专题01 规律探究问题(精讲)-2019年中考数学高频考点突破全攻略(原卷版)
2019年中考数学复习考点解密 规律探索性问题(含解析)
2019年中考数学二轮复习考点解密 规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可.解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1.例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n [])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n[])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440. (2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a , 那么a +c b +d .(用“>”或“<”填空) 你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
2019版中考专题(1)规律探索问题(含答案).docx
第二篇专题能力突破 专题一规律探索问题—年创新导向一、选择题1. (原创题)观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()★★ ★ ★★★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★★ ★★ ★ ★★ ★ ★ ★★ ★ ★ ★ ★第1个图形 第2个图形第3个图形 第4个图形A. 57 个B. 60 个C.63个 D. 85 个解析 第1个图形有3个“★”,第2个图形有6=2X3个“★” ,第3个图形有9=3X3个“★” , 第4个图形有12=4X3个“★ ”,…,第20个图形有20X3=60个.故选B.答案B2. (原创题)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2, 4, 6,…,2n,…, 请你探究出前n行的点数和所满足的规律.若前n 行点数和为930,则n=()• • • • A 2• • • • • «A 3A. 29B. 30C. 31D. 32解析 前n 行的点数和可以表示成2+4+6+・・・+2n=2(l+2+3 + ・・・+n) =2X —=n(n+1), 从而得到一元二次方程n(n+1) =930,可以求出n=30・故选B.答案B3. (原创题)符号“f”表示一种运算,它对一些数的运算结果如下:(l)f(l)=2, f ⑵=4, f ⑶=6,…;(2)f 閤=2, -(為)等于()A. 2 013B. 2 014c -----2 013答案B4. (原创题)观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,f(J)=3, f(f|=4,…利用以上规律计算:f(2 014) 解析根据题意,得f (2 014)—=2 014X2-2 014=2 014.故选B.第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是解析第1个图形中共有4个点,第2个图形中共有10个点,比第1个图形中多了6个点;第3个图形中共有19个点,比第2个图形中多了9个点;…,按此规律可知,第4个图形比第3个图形中多12个点,所以第4个图形中共有12+19=31个点,第5个图形比第4个图形中多15个点,所以第5个图形中共有31 + 15=46个点,第6个图形比第5个图形中多18个点,所以第6个图形中共有46+18=64个点,故选D. 答案D二、填空题5.(原创题)图中各正三角形中的四个数之间都有相同的规律,据此规律,第n个正三角形中,四个数的解析观察图形发现:1><2—3 = — 1, 2X3-4=2, 3X4—5 = 7,故第n个正三角形中的外围的三个数分别是n, n+1, n+2,中间的数为n(n+l) — (n+2) =n2—2,所以这四个数的和为n+n+l+n+2 +n2—2=n2+3n+l.答案n+3n+l6.(原创题)如图,ZA0B=45° ,过射线0A上到点03,5, 7, 9, 11,…的点作OA的垂线与OB相交,黑色梯形,它们的面积分别为S“ S2, S3, S4…….律,则第2 015个黑色梯形的面积S2O15= __________ •(1 -LOA X 9 解析根据题意可得:S尸一=4=1X8的距离分别为h 得到并描出一组观察图中的规—4 , S2 —空严=12=2X8-42 (9+11)><2=20=3X8-4,2 S2 015=2 015X8-4=16 116.答案16 116 (13 + 15)=28=4X8-4,…,2019-2020学年数学中考模拟试卷一、选择题1.小明总结了以下结论:①a(b+c) =ab+ac ;②a(b - c) =ab - ac ; (3)(b - c) -ra=b4-a - c4-a(a^0);④ a4- (b+c) =a-rb+a4-c(a^0);其中一定成立的个数是() A. 1B ・2C ・3D ・424.如图,在反比例函数y=-—的图象上有一动点A,连结A0并延长交图象的另一支于点B,在第一象限x内有一点C,满足AC=BC,当点A 运动时,点C 始终在函数y=£的图象上运动,若tanZCAB=3,则kA. -B. 6C. 8D. 1835.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km.他们前进的路程为s (km), 甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确 的是()A. x< - 3B. x> - 33.下列运算正确的是( )A. a 6 -a 2 =a 4B. (a 2)3 = a 5C. x< - 6 C. a 2-a 3=a 5D. x> - 6D. a 6 4-a 2 = a 3A.甲的速度是4km/h C.乙比甲晚出发lhB. 乙的速度是10km/h D.甲比乙晚到B 地3h6.如图,AB/7CD,直线L 交AB 于点E,交CD 于点F,若Z2=75° ,则Z1等于( )7.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为lOfW 的矩形小花园(墙长为15m ),则与墙垂直的边x 为()A. 10m 或 5m B ・ 5m 或 8m C ・ 10m D ・ 5m8. 下列运算正确的是() A. J (-5)2 = - 5 B. (x 3)2=x 5 C. X 64-X 3=X 2D. (- -)_2=1649. 如图,一个游戏转盘分成红、黄、蓝三个扇形,其中红、黄两个扇形的圆心角度数分别为90° , 120° •让转盘自由转动,停止后,指针落在蓝色区域的概率是()10. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为X,则可列方程为()A. 300 (1+x ) 2=507B. 300 (1 -x ) 2=507x+5 > 211•不等式组4_心的最小整数解是()、填空题C. 125°D. 75°a5J11 5A ・ 一氏一 c.— 43 12 D.无法确定 C. 300 (l+2x) =507D. 300 (1+x 2) =507B.115°A. -3B. - 2C. 0D. 1A. AABC^ADCBB. AAOD^ACOBC. AABO^ADCOD. AADB^ADAC13.