【2018 -2019学年度第一学期 北师大版 九年级上册 数学导学案】 2.6应用一元二次方程(第
北师大版-数学-九年级上册-2.6 应用一元二次方程(第二课时)导学案
2.6 应用一元二次方程【学习目标】课标要求:①通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
②经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,从中感受到数学学习的意义;目标达成:1、能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;2、在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
学习流程:【课前展示】请同学们回忆并回答与利润相关的知识?9折要乘以90%或0.9或109,那么x 折呢? 【创境激趣】一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手。
这次会议到会的人数是多少?【自学导航】1、教材54—55页。
2、审清题意,注重解题思路。
【合作探究】P56习题2.9第1-4题选作题(供学有余力的学生选作):P59复习题23【展示提升】典例分析 知识迁移新华商场销售某种冰箱,每台进货价为2500元。
市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。
商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的降价应为多少元?(做了改动,降低难度)【强化训练】某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?【归纳总结】学生能说出利用方程解决实际问题的关键和步骤:关键:寻找等量关系步骤:其一是整体地、系统地审清问题;其二是把握问题中的“相等关系”;其三是正确求解方程并检验解的合理性。
学生通过回顾本节课的学习过程,体会利用列一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。
【北师大版】九年级数学上册导学案:2.6应用一元二次方程
2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题1. 经历分析具体问题中数量关系.建立方程模型并解决问题过程.2. 在列方程解决实际问题过程中,认识方程模型重要性,并总结运用方程解决实际问题一般步骤.(重点)3. 能根据具体问题实际意义检验结果合理性.(重点)阅读教材P52〜53,完成下列问题:(一) 知识探究1. 列方程解应用题一般步骤:(1) “审”:读懂题目,审清题意,明确哪些是已知量,哪些是未知量以及它们之间相等关系;(2) “设”:设元,也就是设_______ ;(3) “______ ”列方程,找出题中等量关系,再根据这个关系列出含有未知数等式,即方程;(4) “解”:求出所列方程_______ ;(5) “验”检验方程解能否保证实际问题 _______ ;(6) “答”:就是写出答案.2. 解决与几何图形有关一元二次方程应用题时,关键是把实际问题数学化,把实际问题中已知条件与未知条件归结到某一个几何图形中,然后用几何原理来寻找它们之间关系,从而列出有关一元二次方程,使问题得以解决.(二) 自学反馈要为一幅长29 cm,宽22 cm照片配一个镜框,要求镜框四条边宽度相等,且镜框所占面积为照片面积四分之一,镜框边宽度应是多少厘米?◎攻利用一元二次方程解决实际问题关键是寻找等量关系,此题是利用矩形面积公式作为相等关系列方程.活动1小组讨论例如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B正东方向200海里处有一重要目标C.小岛D位于AC中点,岛上有一补给码头;小岛F位于BC中点.一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰速度是补给船2倍,军舰在由B到C途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)解:连接DF.v AD= CD BF= CF,•••。
北师大版九年级数学上册导学案
北师大版九年级数学上册课程纲要平陌镇初级中学►课程类型:国家课程,必修课►设计教师:九年级数学组►适用年级:九年级►授课时间:48—53课时【课程目标】第一章证明(二)1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式;2.结合实例体会反证法的含义;3.能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论;4.能够用综合法证明等腰三角形的判定定理;5.会运用“等角对等边”解决实际应用问题及相关证明问题;6.掌握证明与等边三角形、直角三角形有关的性质定理和判定定理;7.结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立;8.能够证明直角三角形全等的“HL”判定定理既解决实际问题;9.能够证明线段垂直平分线的性质定理、判定定理及其相关结论;10.能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形;11.能够证明角平分线的性质定理、判定定理及相关结论;12.能够利用尺规作已知角的平分线;13.根据中垂线判定定理证明三角形三边中垂线共一点;根据角平分线判定定理证明三角形三内角角平分线共一点;第二章一元二次方程14.会用开平方法解形如(x+m)2=n (n≥0)的方程;15.理解配方法,会用配方法解简单的数字系数的一元二次方程;16.体会转化的数学思想,用配方法解一元二次方程的过程;17.利用配方法解数字系数的一般一元二次方程;18.经历到方程解决实际,问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,培养学生数学应用的意识和能力;19.进一步掌握用配方法解题的技能;20.通过推导求根公式,加强推理技能训练,进一步发展逻辑思维能力;21.会用公式法解一元二次方程;22.会用分解因式法解系数简单的一元二次方程;23.掌握黄金分割中黄金比的来历;24.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力;第三章证明(三)25.体会在证明过程中所运用的归纳、类比、转化等数学思想方法;26.能运用综合法证明平行四边形的性质定理,及其它相关结论;27.能运用综合法证明平行四边形的判定定理;28.能运用综合法证明矩形性质定理和判定定理;29.能运用综合法证明菱形的性质定理和判定定理;30.能运用综合法证明正方形的性质定理和判定定理以及其他相关结论;第四章视图与投影31.通过具体活动,积累数学活动经验,进一步增强学生的动手实践能力和数学思维能力,发展学生的空间观念;32.通过学习和实践活动,激发学生对视图与投影学习的好奇心,体会数学与生活的联系;33.通过实例能够判断简单物体的三视图,能根据三种视图描述基本几何体或实物原型,实现简单物体与其三种视图之间的相互转化;34.会画圆柱、三棱柱、四棱柱、圆锥、球的三视图;35.