5.29.解:∵△AMO的面积为3,∴|k|=2×3=6.又∵图象在二,四象限,k<0,∴k=﹣6.故答案为:﹣6.30.解:由题意得:S△BOC﹣S△AOC=S△AOB,﹣=1,解得:k=6.故答案是:6.。

初中数学几何模型与最值问题10专题-一次函数在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题10专题-一次函数在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题专题10 一次函数在实际应用中的最值问题【专题说明】1、通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.【注】函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.2、一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.3、有A B、两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A B、两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;①当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.专题10 一次函数在实际应用中的最值问题答案【专题说明】1、通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.【注】函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.2、一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?【分析】(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x +20,解得x=4(h).【解析】(1)210(2)①y=10x.②y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).故当x为4 h时,甲、乙两队所挖的河渠长度相等.2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?【分析】本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500时,y2<y1.【解析】观察图象,得:(1)每月行驶的路程小于1 500 km时,租国有出租车公司的车合算;(2)每月行驶的路程为1 500 km时,租两家车的费用相同;(3)如果每月行驶的路程为2 600 km,那么这个单位租个体车主的车合算.析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处函数值相等3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.【分析】考查综合利用一次函数的相关知识解决问题的能力.解法一:∵余油量y与行驶路程x的关系图象是一条直线,∴可设关系式为y=kx+b(k≠0).由图象可知y=kx+b经过两点(0,100)和(500,20),则有b=100,20=500k+b.把b=100代入20=500k+b,得20=500k+100,解得k=-425.∴直线的解析式为y=-425x+100.当y=100时,x=0;当y=84时,x=100.由图表可知,油箱中的余油量从100 L到84 L,行驶时间是1 h,行驶路程是100 km. ∴A型汽车的速度为100 km/h.解法二:由图表可知:A型汽车每行驶1 h的路程耗油16L.由图象可知:A型汽车耗油80 L所行驶的路程为500 km.可设汽车耗油16 L所行驶的路程为x km,则500∶80=x∶16,解得x=100.∴A型汽车1 h行驶的路程为100 km.∴它的速度为100 km/h.【小结】有时,我们利用一次函数的图象求一元一次方程的近似解.3、有A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A B 、两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【解析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则4030201800a b b a -=⎧⎨-=⎩,解得:300260a b =⎧⎨=⎩ 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧()90x -吨,总发电量为y 度,则 300260(90)4023400y x x x =+-=+①2(90)x x ≤-①60x ≤①y 随x 的增大而增大①当60x =时,y 取最大值25800度.4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得3212054210x y x y +=⎧⎨+=⎩,3015x y =⎧∴⎨=⎩,∴A 的单价30元,B 的单价15元; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-,152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【解析】(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:5 23110 x yx y-=⎧⎨+=⎩,解这个方程组得:2520xy=⎧⎨=⎩,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得4(500)522.418(500)10000 m mm m⎧>-⎪⎨⎪+-≤⎩,解这个不等式组得:222.2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【解析】(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,①有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.①W=8t+900中W随x的增大而增大,①当t=30时,W取最小值,此时用于拍照的费用最多,①为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【解析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.①2小时完成8公顷小麦的收割任务,且总费用不超过5400元,①,解得:5≤m≤7,①有三种不同方案.①w=200m+4000中,200>0,①w值随m值的增大而增大,①当m=5时,总费用最小,最小值为5000元答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【解析】(1)设购进篮球m个,排球n个,根据题意得:6080504200m nm n+=⎧⎨+=⎩,解得:4020mn=⎧⎨=⎩.答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,①y与x之间的函数关系式为:y=5x+1200.(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:512001400 8050(60)4300 xx x+≥⎧⎨+-≤⎩,解得:40≤x≤1303.①x取整数,①x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.①在y=5x+1200中,k=5>0,①y随x的增大而增大,①当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;①当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?【解析】(1)①由题意得:y=300x﹣600;①由题意得:y=[300﹣12(x﹣10)]x﹣600,即y=﹣12x2+420x﹣600;(2)依题意有:﹣12x2+420x﹣600=3000,解得x1=15,x2=20.故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);当x>10时,y=﹣12x2+420x﹣600=﹣12(x2﹣35x)﹣600=﹣12(x﹣17.5)2+3075,①当x=17.5时,y有最大值.但x只能取整数,①x取17或18.显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【解析】(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:23450{2275x yx y+=+=,解得:75{100xy==.答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,①18﹣n≥2n且18﹣n≤4n,① 185≤n≤6,①n非负整数,①n=4,5,6,相应的18﹣n=14,13,12;①购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A 品种芒果6箱,B品种芒果12箱总费用最少.。

