中考数学 专题突破四 函数综合问题
中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)

一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。
(2021年整理)云南中考数学总复习专题训练:专题四二次函数综合题

云南中考数学总复习专题训练:专题四二次函数综合题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(云南中考数学总复习专题训练:专题四二次函数综合题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为云南中考数学总复习专题训练:专题四二次函数综合题的全部内容。
专题四二次函数综合题类型一代数问题(2019·杭州)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0)(1)判断该二次函数图象与x轴交点的个数,并说明理由;(2)若该二次函数的图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.【自主解答】1.在平面直角坐标系中,二次函数y=x2+bx+c(b,c都是常数)的图象经过点(1,0)和(0,2).(1)当-2≤x≤2时,求y的取值范围.(2)已知点P(m,n)在该函数的图象上,且m+n=1,求点P的坐标.2.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.3.规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离".(1)求抛物线y=x2-2x+3与x轴的“亲近距离";(2)在探究问题:求抛物线y=x2-2x+3与直线y=x-1的“亲近距离"的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2-2x+3与抛物线y=错误!x2+c的“亲近距离”为错误!,求c 的值.4.(2019·舟山)已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴,y轴于点A、B。
2023年中考数学压轴题专题04 二次函数与相似问题-【含答案】

专题4二次函数与相似问题函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
相似三角形常见的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.判定定理“两边及其夹角法”是常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理“两角法”解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理“三边法”解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【例2】.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y 轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.7.(2022•祥云县模拟)如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),交y轴于点C(0,3),点M是该抛物线上第一象限内的一个动点,ME垂直x轴于点E,交线段BC于点D,MN∥x轴,交y轴于点N.(1)求抛物线y=ax2+bx+c的表达式;(2)若四边形MNOE是正方形,求该正方形的边长;(3)连结OD,AC,抛物线上是否存在点M,使得以C,O,D为顶点的三角形与△ABC相似,若存在,请求出点M的坐标,若不存在,请说明理由.8.(2022•松江区校级模拟)如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求∠CBD的正切值;(3)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使△CDB和△BMP相似,若存在,求点P坐标,若不存在,请说明理由.9.(2022•平江县一模)如图,抛物线y=ax2+bx+8与x轴交于A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求该抛物线的函数表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,设四边形PBOC和△AOC的面积分别为S四边形PBOC ,记S=S四边形PBOC﹣S△AOC,求S最大值点P的坐标及S的最大值;和S△AOC(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△BOC相似?若存在,求点M的坐标;若不存在,请说明理由.10.(2022•莱州市一模)如图①,在平面直角坐标系中,抛物线y=x2+c经过点A(4,3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,﹣2)且垂直于y轴的直线,连接PO.(1)求抛物线的表达式,并求出顶点B的坐标;(2)试证明:经过点O的⊙P与直线l相切;(3)如图②,已知点C的坐标为(1,2),是否存在点P,使得以点P,O及(2)中的切点为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.11.(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB相似,且PC 与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.12.(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.13.(2022•丰南区二模)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C′ED的位置.(1)直接写出C′的坐标,并求经过O、A、C′三点的抛物线的解析式;(2)点P在第四象限的抛物线上,求△C′OP的最大面积;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.14.(2022•莱芜区三模)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象经过A和点C(0,﹣3).(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第一象限的图象上,点C的对应点E落在直线AB上,直接写出四边形ACED的形状,并求出此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线CD下方抛物线上一个动点,过点P作PF⊥x轴,交CD于点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求出线段FP的长度;若不存在,请说明理由.15.(2022•临清市三模)如图,抛物线y=﹣x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点(点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x轴上.(1)求抛物线解析式;(2)设点F横坐标为m,①用含有m的代数式表示点E的横坐标为(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F 的坐标.16.(2022•成都模拟)如图①,已知抛物线y=﹣(x﹣1)2+k交x轴于A,B两点,交y轴于点C,P是抛物线上的动点,且满足OB=3OA.(1)求抛物线的解析式;(2)若点P在第一象限,直线y=x+b经过点P且与直线BC交于点E,设点P的横坐标为t,当线段PE 的长度随着t的增大而减小时,求t的取值范围;(3)如图②,过点A作BC的平行线m,与抛物线交于另一点D.点P在直线m上方,点Q在线段AD 上,若△CPQ与△AOC相似,且点P与点O是对应点,求点P的坐标.17.(2022•东莞市校级一模)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2kx+2k2+1与x轴的左交点为A,右交点为B,与y轴的交点为C,对称轴为直线l,对于抛物线上的两点(x1,y1),(x2,y2)(x1<k<x2),当x1+x2=2时,y1﹣y2=0恒成立.(1)求该抛物线的解析式;(2)点M是第二象限内直线AC上方的抛物线上的一点,过点M作MN⊥AC于点N,求线段MN的最大值,并求出此时点M的坐标;(3)点P是直线l右侧抛物线上的一点,PQ⊥l于点Q,AP交直线l于点F,是否存在这样的点P,使△PQF与△ACO相似?若存在,请求出点P的坐标,若不存在,请说明理由.18.(2022•碑林区校级模拟)如图,Rt△ABC中,∠ACB=90°,AB=8,AC=4,以AB所在直线为x轴建立平面直角坐标系,若C(0,2).(1)请直接写出A、B的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)l为抛物线对称轴,P是直线l右侧抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△ABC全等,求满足条件的点P,点E的坐标.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C的坐标,然后证明Rt△DPE∽Rt△AOC,再由二次函数的最值性质,求出答案;(3)根据题意,可分为两种情况进行分析:当△AOC∽△APD时;当△AOC∽△DAP时;分别求出两种情况的点的坐标,即可得到答案.【解析】(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,,解得,∴直线AB的解析式为y=﹣x+3,当y=0时,﹣x+3=0,解得:x=2,∴C点坐标为(2,0),∵PD⊥x轴,PE∥x轴,∴∠ACO=∠DEP,∴Rt△DPE∽Rt△AOC,∴,∴PE=PD,∴PD+PE=PD,设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,∴PD+PE=﹣(a﹣)2+,∵﹣<0,∴当a=时,PD+PE有最大值为;(3)①当△AOC∽△APD时,∵PD⊥x轴,∠DPA=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).【例2】(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)令x=0和翻折的性质可得C(0,2),令y=0可得点A、B的坐标,利用待定系数法即可求出图象W的解析式;(2)利用数形结合找出当y=﹣x+b经过点C或者y=﹣x+b与y=x2﹣x﹣2相切时,直线y=﹣x+b与新图象恰好有三个不同的交点,①当直线y=﹣x+b经过点C(0,2)时,利用一次函数图象上点的坐标特征,即可求出b值;②当y=﹣x+b与y=x2﹣x﹣2相切时,联立一次函数解析式和抛物线解析式,利用根的判别式Δ=0,即可求出b值.综上即可得出结论;(3)先确定△BOC是等腰直角三角形,分三种情况:∠CNM=90°或∠MCN=90°,分别画图可得结论.【解析】(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).【例3】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【分析】(1)由y=﹣x2+3x+4可得A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,可知四边形CC'QP是平行四边形,及得CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,而B,Q,C'共线,故此时CP+PQ+BQ最小,最小值为BC'+PQ的值,由勾股定理可得BC'=5,即得CP+PQ+BQ最小值为6;(3)由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),知BN=,QN=t,PM=,CM=|t﹣3|,①当=时,=,可解得Q(,)或(,);②当=时,=,得Q(,).【解析】(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;(3)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【分析】(1)把点B(2,0)代入y=﹣2x2+bx+c中,再由对称轴是直线x=列方程,两个方程组成方程组可解答;(2)当△POD是等边三角形时,点P在OD的垂直平分线上,所以作OD的垂直平分线与抛物线的交点即为点P,计算OD≠PD,可知△POD不可能是等边三角形;(3)分种情况:①当PC∥x轴时,△CPM∽△BHM时,根据PH的长列方程可解答;②②如图3,△PCM ∽△BHM,过点P作PE⊥y轴于E,证明△PEC∽△COB,可得结论.【解析】(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)△POD不可能是等边三角形,理由如下:如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,∵C(0,4),D是OD的中点,∴E(0,1),当y=1时,﹣2x2+2x+4=1,2x2﹣2x﹣3=0,解得:x1=,x2=(舍),∴P(,1),∴OD≠PD,∴△POD不可能是等边三角形;(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.【分析】(1)运用待定系数法将A(4,0),B(﹣1,0)代入y=ax2+bx+4,解方程组即可求得答案;(2)根据题意,当S1=S2+5,即S△ABD=S△ABC+5,设D(x,y),表示出△ABD和△ABC的面积,列方程求解即可;(3)分情况讨论,列出三角形相似的三种情况,画出相应图形,设M(m,4),则N(m,﹣m2+3m+4),运用相似三角形性质,建立方程求解即可.