高中物理§4.4 用牛顿运动定律解决问题(一)

合集下载

高中物理必修一-用牛顿运动定律解决问题

高中物理必修一-用牛顿运动定律解决问题

用牛顿运动定律解决问题知识集结知识元从受力确定运动从运动确定受力共点力的平衡知识讲解1.共点力的平衡:一个物体在共点力作用下,如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态.即共点力作用下物体的平衡条件为:F=0.合(1)二力平衡条件:两个力大小相等、方向相反、作用在同一条直线上.(2)三力平衡条件:任意两个力的合力与第三个力大小相等、方向相反、作用在同一条直线上.(3)多力平衡:如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的合力大小相等,方向相反.2.多物体的动态平衡问题物体“缓慢运动”时,速度很小,可认为速度为零,所以物体在变化过程中时刻处于平衡状态.解此类问题需结合整体法与隔离法.例题精讲共点力的平衡例1.物体在共点力作用下,下列说法中正确的是()A.物体的速度在某一时刻等于零,则该时刻物体一定处于平衡状态B.物体相对另一物体保持静止时,物体一定处于平衡状态C.物体所受合力为零,就一定处于平衡状态D.物体做匀加速运动时,物体处于平衡状态例2.过年在家,很多同学放了孔明灯,并许了愿望,因此孔明灯又叫许愿灯.某质量为m的孔明灯升空后向着东北偏上方向匀速上升,则此时孔明灯所受空气作用力的大小和方向是(g 为重力加速度)()A.0B.mg,东北偏上方向C.mg,竖直向上D.,东北偏上方向例3.某杂枝演员在做手指玩耍盘高难度的表演,如图所示.设该盘的质量为m,手指与盘之间的滑动摩擦因数为µ,重力加速度为g,设最大静摩擦等于滑动摩擦,盘底处于水平状态且不考虑盘的自转,则下列说法中正确的是()A.若手指支撑着盘,使盘保持静止状态,则手指对盘的作用力大于mgB.若手指支撑着盘并一起水平向右匀速运动,则盘水平向右的静摩擦力C.若手指支撑着盘并一起水平向右匀加速运动,则手对盘的作用力大小为μmg D.若盘随手指一起水平匀加速运动,则手对盘的作用力大小不可超过超重与失重问题知识讲解1.实重和视重:(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.2.超重、失重和完全失重的比较:现象实质超重物体对支持物的压力或对悬挂物的拉力大于物体重力的现象系统具有竖直向上的加速度或加速度有竖直向上的分量失重物体对支持物的压力或对悬挂物的拉力小于物体重力的现象系统具有竖直向下的加速度或加速度有竖直向下的分量完全失重物体对支持物的压力或对悬挂物的拉力为零的现象系统具有竖直向下的加速度,且a=g例题精讲超重与失重问题例1.如图所示,将两砖块叠放以某一初速度竖直向上抛出,不计空气阻力.则下列说法正确的是()A.上升过程中m1对m2有向下的压力B.下降过程二者间有压力C.整个过程中二者会分离D.上升和下降全程二者不会分离也不会有相互作用例2.如图所示,运动员在竖直方向上做先下蹲再起跳的体能训练,若忽略空气阻力,下列说法正确的是()A.起跳时,运动员对地的压力大于地对她的支持力B.起跳以后,运动员在上升过程中处于超重状态C.运动员在下降过程中处于失重状态D.起跳时,运动员对地面的压力是地面的形变而产生的例3.电梯超载,一人走下轿厢后,电梯正常下行.轿厢中一人议论道:“电梯太小,能乘的人太少,还好是下去,如果电梯上去,能乘的人更少了”根据你学过的知识下列分析判断正确的是()A.该说法是正确的,因为上行时,人对轿厢底板的压力大于人的重力B.该说法是正确的,因为下行时,电梯钢绳受到的拉力比电梯上行时小C.该说法是错误的,因为上行时,人对轿厢底板的压力大于底板人对人的支持力D.该说法是错误的,因为下行时,人对轿厢的压力也会大于人对重力连接体问题知识讲解1.板块问题本质特征①两物体叠放并接触;②两物体间通过摩擦力发生作用.2.解决问题步骤以及处理方式步骤处理方式求出两物体的加速度通过受力分析,用整体法与隔离法进行求解判断物体运动情况结合物体的加速度与速度进行判断求相关物理量运动学公式设运动时间,列两物体的速度关系式或位移关系式运动图象1.选取正方向;2.将两物体的运动图象画在v -t 图中;图线不相交,物体加速度不变,则图线不弯曲(外力无变化时);3.利用图线的斜率面积求解相关物理量3.传送带问题传送带问题与板块问题类似,只是一般情况下传送带速度恒定,无需对传送带进行受力分析例题精讲连接体问题例1.如图所示,A 、B 两个物块叠放在光滑水平面上,质量分别为6kg 和2kg ,它们之间的动摩擦因数为0.2.设最大静摩擦力等于滑动摩擦力,取g =10m/s 2.现对A 施加水平拉力F ,要保持A 、B 相对静止,F 不能超过()A .4NB .8NC .12ND .16N例2.如图所示,长木板放置在粗糙水平地面上,一小物块放置于长木板的中央,已知长木板和物块的质量均为m,长木板与地面间及物块与长木板间的动摩擦因数均为μ,设最大静摩擦力与滑动摩擦力大小相等,重力加速度为g,现对物块施加一水平向右的拉力F,则()A.长木板可能向右做匀加速运动B.长木板的加速度可能为C.地面对长木板的摩擦力可能等于FD.长木板受到水平面的摩擦力可能等于2μmg例3.如图所示,钢铁构件A、B叠放在卡车的水平底板上,卡车底板和B间动摩擦因数为μ1,A、B 间动摩擦因数为μ2,卡车刹车的最大加速度为a,μ2g>a>μ1g,可以认为最大静摩擦力与滑动摩擦力大小相等.卡车沿平直公路行驶途中遇到紧急情况时,要求其刹车后在s0距离内能安全停下,则卡车行驶的速度不能超过()A.B.C.D.当堂练习单选题练习1.物体在共点力作用下,下列说法中正确的是()A.物体的速度在某一时刻等于零,则该时刻物体一定处于平衡状态B.物体相对另一物体保持静止时,物体一定处于平衡状态C.物体所受合力为零,就一定处于平衡状态D.物体做匀加速运动时,物体处于平衡状态练习2.过年在家,很多同学放了孔明灯,并许了愿望,因此孔明灯又叫许愿灯.某质量为m的孔明灯升空后向着东北偏上方向匀速上升,则此时孔明灯所受空气作用力的大小和方向是(g为重力加速度)()A.0B.mg,东北偏上方向C.mg,竖直向上D.,东北偏上方向练习3.