问题背景:如图,将AABC绕点A逆时针旋转60°得到AADE, DE与BC交于点P,可推出结论: PA+PC = PE问题解决:如图,在AM2VG中,MN = 6, ZM=75°, MG = 4近.点O是AWG内一点,则点O到AMNG三个顶点的距离和的最小值是_________________16.如果(2 +血)2=a+b逅(a, b为有理数),那么a+b等于 ________________ .3 1 1 3 17.如图,点A (1, a)是反比例函数y= 的图象上一点,直线y= ------------------------- x+ —与反比例函数y= ---------- 的x 2 2 x图象在第四象限的交点为点B,动点P (x, 0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,则点P的坐标是 _________________________ .18.若矩形两条对角线的夹角是60° ,且较短的边长为3,则这个矩形的面积为—•三、解答题19.在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y,试求x+y是10的倍数的概率.有意义的x的取值范围是___________20. 如图,在平面直角坐标系xOy 中,将直线y=x 向右平移2个单位后与双曲线y=3 (x>0)有唯一 公共点A,交另一双曲线y=' (x>0)于B.x(1) 求直线AB 的解析式和a 的值; (2) 若x 轴平分AAOB 的面积,求k 的值.x-1 > 01 1(3) 已知x“ X2是方程x 2- 3x - 1 =0的两不等实数根,求一+ —的值 X] x 223. 观察下列等式:©32-31=2X31;②3—32=2X3〈③3"-33=2XT ;④36 - 34=2X34…根据等式所反映的规律,解答下列问题:(1) 直接写出:第⑤个等式为 __________ ;(2) 猜想:第n 个等式为 _________ (用含n 的代数式表示),并证明. 24. 已知二次函数y=x2—2(m+l)x+加+1 (m 为常数),函数图像的顶点为C. (1) 若该函数的图像恰好经过坐标原点,求点C 的坐标;(2)该函数的图像与x 轴分别交于点A 、B,若以A 、B 、C 为顶点的三角形是直角三角形,求m 的值.25. 如图,AP 平分ZBAC, ZADP 和ZAEP 互补.⑴作P 到角两边AB, AC 的垂线段PM, PN.(2)求证:PD=PE.【参考答案】*** 一、选择题13. 2A /29 14. xH_315.22. (1)计算:| 2—舲 |+(血+ 1)°—3 tan 30°+(—1)258(2)解不等式组:1 x221.计算:15.1016.(4, 0)17.运.三、解答题18. 1【解析】【分析】本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1〜10这10个结果,满足条件的事件x+y是10的倍数的数对可以列举出结果数,根据等可能事件的概率公式得到结果.【详解】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果,故形成的数对(x, y)共有100个.满足条件的事件x+y是10的倍数的数对包括以下10个:(1, 9), (9, 1), (2, 8), (8, 2), (3, 7), (7,3), (4, 6), (6, 4), (5, 5), (10, 10).故“x+y是10的倍数”的概率为£ =卷=0.1 •【点睛】本题考查等可能事件的概率,是一个关于数字的题目,数字问题是概率中经常出现的题目,一般可以列举出要求的事件,然后根据概率公式计算.19.(1) y=x - 2, a= - 1; (2) k=3.【解析】【分析】(1)根据平移的性质求出一次函数的解析式,根据无交点求出a的值,1y ——(2)解方程组.x 可求出A的坐标是(1, -1),由x轴平分AAOB的面积,可知B的纵坐标是1, j = x —2代入一次函数解析式可求出B的坐标是(3, 1),即可求出答案.【详解】(1)直线y=x向右平移2个单位后的解析式是y=x - 2,即直线AB的解析式为y=x-2,得:x - 2=—,则x2 - 2x - a=0,x△=4+4a=0,解得:a= - 1,一1(2)由(1)可得方程组丿x ,y = x-2\ x — \解得:\ ,A的坐标是(1, - 1),Tx轴平分AAOB的面积,.°.B的纵坐标是1,在y=x-2中,令y=l,解得:x=3,则B的坐标是(3, 1), 代入y=±可得:k=3.x【点睛】本题考查了一次函数和反比例函数的交点问题,根的判别式,平移的性质,三角形的面积的应用,及待定系数法求反比例函数解析式,题目是一道比较好的题目,难度适中.20.3-3^6【解析】【分析】直接利用负指数幕的性质以及绝对值的性质和二次根式的性质分别化简得出答案.【详解】解:原式=9-2辰2血-(6-茜),=9-4A/6 -6 + A/6,=3-3A/6【点睛】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.21.(1) 2-2A/3 : (2) l<x<3;(3) - 3.【解析】【分析】(1)根据实数的运算法则进行计算(2)根据不等式组的解法解答,注意去分母(3)先根据一元二次方程的根与系数之间的关系求未知数,再化简求值.【详解】解:(1) |2 —的|+(血+ 1)°—3tan30°+(—I)""* = 2-V3+l-3x —+ 1-23= 2-73+1-73+1-2=2-2 也2x—1 > 0—1 —X解不等式1 —x> ---------- ,得:x<3,2解不等式x-l>0,得:x>l, x<3 x-1 >0故不等式组的解集为l<x<3;(3)由根与系数的关系得:Xi+X2=3, X I X2= - 1,1 1 x. +则一+ —= ~ =-3 .【点睛】此题重点考察学生对实数的运算,不等式组的解,一元二次方程根与系数之间的关系的理解,掌握实数的运算法则,不等式组和一元二次方程的解法是解题的关键.22.(1) 36 - 35=2X35; (2) 3n+1 - 3n=2X3n.【解析】【分析】由®32- 31=2X31;②3彳-3J2X32;③34 - 33=2X33;④35 - 34=2X34-得出第⑤个等式,以及第n个等式的底数不变,指数依次分别是n+1、n、n.【详解】解:(1)由®32- 31=2X31;②3彳-32=2x32;③34-3S=2X33;④35 - 34=2X34…得出第⑤个等式36 - 35 =2X35;故答案为:36 - 35=2X36;(2)由©32-31=2X31;②33-32=2x32; (3)34 - 33=2X33;④35 - 34=2X34…得出第n 个等式的底数不变,指数依次分别是n+1、n、n,即3n+1 - 3n=2X3n.证明:左边=3说-3"=3X3°-3"=3°X (3-1) =2X3n=右边,所以结论得证.故答案为:3n+1-3n=2X3n.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题.【解析】【分析】—1 —X(2) l-x> -------------- \2,(2) m的值为1或一1(1)把(0, 0)代入y=+—2(m+l)x+2m+l可求出m的值,可得二次函数解析式,配方即可得出C点坐标;(2)令y=0,可用m 表示出&和X2,即可表示出AB的距离,根据二次函数解析式可用含m的代数式表示顶点C的坐标,根据以A、B、C为顶点的三角形是直角三角形可得关于m的方程,解方程求出m的值即可.