2020年高考数学(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数含答案

2020年高考数学(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数含答案

(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数一、选择题(本大题共15小题,共75.0分)1.已知双曲线-=1(a>0,b>0)的离心率为2,则渐近线方程为()A. y=±2xB. y=±xC. y=±xD. y=±x2.已知焦点为F的抛物线的方程为,点Q的坐标为(3,4),点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为()A. 3B.C.D. 73.过双曲线的左焦点作倾斜角为30°的直线l,若l与y轴的交点坐标为(0,b),则该双曲线的离心率为()A. B. C. D.4.椭圆2x2-my2=1的一个焦点坐标为(0,),则实数m=()A. B. C. D.5.在平面直角坐标系中,经过点P(2,-),渐近线方程为y=x的双曲线的标准方程为()A. B. C. D.6.设m,n表示不同的直线,α,β表示不同的平面,且m,n⊂α.则“α∥β”是“m∥β且n∥β”的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件7.已知四棱锥E-ABCD,底面ABCD是边长为1的正方形,ED=1,平面ECD⊥平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D. 18.已知正方形ABCD的边长为2,CD边的中点为E,现将△ADE,△BCE分别沿AE,BE折起,使得C,D两点重合为一点记为P,则四面体P-ABE外接球的表面积是()A. B. C. D.9.将函数向右平移个单位后得到函数,则具有性质A. 在上单调递增,为偶函数B. 最大值为1,图象关于直线对称C. 在上单调递增,为奇函数D. 周期为,图象关于点对称10.要得到函数y=-sin3x的图象,只需将函数y=sin3x+cos3x的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度11.△ABC的内角A,B,C的对边分别为a,b,c,若,,,则b=( )A. B. C. D.12.在中,角的对边分别是,若,则的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形13.函数f(x)=|log2x|+x-2的零点个数为()A. 1B. 2C. 3D. 414.已知函数f(x)=(x<-1),则()A. f(x)有最小值4B. f(x)有最小值-4C. f(x)有最大值4D. f(x)有最大值-415.若曲线y=x2与曲线y=a ln x在它们的公共点P处具有公共切线,则实数a等于()A. 1B.C. -1D. 2答案和解析1.【答案】C【解析】解:双曲线-=1(a>0,b>0)的离心率为2,可得e==2,即有c=2a,由c2=a2+b2,可得b2=3a2,即b=a,则渐近线方程为y=±x,即为y=±x.故选:C.运用双曲线的离心率公式和a,b,c的关系可得b=a,再由近线方程y=±x,即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和a,b,c的关系,考查运算能力,属于基础题.2.【答案】B【解析】【分析】本题考查了抛物线的定义,属于中档题.利用抛物线的定义进行转化,可知当三点共线时满足题设最小要求.【解答】解:如图所示:抛物线y2=4x的焦点为F(1,0),准线l:x=-1,过点P作PM⊥l,垂足为M,则|PM|=|PF|,因为Q(3,4)在抛物线外,因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值,也即|PM|+|PQ|最小∴(|PM|+|PQ|)min=(|PF|+|PQ|)min=|QF|=.则点P到y轴的距离与到点Q的距离的和的最小值为.故选B.3.【答案】A【解析】解:直线l的方程为,令x=0,得.因为,所以a2=c2-b2=3b2-b2=2b2,所以.故选:A.求出直线方程,利用l与y轴的交点坐标为(0,b),列出关系式即可求解双曲线的离心率.本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.4.【答案】A【解析】【分析】利用椭圆的标准方程,结合焦点坐标,求解即可.本题考查了椭圆的标准方程,椭圆的性质及其几何意义的应用,是基本知识的考查,基础题.【解答】解:椭圆2x2-my2=1的标准方程为:,一个焦点坐标为(0,),可得,解得m=,故选:A.5.【答案】B【解析】解:根据题意,双曲线的渐近线方程为y=x,设双曲线方程为:,双曲线经过点P(2,-),则有8-1=a,解可得a=7,则此时双曲线的方程为:,故选:B.设出双曲线的方程,经过点P(2,-),求出a的值,即可得双曲线的方程.本题考查双曲线的几何性质,涉及双曲线的标准方程的求法,注意双曲线离心率公式的应用.6.【答案】A【解析】解:当α∥β 时,因为m,n⊂α,故能推出m∥β且n∥β,故充分性成立.当m∥β且n∥β 时,m,n⊂α,若m,n是两条相交直线,则能推出α∥β,若m,n不是两条相交直线,则α与β 可能相交,故不能推出α∥β,故必要性不成立.故选:A.由面面平行的性质得,充分性成立;由面面平行的判定定理知,必要性不成立.本题考查平面与平面平行的判定和性质,充分条件、必要条件的定义域判断方法.7.【答案】B【解析】解:如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.此时该四棱锥的体积==.故选:B.如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.即可得出此时该四棱锥的体积.本题考查了空间线面位置关系、数形结合方法,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】解:如图,PE⊥PA,PE⊥PB,PE=1,△PAB是边长为2的等边三角形,设H是△PAB的中心,OH⊥平面PAB,O是外接球的球心,则OH=,PH=,则.故四面体P-ABE外接球的表面积是S=.故选:C.由题意画出图形,找出四面体P-ABE外接球的球心,求得半径,代入球的表面积公式求解.本题考查多面体外接球表面积与体积的求法,考查数形结合的解题思想方法,是中档题.9.【答案】A【解析】【分析】本题主要考查三角函数平移、单调性、奇偶性、周期的知识,解答本题的关键是掌握相关知识,逐一分析,进行解答.【解答】解:将f(x)=2x的图象向右平移个单位,得g(x)=2(x-)=(2x-)=-2x,则g(x)为偶函数,在上单调递增,故A正确,g(x)的最大值为1,对称轴为2x=kπ,k∈Z,即x=,k∈Z,当k=1,图象关于x=对称,故B错误,由2kπ≤2x≤2kπ+π,k∈Z,函数g(x)单调递增,∴kπ≤x≤kπ+,k∈Z,∴g(x)在上不是单调函数,故C错误,函数的周期T=π,不关于点对称,故D错误 .故选A.10.【答案】C【解析】【分析】本题考查三角函数的图象的平移变换,是基础题.由条件利用y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:因为,所以将其图象向左平移个单位长度,可得,故选C.11.【答案】B【解析】【分析】本题主要考查了正弦定理,两角和与差的三角函数公式,是基础题.先求出sin B,再根据正弦定理求解即可.【解答】解:在△ABC中,,,则,,=,,.故选B.12.【答案】D【解析】【分析】本题考查三角形的形状判断,着重考查正弦定理的应用与三角函数化简运算的能力,属于中档题.化简,得出A=或B=A,即可求解.【解答】解:∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得:sin C-sin A cos B=2sin A cosA-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cosA-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0,或sin B=sin A,∵在中,角的取值范围均为,∴A=或B=A或B=π-A(舍去),故选D.13.【答案】B【解析】【分析】本题考查函数的零点的求法,零点个数问题,考查数形结合以及计算能力,转化思想的应用.转化函数零点问题为方程的根的问题,通过两个函数的图象交点个数判断求解即可.【解答】解:函数f(x)=|log2x|+x-2的零点个数,就是方程|log2x|+x-2=0的根的个数.令h(x)=|log2x|,g(x)=2-x,画出两函数的图象,如图.由图象得h(x)与g(x)有2个交点,∴方程|log2x|+x-2=0的解的个数为2.故选B.14.【答案】A【解析】【分析】本题主要考查利用基本不等式求函数最值的知识,属于中档题.利用“配凑”将函数化为基本不等式的形式,然后根据基本不等式进行计算即可.【解答】解:f(x)==-=-=-=-(x+1)++2,因为x<-1,所以x+1<0,-(x+1)>0,所以f(x)≥2+2=4,当且仅当-(x+1)=,即x=-2时,等号成立.故f(x)有最小值4.故选A.15.【答案】A【解析】【分析】本题考查了利用导数研究曲线上某点切线方程,属于中档题.利用导数的几何意义求切线的斜率以及切线方程,即可得结论.【解答】解:∵曲线的导数为,∴在P(s,t)处的斜率为,又∵曲线y=a ln x的导数为,∴在P(s,t)处的斜率为,∴曲线与曲线y=a ln x在它们的公共点P(s,t)处具有公共切线,∴,并且,t=a ln s,即,∴,解得s2=e,∴a=1.故选A.。