通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体与其投影之间的相互转化;36.通过实例了解视点、视线、盲区的含义及其在生活中的应用;第五章反比例函数37.经历在具体问题中探索数量关系和变化规律的过程,抽象出反比例函数的概念,并结合具体情境领会反比例函数作为一种数学模型的意义;38.能画出反比例函数的图象,根据图像和解析表达式探索并理解反比例函数的主要性质;39.逐步提高观察和归纳分析能力,体验数形结合的数学思想方法;40.能依据已知条件确定反比例函数,领悟用函数观点解决某些实际问题的基本思路;第六章频率与概率41.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力;42.通过实验等活动,理解事件发生的频率与概率之间的关系,加深学会对概率的理解,进一步体会概率是描述随机现象的数学模型;43.能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法估计一些复杂的随机事件发生的概率;44.结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系。
北师大版九年级数学上精品导学案(可打印)2.1认识一元二次方程(1)导学单
九年级数学导学案班级: 姓名: 【学习课题】 §2.1认识一元二次方程 (一) 【学习目标】1.理解一元二次方程的概念.2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题. 【学习重点】理解一元二次方程的概念.【学习难点】理解并灵活运用一元二次方程概念解决有关问题. 【学习过程】 一、温故知新1. 下列各式是方程的有 (填写序号)①2+6=8;②2x+3;③x-5<18;④5x+6=22;⑤x+3y=8;⑥924=-x 。
2.什么叫方程?我们学过哪些方程?请从上题中找出一例。
3.什么叫一元一次方程?4.根据题意列方程(1)正方形桌面的面积是2m 2,求它的边长。
(2)两个相邻的整数之积为0,求这两个整数。
二、探究新知 1、数字的秘密观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?2、条形区域有多宽幼儿园某教室矩形地面的长为8m ,宽为5m ,现准备在地面正中间铺设一块面积为18m2 的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?3、梯子的滑动如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?三、应用提升一般形式3、关于x 的一元二次方程(m -3)x 2+2x+m 2-9=0的常数项为0,则m 的值为 .4、关于x 的方程(k -3)x ∣k -1∣+2x -1=0,当k _______时,它是一元二次方程.5、关于x 的方程k 2x 2+2kx +2k +2=x 2+2x,当k_______时,是一元二次方程;当k _______时,是一元一次方程.6、直击中考:(1)(2018•盐城)已知一元二次方程x 2+k ﹣3=0有一个根为1,则k 的值为( ) A .﹣2 B .2 C .﹣4 D .4(2)(2018•十堰)对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为 . 四、归纳小结只含有 个未知数,并且未知数的最高次数是 的 方程叫做一元二次方程。
北师大版九年级数学上册全册导学案
北师大版九年级数学上册全册导学案第一章 证明(二)§1.1 你能证明它们吗(1)撰稿人 王可 审稿人 龚敏林 日期教学目标1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式2.经历“探索—发现—猜想—证明”的过程,能够用综合法证明等腰三角形的有关性质定理3.运用等腰三角形的性质定理及其推论证明与等腰三角形有关的角相等或线段相等 教学重点、难点:1.了解作为证明基础的几条公理的内容2.掌握证明的基本步骤和书写格式教学过程一、预习反馈 明确目标1.等腰三角形知识回顾1) 如图1,在△ABC 中,AB = AC ,则顶角为 ,底角为 ,腰为 ,底边为 。
2) AD 是△ABC 的中线,则 ;AD 是△ABC 的角平分线,则 ;AD 是△ABC 的垂线,则 ; 3) 如图,在△ABC 中,AB = AC ,点D 在AC 上,且BD = BC = AD 。
找出所有的等腰三角形 。
2.说出学过的公理及推论3.已知∠D =∠C ,∠A =∠B ,且AE = BF 。
求证:AD = BC 。
二、创设情境 自主探究1. 议一议 等腰三角形的性质 等腰三角形的两个底角相等 (等边对等角)我们如何验证这个命题成立呢?我们以前是用度量、折纸的方法得到的,但要说明一个结论成立,仅仅依靠观察或度量是不够的,证明是必要的。
那么,我们应该如何证明呢? 2.讲解例题 已知,如图,在△ABC 中,AB = AC 。
求证:∠B =∠C 。
分析:要想证明∠B=∠C ,根据以前所学的证明方法,只需证明分别包括∠B 和∠C 的两个三角形全等。
但图中只有一个三角形。
我们应该如何作辅助线呢?引导学生作出辅导线,得出证明过程。
发散学生思维,让学生找出其它的证明方法。
除了作顶角的平分线还可以怎样作辅助线?顶角的平分线 底边上的中线 底边上的高ABCDDCBAABCA A A ABCA BCDE F三、展示交流 点拨提高如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。
北师大版九年级数学上册导学案公式解一元二次方程
北师大版九年级数学上册导学案年级九班级学科数学课题用公式法求解一元二次方程第 1 课时总课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1、经历推导求根公式的过程,加强推理技能训练,进一步发展逻辑思维能力(难点)2、会用公式法解简单系数的一元二次方程(重点)3进一步体验类比、转化、降次的数学思想方法操作流程学法指导温故知新1、用配方法解一元二次方程的步骤有哪些?2、用配方法解方程3x2-6x-8=0;(3分钟)自主、合作、探究、交流一、新课导入:前面我们学过用配方法求解一元二次方程,本节课来探索用公式法解一元二次方程的解法.(板书课题)二、本节课的学习目标是(指定一名学生宣读):三、新旧知识链接:按要求完成“温故知新”栏中的问题四、新知探究活动一:通过对一元二次方程一般式的配方,推导出求根公式1、自主学习教材P41引例并回答所提问题2、你能用配方法解下列方程吗?请你和同桌讨论一下ax2+bx+c=0(a≠0).因为a≠0,方程两边都除以a,得_____________________=0.移项,得x2+abx=________,配方,得x2+abx+______=______-ac,即 (____________) 2=___________因为a≠0,所以4a2>0,当b2-4ac≥0时,直接开平方,得_______所以x=_______________________即x=_______________________由以上研究的结果,得到了一元二次方程ax2+bx+c=0的求根公X=aacbb242-±-( b2-4 ac≥0)(14分钟)承上启下明确学习目标学生自主参与、合作探究、展示交流并予以评价根据计算过程总结方法展示、评价、点拨、总结3,、方法总结:利用这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方程的解,这种解方程的方法叫做公式法.4、合作交流b2-4 ac为什么一定要强调它不小于0呢?如果它小于0会出现什么情况呢?展示反馈学生在合作交流后展示小组学习成果。