如图所示为简易升降装置,某人在吊篮中,通过定滑轮拉绳子使系统竖直匀速运动,人的质量为M,吊篮的质量为m,不计空气阻力和摩擦,不计绳子质量,重力加速度为g.下列说法正确的是()A.匀速上升时人的拉力大于匀速下降时人的拉力B.匀速下降时人的拉力大小等于(m+M)gC.人对吊篮的压力大小为D.人的拉力大小为练习4.如图所示,轻绳两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN 上.现用水平力F拉着绳子上的一点O使小球从图中的实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动.则在这一过程中环对杆的摩擦力f和环对杆的压力N的变化情况是()A.f不变,N不变B.f增大,N不变C.f增大,N减小D.f不变,N减小练习5.如图所示,A、B两滑块用轻绳通过定滑轮连接,整体处于静止状态,定滑轮固定在横杆的中点位置,不计一切摩擦,求A、B滑块的质量之比(θ=30°)()A.1:2B.1:C.1:3D.1:练习6.将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示.用力F拉小球b,使两个小球都处于静止状态,且细线Oa与竖直方向的夹角保持θ=60°,则F的最小值为()A.B.C.D.练习7.轻绳一端系在质量为m的物块A上,另一端系在一个套在粗糙竖直杆MN的圆环上.现用水平力F拉住绳子上一点O,使物块A从图中实线位置缓慢下降到虚线位置,但圆环仍保持在原来位置不动.在这一过程中,环对杆的摩擦力F1和环对杆的压力F2的变化情况是()A.F1保持不变,F2逐渐增大B.F1保持不变,F2逐渐减小C.F1逐渐增大,F2保持不变D.F1逐渐减小,F2保持不变练习8.如图所示,当人站在电梯里处于超重状态时,则()A.电梯一定向上运动B.电梯一定向下运动C.电梯的加速度一定向上D.电梯的加速度一定向下练习9.下列关于失重的说法中,正确的是()A.失重就是物体所受重力变小B.物体加速上升时处于失重状态C.物体自由下落时不会产生失重现象D.失重现象中地球对物体的实际作用力没有变化练习10.质量为50kg的人,站在升降机内的台秤上,测得体重为450N,则升降机的运动可能是()A.匀速上升B.加速上升C.减速上升D.减速下降练习11.用手水平托着一本书做如下几种运动,假定各种情形中加速度大小都相等,且书与手保持相对静止,则书对手的作用力最大的情况是()A.竖直向上匀加速运动B.竖直向上匀减速运动C.竖直向下匀加速运动D.沿水平方向匀加速运动练习12.在电梯内的地板上,竖直放置一根轻质弹簧,弹簧上端固定一个质量为m的物体.当电梯静止时,弹簧被压缩了x;当电梯运动时,弹簧又被继续压缩了.则电梯运动的情况可能是()A.以大小为的加速度加速上升B.以大小为的加速度减速上升C.以大小为的加速度加速下降D.以大小为的加速度减速下降多选题练习1.当物体在共点力的作用下处于平衡状态时,下列说法正确的是()A.物体一定保持静止B.物体可能做匀速直线运动C.物体的加速度为零D.物体可能做匀加速直线运动练习2.在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的压力为F2,地面对A的支持力为F3.若F缓慢增大而整个装置仍保持静止,截面如上图所示,在此过程中()A.F1保持不变B.F2缓慢增大C.F3保持不变D.F3缓慢增大练习3.下面关于失重和超重的说法,正确的是()A.物体处于失重状态时所受重力减小;处于超重状态时所受重力增大B.在电梯上出现失重状态时,电梯必定处于下降过程C.在电梯上出现超重现象时,电梯有可能处于下降过程D.只要物体运动的加速度方向向下,必定处于失重状态解答题练习1.'如图所示,一水平传送带两轮间距为20m,以2m/s的速度做匀速运动.已知某物体与传送带间的动摩擦因数为0.1,现将该物体由静止轻放到传送带的A端.求:(1)物体被送到另一端B点所需的时间;(2)若物体在A端的初速度v0=6m/s,物体被送到另一端B点所需的时间.(g取10m/s2)'练习2.'如图所示,质量为M的木板,静止放置在粗糙水平地面上,有一个可视为质点的小物块质量为m,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v-t图象分别如图中的折线acd和bcd所示,a、b、c、d点的坐标为a(0,10)、b(0,0)、c(4,4)、d(12,0).根据v-t图象,求:(1)物块相对木板滑行的距离△x;(2)物块与木板、木板与地面间的动摩擦因数μ1、μ2;(3)物块质量m与木板质量M之比.'练习3.'如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m <M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.(3)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小.'练习4.'如图所示,质量m=1kg的物块A放在质量M=4kg木板B的左端,起初A、B静止在水平地面上,现用一水平向左的力F作用在木板B上,已知AB之间的动摩擦因数为μ1=0.4,地面与B 之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g=10m/s2.求:(1)能使AB发生相对滑动的F的最小值;(2)若F=30N,作用1s后撤去,要想A不从B上滑落,则木板至少多长,从开始到AB均静止,A的总位移是多少?'练习5.'如图所示,水平面上有一块木板,质量M=4.0kg,它与水平面间的动摩擦因数μ1=0.10.在木板的最左端有一个小滑块(可视为质点),质量m=2.0kg.小滑块与木板之间的动摩擦因数μ2=0.50.开始时它们都处于静止状态.某时刻起对小滑块施加一个水平向右的恒力F=18N,此后小滑块将相对木板滑动,1.0s后撤去该力.(1)求小滑块在木板上滑行时,木板加速度a的大小;(2)若要使小滑块不离开木板,求木板的长度L应满足的条件.'。