【详解】(1)解:Vy=x2—2(m+l)x+2m+l 的图像经过点(0, 0).•.2m+l=0,12当m=—丄时,y=x2—x= (x —丄)2——,2 2 4•••顶点C的坐标(丄,2 4(2)解:当y=0 时X2—2(m+l)x+2m+l=0.°.xi=2m+l, X2=l,•*.AB= |2m|,Vy=x2—2(m+l)x+2m+l= (x—m—l)2—m2,顶点C的坐标(m+1, —m2),•.•以A、B、C为顶点的三角形是直角三角形,/. 2m2 = |2m|,当2m2=2m 时,mi=0, m2=l,当21^=—2m 时,mi=0, m2= —1,当m=0 时,AB=0 (舍)答:m的值为1或一1.【点睛】本题考查二次函数的图象及二次函数与一元二次方程,根据二次函数的解析式表示出顶点C的坐标和AB 的长是解题关键.25. (1)画图见解析;(2)证明见解析.【解析】【分析】(1)根据题意作图即可;⑵由PM丄AB, PN丄AC, PA平分ZBAC,可得PM=PN,再求出ZDPM=ZEPN,证明△ PMD^APNE,即可求【详解】解:⑴线段PM, PN如图所示.・・・PM=PN・・・ZPMA=ZPNA=90° ,・・・ZMPN+ZMAN=180° ,V ZADP+ZAEP=180° ,A ZDAE+ZDPE=180° ,・•・ ZMPN=ZDPE,・•・ ZDPM=ZEPN,•••△PMD 竺△PNE(ASA),・・・PD=PE・【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1. 函数y = yj2-x+—^—中自变量x 的取值范围是()x-1 A. x<2B ・C ・ xV2 且兀工1D ・2. 如图,点B 、C 、E 在同一条直线上,AABC 与ACDE 都是等边三角形,则下列结论不一定成立的是()A. AACE^ABCD B ・△BGC^AAFC C ・△DCG9/\ECF D ・△ADB^ZkCEA 3.如图,将面积为S 的矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H,使得AE=CG, BF=BC, FB 2DH 二AD,连接EF, FG, GH, HE, AF, CH.若四边形EFGH 为菱形,——=—,则菱形EFGH 的面积是()AB 3A. 2SB. -52 7C. 3S D ・一S24.若关于x 的方程3x 2 - 2x+m=0的一个根是- 1,则m 的值为()26.如图,在反比例函数y=-—的图象上有一动点A,连结A0并延长交图象的另一支于点B,在第一象限兀内有一点C,满足AC=BC,当点A 运动时,点C 始终在函数y='的图象上运动,若tanZCAB=3,则kX的值为()A. -5 B ・-1 C ・ 1D. 5如图,直线AD 〃BC,若Zl=40°,ZBAC=80° ,则Z2的度数为(C. 50°D. 40°5.2 A. -B ・ 6C ・ 8D ・ 1837. 函数y=2x'-4x ・4的顶点坐标是( )A. (1, -6)B ・(1, -4)C ・(・ 3, -6)D ・(-3,-4)8. 一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是( )10. 如图是某几何体的三视图,则该几何体的表面积为11. 在-3, -1, 1, 3四个数中,比-2小的数是( )二、填空题13. 如图,AB 是00的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C,若CE=2,则图中 阴」影部分的面积为_•A. 86 氏68 C. 97 D. 739. 在一个不透明的口袋中装有2个绿球和若干个红球, 摸出-个球,摸到绿球的概率为?则红球的个数是(这些球除颜色外无其它差别,从这个口袋中随机A.2B.4C.6D.8C. 24+6^3D. 16+6^3A. 1B. - 1C. -3D.12. 如图,这是健健同学的小测试卷, 判断题:每小题20分(D 2是分式 (2) (-2^ )3=-6/他应该得到的分数是(⑷ J9=±3(x )(5) 65啲补角是125。
专题01 规律探究问题(精讲)-2019年中考数学高频考点突破全攻略(原卷版)
【课标解读】新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。
根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。
规律探究问题是指给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探究题.【解题策略】解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。
笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。
解答策略:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.【考点深剖】★考点一数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
【典例1】(2018山东日照)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n 为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018★考点二图形规律探究由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。
这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。
【典例2】(2018·湖北随州·3分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33 B.301 C.386 D.571★考点三坐标规律探究“图形与坐标”是“图形与几何”领域的主要内容之一其中有这样一类问题,根据已知点的变化情况,利用猜想、归纳、验证等方法,探究点的坐标变化规律.这类问题要求通过归纳概括,得到猜想和规律,并加以验证,这是提高合情推理能力的重要途径,也是培养创新精神的重要方法.现结合实例,对点的坐标规律探索作一个归类整理.【典例3】(2018东营)(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.★考点四函数规律探究函数规律问题解决时要充分利用图形中的线段与坐标的关系,把坐标和图形联系起来,然后利用点的坐标满足函数解析式代入求解。
2019年中考数学总复习题型突破一规律探索问题课件
1 1 1 1×2 1 2 1 1 1 1 2×3 2 3 3×4 3 4
= - ; = - ; = - ;
1 1 5 6 1 1 5 6 1 1 5 6
1 1
设这列数的第 5 个数为 a,那么 a> - ,a= - ,a< - ,哪个正确?请你直接写出正确的结论. (2)请你观察第 1 个数、 第 2 个数、 第 3 个数,猜想这列数的第 n 个数(用正整数 n 表示第 n 个数),并且证明 你的猜想满足“第 n 个数与第(n+1)个数的和等于 (3)设 M 表示 2 , 2 , 2 ,…,
= -
+
-
= -
.