新北师大版九年级数学上册导学案:2.1.1 认识一元二次方程(2).doc
(2)x可能大于4吗?可能大于2.5吗?为什么?
(3ቤተ መጻሕፍቲ ባይዱ完成下表
x
0
0.5
1
1.5
2
2.5
2x2-13x+11
(4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。
探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0
2、指出下列方程的二次项系数,一次项系数及常数项。
(1)2x2―x+1=0(2)―x2+1=0(3)x2―x=0(4)- x2=0
2、问题探究:
探索1:上节我们列出了与地毯的花边宽度有关的方程。
地毯花边的宽x(m),满足方程(8―2x)(5―2x)=18
也就是:2x2―13x+11=0
你能估算出地毯花边的宽度x吗?
(1)你能猜出滑动距离x(m)的大致范围吗?
(2)x的整数部分是_____?十分位是_______?
x
0
x2+12x-15
所以___<x<___
进一步计算
x
x2+12x-15
所以___<x<___
因此x的整数部分是___,十分位是___.
3、当堂训练:
完成课本34页随堂练习
4、学习体会:
五、课后作业
备注(教师复备栏及学生笔记)
备注(教师复备栏及学生笔记)
备注(教师复备栏及学生笔记
备注(教师复备栏及学生笔记
备注(教师复备栏及学生笔记
新北师大版九年级数学上册导学案:2.1.1 认识一元二次方程(2)
2018秋北师版九年级数学上册导学案全册
北师版九年级数学上册导学案第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。
教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。
教学难点:菱形的性质的理解及菱形性质的灵活运用。
【预习案】学习过程: 活动一:自学课本例题以上的内容,完成下列问题: 1. 如何从一个平行四边形中剪出一个菱形来?的四边形叫做菱形,生活中的菱形有 。
【探究案】2. 按探究步骤剪下一个四边形。
①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形? 有 对称轴。
图中相等的线段有: 图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。
性质:证明:平行四边形菱形活动二:对比菱形与平行四边形的对角线菱形的对角线:平行四边的对角线:活动三:菱形性质的应用1.菱形的两条对角线的长分别是6cm和8c m,求菱形的周长和面积。
【训练案】2.如图,菱形花坛ABCD的边长为20cm,∠ABC=60°沿菱形的两条对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积。
课效检测:一、填空(1)菱形的两条对角线长分别是12cm,16cm,它的周长等于,面积等于。
(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是。
(3)已知:菱形的周长是20cm,两个相邻的角的度数比为1:2,则较短的对角线长是。
(4)已知:菱形的周长是52 cm,一条对角线长是24 cm,则它的面积是。
二、解答题已知:如图,在菱形ABCD中,周长为8cm,∠BAD=1200 对角线AC,BD交于点O,求这个菱形的对角线长和面积。
第2课时 菱形的判定学习目标:1.理解并掌握菱形的判定方法,以及符号语言的应用;2.灵活运用判定方法进行有关的证明和计算. 重点:掌握并会应用菱形的判定方法. 难点:菱形判定方法的应用.【预习案】课前预习你还记得菱形的定义吗?菱形有哪些特殊性质?边:__________________________;______________________________ 角:__________________________;______________________________ 对角线:_____________________________________________________对称性:【探究案】1.木工在做菱形的窗格时,总是保证四条边框一样长,你知道其中的道理吗?借助以下图形探索:如图,在四边形ABCD 中,AB=BC=CD=DA,试说明四边形ABCD 是菱形. 证明:我发现, 的四边形是菱形。
北师大版九年级数学上册导学案应用一元二次方程2
北师大版九年级数学上册导学案年级九班级学科数学课题应用一元二次方程(2)第 2 课时总课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1、使学生会找等量关系用列一元二次方程的方法解决有关商品的销售问题(重点)2、进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识(难点)操作流程学法指导温故知新某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a元,则可卖出(350-10a)件,商场计划要赚450元,则每件商品的售价为多少元?(3分钟)自主、合作、探究、交流一、新课导入:前面我们学过用一元二次方程解决实际问题,本节课继续探索用一元二次方程解决“市场营销”问题(板书课题)二、本节课的学习目标是:(指定一名学生宣读)三、新旧知识链接:按要求完成“温故知新”栏中的问题四、新知探究活动一:探索列一元二次方程解决实际问题的步骤方法1、导读:例1、新华商场销售某种冰箱,每台进货价为2500元。
调查发现,当销售价为2900元时平均每天能售出8台。
而当售价每降低50元时,平均每天能多售出4台。
商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?分析:本题的主要关系是:___________________________________=5000元如果设每台冰箱降价x元,那么每台冰箱的定价就是 ____________元,每台冰箱的销售利润为________________元,平均每天销售冰箱的数量为_________________台。
这样就可以列出一个方程,从而使问题得到解决。
解法一;(间接设元法)设设每台冰箱降价x元,根据题意得解法二;(直接设元法)(14分钟)承上启下明确学习目标学生自主参与、合作探究、展示交流并予以评价根据计算过程总结方法展示、评价、点拨、总结 2、导读:例2、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
新北师大版九年级上册数学导学案