动态几何与函数问题(含答案)

动态几何与函数问题(含答案)

动态几何与函数问题【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.(2)当24<<时,求S关于t的函数解析式.t【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。

很多考生看到图二的函数图像没有数学感觉,反应不上来那个M点是何含义,于是无从下手。

其实M点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N点表示移动距离超过4之后阴影部分面积就不动了。

脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时候.所以根据这么几种情况去作答就可以了。

第二问建立函数式则需要看出当24<<时,阴t影部分面积就是整个梯形面积减去△ODE的面积,于是根据这个构造函数式即可。

动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。

【解】(1)由图(2)知,M点的坐标是(2,8)∴由此判断:24,;==A B O A∵N点的横坐标是4,N Q是平行于x轴的射线,∴4C O=∴直角梯形O A B C 的面积为:()()112441222A BO C O A +⋅=+⨯=..... (3分)(2)当24t <<时,阴影部分的面积=直角梯形O A B C 的面积-O D E∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S O D O E=-⋅ ∵142O D O D tO E==-,∴()24O E t =- .∴()()()21122441242St t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形A O B C 中,4O B =,3O A =.分别以O B O A ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边B C 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x=>的图象与A C 边交于点E .(1)求证:A O E △与B O F △的面积相等;(2)记O E F E C F S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将C E F △沿E F 对折后,C 点恰好落在O B 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。

数学中考一轮复习专项突破训练:一次函数与几何变换(含答案)

数学中考一轮复习专项突破训练:一次函数与几何变换(含答案)