【解析】(1)∵抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,∴,解得:,∴y=﹣x2+3x+4;(2)∵抛物线y=﹣x2+3x+4与y轴交于点C,令x=0,则y=4,∴C(0,4),∵S1=S2+5,∴S1+S△AEB=S2+S△AEB+5,=S△ABC+5,即S△ABD∵A(4,0),B(﹣1,0),∴AB=5,设D(x,y),∴×5×y=×5×4+5,∴y=6,∴﹣x2+3x+4=6,解得:x1=1,x2=2,∴D1(1,6),D2(2,6);(3)设M(m,4),则N(m,﹣m2+3m+4),①如图2,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);②如图3,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=﹣1,经检验,m=﹣1是原方程的解,∴M(﹣1,4);③如图4,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);④如图5,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=7,经检验,m=7是原方程的解,∴M(7,4);综上所述,点M的坐标为(,4)或(﹣1,4)或(,4)或(7,4).2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)在抛物线解析式中,令y=0则可求得A、B的坐标;(2)证明△AOP∽△AED,根据相似三角形面积的比等于对应边的比的平方列比例式可得AE=2,从而得点D的横坐标为3,代入抛物线的解析式可得点D的坐标;(3)如图2所示,若以Q,A,M为顶点的三角形与△QNA相似,有两种情况,但是∠QAM与∠QAN不可能相等,所以最后只存在一种情况:△AQM∽△NQA,列比例式可得结论.【解析】(1)当y=0时,x2﹣3x+=0,解得:x1=1,x2=5,∴A(1,0),B(5,0);(2)∵DE⊥x轴,∴∠AED=90°,∴∠AOP=∠AED=90°,∵∠OAP=∠DAE,∴△AOP∽△AED,∴==,∴=,∵OA=1,∴AE=2,∴OE=3,当x=3时,y=﹣3×3+=﹣2,∴D(3,﹣2);(3)如图2,设Q(0,m),当x=0时,y=,∴F(0,),∵点Q是线段OF上的动点,∴0≤m≤,当y=m时,x2﹣3x+=m,x2﹣6x+5﹣2m=0,x=3,∴x1=3+,x2=3﹣,∴QM=3﹣,QN=3+,在Rt△AOQ中,由勾股定理得:AQ=,∵∠AQM=∠AQN,∴当△AQM和△AQN相似只存在一种情况:△AQM∽△NQA,∴,∴AQ2=NQ•QM,即1+m2=(3+)(3﹣),解得:m1=﹣1+,m2=﹣1﹣(舍),∴Q(0,﹣1+).3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出该抛物线的函数关系式;(2)根据点P是直线BC下方抛物线上一动点,其横坐标为m,表示PH的长,根据三角形的面积列方程解出即可得出结论;(3)先根据两三角形相似判断出∠CED=∠BMD=90°或∠DCE=∠DMB=90°,进而分两种情况讨论即可得出结论.【解析】(1)把点B(6,0)和点C(0,﹣3)代入得:,解得:,∴抛物线的解析式为;(2)设直线BC的解析式为:y=ax+n,由点B(6,0)和C(0,﹣3)得:,解得:,∴直线BC的解析式为,如图1,过点P作y轴的平行线交BC于点H,∵点P的坐标为(m,),PH∥y轴,∴点H的坐标为(m,),∴PH=y H﹣y P=﹣()=﹣,x B﹣x C=6﹣0=6,=PH×6=(﹣)×6=﹣=,∵S△PBC解得:m1=1,m2=5,∴m值为1或5;(3)如图2,∵∠CDE=∠BDM,△CDE与△BDM相似,∴∠CED=∠BMD=90°或∠DCE=∠DMB=90°,设M(x,0),①当∠CED=∠BDM=90°,∴CE∥AB,∵C(0,﹣3),∴点E的纵坐标为﹣3,∵点E在抛物线上,∴x2﹣x﹣3=﹣3.∴x=0(舍)或x=5,∴M(5,0);②当∠DCE=∠DMB=90°,∵OB=6,OC=3,∴BC==3,由(2)知直线BC的关系式为y=x﹣3,∴OM=x,BM=6﹣x,DM=3﹣x,由(2)同理得ED=﹣+3x,∵DM∥OC,∴,即,∴CD=,∴BD=BC﹣CD=﹣x,∵△ECD∽△BMD,∴,即=,∴=x(3﹣x)2,x(6﹣x)(1﹣x)=0,x1=0(舍),x2=6(舍),x3=1,∴M(1,0);综上所述:点M的坐标为(5,0)或(1,0).4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【分析】(1)将抛物线配方后可得顶点A的坐标,将抛物线和一次函数的解析式联立方程组,解出可得B 和C的坐标;(2)先根据两点的距离计算AB、BC、AC的长,根据勾股定理的逆定理可得:∠ABC=90°,最后根据两边的比相等且夹角为90度得两三角形相似;(3)存在,设M(x,0),则P(x,x2+2x),表示OM=|x|,PM=|x2+2x|,分两种情况:有=或=,根据比例式代入可得对应x的值,计算点P的坐标即可.【解答】(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB==,BC==3,AC==2,∴AB2+BC2=AC2,==,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为顶点的三角形与△ABC相似时,有=或=,由(2)知:AB=,CB=3,①当=时,则=,当P在第二象限时,x<0,x2+2x>0,∴,解得:x1=0(舍),x2=﹣,当P在第三象限时,x<0,x2+2x<0,∴=,解得:x1=0(舍),x2=﹣,②当=时,则=3,同理代入可得:x=﹣5或x=1(舍),综上所述,存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【分析】(1)①函数的对称轴为:x=﹣=,故点M(,),即可求解;②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,即可求解;③四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,即可求解;(2)分∠DBP为直角、∠BDP为直角两种情况,分别求解即可.【解析】(1)①函数的对称轴为:x=﹣=,故点M(,),当x=时,y=﹣2x+4=3,故点N(,3);②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,将R、B的坐标代入一次函数表达式:y=kx+b并解得:直线RB的表达式为:y=4x+4,当x=时,y=6,故点Q(,6);③不存在,理由:设点P(x,﹣2x+4),则点D(x,﹣2x2+2x+4),MN=﹣3=,四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,故不存在点P,使四边形MNPD为菱形;(2)当点P的横坐标为1时,则其坐标为:(1,2),此时点A、B的坐标分别为:(2,0)、(0,4),①当∠DBP为直角时,以B、P、D为顶点的三角形与△AOB相似,则∠BAO=∠BDP=α,tan∠BAO==2=tanα,则sinα=,PA=,PB=AB﹣PA=2﹣=,则PD==,故点D(1,);②当∠BDP为直角时,以B、P、D为顶点的三角形与△AOB相似,则BD∥x轴,则点B、D关于抛物线的对称轴对称,故点D(1,4),综上,点D的坐标为:(1,4)或(1,),将点A、B、D的坐标代入抛物线表达式:y=ax2+bx+c并解得:y=﹣2x2+2x+4或y=﹣x2+3x+4.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.。
中考数学专题复习二次函数综合(四)

中考数学专题复习二次函数综合(四)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、解答题1.在平面直角坐标系xOy 中,抛物线21:C y x bx c =++与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C .点B 的坐标为()3,0,将直线y kx =沿y 轴向上平移3个单位长度后,恰好经过B 、C 两点.(1)求k 的值和点C 的坐标;(2)求抛物线1C 的表达式及顶点D 的坐标;(3)已知点E 是点D 关于原点的对称点,若抛物线22:2(0)C y ax a =-≠与线段AE 恰有一个公共点,结合函数的图象,求a 的取值范围.2.在平面直角坐标系xOy 中,抛物线24(0)y ax ax a =-≠与x 轴交于点,A B (A 在B 的左侧).(1)求点,A B 的坐标及抛物线的对称轴;(2)已知点(2,2),(22,5)P Q a a +,若抛物线与线段PQ 有公共点,请结合函数图象,求a 的取值范围.3.在平面直角坐标系xOy 中,点A 的坐标为(0,4),点B 的坐标为(6,4),抛物线252y x x a =-+-的顶点为C .(1)若抛物线经过点B 时,求顶点C 的坐标;(2)若抛物线与线段AB 恰有一个公共点,结合函数图象,求a 的取值范围;(3)若满足不等式2520x x a -+-≤的x 的最大值为3,直接写出实数a 的值.4.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点,A B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D .(1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);5.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线与x轴的交点坐标;(3)已知点P(a,0),Q(0,a﹣2),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.y x与抛6.在平面直角坐标系xOy中,抛物线22y x ax a的顶点为A,直线32=-+物线交于点,B C(点B在点C的左侧).(1)求点A坐标;(2)横、纵坐标都是整数的点叫做整点.记线段BC及抛物线在,B C两点之间的部分围成的封闭区域(不含边界)记为W.①当0a=时,结合函数图象,直接写出区域W内的整点个数;①如果区域W内有2个整点,请求出a的取值范围.7.在平面直角坐标系xOy 中,抛物线221(0)y mx mx m =-->与x 轴的交点为A ,B ,与y 轴交于C .(1)求抛物线的对称轴和点C 坐标;(2)横、纵坐标都是整数的点叫做整点.拋物线在点A ,B 之间的部分与线段AB 所围成的区域为图形W (不含边界).①当1m =时,求图形W 内的整点个数;①若图形W 内有2个整数点,求m 的取值范围.8.在平面直角坐标系xOy 中,已知二次函数223y mx mx =++的图象与x 轴交于点()30A -,,与y 轴交于点B ,将其图象在点A ,B 之间的部分(含A ,B 两点)记为F .(1)求点B 的坐标及该函数的表达式;(2)若二次函数22y x x a =++的图象与F 只有一个公共点,结合函数图象,求a 的取值范围.9.在平面直角坐标系xOy 中,已知抛物线()()231210y mx m x m m =--+-≠.(1)当m =3时,求抛物线的顶点坐标;(2)已知点A (1,2).试说明抛物线总经过点A ;(3)已知点B (0,2),将点B 向右平移3个单位长度,得到点C ,若抛物线与线段BC 只有一个公共点,求m 的取值范围.10.在平面直角坐标系xOy 中,抛物线22y ax a x c =++与y 轴交于点(0,2).(1)求c 的值;(2)当2a =时,求抛物线顶点的坐标;(3)已知点(2,0),(1,0)A B -,若抛物线22y ax a x c =++与线段AB 有两个公共点,结合函数图象,求a 的取值范围.11.在平面直角坐标系xOy 中,抛物线2+=+y x bx c 与x 轴交于点A ,B (A 在B 的左侧),抛物线的对称轴与x 轴交于点D ,且OB=2OD .(1)当2b =时,①写出抛物线的对称轴;①求抛物线的表达式;(2)存在垂直于x 轴的直线分别与直线l :22b y x +=+和抛物线交于点P ,Q ,且点P ,Q 均在x 轴下方,结合函数图象,求b 的取值范围.12.在平面直角坐标系xOy 中,抛物线23(0)y ax bx a a =++≠与y 轴交于点A ,与x 轴交于点B ,C (点B 在点C 左侧).直线3y x =-+与抛物线的对称轴交于点(,1)D m .(1)求抛物线的对称轴;(2)直接写出点C 的坐标;(3)点M 与点A 关于抛物线的对称轴对称,过点M 作x 轴的垂线l 与直线AC 交于点N ,若4MN ≥,结合函数图象,求a 的取值范围.13.在平面直角坐标系xOy 中,抛物线23y x mx =-++与x 轴交于点A 和点B (点A 在点B 左侧),(1)若抛物线的对称轴是直线x =1,求出点A 和点B 的坐标,并画出此时函数的图象; (2)当已知点P (m ,2),Q (-m ,2m -1).若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m 的取值范围.14.在平面直角坐标系xOy 中,抛物线2221y x bx b =-+++的对称轴与x 轴交于点A ,将点A 向左平移b 个单位,再向上平移23b -个单位,得到点B .(1)求点B 的坐标(用含b 的式子表示);(2)当抛物线经过点()0,2,且0b >时,求抛物线的表达式;(3)若抛物线与线段AB 恰有一个公共点,结合图象,直接写出b 的取值范围.参考答案:1.