第二章一元二次方程第一节认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.预习案一、预习教材二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x ,你又能列出怎样的方程呢? 答:设五个连续整数中间的一个数为x ,由题意可列方程,得_________________________.三、自主提问探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm ,宽50cm .在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm 2,那铁皮各角应切去多大的正方形?你能设出未知数,列出相应的方程吗?归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:ax 2+b x +c =0(a 、b 、c 为常数,a ≠0)这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;b x 是一次项,b 是一次项系数;c 是常数项. 跟踪练习:1.下列方程中,是一元二次方程的是( )A .x 2+2y -1=0B .x +2y 2=5C .2x 2=2x -1D .x 2+1x-2=0 2.将方程(x +3)2=8x 化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件?跟踪练习:1.关于x 的方程(a -1)x 2+3x =0是一元二次方程,则a 的取值范围是______.2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足______时,它是一元一次方程;当m 满足________时,它是一元二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有( )①2x 2-1=0;②ax 2+b x +c =0;③(x +2)(x -3)=x 2-3;④2x 2-1x=0. A .1个 B .2个 C .3个 D .4个2.把方程(x -5)(x +5)+(2x -1)2=0化成一元二次方程的一般形式为( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.下列方程是一元二次方程的是( )A. 12=-y xB. 2560x x ++=C. ()()230x x ++=D. 122,3x x =-=-4.方程2354x x -=中,关于a 、b 、c 的说法正确的是( )A. 3,4,5a b c ===-B. 3,5,4a b c ==-=C. 3,4,5a b c =-=-=-D. 3,4,5a b c ==-=-二、能力提升1.阅读材料,解答问题:有一块长80cm ,宽60cm 的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm 2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:(1)如果设小正方形的边长为x cm ,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么?是哪一种方程?并指出其各项的系数.2.已知关于x 的方程(m -2)x |m |+3x -4=0是一元二次方程,那么m 的值是( )A .2B .±2C .-2D .1第一节认识一元二次方程(2)学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,那么梯子的底端距墙多少米?设梯子底端距墙为xm ,那么,根据题意,可得方程为___________列表:x0 1 2 3 4 5 6 7 8 x 2-36 设苗圃的宽为x m ,则长为_________.根据题意,得________.整理,得______________.列表:探究案一、探究一:探索一元二次方程的近似解例1:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?跟踪练习:1.已知关于x的方程x2-k x-6=0的一个根为x=3,则实数k的值为() A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.二、探究二:一元二次方程根的判定及应用例2:若x=1是关于x的一元二次方程ax2+b x+c=1(a≠0)的一个根,求代数式2016(a+b +c)的值.跟踪练习:1.若x=1是一元二次方程ax2+b x+c=0的解,则a+b+c=___;若x=-1是一元二次方程ax2+b x+c=0的解,则a-b+c=____.2.如果x=1是方程ax2+b x+3=0的一个根,求(a-b)2+4a b的值.作业案一、过关习题1.已知长方形宽为xcm,长为3xcm,面积为24cm2,则x最大不超过()A.1B.2C.3D.422则方程x+p x+q=0的正数解满足( )A.0<x<0.5 B.0.5<x<1 C.1<x<1.1 D.1.1<x<1.2二、能力提升1.2+2x-10=0的一个近似解为x≈_________.(精确到0.1)分析表格中的数据,估计方程(x+8)﹣826=0的一个正数解x的大致范围为()A. 20.5<x<20.6B. 20.6<x<20.7C. 20.7<x<20.8D. 20.8<x<20.93.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A. 2018 B. 2008 C. 2014 D. 2012第二节用配方法求解一元二次方程(1)学习目标:1.会用开平方法解形如(x +m )2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程. 学习重点:会用配方法解二次项系数为1的一元二次方程.学习难点:用配方法解二次项系数为1的一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.如果一个数的平方等于4,则这个数是________.2.已知x 2=9,则x =______.3.填上适当的数,使下列等式成立.(1)x 2+12x +____=(x +6)2;x 2-6x +_____=(x -3)2.三、自主提问探究案一、探究一:应用配方法求解二次项系数为1的一元二次方程例1:用配方法解方程x 2-2x -3=0归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x +m )2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.跟踪练习:用配方法解方程:x 2+2x -1=0.作业案一、过关习题1.用配方法解方程,原方程应变形为( ) A. B. C. D.2.用配方法解方程x 2+4x -5=0,则x 2+4x +____=5+____,所以x 1=______,x 2=________.3.若三角形的两边长分别是6和8,第三边的长是一元二次方程(x -8)2=4的一个根,则此三角形的周长为________.4.下列解方程的过程中,正确的是( )A .x 2=-2,解方程,得x =±2B .(x -2)2=4,解方程,得x -2=2,x =4C .4(x -1)2=9,解方程,得4(x -1)=±3,x 1=74,x 2=14D .