2021年九年级数学中考一轮复习专项突破训练:一次函数与几何变换(附答案)1.直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A.(﹣4,0)B.(﹣1,0)C.(0,2)D.(2,0)2.将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4C.y=2x+2D.y=2x﹣23.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1B.y =2x﹣1C.y=2x+2D.y=2x﹣24.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小5.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)6.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2B.y=2x﹣2C.y=2(x﹣2)D.y=2(x+2)7.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)8.一次函数y=x﹣1的图象向上平移2个单位后,不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.已知直线l:y=﹣x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为()A.B.y=2x﹣1C.D.y=2x﹣410.如图,直线y=﹣x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB 沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是()A.(0,4)B.(0,3)B.C.(﹣4,0)D.(0,﹣3)11.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2B.3﹣2C.D.112.将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是()A.y=2x B.y=2x+2C.y=2x﹣4D.y=2x+413.如图,将点P(﹣1,3)向右平移n个单位后落在直线y=2x﹣1上的点P′处,则n等于()A.2B.2.5C.3D.414.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为.15.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.16.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为.17.如图,把直线y=﹣2x向上平移后,分别交y轴、x轴于A、B两点,直线AB经过点(m,n)且2m+n=6,则点O到线段AB的距离为.18.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为.19.将直线y=3x沿x轴正方向向右平移2个单位,所得直线的解析式为y=.20.将直线y=3x先向下平移2个单位,再向右平移3个单位得到直线.21.若直线y=2x+1下移后经过点(5,1),则平移后的直线解析式为.22.将直线y=2x﹣4向下平移4个单位后,所得直线的表达式是.23.已知一次函数y=2x+1的图象与x轴、y轴分别交于A、B两点,将这条直线进行平移后交x轴、y轴分别交于C、D,要使A、B、C、D围成的四边形面积为4,则直线CD的解析式为.24.将直线y=2x向下平移5个单位后,得到的直线解析式为.25.将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.26.将直线y=x+b沿y轴向下平移3个单位长度,若点A(﹣1,2)落在这条直线上,则b的值为.27.将正比例函数y=﹣3x的图象向上平移5个单位,得到函数的图象.28.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,若l与线段BM有公共点,则t的取值范围为.29.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为.30.如图,将直线OA向下平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是.31.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.32.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y=x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.33.如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.34.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.35.已知直线l1:y=x﹣3与x轴,y轴分别交于点A和点B.(1)求点A和点B的坐标;(2)将直线l1向上平移6个单位后得到直线l2,求直线l2的函数解析式;(3)设直线l2与x轴的交点为M,则△MAB的面积是.36.如图,已知直线l1:y=﹣x+6与x轴交于点A,与y轴交于点B,将直线l1向下平移4个单位长度后得到直线l2,直线l2与x轴交于点C,与y轴交于点D.(1)求△AOB的面积;(2)直线l2的函数表达式是.(3)若点P是折线CAB上一点,且S△PBD=S四边形ABCD,请求点P的坐标.37.如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.38.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y =﹣2|x+2|的图象如图所示.x…﹣3﹣2﹣10123…y…﹣6﹣4﹣20﹣2﹣4﹣6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.39.