(1)1k =-,(0,3)C ;(2)243y x x =-+,()2,1-;(3)342a ≤< 【解析】【分析】(1)将直线y kx =沿y 轴向上平移3个单位长度后得到3y kx =+,并且经过点()3,0B ,代入求得k 值,且C 点为抛物线1C 与y 轴交点,则C 点坐标为()0,c ,3y kx =+也经过C 点,代入可求出C 点坐标;(2)已知B 、C 两点的坐标,根据待定系数法即可求出抛物线1C 的解析式,再根据顶点式则可求出顶点坐标;(3)将A 、E 两点的坐标分别代入抛物线2C 的解析式即可求出相应的a 值,通过观察图象,上下移动图象即可求出抛物线2C 与线段AE 有一个公共点时a 的范围.【详解】(1)解:将直线y kx =沿y 轴向上平移3个单位长度后得到3y kx =+,①直线3y kx =+经过点()3,0B ,①330k +=,则1k =-.C 点为抛物线1C 与y 轴交点,则C 点坐标为()0,c ,且3y x =-+经过点(0,)C c ,代入得:3c =,则C 点坐标为()0,3.(2)解:抛物线2y x bx c =++经过点()3,0B 和点()0,3C ,①23y x bx =++,①9330b ++=, 4b =-,①抛物线1C 的函数表达式为243y x x =-+,①2(2)1y x =--,①顶点D 的坐标为()2,1-.(3)解:①点E 是点D 关于原点的对称点,①点E 的坐标为()2,1-.当22y ax =-经过点()2,1E -时,34a =,则2324y x =-, 当22y ax =-经过点1,0A 时,2a =,则222y x =-,结合下面图象可知a 的取值范围是342a ≤<.【点睛】本题考查了一次函数、二次函数的解析式和图像等知识点,熟练掌握函数的性质、图象及公式是解题的关键.2.(1)(0,0),(4,0)A B ,2x =;(2)32a ≥,或102a -≤<,或32a ≤- 【解析】【分析】(1)与x 轴的交点纵坐标为0,然后计算0y =时的x 值即可求出坐标;根据抛物线的对称轴为2b x a =-求解即可; (2)由抛物线的顶点坐标(2,4)a -和抛物线上两点(1,5),(5,5)M a N a -.分a >0,a <0两种情形分别求解即可解决问题.【详解】解:(1)24(4)y ax ax ax x =-=-,当y=0时,(4)=0-ax x①120,4x x ==①抛物线与x 轴交于点(0,0),(4,0)A B .抛物线24y ax ax=-对称轴为直线:422axa-=-=.(2)()22244(2)4y ax ax a x x a x a=-=-=--,抛物线的顶点坐标为:(2,4)a-.令5y a=,得245=0--ax ax a,(5)(1)0a x x-+=,解得1x=-,或5x=,①当5y a=时,抛物线上两点(1,5),(5,5)M a N a-.①当0a>时,抛物线开口向上,顶点位于x轴下方,且(22,5)Q a a+位于点P的右侧,如图1,当点N位于点Q左侧时,抛物线与线段PQ有公共点,此时225+≥a,解得32a≥.①当0a<时,抛物线开口向下,顶点位于x轴上方,点(22,5)Q a a+位于点P的左侧,(i)如图2,当顶点位于点P下方时,抛物线与线段PQ有公共点,此时42-≤a,解得12a≥-.(ii)如图3,当顶点位于点P上方,点M位于点Q右侧时,抛物线与线段PQ有公共点,此时221+≤-a,解得32a≤-.综上,a的取值范围是32a≥,或12a-≤<,或32a≤-.【点睛】本题考查了二次函数的图象和性质,解题的关键是理解题意利用不等式解决问题,属于二次函数综合题,题目较难.3.(1)533,24⎛⎫- ⎪⎝⎭;(2)a 的取值范围是06a <或a=494;(3)8a =. 【解析】【分析】(1)将B 点坐标代入抛物线即可求出a 的值,从而求出抛物线的解析式,再根据顶点坐标公式即可求出顶点坐标;(2)讲A 点和B 点的坐标分别代入抛物线解析式即可求出相应的a 值,通过观察图象,上下移动图象即可知道抛物线与线段AB 有交点时a 的范围;(3)抛物线252y x x a =-+-的对称轴为5=2x ,抛物线开口向上,当52x >时,y 越来越大,则2520x x a -+-≤的x 的最大值为3,可知,当=3x 时,252=0x x a -+-,代入即可求出a 的值.【详解】解:(1)依据题意,将得点B 的坐标(6,4)代入抛物线得:436302a =-+-,解得0a =.此时,252y x x =--.所以顶点C 的坐标为533,24⎛⎫- ⎪⎝⎭. (2)当抛物线过(0,4)A 时,6a =,此时,254y x x =-+.当抛物线过(6,4)B 时,0a =,此时,252y x x =--.当抛物线顶点在线段AB 上时,a=494 .结合下面图象可知,a 的取值范围是06a <或a=494.(3)抛物线252y x x a =-+-的对称轴为5=2x ,抛物线开口向上,当52x >时,y 越来越大,则2520x x a -+-≤的x 的最大值为3,可知,当=3x 时,不等式有最大值且最大值为0,则 252=0x x a -+-,代入得23532=0a -⨯+-,解得8a =.则实数a 的值为8.【点睛】 本题考查了二次函数的解析式、图象及二次函数与一元二次不等式的相关知识点,熟练掌握公式以及灵活观察图象是解题的关键.4.(1)对称轴1x =-;(2)31D y a =-+;(3)当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.【解析】【分析】(1)直接根据二次函数的对称轴2b x a =-计算即可; (2)根据4AB =,对称轴1x =-可得(3,0)A -,(1,0)B ,把(1,0)代入22y ax ax c =++得20a a c ++=,则有3c a =-,可得C 点坐标为(0,3)a -,再根据平移,可得D 纵坐标; (3)分两种情况:当0a >和当0a <对抛物线的图像进行讨论即可.【详解】(1)抛物线22y ax ax c =++的对称轴为:2122b a x a a=-=-=-(2)4AB =,对称轴1x =-可得(3,0)A -,(1,0)B把(1,0)代入22y axax c =++得:20a a c ++=① 3c a =-①C 点坐标为(0,3)a -,(0,31)D a ∴-+,31D y a =-+(3)如图示,①当0a >时 将点(4,4)P -代入抛物线223y ax ax a =+-得:41683a a a =--,45a = ∴结合函数图象,可得当45a ≥时,抛物线与线段PD 只有一个交点; ①如下图示,当0a <时,抛物线的顶点为(1,4)a --,结合函数图象,可得当44a -=时,抛物线与线段PD 只有一个交点,①1a =- ,综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点. 【点睛】 此题是二次函数综合题,主要考查了二次函数的对称轴,平移和二次函数图像的性质,熟悉相关性质是解题得关键.5.(1)A 的坐标为(0,3a )(2)抛物线与x 轴的交点坐标为(1,0),(3,0)(3)﹣1≤a <0或1≤a <3【解析】【分析】(1)计算x =0时,y =3a ,即可得到点A 的坐标;(2)令y =0得ax 2﹣4ax +3a =0,解方程即可;(3)分别令抛物线过点Q(0,a﹣2),抛物线过点P(a,0)讨论抛物线与线段PQ恰有一个公共点的情况,得到a的取值范围.(1)解:①抛物线y=ax2﹣4ax+3a与y轴交于点A,当x=0时,y=3a,①A的坐标为(0,3a);(2)解:当y=0时.即ax2﹣4ax+3a=0,①a(x-1)(x-3)=0,解得:x1=1,x2=3,①抛物线与x轴的交点坐标为(1,0),(3,0);(3)解:当抛物线过点Q(0,a﹣2)时,a=﹣1,①P(﹣1,0),此时,抛物线与线段PQ有一个公共点.当抛物线过点P(a,0)时,a=1或a=3(不合题意舍去),此时,Q(0,﹣1),抛物线与线段PQ有一个公共点;综上所述,当﹣1≤a<0或1≤a<3时,抛物线与线段PQ恰有一个公共点.【点睛】此题考查了抛物线的性质,求抛物线与坐标轴的交点坐标,解一元二次方程,图象交点问题,正确掌握抛物线的各知识点是解题的关键.6.(1)A(a,0);(2)①4;①21a-<<-【解析】【分析】(1)根据抛物线顶点坐标求法求解即可;(2)①画出图像,根据图像以及整点的概念求解即可;①由①推出a<0,分别求出有2个整点和3个整点时a的取值,再得出取值范围.【详解】解:(1)①抛物线的解析式为:()2222y x ax a x a=-+=-,①可得顶点坐标为:A(a,0);(2)①①a=0,①抛物线表达式为:2y x,令23x x=+,解得:x1=1132-,x2=1132+,①113212--<<-,113232+<<,①区域W内的整点有(0,1),(0,2),(1,2),(1,3)共4个整点;①由①可知当a=0时有4个整点,当a>0时,对称轴在y轴右侧,此时有更多整点,①a<0,①抛物线的解析式为:()2222y x ax a x a =-+=-,①抛物线的顶点在x 轴,开口向上,当抛物线在直线y=x+3左侧且两者相切时,没有整点,当抛物线向右平移时,第一个整点为(-1,1),代入抛物线,()211a =--, 解得:a=-2或0(舍),第二个整点为(0,2),代入抛物线,()220a =-, 解得:a=2(舍)或2-,第三个整点为(0,1),代入抛物线,()210a =-, 解得:a=1(舍)或-1,综上:a 的取值范围是:21a -<<-.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.7.(1)抛物线的对称轴为1x =,(0,1)C -;(2)①1个;①12m <≤.【解析】【分析】(1)先根据二次函数的对称轴2b x a =-可得其对称轴,再令0x =,求出y 的值,从而可得出点C 坐标;(2)①先得出抛物线的解析式,再画出图象,结合图象和整点的定义即可得;①先将二次函数的解析式化为顶点式,求出其顶点坐标,再结合图象,找出两个临界位置,分别求出m 的值,由此即可得出答案.【详解】(1)抛物线221y mx mx =--的对称轴为212m x m-=-= 令0x =得:1y =-则点C 坐标为(0,1)C -;(2)①当1m =时2221(1)2y x x x =--=--,画出其图象如下所示:结合图象和整点的定义可得:图形W内的整点只有1个,即点(1,1)-;①将抛物线221y mx mx =--化为顶点式2(1)1y m x m =---则抛物线的顶点坐标为(1,1)m --,且图象经过定点(0,1)C -结合图象可知,若图形W 内的整点有2个,则这两个整点只能是(1,1),(1,2)--因此有两个临界点:抛物线顶点为()1,2-和抛物线顶点为()1,3-当抛物线顶点为()1,2-时,12m --=-,解得1m = 当抛物线顶点为()1,3-时,13m --=-,解得2m =则m 的取值范围为12m <≤.【点睛】本题考查了二次函数的图象与性质,较难的是题(2)①,掌握图象法,正确找出两个临界位置是解题关键.8.(1)点B 的坐标为()0,3. 223y x x =--+. (2)33a -≤<或5a =.【解析】【分析】(1)令x=0可求出y 的值,从而得到点B 的坐标;把点A 坐标代入223y mx mx =++求出m 的值即可得到结论;(2)画出函数图象,再利用图象确定a 的取值范围即可.【详解】(1)①223y mx mx =++的图象与y 轴交于点B ,①点B 的坐标为()0,3.①223y mx mx =++的图象与x 轴交于点()30A -,, ①将()30A -,代入223y mx mx =++可得9630m m -+=. ①1m =-.①该函数的表达式为223y x x =--+.(2)①将二次函数223y mx mx =++的图象在点A ,B 之间的部分(含A ,B 两点)记为F ,①F 的端点为A ,B ,并经过抛物线223y mx mx =++的顶点C (其中C 点坐标为()1,4-). ①可画F 如图1所示.①二次函数22y x x a=++的图象的对称轴为1x=-,且与F只有一个公共点,①可分别把A,B,C的坐标代入解析式22y x x a=++中.①可得三个a值分别为3-,3,5.画示意图如图2所示.①结合函数图象可知:二次函数22y x x a=++的图象与F只有一个公共点时,a的取值范围是33a-≤<或5a=.【点睛】本题考查的是二次函数知识的综合运用,其中(2)是本题的难点,主要通过作图的方式,通过数形结合的方法即可解决问题.9.(1)(1,2);(2)详见解析;(3)m =3或0<m <32或-3<m <0. 【解析】【分析】(1)把m =3代入解析式,化成顶点式,即可求得抛物线的顶点坐标;(2)把x =1代入解析式,y 总等于2,与m 无关,即可判断抛物线总经过点A (1,2);(3)根据题意可以得到点C 的坐标,分顶点在线段BC 上、抛物线过点B (0,2)、抛物线过点C (3,2)时三种情况讨论,画出抛物线的图象,然后根据图象和题意,即可得到a 的取值范围.【详解】(1)把m =3代入()23121y mx m x m =--+-中,得:223653(1)2y x x x =-+=-+,①抛物线的顶点坐标是(1,2); (2)当x =1时,3(1)2133212y m m m m m m =--+-=-++-=,①点A (1,2),①抛物线总经过点A ;(3)①点B (0,2),由平移得C (3,2).① 当顶点在线段BC 上,抛物线与线段BC 只有一个公共点.由(1)知,抛物线的顶点A (1,2)在线段BC 上,此时,m =3;① 当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得:212m -=,①m =32>0, 此时抛物线开口向上(如图1),①当0<m<32时,抛物线与线段BC只有一个公共点;①当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得:()991212m m m--+-=,①30m=-<,此时抛物线开口向下(如图2),①当30m-<<时,抛物线与线段BC只有一个公共点,综上,m的取值范围是m=3或0<m<32或-3<m<0.【点睛】本题考查了二次函数的性质、二次函数图象与系数的关系、坐标与图形变换-平移,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.10.