高中物理教学课例《牛顿运动定律解决问题(一)》课程思政核心素养教学设计及总结反思

高中物理教学课例《牛顿运动定律解决问题(一)》课程思政核心素养教学设计及总结反思

的方法与视角,从而训练学习者的理性思维能力。 教学过程中既要让学生学到课本上的知识,也使他
们经历一个科学探究的过程。在探究过程中,首先引导 学生进行观察、实验操作,其次让学生运用物理方法进 行探究和思考,经历猜想、假设、验证、拓展和应用等 环节。让学生得到操作技能和心智技能的锻炼,并得到 多种能力的提高,实现智能的发展。
2.帮助学生学会运用实例总结归纳一般问题的解
题规律的能力。让学生认识数学工具在表达解决物理问
题中的作用。
核心素养
1.培养学生科学严谨的求实态度及解决实际问题
的能力。
2.培养学生合作交流的愿望,能主动与他人合作的
团队精神,敢于提出与别人不同的见解。
学生已经学习了牛顿运动定律和运动学的基本规
律,已经具备了进一步学习求解动力学问题的知识基
开始
学生交流讨论、展示互评
教学过程
Байду номын сангаас
复习、引入主题、新课教学 教师总结
结束
明确任务后进行思考讨论活动
知识点一:从受力确定运动情况(课本例题) 学生活动:合作探究、讨论交流学习、展示互评(让 课堂气氛活跃起来,积极参与到学习活动中,鼓励学生 阐述自己的想法) 教师活动:巡回指导,提出帮助意见。提示并参与 学生的讨论(及时解决学生在分析题目遇到的困难,教 会如何剖析题目,找关键知识点)、多媒体展示答案(强 调学生在答题时规范书写格式) 本题拓展: 求例题 1 中的动摩擦因数 μ 多大 归纳总结解题思路: 解题基本思路:(1)确定研究对象,对研究对象 进行受力分析和运动分析,并画出物体的受力示意图; (2)根据力的合成与分解的方法,求出物体所受 的合外力(包括大小和方向); (3)根据牛顿第二定 (4)结合给定的物体的运动的初始条件,选择运 动学公式,求出所需的运动参量。 强调:(1)速度的方向与加速度的方向要注意区 分;(2)题目中的力是合力还是分力要加以区分。

新人教版高中物理必修第一册精品课件:拓展课 用牛顿运动定律解决几类典型问题(1)

新人教版高中物理必修第一册精品课件:拓展课 用牛顿运动定律解决几类典型问题(1)
物体的加速度与合力存在瞬时对应关系,所以分析物体在某一时刻的瞬时加速度, 关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度, 解决此类问题时,要注意两类模型的特点: (1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离) 后,恢复形变几乎不需要时间,故认为弹力立即改变或消失. (2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,恢复形变需要较长时间,在瞬 时问题中,其弹力往往可以看成是不变的.
(2)物块与水平地面间的动摩擦因数μ;
答案 见解析 解析 2~4 s,由牛顿第二定律和运动学规律得 F2-Ff2=ma,a=ΔΔvt ,可求得 m=2 kg 由Ff2=μFN,FN=mg得μ=0.4.
(3)若第6 s末撤去外力,物块前7.5 s内的位移大小.
答案 见解析
解析 撤去外力后加速度a3=μg=4 m/s2,v=4 m/s,
√B.-2g、2g、0
C.-2g、2g、g D.-2g、g、g
图2
解析 剪断细线前,对B、C整体受力分析,整体受到的重力和细线 的拉力平衡,故FT=2mg,再对物体A受力分析,其受到重力、细线 拉力和弹簧的弹力; 剪断细线后,三个物体的重力和弹簧的弹力不变,细线的拉力变为零, 故物体B受到的合力等于2mg,方向竖直向下,物体A受到的合力为 2mg,方向竖直向上,物体C受到的力不变,合力为零, 故物体B有方向竖直向下的大小为2g的加速度,物体A具有方向竖直 向上的大小为2g的加速度,物体C的加速度为0,因取竖直向下为正 方向,故选项B正确.
二 动力学图像问题
1.常见的图像形式 在动力学与运动学问题中,常见、常用的图像是位移-时间图像(x-t图像)、速度- 时间图像(v-t图像)和力-时间图像(F-t图像)等,这些图像反映的是物体的运动规律、 受力规律,而不是代表物体的运动轨迹. 2.图像问题的分析方法 (1)把图像与具体的题意、情景结合起来,明确图像的物理意义,明确图像所反映的 物理过程. (2)特别注意图像中的一些特殊点,如图线与横、纵坐标轴的交点,图线的转折点, 两图线的交点等所表示的物理意义.注意图线的斜率、图线与坐标轴所围图形面积的 物理意义.