如图,在平面直角坐标系中,直线l1:y=x+3与x轴、y轴交点分别为点A和点B,直线l2过点B且与x轴交于点C,将直线l1向下平移4个单位长度得到直线l3,已知直线l3刚好过点C且与y轴交于点D.(1)求直线l2的解析式;(2)求四边形ABCD的面积.40.已知直线y=2x﹣7平移后的图象经过点(﹣3,﹣2),(1)求l的函数解析式;并画出该函数的图象;(2)l与x轴交于点A,点P是l上一点,且S△AOP=,求点P的坐标参考答案1.解:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x﹣4,当y=0时,x=2,因此与x轴的交点坐标是(2,0),故选:D.2.解:y=2(x﹣2)﹣3+3=2x﹣4.故选:A.3.解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选:C.4.解:将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.5.解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1的解析式y=kx+b,则,解得:,故直线l1的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.6.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=2(x﹣2).故选:C.7.解:由“上加下减”的原则可知,将函数y=3x的图象向上平移6个单位长度所得函数的解析式为y=3x+6,∵此时与x轴相交,则y=0,∴3x+6=0,即x=﹣2,∴点坐标为(﹣2,0),故选:B.8.解:因为一次函数y=x﹣1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选:D.9.解:设直线l'的解析式为y=kx+b,∵直线l'⊥直线l,∴﹣×k=﹣1,即k=2,在直线l:y=﹣x+1中,令y=0,则x=2,∴P(2,0),代入y=2x+b,可得0=4+b,解得b=﹣4,∴直线l'的解析式为y=2x﹣4,故选:D.10.解:∵直线y=﹣x+8与x轴、y轴分别交于点A和点B,∴y=0时,x=6,则A点坐标为:(6,0),x=0时,y=8,则B点坐标为:(0,8);∴BO=8,AO=6,∴AB==10,直线AB沿AM折叠,点B恰好落在x轴上的点C处,∴AB=AC=10,MB=MC,∴OC=AC﹣OA=10﹣6=4.设MO=x,则MB=MC=8﹣x,在Rt△OMC中,OM2+OC2=CM2,∴x2+42=(8﹣x)2,解得:x=3,故M点坐标为:(0,3).故选:B.11.解:在△MOC和△NOA中,,∴△MOC≌△NOA,∴∠CMO=∠ANO,∵∠CMO+∠MCO=90°,∠MCO=∠NCP,∴∠NCP+∠CNP=90°,∴∠MPN=90°∴MP⊥NP,在正方形旋转的过程中,同理可证,∴∠CMO=∠ANO,可得∠MPN=90°,MP⊥NP,∴P在以MN为直径的圆上,∵M(﹣4,0),N(0,4),∴圆心G为(﹣2,2),半径为2,∵PG﹣GC≤PC,∴当圆心G,点P,C(0,2)三点共线时,PC最小,∵GN=GM,CN=CO=2,∴GC=OM=2,这个最小值为GP﹣GC=2﹣2.故选:A.12.解:y=2(x﹣2)+4=2x.故选:A.13.解:∵将点P(﹣1,3)向右平移n个单位后落在点P′处,∴点P′(﹣1+n,3),∵点P′在直线y=2x﹣1上,∴2(﹣1+n)﹣1=3,解得n=3.故选:C.14.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.15.解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.16.解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故答案为4.17.解:如图,设点O到线段AB的距离为h,原直线y=﹣2x中的k=﹣2,向上平移后得到了新直线,那么新直线的k=﹣2.∵直线AB经过点(m,n),且2m+n=6.∴直线AB经过点(m,6﹣2m).可设新直线的解析式为y=﹣2x+b1,把点(m,6﹣2m)代到y=﹣2x+b1中,可得b1=6,∴直线AB的解析式是y=﹣2x+6.∴A(0,6),B(3,0).∴OA=6,OB=3.∴AB==3.∴×3h=×6×3,∴h=.故答案是:.18.解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4﹣3=2x+1;故答案为:y=2x+1.19.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)=3x﹣6.故答案为:y=3x﹣6.20.解:∵直线y=3x先向下平移2个单位,∴y=3x﹣2,再向右平移3个单位得到直线得到y=3(x﹣3)﹣2=3x﹣11.故答案为y=3x﹣11.21.解:设平移后的解析式为:y=2x+b,∵将直线y=2x+1平移后经过点(5,1),∴1=10+b,解得:b=﹣9,故平移后的直线解析式为:y=2x﹣9.故答案为:y=2x﹣9.22.解:∵将直线y=2x﹣4向下平移4个单位,∴平移后解析式为:y=2x﹣4﹣4=2x﹣8.故答案为:y=2x﹣8.23.解:∵一次函数y=2x+1的图象与x轴、y轴分别交于A、B两点,∴A(﹣,0),B(0,1),设直线CD的解析式为y=2x+b,∴C(﹣,0),D(0,b),当点C在x轴的正半轴时,(﹣+)×(1﹣b)=4,解得b=5(舍去)或b=﹣3,此时直线CD的解析式为y=2x﹣3;当点C在x轴的负半轴时,b•﹣×1×=4,解得b=﹣(舍去)或b=,此时直线CD的解析式为y=2x+,综上所述,直线CD的解析式为y=2x﹣3或y=2x+.故答案为y=2x﹣3或y=2x+.24.解:由“上加下减”的原则可知,将直线y=2x向下平移5个单位后,得到的直线解析式为:y=2x﹣5.故答案为y=2x﹣5.25.解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.26.解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)落在这条直线上,∴把点(﹣1,2)代入y=x+b﹣3,得﹣1+b﹣3=2,解得b=6.