(2x +3)2=25,解方程,得2x +3=±5,x 1=1,x 2=-45.解下列方程:(1)()2590x --=(2)4(x +6) 2-9=0(3)x 2-10x +25=7 (4)x 2-14x =8(5)x 2+3x =1 (6)x 2+2x +2=8x +4二、能力提升1.若2246130a a b b ++-+=,则a b +=()A. 1B. 1-C. 5D. 5-2.若a ,b ,c 是△ABC 的三条边,且a 2+b 2+c 2+50=6a +8b +10c ,试判断这个三角形的形状.第二节 用配方法解一般一元二次方程(2)学习目标:1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.学习重点:用配方法解一般一元二次方程.学习难点:用配方法解一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( )A .加上32B .加上94C .减去32D .减去942.解方程(x -3)2=8,得方程的根是( )A .x =3+22B .x =3-22C .x =-3±22D .x =3±2 23.方程x 2-3x -4=0的两个根是____________.三、自主提问探究案一、探究一:用配方法解二次项系数不为1的一元二次方程例1:用配方法解方程2x 2-6x +1=0用配方法求解一般一元二次方程的步骤是什么?归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.跟踪练习:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?作业案一、过关习题1.要使方程x 2-72x =-32左边配方成完全平方式,应在方程两边同时加上( ) A.2)27( B .72 C.32 D.2)47(- 2.用配方法解下列方程时,配方有错误的是( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭D. 3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭3.把方程21503x x --=,化成(x +m)2=n 的形式得() A. 232722x ⎛⎫-= ⎪⎝⎭ B. 232924x ⎛⎫-= ⎪⎝⎭ C. 236924x ⎛⎫-= ⎪⎝⎭ D. 235124x ⎛⎫-= ⎪⎝⎭ 4.用配方法解方程:(1)4x 2+8x -3=0 (2)3x 2-9x +2=0 (3)2x 2+6=7x二、能力提升先化简,再求值: 2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2310x x +-=的根. 第三节 用公式法求解一元二次方程学习目标:1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.3.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想. 学习重点:求根公式的推导和公式法的应用.学习难点:理解求根公式的推导过程及判别公式的应用.预习案一、预习教材二、感知填空1.方程3x 2-x =2化成一般形式后,式中( )A .a =3,b =-1,c =2B .a =2, b =1,c =-2C .a =3,b =-1,c =-2D .a =3,b =1,c =-22.用配方法解下列方程:(1)x 2-x -1=0 (2)2x 2-4x =1三、自主提问探究案一、探究一:探索一元二次方程的求根公式例1:用配方法解方程:ax 2+b x +c =0(a ≠0).归纳总结:由上可知,一元二次方程ax 2+b x +c =0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+b x +c =0,当b 2-4a c≥0时,将a 、b 、c 代入式子x =-b±b 2-4ac 2a,就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根.二、探究二:用公式求解一元二次方程例2:用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x 2-3x =0 (2)3x 2-23x +1=0 (3)4x 2+x +1=0.归纳总结:(1)当Δ=b 2-4a c >0时,一元二次方程ax 2+b x +c =0(a ≠0)有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a;(2)当Δ=b 2-4a c =0时,一元二次方程ax2+b x+c=0(a≠0)有两个相等实数根即x1=x2=-b2a;(3)当Δ=b2-4a c<0时,一元二次方程ax2+b x+c=0(a≠0)没有实数根.作业案一、过关习题1.下列一元二次方程中,有两个不相等的实数根的方程是()A.x2-3x+1=0B.x2+1=0 C.x2-2x+1=0 D.x2+2x+3=0 2.关于x的一元二次方程2x+(k-4)x2+6=0没有实数根,则k的最小整数值是()A. -1B. 2C. 3D. 53.把一元二次方程x2=3(2x-3)化为一般形式是_________,b2-4a c=0,则该方程根的情况为___________.4.方程2x2-5x=7的两个根分别为x1=________,x2=__________.二、能力提升1.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,求实数k的取值范围.2.已知关于x的一元二次方程(x-3)(x-4)=a²(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程有一个根是1,求a的值及方程的另一个根.第四节用因式分解法求解一元二次方程学习目标:1.会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.学习重点:用因式分解法解一元二次方程.学习难点:理解因式分解法解一元二次方程的基本思想.预习案一、预习教材二、感知填空1.将下列各式分解因式:(1)x2-2x(2)x2-4x+4(3)x2-16(4)x(x-2)-(x-2)2.分解因式法解一元二次方程的根据是:若a·b=0,则a=____或b=_____.如:若(x+2)(x-3)=0,那么x+2=0或者________.这就是说,求一元二次方程(x+2)(x-3)=0的解,就相当于求一次方程x+2=0或x-3=0的解.三、自主提问探究案一、探究一:用因式分解法解下列方程(1)5x2+3x=0(2)7x(3-x)=4(x-3)(3)9(x-2)2=4(x+1)2.跟踪练习:解下列方程:x2-5x+6=0作业案一、过关习题1.如果(x-1)(x+2)=0,那么以下结论正确的是()A.x=1或x=-2B.必须x=1 C.x=2或x=-1 D.必须x=1且x=-2 2.方程x2-3x=0的解为()A .x =0B .x =3C .x 1=0,x 2=-3D .x 1=0,x 2=33.方程29180x x -+=的两个根分别是一个等腰三角形的底和腰的长,则这个等腰三角形的周长为.4.解下列方程(1) x 2=2x+35 (2)2(1)160x --= (3) 3(1=22x x x --)二、能力提升1.