(1)2;(2)顶点坐标为(1,0)-;(3)212a<+【分析】(1)把(0,2)代入解析式可得答案;(2)把2a=代入解析式,利用顶点坐标公式可得答案;(3)分情况讨论,由(2)知:抛物线与线段只有一个交点,再计算当抛物线过(2,0)-时a的值,从而根据图像可得结论.【详解】解:(1)抛物线22y ax a x c=++与y轴交于点(0,2),2c∴=.(2)当2a=时,抛物线为2242y x x=++.∴顶点坐标为(1,0)-.(3)当0a>时,①当2a=时,如图1,抛物线与线段AB只有一个公共点.①当12a=+时,如图2,抛物线与线段AB有两个公共点.结合函数图象可得212a<+.当0a<时,抛物线与线段AB只有一个或没有公共点.综上所述,a的取值范围是212a<+.【点睛】本题考查的是二次函数的图像与性质,根据交点的情况判断系数的取值范围,掌握二次函数的图像与性质是解题的关键.11.(1)①1x=-;①228=+-y x x;(2)2b<-或23b>.【解析】(1)①由二次函数的对称轴方程可得出答案;①根据题意求出B 点坐标为(2,0),代入抛物线解析式2+=+y x bx c 可得出答案;(2)求出E (-b 22+,0),点D 的坐标为(-2b ,0).①当b >0时,得出点A 的坐标为(-2b ,0),点B 的坐标为(b ,0),则-2b <-b 22+,解不等式即可;①当b <0时,点A 的坐标为(0,0),点B 的坐标为(-b ,0),则0<-b 22+,解出b <-2. 【详解】解:(1)当2b =时,2y x bx c =++化为22y x x c =++.①21221b x a =-=-=-⨯. ①①抛物线的对称轴为直线1x =-,①点D 的坐标为(-1,0),OD=1.①OB=2OD ,① OB=2.①点A ,点B 关于直线1x =-对称,①点B 在点D 的右侧.① 点B 的坐标为(2,0).①抛物线22y x x c =++与x 轴交于点B (2,0),① 440c ++=.解得8c =-.①抛物线的表达式为228=+-y x x .(2)设直线22b y x +=+与x 轴交点为点E , 当y=0时,202+=+b x ① 2=-2+b x ① E (22b +-,0). 抛物线的对称轴为2b x =-,①点D的坐标为(2b-,0).①当0b>时,2bOD=.①OB=2OD,① OB=b.① 点A的坐标为(2b-,0),点B的坐标为(b,0).当2b-<22b+-时,存在垂直于x轴的直线分别与直线l:22by x+=+和抛物线交于点P,Q,且点P,Q均在x轴下方,解得23b>.①当0b<时,0b->.①2bOD=-.①OB=2OD,① OB=-b.①抛物线2+=+y x bx c与x轴交于点A,B,且A在B的左侧,① 点A的坐标为(0,0),点B的坐标为(-b,0).当0<22b+-时,存在垂直于x轴的直线分别与直线l:22by x+=+和抛物线交于点P,Q ,且点P ,Q 均在x 轴下方,解得b<-2.综上,b 的取值范围是2b <-或23b >. 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求函数解析式,熟练掌握二次函数的性质及数形结合思想是解题的关键.12.(1)抛物线的对称轴为直线2x =;(2)点C 的坐标为()3,0;(3)a 的取值范围是1a ≥或1a ≤-.【解析】【分析】(1)将点(,1)D m 代入3y x =-+,求得m ,即为对称轴;(2)由(1)知对称轴2m =,即22b a-=,得4b a =-,代入23(0)y ax bx a a =++≠,令0y =,可解得C 点坐标; (3)表示出点A ,点M 的坐标,根据//MN y 轴,得EN EG OA OC=,表示出EN ,进而得MN 长度表示,用4MN ≥,解出a 的取值范围即可.【详解】 (1)直线3y x =-+与抛物线的对称轴交于点(),1D m ,2m ∴=.∴抛物线的对称轴为直线2x =.(2)由(1)知对称轴2m =,即22b a-=,得4b a =- ①243(0)y ax ax a a =-+≠,令0y =,则2430ax ax a -+=,即(3)(1)0a x x --=解得123,1x x ==由于点B 在点C 左侧①点C 的坐标为()3,0.(3)抛物线23y ax bx a =++与y 轴交于点A ,∴点A 的坐标为()0,3a .点M 与点A 关于抛物线的对称轴对称,∴点M 的坐标为()4,3a .①当0a >时,如图1.//MN y 轴,EN EG OA OC ∴=,即133EN a =. EN a ∴=.①34MN a a a =+=若4MN ≥,即44a ≥,得1a ≥.①当0a <时,如图2.同理可得|3|||4MN a a a =+=-若4MN ≥,即44a -≥,得1a ≤-.综上所述,a 的取值范围是1a ≥或1a ≤-.【点睛】本题考查了二次函数的综合问题,熟练掌握对称轴的表示与计算,函数图象与x 轴交点的计算,及平行于y 轴的线段长度的表示,及一元一次不等式的计算是解题的关键. 13.(1)点A 坐标为(-1,0),点B 坐标为(3,0),图像见解析;(2)m ≤-2 或m ≥1【解析】【分析】(1)根据抛物线的对称轴是直线x =1可得2(1)m --=1,求出m=2,得2y x 2x 3=-++,求出与x 轴的交点坐标,根据点A 在点B 左侧即可求得点A ,点B 的坐标;(2)根据点Q 在点D 上方或与点D 重合时,抛物线与线段PQ 恰有一个公共点得22123m m -≥-+,结合图象求解即可.【详解】(1)①抛物线的对称轴为:x =2b a-=2(1)m --=1 ①m =2①抛物线为:2y x 2x 3=-++将y =0代入,得2023x x =-++解得:1x =-1,2x =3,①点A 在点B 左侧①点A 坐标为(-1,0),点B 坐标为(3,0),(2)m ≤-2 或m ≥1将x m =代入23y x mx =-++,得3y =①抛物线过定点C (m ,3)①点P (m ,2)①点P 在点C 下方,如图,将x m=-代入23y x mx=-++,得223y m=-+,则2(23)D m m--+,①点Q在点D上方或与点D重合时,抛物线与线段PQ恰有一个公共点①22123m m-≥-+整理得220m m+-≥设22y m m=+-,画图象如图:当y=0时,22=0m m+-,解得,1=2m-,2=1m,①抛物线22y m m=+-与x轴的交点坐标为(-2,0),(1,0)①当2m≤-或m1≥时,220m m+-≥所以,抛物线与线段PQ恰有一个公共点,m的取值范围是2m≤-或m1≥.【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.14.(1)(0,3-b 2);(2)222y x x =-++;(3)-1≤b≤1【解析】【分析】(1)先求出点A 坐标,再根据平移规律即可求出点B 坐标;(2)把(0,2)代入2221y x bx b =-+++,结合b>0即可求出b ,问题得解;(3)把B 坐标代入抛物线解析式,求出b ,分b >1,b=1,-1<b <1,b=-1,b <-1,画出函数图象,即可求解.【详解】解:(1)由题意得抛物线2221y x bx b =-+++的对称轴为22b x b =-=-, ①点A 坐标为(b ,0),①点B 坐标为(0,3-b 2)(2)把(0,2)代入2221y x bx b =-+++中,解得b=±1.①b>0,①b=1.①抛物线的表达式:222y x x =-++;(3)当抛物线过点B 时,抛物线AB 有一个公共点,①221=3b b +-①=1b ±,如图:当b >1时,抛物线与线段AB 无交点;当b=1时,抛物线与线段AB 有一个交点;当-1<b<1时,抛物线与线段AB有一个交点;当b=-1时,抛物线与线段AB有一个交点;当b<-1时,抛物线与线段AB无交点.①若抛物线与线段AB恰有一个公共点,则-1≤b≤1.【点睛】本题考查了含参数的函数解析式,难度较大,解第(3)步关键是根据题意确定关键点取值,再结合图象分类讨论.答案第24页,共24页。
2023年中考数学高频考点突破——反比例函数与四边形综合

2023年中考数学高频考点突破——反比例函数与四边形综合1.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2﹣S1,求S的最大值.2.已知:如图所示,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x 轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,求M点坐标.3.如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.4.如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.5.如图,已知点A在函数(x>0)的图象上,点B在函数(x<0)的图象上,点C在函数(x<0)的图象上,且AB∥x轴,BC∥y轴,四边形ABCD是以AB、BC为一组邻边的矩形.(1)若点A的坐标为(,2),求点D的坐标;(2)若点A在函数(x>0)上移动,矩形ABCD的面积是否变化?如果不变,求出其面积;(3)若矩形ABCD四个顶点A、B、C、D分别在>0,x>0),<0,x<0),>0,x<0),<0,x>0)上,请直接写出k1、k2、k3、k4满足的数量关系式.6.如图,一次函数y=x﹣1的图象与反比例函数y=(x>0)的图象交于点B(3,a),与x轴交于点A.点C在反比例函数y=(x>0)的图象上的一点,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD.(1)求a,k的值;(2)若点P为x轴上的一点,求当PB+PC最小时,点P的坐标;(3)F是平面内一点,是否存在点F使得以A、B、C、F为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.7.如图,已知,A(0,4),B(﹣3,0),C(2,0),过A作y轴的垂线交反比例函数的图象于点D,连接CD,AB∥CD.(1)证明:四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)求sin∠DAC的值.8.如图,直线y=x与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是x轴上的点,Q是平面内一点,是否存在点P,Q,使得A,B,P,Q为顶点的四边形是矩形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.9.如图,在△AOB中,∠OAB=90°,AO=AB,OB=2.一次函数交y轴于点C(0,﹣1),交反比例函数于A、D两点.(1)求一次函数和反比例函数的解析式;(2)求△OAD的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,D,P为顶点的四边形是平行四边形?若存在,直接写出点PP的坐标;若不存在,请说明理由.10.如图在平面直角坐标系中,已知直线y=﹣x+2及双曲线y=(k>0,x>0).直线交y轴于A点,x轴于B点,C、D为双曲线上的两点,它们的横坐标分别为a,a+m (m>0).(1)如图①连接AC、DB、CD,当四边形CABD为平行四边形且a=2时,求k的值.(2)如图②过C、D两点分别作CC′∥y轴∥DD'交直线AB于C',D',当CD∥AB 时,①对于确定的k值,求证:a(a+m)的值也为定值.②若k=6,且满足m=a﹣4+,求d的最大值.11.如图1,已知A(﹣1,0),B(0,﹣2),平行四边形ABCD的边AD、BC分别与y轴、x轴交于点E、F,且点E为AD中点,双曲线y=(k为常数,k≠0)经过C、D 两点.(1)求k的值;(2)如图2,点G是y轴正半轴上的一个动点,过点G作y轴的垂线,分别交反比例函数y=(k为常数,k≠0)图象于点M,交反比例函数y=﹣(x<0)的图象于点N,当FM=FN时,求G点坐标;(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求出满足要求的所有点Q的坐标.12.综合与探究如图1,反比例函数的图象y=﹣经过点A,点A的横坐标是﹣2,点A关于坐标原点O的对称点为点B,作直线AB.(1)判断点B是否在反比例函数y=﹣的图象上,并说明理由;(2)如图1,过坐标原点O作直线交反比例函数y=﹣的图象于点C和点D,点C 的横坐标是4,顺次连接AD,DB,BC和CA.求证:四边形ACBD是矩形;(3)已知点P在x轴的正半轴上运动,点Q在平面内运动,当以点O,B,P和Q为顶点的四边形为菱形时,请直接写出此时点P的坐标.13.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数(k>0,x>0)的图象上,点D的坐标为(4,3).设AB所在直线解析式为y=ax+b(a≠0).(1)求反比例和一次函数解析式;(2)若将菱形ABCD沿x轴正方向平移m个单位,在平移中若反比例函数图象与菱形的边AD始终有交点,求m的取值范围;(3)在直线AB上是否存在M、N两点,使以MNOD四点的四边形构成矩形?若不存在,请说明理由,若存在直接求出M、N(点M在点N的上方)两点的坐标.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k >0)的图象交于A、B两点(点A在点B左边),交x轴于点C,延长AO交反比例函数y=(k>0)的图象于点E,点F为第四象限内一点,∠AFE=90°,连接OF.(1)填空:FO AO(填“>”、“=”或“<”);(2)连接CF,若AF平分∠OAC.①若△AFC的面积为10,求k的值;②连接BF,四边形AOFB能否为菱形?若能,直接写出符合条件的k的值;若不能,说明理由.15.如图1,在平面直角坐标系中,直线l:y=﹣2x+2与x轴交于点A,将直线l绕着点A 顺时针旋转45°后,与y轴交于点B,过点B作BC⊥AB,交直线l于点C.(1)求点A和点C的坐标;(2)如图2,将△ABC以每秒3个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使A、C两点的对应点D、F恰好落在某反比例函数的图象上,此时点B对应点E,求出此时t的值;(3)在(2)的情况下,若点P是x轴上的动点,是否存在这样的点Q,使得以P、Q、E、F四个点为顶点的四边形是菱形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.16.