2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修

2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修

用牛顿运动定律解决问题(一)教材分析力和物体运动的关系问题,一直是动力学研究的基本问题,人们对它的认识经历了一个漫长的过程,直到牛顿用他的三个定律对这一类问题作出了精确的解决.牛顿由此奠定了经典力学的基础.牛顿三定律成为力学乃至经典物理学中最基本、最重要的定律.牛顿第一定律解决了力和运动的关系问题;牛顿第二定律确定了运动和力的定量关系;牛顿第三定律确定了物体间相互作用力遵循的规律.动力学所要解决的问题由两部分组成:一部分是物体运动情况;另一部分是物体与周围其他物体的相互作用力的情况.牛顿第二定律恰好为这两部分的链接提供了桥梁.应用牛顿运动定律解决动力学问题,高中阶段最为常见的有两类基本问题:一类是已知物体的受力情况,要求确定出物体的运动情况;另一类是已经知道物体的运动情况,要求确定物体的受力情况.要解决这两类问题,对物体进行正确的受力分析是前提,牛顿第二定律则是关键环节,因为它是运动与力联系的桥梁.教学重点应用牛顿运动定律解决动力学的两类基本问题.教学难点动力学两类基本问题的分析解决方法.课时安排1课时三维目标1.知识与技能(1)知道动力学的两类基本问题,掌握求解这两类基本问题的思路和基本方法.(2)进一步认识力的概念,掌握分析受力情况的一般方法,画出研究对象的受力图.2.过程与方法(1)培养学生运用实例总结归纳一般解题规律的能力.(2)会利用正交分解法在相互垂直的两个方向上分别应用牛顿定律求解动力学问题.(3)掌握用数学工具表达、解决物理问题的能力.3.情感、态度与价值观通过牛顿第二定律的应用,提高分析综合能力,灵活运用物理知识解决实际问题.教学过程导入新课情境导入利用多媒体播放“神舟”五号飞船的发射升空、“和谐号”列车高速前进等录像资料.如图甲、乙所示.引导:我国科技工作者能准确地预测火箭的升空、变轨,列车的再一次大提速节约了很多宝贵的时间,“缩短”了城市间的距离.这一切都得益于人们对力和运动的研究.我们现在还不能研究如此复杂的课题,就让我们从类似较为简单的问题入手,看一下这类问题的研究方法.推进新课牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与受力的情况联系起来.因此,它在天体运动的研究、车辆的设计等许多基础学科和工程技术中都有广泛的应用.由于我们知识的局限,这里只通过一些最简单的例子作介绍.一、从受力确定运动情况如果已知物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律就可以确定物体的运动情况.例1一个静止在水平地面上的物体,质量是2 kg,在6.4 N的水平拉力作用下沿水平方向向右运动.物体与地面间的摩擦力是4.2 N,求物体在4 s末的速度和4 s内发生的位移.分析:这个问题是已知物体受的力,求它的速度和位移,即它的运动情况.教师设疑:1.物体受到的合力沿什么方向?大小是多少?2.这个题目要求计算物体的速度和位移,而我们目前只能解决匀变速运动的速度和位移.物体的运动是匀变速运动吗?师生讨论交流:1.对物体进行受力分析,如图.物体受力的图示物体受到四个力的作用:重力G ,方向竖直向下;地面对物体的支持力F N ,竖直向上;拉力F 1,水平向右;摩擦力F 2,水平向左.物体在竖直方向上没有发生位移,没有加速度,所以重力G 和支持力F N 大小相等、方向相反,彼此平衡,物体所受合力等于水平方向的拉力F 1与摩擦力F 2的合力.取水平向右的方向为正方向,则合力:F =F 1-F 2=2.2 N ,方向水平向右.2.物体原来静止,初速度为0,在恒定的合力作用下产生恒定的加速度,所以物体做初速度为0的匀加速直线运动.解析:由牛顿第二定律可知,F 1-F 2=maa =F 1-F 2ma =2.22m/s 2=1.1 m/s 2 求出了加速度,由运动学公式可求出4 s 末的速度和4 s 内发生的位移v =at =1.1×4 m/s=4.4 m/sx =12at 2=12×1.1×16 m=8.8 m.讨论交流:(1)从以上解题过程中,总结一下运用牛顿定律解决由受力情况确定运动情况的一般步骤.(2)受力情况和运动情况的链接点是牛顿第二定律,在运用过程中应注意哪些问题? 参考:运用牛顿定律解决由受力情况确定物体的运动情况大致分为以下步骤:(1)确定研究对象.(2)对确定的研究对象进行受力分析,画出物体的受力示意图.(3)建立直角坐标系,在相互垂直的方向上分别应用牛顿第二定律列式F x =ma x ,F y =ma y .求得物体运动的加速度.(4)应用运动学的公式求解物体的运动学量.3.受力分析的过程中要按照一定的步骤以避免“添力”或“漏力”.一般是先场力,再接触力,最后是其他力.即一重、二弹、三摩擦、四其他.再者每一个力都会独立地产生一个加速度.但是解题过程中往往应用的是合外力所产生的合加速度.再就是牛顿第二定律是一矢量定律,要注意正方向的选择和直角坐标系的应用.课堂训练(课件展示)如图所示自由下落的小球,从它接触竖直放置的弹簧开始到弹簧压缩到最大程度的过程中,小球的速度和加速度的变化情况是().A.加速度变大,速度变小B.加速度变小,速度变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大解析:小球接触弹簧后,受到竖直向下的重力和竖直向上的弹力,其中重力为恒力.在接触开始阶段,弹簧形变较小,重力大于弹力,合力方向向下,故加速度方向也向下,加速度与速度方向相同,因而小球做加速运动.随着弹簧形变量的增加,弹力不断增大,向下的合力逐渐减小,小球加速度也逐渐减小.当弹力增大到与重力相等时,小球加速度等于0.由于小球具有向下的速度,仍向下运动.小球继续向下运动的过程,弹力大于重力,合外力方向变为竖直向上,小球加速度也向上且逐渐增大,与速度方向相反.小球速度减小,一直到将弹簧压缩到最大形变量,速度变为0.