2 ������ (������ +2)
”.
∴第 n 个数与第(n+1)个数的和等于
.
类型1 数式规律
例 1 [2016· 云南 23 题] 有一列按一定顺序和规律排列的数: 第 1 个数是 第 2 个数是 第 3 个数是 … 对任何正整数 n,第 n 个数与第(n+1)个数的和等于 (3)设 M 表示 2 , 2 , 2 ,…,
������ (������ +1)
. .
设这列数的第 5 个数为 a,那么 a> - ,a= - ,a< - ,哪个正确? 请你直接写出正确的结论.
(2)请你观察第 1 个数、第 2 个数、第 3 个数,猜想这列数的 第 n 个数(用正整数 n 表示第 n 个数),并且证明你的猜想满 足“第 n 个数与第(n+1)个数的和等于
题型突破(一)
规律探索问题
题型解读
规律探索型问题也是归纳猜想型问题 ,是指根据已知条件或题干所提供的若干 特例,通过观察、类比、归纳,发现问题中的数学对象所具有的规律性的一类问
规律探究型问题2019中考数学高端精品(解析版)
专题03 规律探究型问题【考点综述评价】规律探究性问题指的是给出一组具有某种特定关系的数、式、图形,题目的情景给出有限的几项,或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所蕴涵的规律,进而归纳或猜想出共同特征,或者发现变化的趋势,在解答过程中需要经历观察、归纳、猜想、试验、证明等数学活动,以加深学生对相关数学知识的理解,认识数学知识之间的联系.【考点分类总结】考点1:数字规律探究【典型例题】(2017四川省凉山州)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是 . 【答案】5050.【分析】设第n 个三角形数为a n ,分析给定的三角形数,根据数的变化找出变化规律“a n =1+2+…+n =(1)2n n +”,依此规律即可得出结论.【方法归纳】解答数字规律问题的关键是仔细分析数表中或行列中前后各数之间的关系,从而发现其中所蕴涵的规律,利用规律解题. 【变式训练】(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2ny n =+ C .12n y n +=+ D .21n y n =++【答案】B .【分析】由题意可得下边三角形的数字规律为:2nn +,继而求得答案.学+科+-网考点2:数式规律探究【典型例题】(2017四川省内江市)观察下列等式: 第一个等式:122211132222121a ==-+⨯+⨯++; 第二个等式:2222232111322(2)2121a ==-+⨯+⨯++;第三个等式:3332342111322(2)2121a ==-+⨯+⨯++; 第四个等式:4442452111322(2)2121a ==-+⨯+⨯++;按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n = = ; (3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果); (4)计算:a 1+a 2+…+a n .【答案】(1)666221322(2)+⨯+⨯,67112121-++;(2)221322(2)n n n +⨯+⨯,1112121n n +-++;(3)1443;(4)11223(21)n n ++-+. 【分析】(1)根据已知4个等式可得; (2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得; (4)根据已知等式规律,列项相消求解可得.【方法归纳】解答数式规律问题的常用方法是:(1)将所给每个数据化为有规律的代数式或等式; (2)按规律顺序排列这些式子;(3)将发现的规律用代数式或等式表示出来; (4)用题中所给数据验证规律的正确性. 【变式训练】(2017安徽省)【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为22223(123)n ++++== ,因此,2222123n ++++= .【解决问题】根据以上发现,计算:222212320171232017++++++++的结果为 .【答案】【规律探究】2n +1,(1)(21)2n n n ++,(1)(21)6n n n ++;【解决问题】1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案; 【解决问题】运用以上结论,将原式变形,化简计算即可得.【解决问题】原式=12017(20171)(220171)612017(20171)2⨯⨯+⨯⨯+⨯⨯+=13×(2017×2+1)=1345,故答案为:1345.考点3:循环规律探究【典型例题】(2017衢州)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO 沿x轴正方形作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是,翻滚2017次后AB中点M经过的路径长为.【答案】B3(5),896)π.【分析】如图作B3E⊥x轴于E,易知OE=5,B3E3三次一个循环,一个循环点M的+1201180π⨯+1201180π⨯=)π,由2017÷3=672…1,可知翻滚2017次后AB中点M经过的路径长为672π=896)π.【方法归纳】根据前面所给的一些特殊数据,进行排序,找到循环的规律. 【变式训练】(2017南宁)如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为 .【答案】(6053,2).【分析】首先求出P 1~P 5的坐标,探究规律后,利用规律解决问题.考点4:图形特征规律探究【典型例题】(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C .【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【方法归纳】在规律探索题中,往往把有几何背景的问题如三角形、特殊四边形、圆和图形的变换等作为素材,不是简单的数数来探究规律,而是要利用几何的性质、定理通过计算来探索规律. 【变式训练】(2017临沂)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n 的值是( )A .11B .12C .13D .14 【答案】B .【分析】根据小圆个数变化规律进而表示出第n 个图形中小圆的个数,进而得出答案. 【解答】第1个图形有1个小圆; 第 2个图形有1+2=3个小圆; 第 3个图形有1+2+3=6个小圆; 第 4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=(1)2n n+个小圆;∵第n个图形中“○”的个数是78,∴78=(1)2n n+,解得:n1=12,n2=﹣13(不合题意舍去),故选B.考点5:数形结合规律探究【典型例题】(2017内蒙古呼和浩特市)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)【答案】4nm.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出式子,可得答案.【方法归纳】解决这类问题的关键是,仔细分析前后两个图形中基础图案的数量关系,从而发现其数字变化规律.即先根据图形写出数字规律,然后将每一个数字改写为等式,再比较各等式的相同点和不同点,分析不同点(数字)与等式序号之间的关系,从而得到一般规律.学..科网【变式训练】(2016湖南省岳阳市)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.【答案】(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.考点6:几何图形规律探究【典型例题】(2017山东省淄博市)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=13.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=16;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1 10;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .【答案】2(1)(2)n n ++.【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=12AB ,可得△CD 1E 1∽△CBA ,且11111DE DE BF AB ==12,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD 1E 1=14S △ABC =14,依据E 1是BC 的中点,即可得出S △D 1E 1F 1=13S △BD 1E 1=13×14=112,据此可得S 1=13;运用相同的方法,依次可得S 2=16,S 3=110;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =22111(1)(1)11n n n n +⨯⨯++++,最后化简即可.【方法归纳】根据各图形的边、角关系,寻求其规律.【变式训练】(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.C.2D.0【答案】A.【分析】根据题意求得OA1=4,OA2=OA3=2,OA4=OA5=2,OA6=0,OA7=4,…于是得到A2017与A1重合,即可得到结论.考点7:函数规律探究=-与x轴交于点B1,【典型例题】(2017山东省东营市)如图,在平面直角坐标系中,直线l:y x以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A 2017的横坐标是 .【答案】2017212-.【分析】先根据直线l :33y x =-与x 轴交于点B 1,可得B 1(1,0),OB 1=1,∠OB 1D =30°,再,过A 1作A 1A ⊥OB 1于A ,过A 2作A 2B ⊥A 1B 2于B ,过A 3作A 3C ⊥A 2B 3于C ,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A 1的横坐标为1212-,A 2的横坐标为2212-,A 3的横坐标为3212-,进而得到A n 的横坐标为212n -,据此可得点A 2017的横坐标.学/+科-网A 2C =12A 2B 3=2,即A 3的横坐标为12+1+2=72=3212-,同理可得,A 4的横坐标为12+1+2+4=152=4212-,由此可得,A n 的横坐标为212n -,∴点A 2017的横坐标是2017212-,故答案为:2017212-.【方法归纳】根据平面直角坐标上点的坐标变化和函数关系式之间的规律进行探索,从而找到存在的规律性的变化。