如图,一次函数y1=x+1的图象与反比例函数y2=的图象相交于点A(m,2),B 两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)请根据函数图象的轴对称性,直接写出点B的坐标为;当y1>y2,则自变量x的取值范围是;(3)在平面直角坐标系内,是否存在一点P,使以点O,A,B,P为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.17.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=的第一象限内的图象上,OA=6,OC=10,动点P在x轴的上方,且满足S=.△PAO(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.18.如图,在平面直角坐标系中,四边形ABCO为矩形,B(5,4),D(﹣3,0),点P 从点A出发,以每秒1cm的速度沿AB方向向终点B运动;点Q从点D出发,以每秒2cm的速度沿DC方向向终点C运动,已知动点P、Q同时出发,当点P、Q有一点到达终点时,P、Q都停止运动,设运动时间为t秒.(1)用含t的代数式表示:BP=cm,CQ=cm;(2)函数y=的图象在第一象限内的一支双曲线经过点P,且与线段BC交于点M,若出△POM的面积为7.5cm2,试求此时t的值;(3)点P、Q在运动过程的中,是否存在某一时刻t,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形?若存在,请求出所有满足条件的t的值,若不存在,请说明理由.19.如图,在平面直角坐标系中,一次函数y=kx+b的图象与双曲线交于点M(﹣4,m)、N(n,﹣4),与x轴交于A.(1)求k、b的值.(2)①将直线y=kx+b向上平移4个单位分别交x轴、y轴于点B、C,画出这条直线.②P是平面直角坐标系中的一点,若以A、B、C、P为顶点的四边形是平行四边形,求P点的坐标.20.如图1,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,过点A作AE⊥CD,垂足为E.(1)若点A(6,8),点E(6,14).①求AO的长;②线段MN在y轴上移动(点M在点N的上方),MN=2,当四边形AEMN的周长最小时,求点M的坐标;(2)如图2,反比例函数y=(x>0)的图象经过点E,与边AB交于点F,AO⊥AD,AO=AB,DE=4CE,连结OE,OF,EF,且S△EOF=.求反比例函数的表达式.参考答案与试题解析1.【解答】解:(1)把A(1,3)的坐标分别代入y=、y=﹣x+b,∴m=xy=3,3=﹣1+b,∴m=3,b=4.(2)由(1)知,反比例函数的解析式为y=,一次函数的解析式为y=﹣x+4,∵直线MC⊥x轴于C,交直线AB于点N,∴可设点M的坐标为(x,),点N的坐标为(x,﹣x+4),其中,x>0,又∵MD⊥y轴于D,NE⊥y轴于E,∴四边形MDOC、NEOC都是矩形,∴S1=x•=3,S2=x•(﹣x+4)=﹣x2+4x,∴S=S2﹣S1=(﹣x2+4x)﹣3=﹣(x﹣2)2+1.其中,x>0,∵a=﹣1<0,开口向下,∴有最大值,∴当x=2时,S取最大值,其最大值为1.2.【解答】解:(1)∵点A(3,2)为正比例函数与反比例函数的交点,∴将x=3,y=2代入正比例解析式y=ax得:3a=2,解得:a=,将x=3,y=2代入反比例解析式y=得:=2,解得:k=6,∴正比例函数解析式为y=x,反比例函数解析式为y=;(2)过M作MN⊥x轴于N点.∵M(m,n)(0<m<3)是反比例函数图象上的一动点,且四边形OCDB为矩形,∴mn=6,BM=m,BO=DC=MN=n,又A(3,2),∴AC=2,OC=3,又mn=6,=S矩形OCDB﹣S△BMO﹣S△AOC=3n﹣mn﹣×2×3=3n﹣6=6,∴S四边形OADM解得:n=4,由mn=6,得到4m=6,解得:m=,则M坐标为(,4).3.【解答】解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),将x=2,y=2代入反比例解析式得:2=,∴k=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2AO=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.4.【解答】解:(1)设正比例函数解析式为y=kx,将点M(﹣2,﹣1)坐标代入得k=,所以正比例函数解析式为y=x,同样可得,反比例函数解析式为;(2)当点Q在直线OM上运动时,设点Q的坐标为Q(m,m),=OB•BQ=×m×m=m2,于是S△OBQ=|(﹣1)×(﹣2)|=1,而S△OAP所以有,m2=1,解得m=±2,所以点Q的坐标为Q1(2,1)和Q2(﹣2,﹣1);(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,而点P(﹣1,﹣2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值,(8分)因为点Q在第一象限中双曲线上,所以可设点Q的坐标为Q(n,),由勾股定理可得OQ2=n2+=(n﹣)2+4,所以当(n﹣)2=0即n﹣=0时,OQ2有最小值4,又因为OQ为正值,所以OQ与OQ2同时取得最小值,所以OQ有最小值2,由勾股定理得OP=,所以平行四边形OPCQ周长的最小值是2(OP+OQ)=2(+2)=2+4.(或因为反比例函数是关于y=x对称,所以当Q在反比例函数时候,OQ最短的时候,就是反比例与y=x的交点时候,联立方程组即可得到点Q坐标)5.【解答】解:(1)∵点A的坐标为(,2),AB∥x轴,∴B点纵坐标为2,又点B在函数(x<0)的图象上,∴当y=2时,x=﹣1.5,∴B(﹣1.5,2),∵BC∥y轴,∴C点横坐标为﹣1.5,又点C在函数(x<0)的图象上,∴当x=﹣1.5时,y=﹣4,∴C(﹣1.5,﹣4).∵AD⊥y轴,∴D(0.5,﹣4).(2)若点A在函数(x>0)上移动,矩形ABCD的面积不变.理由如下:如图,设AB、CD与y轴分别交于F、G,BC、AD与x轴分别交于E、H,设A(a,),则B(﹣3a,),C(﹣3a,﹣),D(a,﹣).∵矩形ABCD的面积=矩形AFOH的面积+矩形BFOE的面积+矩形CEOG的面积+矩形DHOG的面积=1+3+6+2=12.(3)设A(t,),则B(,),C(,),D(t,),又∵点D在y=的图象上,t•=k4,∴k1k3=k2k4.6.【解答】解:(1)∵一次函数y=x﹣1的图象与反比例函数y=(x>0)的图象交于点B(3,a),∴a=3﹣1,∴a=2.∴B(3,2),∴k=3×2=6;(2)令y=0,则x﹣1=0,∴x=1.∴A(1,0),∴OA=1,∵OA=AD,∴AD=1,∴OD=2,∴点C的横坐标为2,由(1)知:k=6,∴反比例函数y=(x>0)的解析式为y=.∴y==3,∴C(2,3).设点C关于x轴的对称点C′,则C′(2,﹣3),连接BC′,交x轴于点P,如图,则此时PB+PC最小.设直线BC′的解析式为y=kx+b,∴,解得:,∴直线BC′的解析式为y=5x﹣13.令y=0,则5x﹣13=0,∴x=.∴P(,0);(3)存在点F使得以A、B、C、F为顶点的四边形是平行四边形,理由:①当四边形ABFC为平行四边形时,如图,由(2)知:AD=1,C(2,3),B(3,2),OD=2,∴CD=3,DM=2,BM=1.过点F作FG⊥x轴,过点B作MH∥x轴交CD于点M,交FG于点H,∵CD⊥x轴,FG⊥x轴,∴CD∥FG.∵四边形ABFC为平行四边形,∴AC∥FB,AC=FB.∴∠ACD=∠BFH.在△ACD和△BFH中,,∴△ACD≌△BFH(AAS),∴AD=BH=1,CD=FH=3.∴MH=MB+BH=2.∵CD⊥x轴,FG⊥x轴,MH∥x轴,∴四边形MDGH为矩形,∴GH=DM=2,DG=MH=2,∴OG=OD+DG=4,FG=FH+HG=5,∴F1(4,5);②当四边形ABCF为平行四边形时,如图,设直线y=x﹣1与y轴交与点N,则N(0,﹣1),∴ON=1.∵OA=1,∴OA=ON,∴∠OAN=45°,∴∠EAD=∠OAN=45°,∵CD⊥x轴,∴∠AED=45°.∴DE=AD=1.∵CD=3,∴CE=CD﹣DE=2,过点B作BM⊥CE于点M,则BM=1,∵∠CEB=∠AED=45°,∴ME=BM=1,∴CM=1,∴BM=CE,M为CE的中点,∴∠CBE=90°.∵四边形ABCF为平行四边形时,∴CB∥AE,∴∠EAB+∠ABC=180°∴∠EAB=90°,∴∠FAO=45°,∴OF=OA=1,∴F2(0,1);③当四边形ACBF为平行四边形时,如图,过点B作BG⊥x轴,过点F作MH∥x轴,交BG的延长线于点H,过点A作AM⊥MH 于点M,同①可求得:OB=3,BG=2,△ACD≌△FBH,∴BH=CD=3,FH=AD=1,四边形AMHG为矩形,∴MH=AG=2,AM=GH=BH﹣BG=1,∴MF=MH﹣FH=1,∴F3(2,﹣1).综上,存在点F使得以A、B、C、F为顶点的四边形是平行四边形,符合条件的点F的坐标F1(4,5),F2(0,1),F3(2,﹣1).7.【解答】(1)证明:由题意得AD⊥AO,BC⊥AO,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形,∵A(0,4),B(﹣3,0),C(2,0),∴BC=2﹣(﹣3)=5,AO=4,BO=3,CO=2,在Rt△ABO中,AB===5,∴AB=BC,∴四边形ABCD是菱形;(2)解:过点D作DH⊥x轴于H,则四边形AOHD是矩形,∴DH=AO=4,OH=AD,∵四边形ABCD是菱形,∴AD=AB=5,∴OH=5,∴D(5,4),∵反比例函数的图象于点D,∴4=,∴k=20,∴此反比例函数的解析式为y=;(3)解:在Rt△ACO中,AC===2∵四边形ABCD是菱形,∴AD∥BC,∴∠DAC=∠ACO,∴sin∠DAC=sin∠ACO===.8.【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BG+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BG+GC=B′C=2;(3)存在.理由如下:当点P在x的正半轴上时,如图,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),∴OB==,∴=,∴点P1的坐标为(,0),当点P在x的负轴上时,如图2,设点P2的坐标为(a,0),过点A作AH⊥x轴于点H,同理证得点P2的坐标为(﹣,0),当四边形AP3BQ3或是矩形四边形AP4BQ4时,OA=OP4=,∴点P的坐标为(﹣,0)或(,0),综上所述,点P的坐标为(,0)或(﹣,0)或(﹣,0)或(,0).9.【解答】解:(1)作AF垂直于x轴,垂足为点F,∵AO=AB,AF⊥OB,∴,∵∠OAB=90°,AO=AB,∴∠AOB=45°,∴AF=OF=1,∴点A(1,1),设一次函数解析式为y1=k1x+b,反比例函数解析式为,将点A(1,1)和C(0,﹣1)代入y1=k1x+b,得y1=2,b=﹣1,∴一次函数的解析式为y1=2x﹣1.将点A(1,1)代入,得k2=1,∴反比例函数的解析式为,即一次函数解析式为y1=2x﹣1,反比例函数解析式为;(2)将两个函数联立得,整理得2x2﹣x﹣1=0,解得,x2=1,∴y1=﹣2,y2=1,∴点,∴,即△OAD的面积为;(3)存在,①以OA为对角线时,∵O(0,0),A(1,1),D(﹣,﹣2),∴将A点向右平移个单位,向上平移2个单位得到P点的坐标,即P(,3),②以OD为对角线时,∵O(0,0),A(1,1),D(﹣,﹣2),∴将D点向右平移1个单位,向上平移1个单位得到P点的坐标,即P(,﹣1),③以AD为对角线时,∵O(0,0),A(1,1),D(﹣,﹣2),∴将D点向左平移1个单位,向下平移1个单位得到P点的坐标,即P(﹣,﹣3),综上所述,点P的坐标为,,.10.【解答】(1)解:∵直线y=﹣x+2交y轴于A点,交x轴于B点,∴点A(0,2),点B(4,0),∵C、D为双曲线上的两点,∴点C(2,),点D(2+m,),∵四边形CABD为平行四边形,∴AD与BC互相平分,∴=,=,解得:m=4,k=6;(2)①证明:∵CC′∥y轴∥DD',CD∥AB,∴四边形CDD'C'是平行四边形,∴CC'=DD',∵C、D为双曲线上的两点,∴点C(a,),点D(a+m,),∵CC′∥y轴∥DD',∴点C'的横坐标为a,点D的横坐标为a+m,∴点C'(a,﹣a+2),点D'(a+m,﹣a﹣m+2),∴+a﹣2=+a+m﹣2,∴k=a(a+m),∴当k为定值时,a(a+m)为定值;②解:∵k=6,∴6=a(a+m),∴a2+am=12,∵m=a﹣4+,∴a2+a(a﹣4+)=12,∴d=﹣2a2+4a+12=﹣2(a﹣1)2+14,∴当a=1时,d的最大值为14.11.【解答】解:(1)∵A(﹣1,0),B(0,﹣2),E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)由(1)得C(2,2),∵B(0,﹣2),∴直线BC的解析式为y=2x﹣2,当y=0时,x=1,∴F(1,0),∴OF=1,设点G的坐标为(0,m),∵MN∥x轴,∴M(,m),N(﹣,m),∵FM=FN,∴1﹣(﹣)=﹣1,解得:m=或m=0(不合题意舍去),∴点G的坐标为(0,);(3)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1,若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故点Q的坐标为(0,6)或(0,﹣6)或(0,2).12.【解答】(1)解:结论:点B在反比例函数y=﹣的图象上.