答案:C二、从运动情况确定受力与第一种情况过程相反,若已经知道物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的外力,这是力学所要解决的又一方面的问题.例2 一个滑雪的人,质量m=50 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡倾角θ=30°,在t=5 s的时间内滑下的路程x=60 m,求滑雪人受到的阻力(包括摩擦和空气阻力).合作探讨:这个题目是已知人的运动情况,求人所受的力.应该注意三个问题:滑雪人受到的力1.分析人的受力情况,作出受力示意图.然后考虑以下几个问题:滑雪的人共受到几个力的作用?这几个力各沿什么方向?它们之中哪个力是待求的,哪个力实际上是已知的?2.根据运动学的关系得到下滑加速度,求出对应的合力,再由合力求出人受的阻力.3.适当选取坐标系.坐标系的选择,原则上是任意的,但是为了解决问题的方便,选择时一般根据以下要求选取:(1)运动正好沿着坐标轴的方向.(2)尽可能多的力落在坐标轴上.如有可能,待求的未知力尽量落在坐标轴上,不去分解.解析:如图,受力分析建立如图坐标系,把重力G 沿x 轴和y 轴的方向分解,得到求滑雪人受到的阻力G x =mg ·sin θG y =mg ·cos θ与山坡垂直方向,物体没有发生位移,没有加速度,所以G y 与支持力F N 大小相等、方向相反,彼此平衡,物体所受的合力F 等于G x 与阻力F 阻的合力.由于沿山坡向下的方向为正方向,所以合力F =G x -F 阻,合力的方向沿山坡向下,使滑雪的人产生沿山坡向下的加速度.滑雪人的加速度可以根据运动学的规律求得:x =v 0t +12at 2 a =2(x -v 0t )t 2 a =4 m/s 2 根据牛顿第二定律F =maG x -F 阻=maF 阻=G x -maF 阻=mg ·sin θ-ma 代入数值后,得F 阻=67.5 N.答案:67.5 N结合两种类型中两个例题的解题过程,总结出用牛顿定律解题的基本思路和解题步骤:1.选定研究对象,并用隔离法将研究对象隔离出来.2.分别对研究对象进行受力分析和运动情况分析,并作出其受力图.3.建立适当的坐标系,选定正方向,正交分解.4.根据牛顿第二定律分别在两个正交方向上列出方程.5.把已知量代入方程求解,检验结果的正确性.课堂训练(课件展示)1.一个物体的质量m =0.4 kg ,以初速度v 0=30 m/s 竖直向上抛出,经过t =2.5 s 物体上升到最高点.已知物体上升过程中所受到的空气阻力大小恒定,求物体上升过程中所受空气阻力的大小是多少?解析:设物体向上运动过程中做减速运动的加速度大小为a ,以初速度方向为正方向. 因为v t =v 0-a t ,v t =0所以a =0v t=12 m/s 2 对小球受力分析如图,由牛顿第二定律f +mg =maf =m (a -g )=0.4×(12-9.8)N=0.88 N.答案:0.88 N2.如图所示,光滑地面上,水平力F 拉动小车和木块一起做匀加速运动,小车的质量为M ,木块的质量为m .设加速度大小为a ,木块与小车之间的动摩擦因数为μ,则在这个过程中大木块受到的摩擦力大小是( ).A.μmg B.ma C.mM+mF D.F-ma解析:这是一道根据物体运动状态求物体受力情况的典型习题.题中涉及两个物体,题干中的已知量又比较多,对此类题目,要注意选取好研究对象.两者无相对运动,它们之间的摩擦力只能是静摩擦力.因而滑动摩擦力公式f=μmg就不再适用.A选项错误.以木块为研究对象,则静摩擦力产生其运动的加速度F合=f=ma,再由牛顿第三定律可知B选项正确.以小车为研究对象,F-f=Ma,f=F-Ma,D选项也正确.以整体为研究对象,则a=FM+m,再代入f=ma可得f=mFM+m.故C选项也正确.答案:BCD教学建议:1.授课过程中,教师提示分析思路之后.受力分析、过程分析先由学生完成,教师则将解题过程完整写出,以便总结规律、让学生养成规范解题的习惯.2.运算过程中,物理量尽量用相应的字母表示,将所求量以公式形式代出,最后再将已知量代入,求出结果.课堂小结本节课主要讲述了动力学中的两类基本问题:(1)已知受力情况求解运动情况.(2)已知运动情况求物体受力情况.通过对例题的分析解决过程,总结出这两类基本问题的解决方法、思路和一般解题步骤.布置作业教材第87页“问题与练习”1、2、3、4题.板书设计6 用牛顿运动定律解决问题(一)一、从受力情况确定运动情况例1二、从运动情况确定受力情况例2总结:加速度是连接动力学和运动学的桥梁活动与探究课题:牛顿运动定律的适用条件.牛顿运动定律虽然是一个伟大的定律,但它也有自己适用的条件.通过对其适用条件的了解,使学生进一步完整地掌握这个规律,并且为相对论的提出打好基础.习题详解1.解答:如图所示,用作图法求出物体所受的合力F =87 Na =F m =872m/s 2=43.5 m/s 2 v =at =43.5×3 m/s=131 m/sx =12at 2=12×43.5×32 m =196 m. 2.解答:电车的加速度为:a =v -v 0t =0-1510m/s 2=-1.5 m/s 2. 电车所受阻力为:F =ma =-6.0×103 N ,负号表示与初速度方向相反.3.解答:人在气囊上下滑的加速度为:a =mg sin θ-F m =g sin θ-F m =(10×3.24.0-24060) m/s 2=4.0 m/s 2 滑至底端时的速度为:v =2ax =2×4.0×4.0 m/s =5.7 m/s.4.解答:卡车急刹车时的加速度大小为:a =F m =μmg m=μg =7 m/s 2 根据运动学公式:v 0=2ax =2×7×7.6 m/s =10.3 m/s≈37.1 km/h>30 km/h 所以,该车超速.设计点评动力学的两类基本问题在高中阶段的地位相当重要,对于培养学生的分析、判断、综合能力有很大的帮助.对于方法的总结,遵循由特殊到一般、再由一般到特殊的人们认识事物的基本发展思路.