2019届人教版中考复习数学练习专题一:规律题探索专题(含答案)
第二部分专题复习专题一规律题探索专题【考纲与命题规律】考纲要求探索规律型问题:指的是给出一组具有某种特定关系的数、式、图形或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所隐含的规律,进而归纳或猜想出一般性的结论.命题规律常见的类型有三种:(1)数与式变化规律型;(2)图形变化规律型;(3)猜想论证型.这种类型的解题方法和步骤有三步:(1)通过对几个特例的观察与分析,寻找规律并进行归纳;(2)猜想符合规律的一般性结论;(3)对一般性结论进行【课堂精讲】例1观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是__.分析:数字的变化类,观察已知一组数发现:分子为从1开始的连线奇数,分母为从2开始的连线正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了数字规律型:数字的变化类,弄清题中的规律是解本题的关键.例2.如图,是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴________根.分析:图形规律,观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n条“金鱼”需要火柴8+6(n-1)=6n+2.解答:6n+2点评:此题考查了图形规律型:图形的变化类,弄清题中的递增规律是解本题的关键.例3. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.分析:首先利用直线的解析式,分别求得A1,A2,A3,A4…的坐标,由此得到一定的规律,据此求出点A n的坐标,即可得出点B6的坐标.解答:解:∵直线y=x+1,x=0时,y=1,∴A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,即点A4的坐标为(7,8).据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.即点A n的坐标为(2n﹣1﹣1,2n﹣1).∴点A6的坐标为(25﹣1,25).∴点B6的坐标是:(26﹣1,25)即(63,32).故答案为:(63,32).点评:此题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.【课堂提升】1.观察下列等式:①32-4×1=12+4;②42-4×2=22+4;③52-4×3=32+4;… 则第n 个等式可以表示为__________________2.阅读下列材料:1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),3×4=13(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20.读完以上材料,请你计算下各题:(1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+n ×(n +1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.3.如下图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是________4.如图,在等腰Rt △OAA 1中,∠OAA 1=90°,OA =1,以OA 1为直角边作等腰Rt △OA 1A 2,以OA 2为直角边作等腰Rt △OA 2A 3,…则OA 4的长度为 .5. 如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.6.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.【高效作业本】专题一规律题探究专题1如图,按此规律,第6行最后一个数字是,第行最后一个数是2014.2.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).3.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.4.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31B.46C.51D.665.填在下图的各正方形中的4个数之间都有相同的规律,根据此规律,m的值是( ).A .38B .52C .66D .746.如右图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的 顺序循环运动.则第2011步到达的点处是( )A .A 点B .B 点C .D 点 D .F 点7.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值.【答案】专题一 规律题探索专题1.:(n +2)2-4n =n2+42. 解析:(1)∵1×2=13(1×2×3-0×1×2)2×3=13(2×3×4-1×2×3)⋮10×11=13(10×11×12-9×10×11)∴以上各式相加得1×2+2×3+…+10×11 =13×10×11×12=440. (2)13n (n +1)(n +2). (3)14×7×8×9×10=1 260.3. n(n +2)4.:解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.点评:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.5.解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.6.解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.【高效作业本】1. 解:每一行的最后一个数字构成等差数列1,4,7,10…,第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴第6行最后一个数字是3×6﹣2=16;3n﹣2=2014解得n=672.因此第6行最后一个数字是16,第672行最后一个数是2014.故答案为:16,672.2.解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),∴第16个答案为:.故答案为:.3.解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.4..解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.5. D6. C7.解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.。
中考数学热点题型――规律探索篇.doc
中考数学热点题型一一规律探索篇新课程标准要求学生,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识.为适应新的教学理念及社会和谐发展的需要,兼具双重性质考试的中考,既要考查三基,乂要考查数学应用能力,考杏和测试继续学习和深造的潜在的能力,即学习潜力,为高一级学校输送合格的新生.近儿年来出现了颇具新意的观察探索归纳猜想类型题,以数学概念及数学思想方法为载体,考杏潜能的创新题脱颖而出.为了方便同学们搞好后期的中考复习,现以2007年全国部分省市的中考试题为例说明如下:一、从数的运算中探索规律例1(广西河池课改试题)古希腊数学家把1, 3, 6, 10, 15, 21,……,叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.分析观察这一,组数有以下特征:1 = L(F+1), 3 = - (22+2), 6=-(32+3), 10 =2 2 2-(42+4),15=-(52+5), 21 =上(62+6),……由此可以猜想第100个三角形数和第98个三2 2 2角形数的大小,即可求解.解因为1 = -(12+1), 3=-(22+2), 6=-(32+3), 10=-(42+4), 15=-(52+5), 212 2 2 2 21 ,=—(6~+6), ........... ,2所以第98个这样的三角形数是-(982+98),第100个这样的三角形数是-(1002+100),2 2即第100个三角形数与第98个三角形数的差为1(1002+100)—上(982+98)=上(100」22 2982+100 - 98)=-(I98X 2+2)= 199.