已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.2.阅读下面的例题:解方程220x x --=的过程如下:(1)当0x ≥时,原方程化为220x x --=,解得: 12x =, 21x =-(不合题意,舍去).(2)当0x <时,原方程可化为220x x +-=,解得: 12x =-, 21x =(不合题意,舍去).所以,原方程的解是: 12x =, 22x =-.请参照例题解方程: 2110x x ---= 第五节 一元二次方程的根与系数的关系学习目标:1.掌握一元二次方程两根的和、两根的积与系数的关系.2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数.3.会利用根与系数的关系求关于两根代数式的值.学习重点:根与系数的关系及运用.学习难点:定理发现及运用.预习案一、预习教材二、感知填空1.一元二次方程ax 2+b x +c =0(a ≠0)的求根公式是_________________________________.2.一元二次方程3x 2-6x =0的两个根是_______________3.一元二次方程x 2-6x +9=0的两个根是________________三、自主提问探究案一、探究一:一元二次方程的根与系数的关系例1:解下列方程,将得到的解填入下面的表格中,观察表中x 1+x 2,x 1·x 2的值,它们与对归纳总结:一般地,对于关于x 的一元二次方程ax 2+b x +c =0(a ≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+b x +c =0的求根公式知x 1=-b +b 2-4ac2a ,x 2=-b -b 2-4ac2a ,能得出以下结果:x 1+x 2=-b a ,x 1·x 2=c a. 二、探究二:一元二次方程根与系数关系定理的应用例2;已知方程5x 2+kx -6=0的一个根为2,求它的另一个根及k 的值.例3:若一元二次方程2x 2+3x -1=0的两个根为212221211121,,x x x x x x ++)()( 跟踪练习:1.设一元二次方程x 2-6x +4=0的两实根分别为x 1和x 2,则(x 1+x 2)-x 1·x 2=( )A .-10B .10C .2D .-22.设a ,b 是方程x 2+x -2016=0的两个不相等的实数根,则a 2+2a +b 的值为_________.作业案一、过关习题1.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为( )A .2B .3C .4D .82.若α,β是方程x 2-2x -3=0的两个实数根,则α2+β2的值为( )A .10B .9C .7D .53.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为_______.4.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A. B. C. D.二、能力提升1. 已知x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k =_______.2.已知关于x 的一元二次方程()28170x m x m --+-=. (1)m 为何值时,方程有一根为零?(2)m 为何值时,方程的两个根互为相反数?(3)是否存在m ,使方程的两个根互为倒数?若存在,请求出m 的值;不存在,请说明理由.第六节 应用一元二次方程(1)学习目标:1.使学生会用一元二次方程解应用题.2.进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.3.通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性. 学习重点:运用面积和速度等公式建立数学模型并运用它们解决实际问题.学习难点:寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,则AB=_____cm.2.在△ABC中,D、E分别是AB,AC的中点,若BC=10cm,则DE=_____cm.三、自主提问探究案一、探究一:利用一元二次方程求解几何问题例1:用一根长40cm的铁丝围成一个面积为91cm2的矩形,问这个矩形长是多少?跟踪练习:一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角形的面积是多少?作业案一、过关习题1.用长为100cm的金属丝制成一个矩形框子,框子的面积不可能是()A.375cm2B.500cm2C.625cm2D.700cm22.一块矩形耕地大小尺寸如图所示,要在这块耕地上沿东西和南北方向分别挖两条和四条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m2,那么水渠的宽为()A.2m B.4m C.1m D.3m3.一个矩形的面积是48平方厘米,它的长比宽多8厘米,设矩形的宽x厘米,应满足方程_____________.解方程求得x=______.二、能力提升1.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.2.在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?3.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.第六节应用一元二次方程(2)学习目标:1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.学习重点:会用一元二次方程求解营销类问题.学习难点:将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.利润=_____________;2商品的利润率=_______________3.商品的总利润=一件商品的利润×销售商品的数量.三、自主提问.探究案一、探究一:利用一元二次方程求解营销类问题例1:某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?跟踪练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?二、探究二:利用一元二次方程求解增长率问题例2:某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月均增长率。
北师大版九年级数学上册 一元二次方程 导学案