过程清晰,层次分明,有助于学生理解和掌握.备课资料一、牛顿运动定律的适用范围17世纪以来,以牛顿运动定律为基础的经典力学不断发展,在科学研究和生产技术上得到了极其广泛的应用,取得了巨大的成就.这一切不仅证明了牛顿运动定律的正确性,甚至使有些科学家认为经典力学已经达到十分完善的地步,一切自然现象都可以由力学来加以说明,过分地夸大了经典力学的作用.但是,实践表明,牛顿运动定律和所有的物理定律一样,只具有相对的真理性.1905年,著名的美籍德国物理学家爱因斯坦(1879—1955)提出了研究匀速相对运动体系的狭义相对论,引起了物理学的一场巨大革命.他指出,经典力学中的绝对时空观并不是直接从观察和实验中得出的.实际上,时间、空间和观察者是相对的.根据相对论原理,物体的质量也不是恒定不变的,而是随着物体运动状态的变化而变化.1916年爱因斯坦又发表了研究加速相对运动的广义相对论.运用这些理论所得出的结论和实验观察基本一致.这表明:对于接近光速的高速运动的问题,经典力学已不再适用,必须由相对论力学来研究.经典力学可以看做是相对论力学在运动速度远小于光速时的特例.从20世纪初以来,原子物理学发展很快,发现许多新的物理现象(如光子、电子、质子等微观粒子的波粒二象性)无法用经典力学来说明.后来,在普朗克(1858—1947)、海森堡(1901—1976)、薛定谔(1887—1961)、狄拉克(1902—1984)等物理学家的努力下创立了量子力学,解决了经典力学无法解决的问题.因此经典力学可以看做是量子力学在宏观现象中的极限情况.总之,“宏观”“低速”是牛顿运动定律的适用范围.二、用整体法与局部法巧解动力学问题在实际问题中,还常常碰到几个物体连在一起,在外力作用下的共同运动,称为连接体的运动.在分析和求解物理连接体问题时,首先遇到的关键之一,就是研究对象的选取问题.其方法有两种:一是隔离法,二是整体法.所谓隔离(体)法就是将所研究的对象——包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法.所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析研究的方法.以系统为研究对象,运用牛顿第二定律求解动力学问题能回避系统内的相互作用力,使解题过程简单明了.隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.例1 用力F 推M ,使M 和m 两物体一起在光滑水平面上前进时,求两物体间的相互作用力.解析:如图所示,对整体应用牛顿第二定律有F =(M +m )a隔离m ,m 受外力的合力为M 对m 的推力N ,由牛顿第二定律N =ma ,解得:N =m M +m F . 答案:mM +m F 例2 如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球.开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即a =12g .则小球在下滑的过程中,木箱对地面的压力为多少?解析:解法一:(隔离法)木箱与小球没有共同加速度,用隔离法解决如下.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′,如图. 据物体平衡条件得:F N -F f ′-Mg =0②且F f =F f ′③由①②③式得F N =2M +m 2g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =2M +m 2g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依据牛顿第二定律列式: (mg +Mg )-F N =ma +M ×0故木箱所受支持力:F N =2M +m 2g . 由牛顿第三定律知:木箱对地面压力F N ′=F N =2M +m 2g . 答案:2M +m 2g 例3 一个质量为0.2 kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦.当斜面以10 m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.解析:当加速度a 较小时,小球与斜面体一起运动,此时小球受重力、绳的拉力和斜面的支持力作用,绳平行于斜面.当加速度a 足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a =10 m/s 2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a 0.(此时,小球所受斜面支持力恰好为零)由mg cot θ=ma 0,所以a 0=g cot θ=7.5 m/s 2因为a =10 m/s 2>a 0,所以小球离开斜面,N =0,小球受力情况如图,则T cos α=mg ,所以T =(ma )2+(mg )2=2.83 N ,N =0.答案:2.83 N 0例4 如图所示,三个物体的质量分别为m 1、m 2、M ,斜面的倾角为α,绳的质量不计,所有接触面光滑.当m 1沿斜面下滑时,要求斜面体静止,则对斜面体应施加多大的水平力F?解析:对m 1、m 2构成的系统由牛顿第二定律知:m 1g sin α-m 2g =(m 1+m 2)a ①对m 1、m 2和M 构成的整个系统就水平方向而言,若施力使斜面体静止,只有m 1具有水平方向向右的加速度分量a 1,且有a 1=a cos α②所以,对斜面体必须施加水平向右的推力F ,如图,则对整个系统在水平方向上由牛顿第二定律知:F =m 1a 1③解①②③得:F =m 1g (m 1sin α-m 2)cos αm 1+m 2. 答案:m 1g (m 1sin α-m 2)cos αm 1+m 2这种以系统为研究对象的解题方法,只研究了系统在水平方向上的动力学行为即达目的,既回避了物体运动的多维性和相互作用的复杂性,又体现了牛顿第二定律在某一方向上的独立性.。