理由:∵反比例函数的图象y=﹣经过点A,点A的横坐标是﹣2,∴A(﹣2,4),∵A,B关于原点对称,∴B(2,﹣4),∵x=2时,y=﹣=﹣4,∴点B在反比例函数y=﹣的图象上;(2)证明:由题意,C(4,﹣2),D(﹣4,2),∵C,D关于原点对称,∴OC=OD,∵A,B关于原点对称,∴OA=OB,∴四边形ADBC是平行四边形,∵CD==4,AB==4,∴AB=CD,∴四边形ADBC是矩形;(3)解:如图,当四边形OBP1Q1是菱形时,P1(4,0).当四边形OBQ2P2是菱形时,P2(2,0).当四边形OP3BQ3是菱形时,P3(5,0),综上所述,满足条件的点P的坐标为(4,0)或(2,0)或(5,0).13.【解答】解:(1)如图,延长AD交x轴于F,由题意得AF⊥x轴,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,由菱形的性质得到B(0,5),设直线AB的方程为:y=ax+b(a≠0),则,解得,故反比例解析式为y=;直线AB的方程为:y=x+5;(2)将菱形ABCD沿x轴正方向平移m个单位,使得点D落在函数y=(x>0)的图象D'点处,∴点D'的坐标为(4+m,3),∵点D'在y=的图象上,∴3=,解得m=,∴0≤m;(3)如图,存在,理由:∵四边形ABCD是菱形,∴OB=OD=5,过D作DE⊥x轴于E,过N作NF⊥y轴于F,过M作MH⊥y轴于H,∴∠DEO=∠ONB=∠NOD=90°,∴∠BON+∠BOD=∠BOD+∠DOE=90°,∴△BON≌△DOE(AAS),∴BN=DE=3,ON=OE=4,=OB•NF=BN•ON,∴S△OBN∴NF=,∵点N在直线AB上,∴N(﹣,),设M(n,n+5),∴MH=n,OH=n+5,∵BM2=BH2+MH2,∴22=(n+5﹣5)2+n2,∴n=±,∵n>0,∴M(,).14.【解答】解:(1)∵反比例函数y=(k>0)的图象是中心对称图形,∴AO=EO,在Rt△AEF中,∠AFE=90°,AO=EO,∴FO=,故答案为:=;(2)①如图,连接CF,由(1)可知,FO=AO,∴∠OAF=∠OFA,∵AF平分∠OAC,∴∠OAF=∠BAF,∴∠OFA=∠BAF,∴OF∥AC,=S△AFC=10,∴S△AOC对于y=﹣x+5,令y=0,则0=﹣x+5,∴x=5,∴C(5,0),∴OC=5,设A(m,﹣m+5),m>0,∴S=﹣,=10,又∵S△AOC∴﹣,∴m=1,∴﹣m+5=﹣1+5=4,∴A(1,4),∵A(1,4)在反比例函数y=上,∴k=1×4=4;②如图,连接BF,由①可知,OF∥AB,FO=AO,当AO=AB时,此时四边形AOFB是菱形,将y=﹣x+5由y=联立,得:,解得:或,∴A(),B(),∴OA+()2=25﹣2k,AB2=50﹣8k,当AO=AB时,OA2=AB2,即25﹣2k=50﹣8k,∴k=,综上所述,当四边形AOFB为菱形时,k=.15.【解答】解:(1)∵y=﹣2x+2与x轴交于点A,∴0=﹣2x+2,得x=1,∴点A(1,0);过点C作CH⊥y轴于点H,∴∠CHB=∠BOA=90°∵将直线l绕着点A顺时针旋转45°后,与y轴交于点B,∴∠BAC=45°,又∵BC⊥AB,∴∠BAC=∠ACB=45°,∴AB=BC,∵∠OBA+∠OAB=90°,∠OBA+∠CBH=90°,∴∠OAB=∠CBH,在△AOB和△BHC中,∴△AOB≌△BHC(AAS),∴BH=AO=1,CH=BO,设OB=a,则OH=a+1,∴点C(a,﹣a﹣1),∵点C在直线l上,∴﹣a﹣1=﹣2a+2,∴a=3,∴C(3,﹣4);(2)将△ABC以每秒3个单位的速度沿y轴向上平移t秒,A(1,0),B(0,﹣3),C(3,﹣4)∴点D(1,3t),点E(0,﹣3+3t),点F(3,﹣4+3t),∵点A、C两点的对应点D、F正好落在某反比例函数的图象上,∴1×3t=3×(﹣4+3t),∴t=2;(3)由(2)知E(0,3),F(3,2),∴EF=,当EF=EP=时,则OP=1,∴P(1,0)或(﹣1,0),当P(1,0)时,由平移的性质得,点Q(4,﹣1),当P(﹣1,0)时,由平移的性质得,点Q(2,﹣1),当EF=FP=时,同理得P(3﹣,0)或(3+,0),∴Q(﹣,1)或(,1),当PE=PF时,设P(x,0),则9+x2=4+9﹣6x+x2,解得x=,∴P(,0),∴Q(),综上:Q(4,﹣1)或(2,﹣1)或(﹣,1)或(,1)或().16.【解答】解:(1)将A(m,2)代入y1=x+1得,2=m+1,∴m=1,∴A(1,2),将A(1,2)代入y2=得,k=1×2=2,∴y2=;(2)根据函数图象的轴对称性知,点A与B关于直线y=﹣x对称,过A作AC∥y轴,过B作BC∥x交于C,则C(﹣1,﹣1),∴B(﹣2,﹣1),当y1>y2,则自变量x的取值范围是x>1或﹣2<x<0,故答案为:(﹣2,﹣1),x>1或﹣2<x<0;(3)存在,如图,∵OA=OB,∴点P在AB上方时,四边形OAPB是菱形,∵O(0,0),A(1,2),B(﹣2,﹣1),由平移的性质得P(﹣1,1),∴以点O,A,B,P为顶点的四边形为菱形,点P的坐标为(﹣1,1).17.【解答】解:(1)设点P的纵坐标为m,=.∵S△PAO∴,∴m=4,∵四边形OABC是矩形,OA=6,OC=10,∴B(6,10),∴k=6×10=60,∵点P在这个反比例函数的图象上,∴点P的横坐标为=15,∴P(15,4);(2)如图,点P在直线y=4上运动,作点O关于直线y=4的对称点O',连接O'A,此时PO+PA的最小值即为AO'的长,在Rt△AOO'中,由勾股定理得,AO'==10,∴PO+PA的最小值为10;(3)当AP=AB=10时,如图,AG=4,∴PG=2,∴P(6﹣2,4),∴Q(6﹣2,14),当点P在G的右侧时,同理Q'(6+2,14),当BA=BP时,如图,由勾股定理得PG=8,∴P(﹣2,4),∵PQ=10,∴Q(﹣2,﹣6),同理,当P在G的右侧时,Q'(14,﹣6),当PA=PB时,点P在AB的垂直平分线y=5上,点P又在直线y=4上,故不存在,综上:Q(6﹣2,14)或(6+2,14)或(﹣2,﹣6)或(14,﹣6).18.【解答】解:(1)根据题意得:AP=tcm,AB=5cm,∴BP=(5﹣t)cm,∵DC=DO+OC=3+5=8,DQ=2tcm,∴CQ=DC﹣DQ=(8﹣2t)cm,故答案为:(8﹣2t);当BP=CQ时,四边形PQCB是矩形,∴5﹣t=8﹣2t,解得:t=3,∴当t=3时,四边形PQCB为矩形;故答案为:(5﹣t);3;(2)∵点P的坐标为(t,4),点P在反比例函数的图象上,∴k=4t,∴y=,∴点M的坐标为(5,),∴BM=4﹣,连接PM,如图1所示:∴△POM的面积S=矩形AOCB的面积﹣△AOP的面积﹣△PBM的面积﹣△OCM的面积=5×4﹣×t×4﹣×(5﹣t)×(4﹣)﹣×5×=﹣t2+10,∵点Q从点D运动到点C用是为4秒,点P从点A运动到点B用时为5秒,∴0≤t≤4,∴S=﹣t2+10(0≤t≤4);(3)存在;t的值为或,点E的坐标为(,4)或(3﹣2,4);理由如下:∵点P的坐标为(t,4),点Q的坐标为(2t﹣3,0),点C的坐标为(5,0),∴PQ2=(t﹣3)2+42,PC2=(t﹣5)2+42,CQ2=(8﹣2t)2;分情况讨论:①当PQ=PC时,(t﹣3)2+42=(t﹣5)2+42,解得:t=4(不合题意,舍去);②当PQ=CQ时,(t﹣3)2+42=(8﹣2t)2,解得:t=,或t=(不合题意,舍去),∴t=;若四边形PQCE为菱形,则PE∥CQ,点E在直线AB上,如图2所示:∴AE=AP+PE=t+8﹣2t=8﹣t=8﹣=,此时点E的坐标为(,4);③当PC=CQ时,(t﹣5)2+42=(8﹣2t)2,解得:t=,或t=(不合题意,舍去),∴t=;若四边形PQCE为菱形,则PE∥CQ,点E在直线AB上,如图3所示:∴AE=PE﹣AP=8﹣2t﹣t=83=﹣3+2,此时点E的坐标为(3﹣2,4);综上所述:存在某一时刻,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形,t的值为或,点E的坐标为(,4)或(3﹣2,4).19.【解答】解:(1)把x=﹣4,y=m代入中,得,∴点M(﹣4,2),把x=n,y=﹣4代入中,得,∴点N(2,﹣4),∴将点M(﹣4,2),点N(2,﹣4)代入y=kx+b中,得,解得,∴k=﹣1,b=﹣2;(2)①将直线y=﹣x﹣2向上平移4个单位,得y=﹣x+2,当x=0时,y=2,∴点C坐标为(0,2),当y=﹣x+2=0时,x=2,∴点B坐标为(2,0),平移后的直线如图所示:②以A、B、C、P为顶点的四边形是平行四边形,分情况讨论:当CA,CB为边时,AP∥CB且AP=CB,点P坐标为(0,﹣2),当BC,BA为边时,AP∥CB且AP=CB,点P坐标为(﹣4,2),当AC,AB为边,AC∥BP且AC=BP,∴点P坐标为(4,2),综上,满足条件的点P坐标为(0,﹣2)或(﹣4,2)或(4,2).20.【解答】解:(1)①∵点A(6,8),∴AO==10;(2)∵点A(6,8),点E(6,14),∴AE=6,∵四边形AEMN的周长=AE+MN+ME+AN,AE=6,MN=2,∴四边形AEMN的周长=8+AN+ME,∴当AN+ME有最小值时,四边形AEMN的周长有最小值,如图,将A向上平移两个单位得到A',连接A'M,作点A'关于y轴的对称点A'',连接A''E,∴AA'=2=MN,A'(6,10),∴四边形ANMA'是平行四边形,∴AN=A'M,∴AN+ME=A'M+ME,∵点A'与点A''关于y轴对称,∴A''M=A'M,点A''(﹣6,10),∴AN+ME=A''M+ME,∴点M,点E,点A''共线时,A''M+ME的最小值为A''E的长,∵点A''(﹣6,10),点E(6,14),∴直线A''E的解析式为:y=x+12,当x=0时,y=12,∴点M(0,12);(3)如图,延长EA交x轴于N,过点F作FH⊥x轴于H,设AB=AO=5a,∵四边形ABCD是菱形,∴DC∥AB,DC=AB=5a=AD,∵DE=4CE,∴DE=4a,CE=a,∵AB∥x轴,∴DE∥AB∥x轴,∵AE⊥CD,∴AE⊥x轴,AE⊥AB,∴∠DEA=∠ANO=90°,∴AE==3a,∵AD⊥AO,∴∠DAE+∠OAN=90°=∠OAN+∠AON,∴∠DAE=∠AON,又∵AD=AO=AB,∴△ANO≌△DEA(AAS),∴DE=AN=4a,AE=ON=3a,∴点A(3a,4a),点E(3a,7a),∵反比例函数y=(x>0)的图象经过点E,与边AB交于点F,∴k=21a2,点F(a,4a),==×3a×7a+(7a+4a)×(a﹣3a)﹣×4a×a,∵S△EOF∴a=1,∴k=21,∴反比例函数解析式为y=.。
初三中考数学函数综合题含答案

初三中考数学函数综合题含答案一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >-B .3x ≥-且2x ≠C .2x ≠D .3x >-且2x ≠2.如图,函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是( )A .42x y =-⎧⎨=-⎩B .42x y =⎧⎨=⎩C .24x y =-⎧⎨=-⎩D .24x y =⎧⎨=⎩3.若反比例函数1k y x-=,当0x >时,y 随x 的增大而减小,则k 的取值范围是() A .1k >B .1k <C .1k >-D .1k <-4.将抛物线()2321y x =-+先向右平移2个单位长度,再向下平移2个单位长度,平移后所得的抛物线解析式是() A .()2341y x =-- B .()2343y x =-+ C .233y x =+D .231y x =-5.抛物线213y x =的开口方向、对称轴分别是( )A .向上,x 轴B .向上,y 轴C .向下,x 轴D .向下,y 轴 6.二次函数y =x 2+6x +4的对称轴是( ) A .x =6B .x =﹣6C .x =﹣3D .x =47.下列y 关于x 的函数中,一次函数为( ) A .()2y a x b =-+B .()211y k x =++C .2y x=D .221y x =+8.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( ) A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+9.已知抛物线y =ax 2+bx +c (a ≠0)的顶点为(2,4),有以下结论:①当a >0时,b 2-4ac >0;②当a >0时,ax 2+bx +c≥4;③若点(-2,m ),(3,n )在抛物线上,则m <n ;④若关于x 的一元二次方程ax 2+bx +c =0的一根为-1,则另一根为5.其中正确的是( ) A .①②B .①④C .②③D .②④10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 211.已知y =kx +b ,当x =2时,y =-2;当x =3时,y =0.则( )A .k =2,b =-6B .k =-6,b =2C .k =-2,b =6D .k =-2,b =-612.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)13.将一次函数23y x =-的图象沿y 轴向上平移3个单位长度后,所得图象的函数表达式为( ) A .2y x = B .26y x =- C .53y x =- D .3y x =-- 14.二次函数22(3)1y x =-+-的顶点坐标是( )A .(31), B .(13)-, C .(3,1)-D .(3,1)--15.已知A (﹣11,3y ),B (﹣21,2y ),C (1,y 3)是一次函数y =b ﹣3x 的图象上三点,则y 1、y 2、y 3的大小关系为( ) A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 1<y 3二、填空题16.一次函数(27)2y k x =-+中,y 随x 的增大而减小,则k 的取值范围是___________. 17.将直线213y x =-+向上平移3个单位后所得直线解析式为_______.18.已知点(2,)A m 在一次函数53y x =+的图象上,则m 的值是__.19.