故答案为6.27.解:由题意得:平移后的解析式为:y=﹣3x+5.故答案为:y=﹣3x+5.28.解:当直线y=﹣x+b过点B(3,0)时,0=﹣3+b,解得:b=3,0=﹣(1+t)+3,解得t=2.当直线y=﹣x+b过点M(4,3)时,3=﹣4+b,解得:b=7,0=﹣(1+t)+7,解得t=6.故若l与线段BM有公共点,t的取值范围是:2≤t≤6,故答案为2≤t≤6.29.解:把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)x﹣1=﹣2x+5.故答案为:y=﹣2x+530.解:设直线的解析式为:y=kx,把(2,4)代入解析式,可得:4=2k,解得:k=2,所以直线解析式为:y=2x,由“上加下减”的原则可知,将直线y=2x向下平移1个单位后,所得直线的表达式是y=2x﹣1,故答案为:y=2x﹣1.31.解:(1)由一次函数y=(m+1)x+4,令x=0,则y=4,∴B(0,4),∴OB=4,∵S△OAB=4,∴×OA×OB=4,解得OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m+1)x+4,得m=1,故答案为:1;﹣2,0;(2)∵OP=4OA,OA=2,∴P(8,0),设直线BP的解析式为y=kx+b,将(8,0),(0,4)代入得,解得k=﹣,b=4,∴直线BP的解析式为y=﹣x+4;(3)设直线AB绕点B顺时针旋转45°得到直线BE,如图,过点A作AF⊥AB交BE于点F,作FH⊥x轴于H.则∠AHF=∠BOA=90°,AF=BA,∠F AH=∠ABO,∴△AOB≌△FHA(AAS),∴FH=AO=2,AH=BO=4,∴HO=6,∴F(﹣6,2),设直线BE的解析式为y=mx+n,则把点F和点B的坐标代入,可得,解得,∴直线BE的解析式为y=x+4.32.解:(1)设平移后的直线解析式为y=x+b,∵y=x+b过点A(5,3),∴3=×5+b,∴b=,∴平移后的直线解析式为y=x+,∴m=﹣(﹣2)=;(2)∵正方形ABCD中,AD∥y轴,点A的坐标为(5,3),∴点E的横坐标为5﹣2=3.把x=3代入y=x+,得y=×3+=2,∴点E的坐标为(3,2),∴BE=1,∴△ABE的面积=×2×1=1.33.解:(1)把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式为y=2x﹣4;(2)当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,2x﹣4=0,解得x=2,则直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,当y=0时,2x+3=0,解得x=﹣,则直线y=2x+3与x轴的交点坐标为(﹣,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为﹣≤x≤2.34.解:(1)∵点A的横坐标为4,∴y=×4=3,∴点A的坐标是(4,3),∴OA==5,∵OA=OB,∴OB=2OA=10,∴点B的坐标是(0,﹣10),设直线l2的表达式是y=kx+b,则,解得,∴直线l2的函数表达式是y=x﹣10;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,∴S△BCD=×BC•x D=×(10+5)×6=45.35.解:(1)当y=0时,0=,解得:x=6,所以点A的坐标为(6,0);当x=0,y=﹣3,所以点B的坐标为(0,﹣3);(2)将直线l1向上平移6个单位后得到直线l2,直线l2的函数解析式为:y=x﹣3+6=x+3;(3)当y=0,0=x+3,解得:x=﹣6,所以点M的坐标为(﹣6,0),所以△MAB的面积=,故答案为:1836.解:(1)当x=0时,y=﹣x+6=6,∴点B的坐标为(0,6);当y=﹣x+6=0时,x=8,∴点A的坐标为(8,0).∴S△AOB=OA•OB=×8×6=24.(2)∵将直线l1向下平移4个单位长度后得到直线l2,∴直线l2的函数表达式是y=﹣x+6﹣4=﹣x+2.故答案为:y=﹣x+2.(3)当x=0时,y=﹣x+2=2,∴点D的坐标为(0,2);当y=﹣x+2=0时,x=,∴点C的坐标为(,0).∴S四边形ABCD=S△AOB﹣S△COD=24﹣×2×=.设点P的横坐标为m(0<m≤8),∵S△PBD=S四边形ABCD,∴BD•m=(6﹣2)m=,解得:m=,∵<<8,且当x=时,y=﹣x+6=﹣×+6=2,∴点P的坐标为(,0)和(,2).37.解:(1)把x=2代入y=x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=x﹣4,∴x=0时,y=﹣4,∴B(0,﹣4).将y=﹣2代入y=x﹣4,得x=4,∴点C的坐标为(4,﹣2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,﹣2),∴,解得,∴直线l2的解析式为y=﹣x+4;(2)∵y=﹣x+4,∴x=0时,y=4,∴D(0,4).∵B(0,﹣4),∴BD=8,∴△BDC的面积=×8×4=16.38.解:(1)A(0,2),B(﹣2,0),函数y=﹣2|x+2|的对称轴为x=﹣2;(2)将函数y=﹣2|x|的图象向上平移2个单位得到函数y=﹣2|x|+2的图象;将函数y=﹣2|x|的图象向左平移2个单位得到函数y=﹣2|x+2|的图象;(3)将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x﹣3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.39.解:(1)∵直线l1:y=x+3与x轴、y轴交点分别为点A和点B,∴y=0时,x+3=0,解得x=﹣6,x=0时,y=3,∴A(﹣6,0),B(0,3).∵将直线l1:y=x+3向下平移4个单位长度得到直线l3,∴直线l3的解析式为:y=x+3﹣4,即y=x﹣1,∵y=0时,x﹣1=0,解得x=2,x=0时,y=﹣1,∴C(2,0),D(0,﹣1).