北师大版九年级数学上册第二章2.1.1 一元二次方程 导学案预习目标1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.2.体会方程的模型思想.预习导学阅读教材P31~32,完成下列问题:(一)知识探究1.只含有________个未知数,并且都可以化成ax 2+bx +c =0(a ,b ,c 为常数,a________)的形式的________方程,这样的方程叫做一元二次方程.2.我们把____________(a ,b ,c 为常数,a ≠0)称为一元二次方程的一般形式,其中________,________,________分别为二次项、一次项和常数项,________,________分别称为二次项系数和一次项系数.(二)自学反馈1.下列方程中,是一元二次方程的是( )A .x -y 2=1 B.x 2-1=0C.1x 2-1=0D.x 22-x -13=0 2.将方程(2x +1)x =(3x -2)x +2化简整理写成一般形式后,其中a 、b 、c 分别是( )A.2-3,1, 2B.2-3,1,- 2C.3-2,-3, 2D.3-2,1, 2例题讲解活动1 小组讨论例1 判断下列方程是否为一元二次方程:(1)1-x 2=0; (2)2(x 2-1)=3y ;(3)2x 2-3x -1=0; (4)1x 2-2x=0; (5)(x +3)2=(x -3)2; (6)9x 2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.提示: 判断一个方程是不是一元二次方程,首先需要将方程化简,使方程的右边为0,然后观察其是否具备以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x 2-13x +11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.提示: (1)将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项,则c =0.活动2 跟踪训练1.下列方程哪些是一元二次方程?(1)7x 2-6x =0;(2)2x 2-5xy +6y =0;(3)2x 2-13x-1=0; (4)y 22=0; (5)x 2+2x -3=1+x 2.2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x 2-1=4x; (2)4x 2=81;(3)4x(x +2)=25; (4)(3x -2)(x +1)=8x -3.3.已知方程(a -4)x 2-(2a -1)x -a -1=0.(1)a 取何值时,方程为一元二次方程?(2)a 取何值时,方程为一元一次方程?4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x. 活动3 课堂小结1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),特别强调a ≠0.参考答案【预习导学】(一)知识探究1.一 ≠0 整式 2.ax 2+bx +c =0 ax 2 bx c a b(二)自学反馈1.D 2.C【合作探究】活动2 跟踪训练1.(1)、(4)是一元二次方程.2.(1)5x 2-4x -1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x 2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x 2+8x -25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x2-7x +1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)当a -4≠0即a ≠4时,方程为一元二次方程.(2)a -4=0,且2a -1≠0时,原方程为一元一次方程.即a =4时,原方程为一元一次方程.4.(1)根据题意,得4x 2=25,将其化成一元二次方程的一般形式是4x 2-25=0.(2)根据题意,得x(x -2)=100,将其化成一元二次方程的一般形式是x 2-2x -100=0.(3)根据题意,得x =(1-x)2,将其化成一元二次方程的一般形式是x 2-3x +1=0.1、最困难的事就是认识自己。
北师大版九年级上册数学 第1课时 一元二次方程导学案2(2)
x 第二章 一元二次方程2.1 认识一元二次方程第1课时 一元二次方程学习目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 难点(关键):通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.【预习内容】问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高? 分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形? 分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
北师大版九年级上册数学 第1课时 反比例函数的图象导学案2
6.2 反比例函数的图象与性质第1课时 反比例函数的图象【学习目标】1.进一步熟悉画函数图象的主要步骤,会画反比例函数的图象。
2.体会函数三种表示方法的相互转换,对函数进行认识上的整合。
3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主【学习方法】利用导学案,采用学生自学和小组讨论的方式进行合作探究式学习。
【学习重点】掌握反比例函数的画图【学习难点】反比例函数三种表示方法的相互转换二、【学习过程】1、画出一次函数y=2x+1的图象,解:(1)列表: (2)描点、连线2、画函数图象的步骤是: , , 。
3、画出反比例函数y=x6的图象 x ... -6 -3 -2 -1 1 2 3 6 … y=x6思考:1、列表时所选取的数值不同,图象的形状相同吗?x 0 y 02、连线时能否连成折线,为什么必须用光滑的曲线连接各点3、曲线的发展趋势如何?那么你在今后画图象时,应注意那些问题?画出反比例函数y=-x6的图象 x ... … y=-x6三、【总结提升】 1、请同学们观察y=x 6和y=-x6的图象,回答问题: (1)你能发现它们的共同特点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内,y 随x 的变化如何变化?说说你的理由。
如果把“在每个象限内”这几个字去掉,你同意吗?为什么?(4)每个函数的双曲线会与坐标轴相交吗?为什么?(5)比例函数y=x 6与y=-x6的图象有什么关系?你是如何得出的?2、反比例函数y=xk(k 为常数且k ≠0)图象与性质: (1)反比例函数y=xk的图象是 ; (2)反比例函数y=xk(k 为常数且k ≠0)性质: k>0时,双曲线的两支分别位于第_________象限,在每个象限内______________________________________________. k<0时,双曲线的两支分别位于第_________象限,在每个象限内_____________________________________________.五、反思升华。
北师大版九年级上册数学 第1课时 一元二次方程导学案1(2)
第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程【学习目标】1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。
2、能力培养:能根据具体情景应用知识。