已知一次函数(1)2y m x m =-+-的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是______.20.若函数y =(m ﹣2)x +|m |﹣2是正比例函数,则m =_____.三、解答题21.如图,抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,并且与y 轴交于点C .(1)求此抛物线的解析式; (2)直线BC 的解析式为 ;(3)若点M 是第一象限的抛物线上的点,且横坐标为t ,过点M 作x 轴的垂线交BC 于点N ,设MN 的长为h ,求h 与t 之间的函数关系式及h 的最大值;(4)在x 轴的负半轴上是否存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形?如果存在;如果不存在,说明理由.22.如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣1,0)、B (3,0)两点,抛物线的对称轴l 与x 轴交于M 点.(1)求抛物线的函数解析式;(2)设点P 是直线l 上的一个动点,当PA +PC 的值最小时,求PA +PC 长;(3)已知点N (0,﹣1),在y 轴上是否存在点Q ,使以M 、N 、Q 为顶点的三角形与△BCM 相似?若存在;若不存在,请说明理由.23.已知二次函数222y x x m =-+-的图象与x 轴有交点,求非负整数m 的值. 24.已知抛物线y =12x 2﹣x ﹣32与x 轴交于点A ,点B (点A 在点B 左侧). (1)求点A ,点B 的坐标;(2)用配方法求该抛物线的顶点C 的坐标,判断△ABC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使以点O 、点C 、点P 为顶点的三角形构成等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 25.已知抛物线222y x mx m =--.(1)求证:对任意实数m ,抛物线与x 轴总有交点. (2)若该抛物线与x 轴交于1,0A ,求m 的值.【参考答案】一、单选题 1.B 2.A3.A 4.A 5.B 6.C 7.B 8.B 9.D 10.A 11.A 12.C 13.A 14.D 15.A 二、填空题16.72k < 17.243y x =-+18.1319.2m >20.-2三、解答题21.(1)234y x x =-++ (2)4y x =-+(3)h 与t 之间的函数关系式为:()2404h t t t =-+<<,h 的最大值为4(4)在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由见解析 【解析】 【分析】(1)把A (﹣1,0),B (4,0) 代入抛物线解析式,即可求解;(2)根据抛物线解析式求出点C 的坐标,再利用待定系数法,即可求解;(3)根据题意可得点()2,34M t t t -++,点(),4N t t -+,从而得到24MN t t =-+,再根据二次函数的性质,即可求解;(4)分三种情况:当PC =BC 时,当PB =BC 时,当PC =PB 时,即可求解. (1)解:∵抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,∴3016340a c a c -+=⎧⎨+⨯+=⎩, 解得:14a c =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++; (2)解:当0x =时,4y =, ∴点()0,4C ,设直线BC 的解析式为()0y kx b k =+≠, 把点B (4,0),()0,4C 代入得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BC 的解析式为4y x =-+; (3) 解:如图,∵点M 是第一象限的抛物线上的点,且横坐标为t ,∴点()2,34M t t t -++,∵MN ⊥x 轴, ∴点(),4N t t -+,∴()()223444MN t t t t t =-++--+=-+,∴()()2242404h t t t t =-+=--+<<, ∴当2t =时,h 的值最大,最大值为4; (4)解:在x 轴的负半轴上存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由如下: 当PC =BC 时, ∵OC ⊥BP , ∴OP =OB ,∵点B (4,0),点P 在x 轴的负半轴上, ∴点()4,0P -; 当PB =BC 时, ∵B (4,0),()0,4C , ∴OC =4,OB =4,∴BP BC ==∴4OP BP OB =-=, ∵点P 在x 轴的负半轴上,∴点()4P -;当PC =PB 时,点P 位于BC 的垂直平分线上, ∵OB =OC =4,∴点O 位于BC 的垂直平分线上, ∴此时点P 与点O 重合,不合题意,舍去;综上所述,在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形. 【点睛】本题主要考查了求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质,熟练掌握用待定系数法求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质是解题的关键. 22.(1)y =﹣x 2+2x +3(2)PA +PC 的长为(3)存在,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭,理由见解析【解析】 【分析】(1)当x =0时,y =3,可得C (0,3).再设设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),利用待定系数法,即可求解;(2)连接PA 、PB 、PC ,根据轴对称性可得PA =PB .从而得到PA +PC =PC +PB .进而得到当点P 在线段BC 上时,PC +AP 有最小值.即可求解;(3)先求出抛物线的对称轴,可得点()1,0M ,再由点N (0,﹣1),B (3,0),C (0,3).可得2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,可得∠CBM =∠MNO ,然后分三种情况讨论,即可求解. (1)解:把x =0代入得:y =3, ∴C (0,3).设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0), 将点C 的坐标代入上式得:3=﹣3a ,解得:a =﹣1.∴抛物线的解析式为y =-(x +1)(x -3)=﹣x 2+2x +3. (2)解:如图,连接PA 、PB 、PC ,∵点A 与点B 关于直线l 对称,点P 在直线l 上, ∴PA =PB . ∴PA +PC =PC +PB . ∵两点之间线段最短,∴当点P 在线段BC 上时,PC +AP 有最小值. ∵OC =3,OB =3, ∴BC =32∴PA +PC 的最小值=32 (3)解:存在,理由: 抛物线的对称轴为直线x =﹣2ba=1. ∵抛物线的对称轴l 与x 轴交于M 点. ∴点()1,0M ,∵点N (0,﹣1),B (3,0),C (0,3). ∴OM =ON =1,OB =OC =3,∴2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒, ∴∠CBM =∠MNO ,当点Q 在点N 下方时,∠MNQ =135°,不符合题意, ∴点Q 在点N 上方,设点Q 的坐标为(0,n ).则QN =n +1, ∵以M 、N 、Q 为顶点的三角形与△BCM 相似, ∴∠QMN =∠CMB 或∠MQN =∠CMB , 当1Q MN CMB ∠=∠时,1Q MNCMB ,如图(2),∴1Q N MNBC BM=, ∴12232n +=,解得:2n =, ∴点()10,2Q ;当2MQ N CMB ∠=∠时,2MQ NCMB ,如图(3),∴2Q N MN MB BC=, ∴12232n +=13n =-,∴点210,3Q ⎛⎫- ⎪⎝⎭,综上所述,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,相似三角形的判定和性质,两点之间,线段最短,待定系数法求二次函数解析式等知识,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键. 23.0或1或2或3 【解析】【分析】根据二次函数y =x 2-2x +m -2的图象与x 轴有交点,根据Δ≥0列出m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数y =x 2-2x +m -2的图象与x 轴有交点, ∴Δ=4-4(m -2)≥0, ∴m ≤3, ∵m 为非负整数, ∴m =0或1或2或3. 【点睛】本题主要考查了抛物线与x 轴交点的知识,解答本题的关键是根据二次函数y =x 2-2x +m -2的图象与x 轴有交点列出m 的不等式,此题难度不大. 24.(1)A (-1,0),B (3,0)(2)点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由见解析(3)点P 的坐标为(1,2),2),(1,2)或3(1,)4-【解析】 【分析】(1)把0y =代入到21322y x x =--得,213022x x --=,解得13x =,21x =-,又因为点A 在点B 的左侧,即可得; (2)21322y x x =--配方得21(1)22y x =--,即可得点C 的坐标为(1,-2),根据点A ,B ,C 的坐标得4AB =,AC ,BC =AC =BC ,又因为2224+=,所以222AC BC AB +=,即可得90ACB ∠=︒,从而得出ACB △是等腰直角三角形;(3)当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形,即可得点P 的坐标(1,2),当CO CP =时,CP =,即可得点P 的坐标为2)或(1,2),当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a ,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,解得34a =-,即可得点P 的坐标为3(1,)4-,综上,即可得. (1)解:把0y =代入到21322y x x =--得, 213022x x --= 2230x x --= (3)(1)0x x -+=解得13x =,21x =-, ∵点A 在点B 的左侧,∴A (-1,0),B (3,0). (2) 解:21322y x x =-- =21(3)2x x -- =21(1)22x x -+- =21(1)22x --∴点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由如下:∵A (-1,0),B (3,0),C (1,-2), ∴3(1)4AB =--=,22(11)(02)8AC =----=, 22(31)(02)8BC =---=,∴AC =BC , ∵222(8)(8)4+=, ∴222AC BC AB +=, ∴90ACB ∠=︒,∴ACB △是等腰直角三角形. (3)解:当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形, ∴点P 的坐标为(1,2);当CO CP =时,22(10)(20)5CP =-+-=, ∴点P 的坐标为(1,52)-或(1,52)--;当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a , 如图所示,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,22441a a a ++=+34a =- ∴点P 的坐标为3(1,)4-;综上,点P 的坐标为(1,2),2),(1,2)或3(1,)4-. 【点睛】本题考查了二次函数与三角形的综合,解题的关键是掌握二次函数的性质,等腰三角形的判定与性质.25.(1)见解析(2)122,1m m =-=【解析】【分析】(1)令0y =,得到关于x 的一元二次方程,根据一元二次方程根的判别式判断即可; (2)令1x =,0y =,解一元二次方程即可求得m 的值(1)令0y =,则有2220x mx m --=222890m m m ∆=+=≥即,对于任意实数方程2220x mx m --=总有两个实数根,∴对任意实数m ,抛物线与x 轴总有交点.(2)解:∵抛物线222y x mx m =--与x 轴交于1,0A ,∴202m m =--解得122,1m m =-=【点睛】本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.。
2021届中考数学专题复习训练——二次函数 专题4二次函数综合之线段最值,成比

类型一:线段最值问题【经典例题1改编】抛物线y=-x 2+bx +c 与直线y=-x +5一个交点A (2,m ),另一个交点B 在x 轴上,点P 是线段AB 上异于A 、B 的一个动点,过点P 做x 轴的垂线,交抛物线于点E ;(1)求抛物线的解析式;(2)是否存在这样的点P ,使线段PE 长度最大?若存在求出最大值及此时点P 的坐标,若不存在说明理由;(3)在y 轴右侧,当EP 平行于y 轴时,设点E 的横坐标为m ,当点E 到y 轴的距离等于线段EP 的长时,求m 的值;【解析】(1)A(2,-3),抛物线解析式y=-x 2+6x -5(2)设点P 的横坐标为m ,E(m ,-m 2+6m -5),P(m ,-m+5)∴EP=y E -y P=(-m 2+6m -5)-(-m +5)=-m 2+7m -10=-(m -27)2+49 当m=27时,EP 长度有最大值49,此时,P(27,23) (3)根据题意分两种情况∴当0<x <2或x >5时,EP=m 2-7m +10,所以m=m 2-7m +10,即m 2-8m +10=0,解得m1=4+6,m2=4-6;∴当2<x<5时,EP=-m2+7m-10,所以m=-m2+7m-10,即m2-6m+10=0,此方程无解。