设直线l2的解析式为y=kx+b,∵直线l2过点B(0,3)、点C(2,0),∴,解得,∴直线l2的解析式为y=﹣x+3;(2)∵A(﹣6,0),B(0,3),C(2,0),D(0,﹣1),∴AC=2﹣(﹣6)=8,OB=3,OD=1,∴S四边形ABCD=S△ABC+S△ADC=AC•OB+AC•OD=×8×3+×8×1=12+4=16.40.解:(1)设直线y=2x﹣7平移后的解析式为y=2x+b,依题意得﹣2=2×(﹣3)+b,解得b=4,∴l的函数解析式为y=2x+4,如图所示:(2)设P(x,2x+4),∵y=2x+4,∴A(﹣2,0),即AO=2,∵S△AOP=,∴×2×|2x+4|=,解得x=或,∴P(,)或(,)21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何与函数问题的参考答案【典型例题】【例1】(上海市)(1)取AB 中点H ,联结MH ,M 为DE 的中点,MH BE ∴∥,1()2MH BE AD =+. 又AB BE ⊥,MH AB ∴⊥.12ABM S AB MH ∴=△,得12(0)2y x x =+>;(2)由已知得DE =.以线段AB 为直径的圆与以线段DE 为直径的圆外切,1122MH AB DE ∴=+,即11(4)222x ⎡+=+⎣.解得43x =,即线段BE 的长为43;(3)由已知,以A N D ,,为顶点的三角形与BME △相似, 又易证得DAM EBM ∠=∠.由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②AD B B ME ∠=∠.①当ADN BEM ∠=∠时,AD BE ∥,ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.DB DE ∴=,易得2BE AD =.得8BE =;②当ADB BME ∠=∠时,AD BE ∥,ADB DBE ∴∠=∠.DBE BME ∴∠=∠.又BED MEB ∠=∠,BED MEB ∴△∽△.DE BE BE EM∴=,即2BE EM DE =,得222(x x =+-解得12x =,210x =-(舍去).即线段BE 的长为2. 综上所述,所求线段BE 的长为8或2.【例2】(山东青岛)(1)在Rt△ABC 中,=AB 由题意知:AP = 5-t ,AQ = 2t , 若PQ ∥BC ,则△APQ ∽△ABC , ∴=AC AQ AB AP ,∴5542t t -=,∴710=t .(2)过点P 作PH ⊥AC 于H . ∵△APH ∽△ABC ,图①B∴=BC PH AB AP ,∴=3PH 55t -,∴t PH 533-=,∴t t t t PH AQ y 353)533(221212+-=-⨯⨯=⨯⨯=.(3)若PQ 把△ABC 周长平分,则AP+AQ=BP+BC+CQ . ∴)24(32)5(t t t t -++=+-, 解得:1=t .若PQ 把△ABC 面积平分,则ABC APQ S S ∆∆=21, 即-253t +3t =3.∵ t =1代入上面方程不成立,∴不存在这一时刻t ,使线段PQ 把Rt△ACB 的周长和面积同时平分. (4)过点P 作PM ⊥AC 于M,PN ⊥BC 于N ,若四边形PQP ′ C 是菱形,那么PQ =PC . ∵PM ⊥AC 于M ,∴QM=CM .∵PN ⊥BC 于N ,易知△PBN ∽△ABC . ∴ABBPAC PN =, ∴54t PN =, ∴54t PN =, ∴54t CM QM ==,∴425454=++t t t ,解得:910=t . ∴当910=t 时,四边形PQP ′ C 是菱形.此时37533=-=t PM , 9854==t CM , 在Rt△PMC 中,9505816494922=+=+=CM PM PC , ∴菱形PQP ′ C 边长为9505. 【例3】(山东德州)(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x .∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) (2)如图(2),设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .BN在Rt△ABC 中,BC=5. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =.过M 点作MQ ⊥BC 于Q ,则MQ OD =在Rt△BMQ 与Rt△BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=. ∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴当x =4996时,⊙O 与直线BC 相切. (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F ∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .D 图( 2)图 ( 4)P图 (3)B图 (1)∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴ ()2322PEF S x ∆=-. MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-. 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. 综上所述,当83x =时,y 值最大,最大值是2.【例3】(山东德州)(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x .∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) (2)如图(2),设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =.过M 点作MQ ⊥BC 于Q ,则MQ =在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA . ∴ BM QM BC AC=. ∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. BD图( 2) B图 (1)∴ 当x =4996时,⊙O 与直线BC 相切. (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F . ∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴ ()2322PEF S x ∆=-. MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-. 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. 综上所述,当83x =时,y 值最大,最大值是2.【学力训练】1、(山东威海)(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .∵ AB ∥CD ,∴ DG =CH ,DG ∥CH .图 ( 4)P图 (3)∴ 四边形DGHC 为矩形,GH =CD =1. ∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°,∴ △AGD ≌△BHC (HL ). ∴ AG =BH =2172-=-GH AB =3. ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.∴ ()174162ABCD S +⨯==梯形.(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB , ∴ ME =NF ,ME ∥NF . ∴ 四边形MEFN 为矩形. ∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ). ∴ AE =BF . 设AE =x ,则EF =7-2x .∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA . ∴DG ME AG AE =.∴ ME =x 34. ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN 矩形.当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649. (3)能.由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x .∴ EF =21147272105x -=-⨯=<4.ABE FGH ABE F G H∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形. 00000000…………. 2、(浙江温州市)(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠. BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===. ABCD ERPH QM 21 HA BCD E R PHQtan QR BAC CR CA==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.3、(湖南郴州)(1) 因为四边形ABCD 是平行四边形, 所以AB DG 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△(2)BEF CEG △与△的周长之和为定值.理由一: 过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH 由 BC =10,AB =5,AM =4,可得CH =8,BH =6,所以BC +CH +BH =24理由二:由AB =5,AM =4,可知 在Rt△BEF 与Rt△GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====, 所以,△BEF 的周长是125BE , △ECG 的周长是125CE 又BE +CE =10,因此BEF CEG 与的周长之和是24.(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y E F D G x x x x==-+=--配方得:2655121()2566y x =--+.所以,当556x =时,y 有最大值.最大值为1216.4、(浙江台州)(1)如图,四边形ABCD 是矩形,AB CD AD BC ∴==,.又9AB =,AD =90C ∠=,AM xHGFEDCB9CD ∴=,BC =tan BC CDB CD ∴∠==30CDB ∴∠=. PQ BD ∥,30CQP CDB ∴∠=∠=.(2)如图(1),由轴对称的性质可知,RPQ CPQ △≌△,RPQ CPQ ∴∠=∠,RP CP =.由(1)知30CQP ∠=,60RPQ CPQ ∴∠=∠=,60RPB ∴∠=,2RP BP ∴=. CP x =,PR x ∴=,PB x =.在RPB △中,根据题意得:)x x =,解这个方程得:x =(3)①当点R 在矩形ABCD 的内部或AB 边上时,0x <≤2113322CPQ S CP CQ x x x =⨯⨯==△, RPQ CPQ △≌△,∴当0x <≤2y x =当R 在矩形ABCD 的外部时(如图(2)),x <<,在Rt PFB △中,60RPB ∠=,2)PF BP x∴==,又RP CP x ==,3RF RP PF x ∴=-=-在RtERF △中,30EFR PFB ∠=∠=,6ER ∴=-.211822ERF S ER FR x x ∴=⨯=-+△ RPQ ERF y S S =-△△,DQC BPA(图1)DQC BPR A图(2)F E∴当x <<时,218y x =+-.综上所述,y 与x之间的函数解析式是:22(018x x y x x <=⎨⎪+-<<⎩≤.②矩形面积9=⨯当0x <≤函数2y x =随自变量的增大而增大,所以y的最大值是727的值727=⨯=而>,所以,当0x <<y 的值不可能是矩形面积的727;当x <218x +-=x =>,所以x =所以x =综上所述,当x =PQR △与矩形ABCD 重叠部分的面积等于矩形面积的727.。

相关文档
最新文档