3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。
【学习重点】1、一元二次方程的定义;2、一元二次方程的一般形式。
【学习过程】一、前置准备:1、什么是方程?什么样的方程是一元一次方程?2、多项式2x2-3x+1是几次几项式?每项的系数和次数分别是几?二、自学探究:理解一元二次方程的概念,并会把一元二次方程化为一般形式。
自学教材,回答:(1)如果设未铺地毯区域的宽为xm,那么地毯中央长方形图案的长为m,宽为为m.根据题意,可得方程(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等于后两个数的平方和:;如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为、、、,根据题意可得方程:(3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙m,梯子顶端距地面的垂直距离为m,根据题意,可得方程:三、合作交流:观察上述三个方程,它们的共同点为:①;②;这样的方程叫做。
其中我们把称为一元二次方程的一般形式,ax2,bx,c 分别称为、、,a、b分别称为、。
1、分别把上述三个方程化为ax2+bx+c=0的形式,并说明每个方程的二次项系数、一次项系数和常数项:(1)(2)(3)四、归纳总结:通过本节课的学习,你学到了哪些知识?与同学交流一下。
1.一元二次方程的定义;2、一元二次方程的一般形式。
五、当堂训练:1、判断下列方程是否为一元二次方程,如果是,说明二次项及二次项系数、一次项及一次项系数和常数项:(1)2x 2+3x+5 (2)(x+5)(x+2)=x 2+3x+1(3)(2x-1)(3x+5)=-5 (4)(3x+1)(x-2)=-5x2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。
北师大版九年级上册数学 第1课时 一元二次方程导学案1(2)
第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程【学习目标】1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。
2、能力培养:能根据具体情景应用知识。
3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。
【学习重点】1、一元二次方程的定义;2、一元二次方程的一般形式。
【学习过程】一、前置准备:1、什么是方程?什么样的方程是一元一次方程?2、多项式2x2-3x+1是几次几项式?每项的系数和次数分别是几?二、自学探究:理解一元二次方程的概念,并会把一元二次方程化为一般形式。
自学教材,回答:(1)如果设未铺地毯区域的宽为xm,那么地毯中央长方形图案的长为m,宽为为m.根据题意,可得方程(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等于后两个数的平方和:;如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为、、、,根据题意可得方程:(3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙m,梯子顶端距地面的垂直距离为m,根据题意,可得方程:三、合作交流:观察上述三个方程,它们的共同点为:①;②;这样的方程叫做。
其中我们把称为一元二次方程的一般形式,ax2,bx,c 分别称为、、,a、b分别称为、。
1、分别把上述三个方程化为ax2+bx+c=0的形式,并说明每个方程的二次项系数、一次项系数和常数项:(1)(2)(3)四、归纳总结:通过本节课的学习,你学到了哪些知识?与同学交流一下。
1.一元二次方程的定义;2、一元二次方程的一般形式。
五、当堂训练:1、判断下列方程是否为一元二次方程,如果是,说明二次项及二次项系数、一次项及一次项系数和常数项:(1)2x 2+3x+5 (2)(x+5)(x+2)=x 2+3x+1(3)(2x-1)(3x+5)=-5 (4)(3x+1)(x-2)=-5x2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。
新北师大版九年级数学上册导学案:2.6应用一元二次方程.doc
新北师大版九年级数学上册导学案:2.6应用一元二次方程学习目标1.会用列一元二次方程的方法解有关实际问题的应用题。
2. 通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
3.依据实际问题,能对方程的解做出合理取舍。
重点列一元二次方程解应用题。
难点分析题意,找等量关系。
学法指导及使用说明:用10分钟的时间,结合课本完成一部分,用25分钟完成二部分。
一、回忆巩固,情境导入:提出问题:还记得本章开始时梯子下滑的问题吗?①在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?②如果梯子长度是13米,梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?分组讨论:①怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理来列方程?②涉及到解的取舍问题,应引导学生根据实际问题进行检验,决定解到底是多少。
二、做一做,探索新知:见课本P52页例1:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。
小岛F位于BC中点。
一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物备注(教师复备栏及学生笔记)品送达军舰。
已知军舰的速度是补给船的2倍,军舰在由B 到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)列方程解应用问题的步骤?①审题,②设未知数,③列方程,④解方程,⑤答。
②注意:在求得解之后,要进行实际题意的检验备注(教师复备栏及学生笔记)巩固练习:1、一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角的面积是多少?2.P53习题2.9 2三、知识延展:1、课本P54页,例2.以上分析,解答,教师引导,板书,学生回答,体会,评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增加盈利,商场决定采取适当的降价措施。
经调查发现,在一定范围内,衬衫的单价每降一元,商场平均每天可多售
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能⑴写出平均每天销售y(箱)与每箱售价x(元)之间的关系式;
1.新华商场销售某种水箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售
程 .
2某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。
如果每天要盈利1600元,每
C.(10-x)[500-10(x-40)] =5000
D.(10-x)(500-10x)=5000。