最新人教版 高一物理 必修一 用牛顿运动定律解决问题(一) 导学案(部分答案)

最新人教版 高一物理 必修一 用牛顿运动定律解决问题(一) 导学案(部分答案)

用牛顿运动定律解决问题(一)组题人:一、两类动力学问题(1)已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

(2)已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示:(3)在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。

在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。

运动学和动力学中公共的物理量是加速度a。

在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。

二、应用牛顿第二定律解题的一般步骤:1确定研究对象:依据题意正确选取研究对象2分析:对研究对象进行受力情况和运动情况的分析,画出受力示意图和运动情景图3列方程:选取正方向,通常选加速度的方向为正方向。

方向与正方向相同的力为正值,方向与正方向相反的力为负值,建立方程4解方程:用国际单位制,解的过程要清楚,写出方程式和相应的文字说明,必要时对结果进行讨论三、整体法与隔离法处理连接体问题1.连接体问题所谓连接体就是指多个相互关联的物体,它们一般具有相同的运动情况(有相同的速度、加速度),如:几个物体或叠放在一起,或并排挤放在一起,或用绳子、细杆联系在一起的物体组(又叫物体系).2.隔离法与整体法(1)隔离法:在求解系统内物体间的相互作用力时,从研究的方便性出发,将物体系统中的某部分分隔出来,单独研究的方法.(2)整体法:整个系统或系统中的几个物体有共同的加速度,且不涉及相互作用时,将其作为一个整体研究的方法.3.对连接体的一般处理思路(1)先隔离,后整体.(2)先整体,后隔离典例剖析典例一、由受力情况确定运动情况【例1】将质量为0.5 kg的小球以14 m/s的初速度竖直上抛,运动中球受到的空气阻力大小恒为2.1 N,则球能上升的最大高度是多少?解析通过对小球受力分析求出其上升的加速度及上升的最大高度.以小球为研究对象,受力分析如右图所示.在应用牛顿第二定律时通常默认合力方向为正方向,题目中求得的加速度为正值,而在运动学公式中一般默认初速度方向为正方向,因而代入公式时由于加速度方向与初速度方向相反而代入负值.根据牛顿第二定律得mg +Ff =ma ,a =mg +Ff m=0.5×9.8+2.10.5m/s2=14m/s2上升至最大高度时末速度为0,由运动学公式0-v20=2ax 得最大高度x =02-v202a =0-1422×(-14) m =7 m.答案 7 m 1.受力情况决定了运动的性质,物体具体的运动状况由所受合外力决定,同时还与物体运动的初始条件有关. 2.受力情况决定了加速度,但与速度没有任何关系.【例2】如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m =1kg 的物体,物体与斜面间动摩擦因数μ=0.25.现用轻细绳将物体由静止沿斜面向上拉动,拉力F =10N ,方向平行斜面向上,经时间t =4s 绳子突然断了,求:(1)绳断时物体的速度大小.(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(sin 37°=0.60,cos 37°=0.80,g =10 m/s2)解析 (1)物体受拉力向上运动过程中,受拉力F 、斜面的支持力FN 、重力mg 和摩擦力Ff ,如右图所示,设物体向上运动的加速度为a1,根据牛顿第二定律有:F-mgsin θ-Ff=ma1因Ff=μFN ,FN=mgcos θ 解得a1=2 m/s2t=4 s 时物体的速度大小为v1=a1t=8 m/s.(2)绳断时物体距斜面底端的位移m t a x 1621211==绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a2,受力如上图所示,则根据牛顿第二定律,对物体沿斜面向上运动的过程有:mgsin θ+Ff=ma2 Ff=μmgcos θ 解得a2=8 m/s2物体做减速运动的时间s t a v1212==减速运动的位移m t a x 4222212==此后物体将沿着斜面匀加速下滑,设物体下滑的加速度为a3,受力如右图所示,根据牛顿第二定律对物体加速下滑的过程有:mgsin θ-Ff=ma3 Ff=μmgcos θ解得a3=4 m/s2设物体由最高点到斜面底端的时间为t3,所以物体向下匀加速运动的位移:2332121t a x x =+解得s t 2.3103≈= 所以物体返回到斜面底端的时间为t 总=t2+t3=4.2 s典例二、由运动情况确定受力情况【例3】民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4m ,构成斜面的气囊长度为5 m .要求紧急疏散时乘客从气囊上由静止下滑到达地面的时间不超过2 s ,则(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?(g =10 m/s2) 解析(1)设h =4 m ,L =5 m ,t =2 s ,斜面倾角为θ,则Lh=θsin .乘客在气囊上下滑过程,由221at L = 解得: a =2.5 m/s2(2)乘客下滑过程受力分析如右图则有:FN=mgcos θ ,Ff =μFN = μmgcos θ 由牛顿第二定律可得:mgsin θ- Ff=ma代入数据解得:1211=μ规律总结:物体的加速度由物体所受的合力决定,两者大小、方向及变化一一对应;速度大小的变化情况取决于加速度的方向与速度方向的关系,当两者同向时,速度变大,当两者反向时,速度变小。