故应填199.2说明同学们通过求解这道中考题,感觉一定不错吧!在数学解题中,只要我们认真地去分析题目的本质特征,找到其中隐藏的规律,求解起来还是十分地方便快捷.二、从式的运算中探索规律X3X5X7计例2 (杭州市)给定下面一列分式:—,,…,(其中A-^0)y )广y3y4(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.分析(1)后一个分式除以前面一个分式其结果都是负的,并且是一个恒定的代数式,(2)观察2知的一列分式可知分式的分母的指数依次增加1,分子的指数是分母指数的2 倍加1,并且分母的指数是偶数的分式带有“一"号.5 3 7 5 9 7 2解(1)因为—二!七=、!(—二)=一与m—%)=••・=—^,y y y y y y )‘所以任意一个分式除以前而一个分式的规律是恒等于一—.y再分别依次从左到右取2个、3个、4个、5个正方形拼成如下矩形并记为①、②、③、 ④.相应矩形的周长如卜-表和如图所示:序号 ① ②③ ④| 周长 6 10 16 26 | 若按此规律继续作矩形,分析由数据1,1,2,③ 图2 则序号为⑩的矩形周长是3, 5, 8, 13,…的规律可知矩形①、②、③、④、……的相应的长分别为 2=1 + 1, 3=1+2, 5 = 2+3, 8 = 3+5,…,89 = 34+55, 144 = 55+89, 233 = 89+144,…,相应的宽分别为1, 1 + 1, 1+2, 2+3, 3+5,…, 由此可以获解. 解依题意,得序号为⑩的矩形的宽为34+55 = 89,长为 矩形周长是(89+144)X2 = 233X2=466.故应填上466. 说明求解本题的关键一要正确理解1, 1, 2, 3, 5, 8,21+34, 34+55, 55+89,…. 55+89=144,所以号为⑩的 13,…的规律,二是以这组(2)因为已知的一列分式可知分式的分母的指数依次增加1,分子的指数是分母指数X 15的2倍加1,并且分母的指数是偶数的分式带有“一”号,所以第7个分式应该是二.V .说明 求解此类中考试题除了要利用基础知识外,还要认真地分析每一•个式子的特点, 及时地发现、归纳出一般规律.三、从图形特征中探索规律例3 (温州市)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数: 1, 1, 2, 3, 5, 8, 13,…,其中从第三个数起,每一个数都等于它前面两上数的和.现以 这组数中的各个数作为正方形的长度构造如图1正方形:数中的各个数作为正方形的长度构造正方形的意义,三是要弄清楚分别依次从左到右取2 个、3个、4个、5个正方形拼成矩形的长和宽分别是多少.5 1 1 ④ ① 图3 ②(1)请写出这四个图案都具有的两个共同特征.特征1:;特征2: .(2)请在图3②中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.分析通过观察每一个图案的特征可以发现:它们既是轴对称图案,乂是中心对称图案, 并且面积相等,都等于4个单位等等.由此可以再仿照设计很多的图案.解(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的而积都等于4个单位面积;等等.(2)满足条件的图形有很多,即答案不惟一.如,如图4所示.说明本题是一道开放型试题,求解时只要符合题意即可,另外,在平时的学习生活中五、从阅读理解中探索规律例5 (乐山市)如图5,在直角坐标系中,已知点R)的坐标为(1, 0),将线段OP。
走进中考聚焦专题第一讲规律探究
走进中考、聚焦专题第一讲规律探究【中考分析】在中考数学命题中,各省市数学中考试题中基本上每年都十分重视规律探究的考查。
规律探究类试题可分为:图形变化类规律探究、数字变化类规律探究、数形结合变化类规律探究等。
它所涉及到的教材上的代数知识或几何知识并不是考查的重点,而是以此为载体考查考生分析归纳能力;所以学生对问题观察、分析、归纳、解决的能力是解答此类问题的关键,而相关的知识和技能只是基础。
【知识与技能】根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式称之为规律探究。
规律探究可分为图形变化类规律探究、数字变化类规律探究、数形结合变化类规律探究。
图形变化类规律探究:通常是给定一些结构类似、数量和位置不同的几何图案,这些图案之间有一定的规律,并且还可以由一个通用的代数式来表示。
它的思路有两种:一是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题;一是数图形,将图形转化为数字规律,再用函数法、观察法解决问题。
数字变化类规律探究:通常是给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律。
它考查考生的分析、归纳、抽象、概括能力,考查了由特殊到一般的数学思想。
它的思路:第一步写出数式的基本结构,第二步比较同一等式中不同部分的数量关系或比较不同等式间相同位置的数量关系找出各部分的特征,第三步改写成要求的格式。
数形结合变化类规律探究:通常是数字规律探究和图形规律探究的结合。
它的思路就是二者兼而有之。
【中考例题解析】例题1:(2009年广东中考) 15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________【考点】规律型:图形的变化类.【分析】根据已知图形得出每下一个“广”字就增加2个棋子,据此可得答案. 【解答】解:∵第1个“广”字的棋子为5+2=7, 第2个“广”字的棋子为5+2×2=9, 第3个“广”字的棋子为5+2×3=11, …∴第3个“广”字的棋子为5+2×5=15, 第n 个“广”字的棋子为2n+5, 所以答案为:15,2n+5.方法指导:考查探究图形的变化规律,找出图形的变化规律是解题的关键 题型3 数形结合变化类规律探究 题型:数字变化类规律探究例题2:(2015年广东中考)15.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 。
专题01 规律探究压轴题真题训练汇总(原卷版)-2023年中考数学解答题压轴真题汇编
挑战2023年中考数学选择、填空压轴真题汇编专题01规律探究压轴题真题训练一.尾数特征(共1小题)1.(2022•内蒙古)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72022的结果的个位数字是()A.0B.1C.7D.8二.算术平方根(共1小题)2.(2022•烟台)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为()A.(2)5B.(2)6C.()5D.()6三.规律型:数字的变化类(共12小题)3.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.4.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.1045.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n 6.(2021•十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019 7.(2021•随州)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.169 8.(2020•娄底)下列各正方形中的四个数具有相同的规律,根据规律,x的值为()A.135B.153C.170D.1899.(2022•鄂尔多斯)按一定规律排列的数据依次为,,,……按此规律排列,则第30个数是.10.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.行第列.12.(2020•德阳)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20),…,我们称4是第2组第1个数字,16是第4组第2个数字,若2020是第m组第n个数字,则m+n=.13.(2020•泰安)如图被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.14.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.四.规律型:图形的变化类(共10小题)15.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400 16.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12 17.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.918.(2021•玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9﹣Y4=()A.15×24B.31×24C.33×24D.63×24 19.(2020•十堰)根据图中数字的规律,若第n个图中出现数字396,则n=()A.17B.18C.19D.20 20.(2022•青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n 个图中共有木料根.21.(2022•聊城)如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为.22.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为.23.(2022•黑龙江)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.24.