综上,m1=4+6,m2=4-6【经典例题2】如图所示,抛物线y=ax2+bx-3(a≠0)与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,直线y= -x与抛物线交于E,F两点.(1)求抛物线的解析式;(2)P是直线EF下方抛物线上的一个动点,作PH∴EF于点H,求PH的最大值;【解析】(1)抛物线的表达式为:y=a(x+3)(x−1)=a(x2+2x−3),即−3a=−3,解得:a=1,故抛物线的表达式为:y=x2+2x−3;(2)过点P作PM∴y轴交直线EF于点M,设点P(x ,x 2+2x −3)、点M(x ,−x ),则PH=22PM=22(−x −x 2−2x +3), 当x =−23时,PH 的最大值为:8221;【经典例题3】已知抛物线l 1:y 1=ax 2−2的顶点为P ,交x 轴于A. B 两点(A 点在B 点左侧),且sin∴ABP=55. (1)求抛物线l 1的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若∴ABC 的面积被y 轴分为1:4两个部分,求直线AC 的解析式;【解析】(1)当x =0时,y 1=ax 2-2=-2∴顶点P (0,-2),OP=2∴∴BOP=90° ∴sin∴ABP=BP OP =55 ∴BP=5OP=25 ∴OB=442022=-=-OP BP∴B (4,0),代入抛物线l 1得:16a -2=0,解得:a =81 ∴抛物线l 1的函数解析式为y 1=81x 2-2 (2)∴知抛物线l 1交x 轴于A 、B 两点∴A 、B 关于y 轴对称,即A (-4,0)∴AB=8设直线AC 解析式:y=kx +b点A 代入得:-4k +b =0∴b =4k∴直线AC :y=kx +4k ,D (0,4k )∴S ∴AOD =S ∴BOD =21×4×|4k |=8|k | ∴81x 2-2=kx +4k 整理得:x 2-8kx -32k -16=0∴x 1+x 2=8k∴x 1=-4∴x C =x 2=8k +4,y C =k (8k +4)+4k =8k 2+8k∴C (8k +4,8k 2+8k )∴S ∴ABC =21AB•|y C |=32|k 2+k | ∴若k >0,则S ∴AOD :S 四边形OBCD =1:4∴S ∴AOD =51S ∴ABC ∴8k =51×32(k 2+k ) 解得:k 1=0(舍去),k 2=41 ∴直线AC 解析式为y=41x +1 ∴若k <0,则S ∴AOD =S ∴BOD =-8k ,S ∴ABC =-32(k 2+k )∴-8k =51×[-32(k 2+k )] 解得:k 1=0(舍去),k 2=41(舍去) 综上所述,直线AC 的解析式为y=41x +1.【经典例题4】如图1,在平面直角坐标系中,直线y=x +4与抛物线y=21-x 2+bx +c (b ,c 是常数)交于A. B 两点,点A 在x 轴上,点B 在y 轴上。
初三中考数学函数综合题含答案

初三中考数学函数综合题含答案一、单选题1.已知点A (1,y 1),B (2,y 2)在抛物线y =(x +1)2+2上,则下列结论正确的是( ). A .122y y >> B .212y y >> C .122y y >>D .212y y >>2.抛物线y =14(x ﹣6)2+3的顶点坐标是( )A .(6,﹣3)B .(6,3)C .(﹣6,3)D .(﹣6,﹣3) 3.抛物线y =2(x -1)2-3的顶点坐标是( ) A .()1,3-- B .()1,3- C .()1,3- D .()1,3 4.一次函数y =-2x +5的图像不经过的象限是( )A .一B .二C .三D .四 5.将函数y =2x 的图象向上平移4个单位后,下列各点在平移后的图象上的是( ) A .()1,5 B .()0,4 C .()1,3- D .()2,3- 6.在直角坐标系的x 轴的负半轴上,则点P 坐标为( )A .()4,0-B .()0,4C .()0,3-D .()1,0 7.直线7y x =--一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.下列各点中,在反比例函数2y x=-图象上的是-( )A .(21),B .233⎛⎫⎪⎝⎭, C .(21)--, D .(12)-,9.已知点()11,A x y ,()22,B x y 在直线()0y kx b k =+≠上,当12x x <时,12y y >,且0kb <,则直线()0y kx b k =+≠在平面直角坐标系中的图象大致是( )A .B .C .D .10.下列一次函数中,y 随x 的增大而减小的是( ) A .y =x ﹣3 B .y =1﹣x C .y =2x D .y =3x +2 11.下列二次函数中,对称轴是直线1x =的是( )A .21y x =+B .()221y x =+C .()21y x =-+D .()231y x =--12.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限13.如图,△ABC 中,点B ,C 是x 轴上的点,且A (3,2),以原点O 为位似中心,作△ABC 的位似图形△A ′B ′C ′,且△ABC 与A ′B ′C ′的相似比是1:2,则点A ′的坐标是( )A .(﹣6,﹣4)B .(﹣1.5,﹣1)C .(1.5,1)或(﹣1.5,﹣1)D .(6,4)或(﹣6,﹣4)14.已知点P (a ,a ﹣1)在平面直角坐标系的第四象限,则a 的取值范围在数轴上可表示为( ) A .B .C .D .15.要得到抛物线()2321y x =-++可以将抛物线232y x =-+( ) A .先向右平移2个单位,再向上平移1个单位 B .先向右平移2个单位,再向下平移1个单位C .先向左平移2个单位,再向上平移1个单位D .先向左平移2个单位,再向下平移1个单位二、填空题16.已知点(),P m n 在一次函数1y x =+的图象上,则n m -=______.17.已知某函数图像过点(-1,1),写出一个符合条件的函数表达式:______.18.将一次函数123=+y x 向上平移5个单位长度后得到直线AB ,则平移后直线AB 对应的函数表达式为______.19.将抛物线22(3)y x m =-+向右平移3个单位,再向上平移1个单位后恰好经过点(2,3),则m 值是 __.20.若抛物线y =x 2+bx +经过点A (0,5),B (4,5),则其对称轴是直线______三、解答题21.已知抛物线y =-(x -m )2+1与x 轴的交点为A ,B (B 在A 的右边),与y 轴的交点为C .(1)写出m =1时与抛物线有关的三个正确结论.(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由. (3)请你提出两个对任意的m 值都能成立的正确命题.22.在平面直角坐标系xOy 中,点()11,A x y ,()22,B x y 在抛物线()2210y ax ax a =-+>上,其中12x x < (1)求抛物线的对称轴;(2)若122x x a +=-,比较1y 与2y 的大小关系,并说明理由.23.如图,在平面直角坐标系中,二次函数243y ax x =+-图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是()1,0.(1)求A ,C 两点的坐标,并根据图象直接写出当0y >时x 的取值范围;(2)将图象向上平移m 个单位后,二次函数图象与x 轴交于E ,F 两点,若6EF =,求m 的值.24.一抛物线以()1,9-为顶点,且经过x 轴上一点()4,0-,求该抛物线解析式及抛物线与y 轴交点坐标.25.已知抛物线y =(x ﹣1)2+k 与y 轴相交于点A (0,﹣3),点P 为抛物线上的一点. (1)求此抛物线的解析式;(2)若点P 的横坐标为2,则点P 到x 轴的距离为 .【参考答案】一、单选题 1.D 2.B 3.C 4.C 5.B 6.A 7.A 8.D 9.C 10.B 11.D 12.A 13.D 14.C 15.D 二、填空题 16.117.y =-x (答案不唯一) 18.y =13x +719.-3020.2x = 三、解答题21.(1)抛物线的对称轴为直线x =1,抛物线与x 轴的两个交点为(0,0),(2,0),抛物线开口向下 (2)存在,2(3)无论m 为何值,函数的始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点 【解析】 【分析】(1)当m =1时,y =-(x -1)2+1,根据()2y a x h k =-+的性质写出三个结论即可; (2)求得C (0,1-m 2),根据点B 在原点的右边,点C 在原点的下方,可得m >1,根据等腰三角形的性质可得1+m =m 2-1,解方程求解即可;(3)根据()2y a x h k =-+的性质,可知无论m 为何值,函数的始终有最大值1;无论m为何值,函数始终与x 轴有两个不同的交点. (1)解:当m =1时,y =-(x -1)2+1, ∴抛物线的对称轴为直线x =1, 令0y =,-(x -1)2+1=0, 解得120,2x x ==,抛物线与x 轴的两个交点为(0,0),(2,0), 抛物线开口向下; (2)存在,理由如下: 令x =0,则y =1-m 2, ∴C (0,1-m 2),令y =0,则x =1+m 或x =m -1, ∴B (1+m ,0),∵点B 在原点的右边,点C 在原点的下方, ∴1+m >0,1-m 2<0, ∴m >1,∵△BOC 为等腰三角形, ∴1+m =m 2-1,解得m =2或m =-1(舍), ∴m =2; (3)无论m 为何值,函数始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点. 【点睛】本题考查了()2y a x h k =-+的性质,等腰三角形的性质,解一元二次方程,二次函数与坐标轴交点问题,掌握()2y a x h k =-+的性质是解题的关键. 22.(1)直线1x = (2)12y y >,见解析 【解析】 【分析】(1)将解析式整理成顶点式,直接写出对称轴;(2)方法一:利用作差法,将12y y -表示出来,再进行判断正负,据此判断大小即可;方法二:判断12,y y 距离对称轴的大小,根据函数增减性判断. (1)解:∵()222111y ax ax a x a =-+=--+, ∴抛物线的对称轴为直线1x = (2)方法一:()()221211222121y y ax ax ax ax -=-+--+,()()22122122ax ax ax ax =-+-,()()12122a x x x x =-+-, ()212a x x =--,∵0a >,12x x <, ∴120y y ->, 即12y y >,方法二:∵0a >,122x x a +=-, ∴122x x +<, ∴1212x x +<, 又∵抛物线对称轴是直线1x =,开口向上,且12x x <, ∴1211x x ->-, ∴12y y >. 【点睛】本题主要考查二次函数中系数的运用,以及比较函数值的大小,熟练掌握二次函数的基础运算是解题的关键.23.(1)(2,1)A ,(3,0)C ,当0y >时,13x <<. (2)8m = 【解析】 【分析】(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意得抛物线的解析式为243y x x m =-+-+,设二次函数图象与x 轴交于1(E x ,0),2(F x ,0)两点,则124x x +=,123x x m =-,由12|6|x x -=可得出答案.(1)解:把(1,0)B 代入243y ax x =+-,得043a =+-,解得1a =-,2243(2)1y x x x ∴=-+-=--+,)1(2,A ∴,对称轴为直线2x =,B ,C 关于2x =对称,(3,0)C ∴,∴当0y >时,13x <<.(2)解:抛物线向上平移m 个单位,可得抛物线的解析式为243y x x m =-+-+,设二次函数图象与x 轴交于1(E x ,0),2(F x ,0)两点,则124x x +=,123x x m =-,12||6x x ∴-=,212()36x x ∴-=,21212()436x x x x ∴+-=,164(3)36m ∴-⨯-=,8m ∴=.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质和二次函数图象上点的坐标特征,解决问题的关键是能够把二次函数的一般形式化为顶点式. 24.y =﹣x 2-2x +8;抛物线与y 轴交点为()0,8 【解析】 【分析】知道顶点和抛物线上一点,可以用抛物线的顶点式求答; 【详解】解:设抛物线解析式为()2y a x h k =-+,依题意1h =-,9k =,将()4,0-代入()219y a x =++中,得099a =+,解得1a =-,∴抛物线解析式为()219y x =-++,即y =﹣x 2-2x +8; 令0x =,则8y =,∴抛物线与y 轴交点为()0,8. 【点睛】本题考查待定系数法求二次函数的解析式;在知道顶点坐标的时候,利用顶点式求二次函数解析式十分方便. 25.(1)223y x x =-- (2)3 【解析】 【分析】(1)把点A (0,﹣3),代入抛物线解析式,即可求解;(2)根据抛物线()214y x =--的对称轴为直线1x =,可得点P 和点A (0,﹣3)关于直线1x =对称,从而得到点的纵坐标为-3,即可求解.(1)解:∵抛物线y =(x ﹣1)2+k 与y 轴相交于点A (0,﹣3), ∴()2301k -=-+, 解得:4k =-,∴此抛物线的解析式为()221423y x x x =--=--; (2)解:∵抛物线()214y x =--的对称轴为直线1x =, ∴点P 和点A (0,﹣3)关于直线1x =对称, ∴点的纵坐标为-3, ∴点P 到x 轴的距离为3. 【点睛】本题主要考查了求二次函数的解析式,利用抛物线的对称性求函数值,熟练掌握利用待定系数法求函数解析式的步骤是解题的关键.。