(2021•黑龙江)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8…依次规律继续作正方形A n B n∁n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交,A1B1于点D1,连接A1C2,交A2B2于点D2,连接A2C3,交A3B3于点D3,…记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3,…,四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2021=.五.完全平方公式(共2小题)25.(2020•贺州)我国宋代数学家杨辉发现了(a+b)n(n=0,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,(a+b)8展开式的系数和是()A.64B.128C.256D.612 26.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.1024六.点的坐标(共1小题)27.(2004•南宁)如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点、按如此规律走下去,当机器人走到A6点时,离O点的距离是米.七.规律型:点的坐标(共9小题)28.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)29.(2014•威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013 30.(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4 (x)上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A 2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022=.31.(2022•齐齐哈尔)如图,直线l:y=x+与x轴相交于点A,与y轴相交于点B,过点B作BC1⊥l交x轴于点C1,过点C1作B1C1⊥x轴交l于点B1,过点B1作B1C2⊥l交x轴于点C2,过点C2作B2C2⊥x轴交l于点B2,…,按照如此规律操作下去,则点B2022的纵坐标是.32.(2021•齐齐哈尔)如图,抛物线的解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1,分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2;…;按照如此规律进行下去,则点P n(n为正整数)的坐标是.33.(2020•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是.34.(2019•绥化)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.35.(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt △OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.36.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.八.坐标确定位置(共1小题)37.(2008•湛江)将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.九.一次函数图象上点的坐标特征(共5小题)38.(2021•兴安盟)如图,点B1在直线l:y=x上,点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,以A1B1为边向右作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边向右作正方形A2B2C2A3,延长A3C2交直线l于点B3;…;按照这个规律进行下去,点B2021的坐标为.39.(2021•泰安)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x 轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为(结果用含正整数n的代数式表示).40.(2019•朝阳)如图,直线y=x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.41.(2019•齐齐哈尔)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.42.(2018•湖北)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依.据图形所反映的规律,S2018=一十.两条直线相交或平行问题(共1小题)43.(2019•雅安)如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A 1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点A n的纵坐标为()A.()n B.()n+1C.()n﹣1+D.一十一.三角形的面积(共3小题)44.(2021•黑龙江)如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD 至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2…按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2…,△A2020D2020A2021的面积为S2021,则S2021=.45.(2020•辽宁)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD 与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)46.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.十二.等边三角形的性质(共1小题)47.(2019•锦州)如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O n﹣1BA n,记△OO1A 的面积为S1,△O1O2A1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n 的面积为S n,则S n=.(n≥2,且n为整数)﹣1十三.含30度角的直角三角形(共2小题)48.(2020•营口)如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为.49.(2020•徐州)如图,∠MON=30°,在OM上截取OA 1=.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于.十四.勾股定理(共1小题)50.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n ﹣1C.()n D.()n﹣1十五.正方形的性质(共1小题)51.(2019•鞍山)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8……依此规律继续作正方形A n B n∁n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交A1B1于点D1,连接A1C2交A2B2于点D2,连接A2C3交A3B3于点D3……记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3……四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2019=.十六.扇形面积的计算(共1小题)52.(2019•抚顺)如图,直线l 1的解析式是y=x,直线l2的解析式是y=x,点A1在l1上,A1的横坐标为,作A1B1⊥l1交l2于点B1,点B2在l2上,以B1A1,B1B2为邻边在直线l1,l2间作菱形A1B1B2C1,分别以点A1,B2为圆心,以A1B1为半径画弧得扇形B1A1C1和扇形B1B2C1,记扇形B1A1C1与扇形B1B2C1重叠部分的面积为S1;延长B2C1交l1于点A2,点B3在l2上,以B2A2,B2B3为邻边在l1,l2间作菱形A2B2B3C2,分别以点A2,B3为圆心,以A2B2为半径画弧得扇形B2A2C2和扇形B2B3C2,记扇形B2A2C2与扇形B2B3C2重叠部分的面积为S2………按照此规律继续作下去,则S n=.(用含有正整数n 的式子表示)十七.相似三角形的判定与性质(共1小题)53.(2021•东营)如图,正方形ABCB 1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=.十八.概率公式(共1小题)54.(2020•济宁)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.。
2019年中考数学总复习题型突破一规律探索问题课件
[答案] (1)42 n2 [解析] (1)1+3+5+7=16=42. 观察,发现规律, 第一个图形:1+3=22, 第二个图形:1+3+5=32, 第三个图形:1+3+5+7=42,…, 第 n-1 个形:1+3+5+…+(2n-1)=n2. 故答案为:42 n2.
类型1 数式规律
∴1-1+1-1+1-1+…+ 1
12 23 34
2016
-1
2017
<112+212+312+…+2011
62
,∴1- 1
1 2017
<112
+212
+312+…+201162,
即:22001167 <M.
同理
n2>n2-n=n(n-1),即
n2>n(n-1)(n
为正整数),∴������12
<
������
.(写出最简计算结果即可)
4.[2017·巴中] 观察下列各式: 1 + 13=2 13, 2 + 14=3 14, 3 + 15=4 15,…,请你将所发现的规律用含自然数
n(n≥1)的代数式表达出来:
������ + ������+1 2=(n+1)
1 ������ +2
.
类型1 数式规律
5.(1)观察下列图形与等式的关系,并填空:
第 n 个数(用正整数 n 表示第 n 个数),并且证明你的猜想满 足“第 n 个数与第(n+1)个数的和等于 2 ”.
第3.1讲 探求规律题-备战2019中考数学热点难点突破(解析版)
【备战2019年中考数学一轮热点、难点一网打尽】专题01探求规律题考纲要求:探索规律型问题:指的是给出一组具有某种特定关系的数、式、图形或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所隐含的规律,进而归纳或猜想出一般性的结论.基础知识回顾:1.数字猜想型:在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,注意对应思想和数形结合.4.数形结合猜想型:首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系.5.动态规律型:要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.应用举例:类型一、数字猜想型【例1】.一个自然数的立方,可以分裂成若干个连续奇数的和,例如:23,33和43分别可以按如图所示的方式“分裂”,则63“分裂”出的奇数中,最大的奇数是_____.【答案】41.【解析】∵23有3、5共2个奇数,33有7、9、11共3个奇数,43有13、15、17、19共4个奇数,…,63共有6个奇数,∴到63“分裂”出的奇数为止,一共有奇数:2+3+4+5+6=20,又∵3是第一个奇数,∴第20个奇数为20×2+1=41,即63“分裂”出的奇数中,最大的奇数是41.故答案为:41.类型二、数式规律型【例2】观察下面三行数(1)第①行数的第n个数是.(2)请将第②行数中的每一个数分别减去第①行数中对应位置的数,并找出规律,根据你得到的结论,直接写出第②行数的第n个数是;同理,直接写出第③行数的第n个数是.(3)取每行的第k个数,这三个数的和能否等于-509?如果能,请求出k的值;如果不能,请说明理由. 【答案】(1)(-2)n;(2)(-2)n+2;-(-2)n+1;(3)能;k=9.【解析】【分析】(1)第一组,各数后一项是前一项的-2倍,(2)第二组,各数依次相加了+6,-12,+24,-48,+96……,总结规律得第n个数是(-2)n+2,同理,第三组第n个数是-(-2)n+1,(3)根据前两问将第k个数表示出来,解关于k的方程即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课标解读】
新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。
根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。
规律探究问题是指给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探究题.
【解题策略】
解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。
笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。
解答策略:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.
【考点深剖】
★考点一数式规律探究
通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
【典例1】(2018山东日照)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n 为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:
若n=13,则第2018次“F”运算的结果是()
A.1 B.4 C.2018 D.42018
★考点二图形规律探究
由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。
这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常
1
2 用“拆图法”解决问题。
【典例2】(2018·湖北随州·3分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1
,
3
,
6
,
1
0…)和“正方形
数
”
(
如
1
,
4
,9,1,在小于200的数中,设最大的“三角形数”为m ,最大的 “正方形数”为n ,则m+n 的值为( )
A .33
B .301
C .386
D .571
★考点三 坐标规律探究
“图形与坐标”是“图形与几何”领域的主要内容之一其中有这样一类问题,根据已知点的变化情况,利用猜想、归纳、验证等方法,探究点的坐标变化规律.这类问题要求通过归纳概括,得到猜想和规律,并加以验证,这是提高合情推理能力的重要途径,也是培养创新精神的重要方法.现结合实例,对点的坐标规律探索作一个归类整理.
【典例3】(2018东营)(4.00分)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=x+b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2018的纵坐标是 . ★考点四 函数规律探究
函数规律问题解决时要充分利用图形中的线段与坐标的关系,把坐标和图形联系起来,然后利用点的坐标满足函数解析式代入求解。
【典例4】如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2
∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲
线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6
的坐标为
.
★考点五变换规律探究
图形的变化具有周期性,要先确定循环周期及图形的变化特点,然后用所求总数除以循环周期,得到余数,进而使所求问题得以解决.
【典例5】(2018黑龙江龙东)(3.00分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= .
【讲透练活】
变式1:(2018南宁)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是.
变式2:(2017•黑龙江)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有个三角形.
3
4
变式3:(2018齐齐哈尔)在平面直角坐标系中,点A (,1)在射线OM 上,点B (,3)在射线ON 上,以AB 为直角边作Rt △ABA 1,以BA 1为直角边作第二个Rt △BA 1B 1,以A 1B 1为直角边作第三个Rt △A 1B 1A 2,…,依次规律,得到Rt △B 2017A 2018B 2018,则点B 2018
的纵坐标为
.
变式4:(2018辽宁抚顺)(3.00分)如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心:…;按照此规律继续下去,则点O 2018的坐标为 .
变式5:(2017黑龙江佳木斯)如图,四条直线l 1:y 1=x ,l 2:y 2=x ,l 3:y 3=﹣x ,l 4:y 4=﹣x ,OA 1=1,过点A 1作A 1A 2⊥x 轴,交l 1于点A 2,再过点A 1作A 1A 2⊥l 1交l 2于点A 2,再过点A 2作A 2A 3⊥l 3交y 轴于点A 3…,则点A 2017坐标为 [()2015,()2016] .
5。