人教版高中物理必修一 用牛顿运动定律解决问题(一) PPT课件

人教版高中物理必修一 用牛顿运动定律解决问题(一) PPT课件

解:设反应的时间内通过的位移为 S1,匀减速过程通过的位移为S2. 已知: V0=108km /h=30m/s, t=0.5s, Ff=0.40G, g=10m/s2 求S=S1+S2=?
V0
Ff
Ff
静止
A
S1
B S2
C
取初速度方向为正向, 由S=v t得 s1 30 0.5m 15m 再由牛顿第二定律:F合=ma 得 a= F合/m= Ff/m= –0.4G/m = –0.4g m/s2= –4m/ s2 2 2 由公式:vt v0 2as
受力分析:
物体一共受到重力G,弹力N,摩擦力f 和拉力F
v
N f 由于物体在竖 直方向上没有 位移,合力为 零,因此所受 合力等于拉力F 和f 的合力
F
G

解题过程:
解:根据受力示意图及分析,列出合力的表达式 F合=F-f =(6.4-4.2)N=2.2N
根据牛顿第二定律:F合=ma,得 再由运动学规律:vt=at, S =0.5at2 得
一个静止在水平地面上的物体,质量是2kg,在10N的水平拉力作用下, 沿水平地面向右运动,物体与水平地面间的滑动摩擦力是4N,求物体在4S 末的速度和4S内发生的位移。
解: 取水平向右为正方向, 则合力为 F合=F–Fµ = 10N –4N=6N
由牛顿第二定律F=ma,可求出加速度
FN

F
G F合 6 2 2 a m / s 3m / s m 2 由运动学公式就可以求出4s末的速度vt和4s内发生的位移S
问题的关键就是要找到加速度 a

方法:应用牛顿第二定律 F合=ma 要求a,先求合力F合。
解题关键:求出加速度a

用牛顿运动定律解决问题(一)

用牛顿运动定律解决问题(一)

上仓高中-高一物理教研组
第四章 第6节
第 3页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
课前· 新知预习
(对应学生用书)夯实基础
自填要点 形成认识
上仓高中-高一物理教研组
第四章 第6节
第 4页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
牛顿第一定律:一切物体总保持匀速直线运动状态或静 止状态,除非作用在它上面的力迫使它改变这种状态。
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
第四章
牛顿运动定律
上仓高中-高一物理教研组
第四章 第6节
第 1页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
第6节 用牛顿运动定律解决问题(一)
上仓高中-高一物理教研组
第四章 第6节
第 2页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第6节
第19页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
v=at=
2ghsinθ-μcosθ sinθ
[答案]
2h gsinθsinθ-μcosθ
2ghsinθ-μcosθ sinθ
上仓高中-高一物理教研组
第四章 第6节
第20页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
上仓高中-高一物理教研组
第四章 第6节
第17页
人教版物理 ·必修1
课前新知预习 课堂师生共研 课后提升考能
(四)类题训练巩固提升 若物体与斜面之间的动摩擦因数为μ,求物体由静止从顶端 滑到底端所用的时间及滑到底端时速度的大小.

高中物理:第四章 第6节 用牛顿运动定律解决问题(一)

高中物理:第四章 第6节 用牛顿运动定律解决问题(一)

[随堂检测]1.(2019·陕西咸阳高一期中)图甲是某景点的山坡滑道图片,为了探究滑行者在滑道直线部分AE 滑行的时间,技术人员通过测量绘制出如图乙所示的示意图,AC 是滑道的竖直高度,D 点是AC 竖直线上的一点,且有AD =DE =15 m ,滑道AE 可视为光滑,滑行者从坡顶A 点由静止开始沿滑道AE 向下做直线滑动,g 取10 m/s 2,则滑行者在滑道AE 上滑行的时间为( )A. 2 s B .2 s C. 6 sD .2 2 s解析:选C.如图所示,设斜面坡角为θ,取AE 中点为F ,则:AE =2AF =30sinθ,物体做匀加速直线运动,对物体受力分析,受重力和支持力,将重力沿着平行斜面和垂直斜面正交分解,根据牛顿第二定律,有:mg sin θ=ma ,解得:a =g sin θ; 根据速度位移公式,有:AE =12at 2;解得:t = 6 s.2.用30 N 的水平外力F 拉一个静止在光滑水平面上的质量为20 kg 的物体,力F 作用3 s 后撤去,则第5 s 末物体的速度和加速度分别是( ) A .4.5 m/s ,1.5 m/s 2 B .7.5 m/s ,1.5 m/s 2 C .4.5 m/s ,0D .7.5 m/s ,0解析:选C.有力F 作用时,物体做匀加速直线运动,加速度a =Fm =1.5 m/s 2.力F 作用3 s 撤去之后,物体做匀速直线运动,速度大小为v =at =4.5 m/s ,而加速度为0.选项C 正确. 3.如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( ) A .2∶1 B .1∶1 C.3∶1D .1∶ 3解析:选B.设光滑斜槽轨道与水平面的夹角为θ,则重物下滑时的加速度为a =g sin θ,由几何关系,斜槽轨道的长度s =2(R +r )sin θ,由运动学公式s =12at 2,得t =2s a= 2×2(R +r )sin θg sin θ=2R +rg,即所用时间t 与倾角θ无关,所以t 1=t 2,B 项正确.4.(2019·济宁高一检测)民航客机都有紧急出口,发生意外情况时打开紧急出口,狭长的气囊会自动充气生成一条通向地面的斜面,乘客可沿斜面滑行到地面上.如图所示,某客机紧急出口离地面高度AB =3.0 m ,斜面气囊高度AC =5.0 m ,要求紧急疏散时乘客从气囊上由静止下滑到地面的时间不超过2 s ,g 取10 m/s 2,求:(1)乘客在气囊上滑下的加速度至少为多大?(2)乘客和气囊间的动摩擦因数不得超过多大?(忽略空气阻力) 解析:(1)根据运动学公式x =12at 2①得:a =2x t 2=2×5.022 m/s 2=2.5 m/s 2②故乘客在气囊上滑下的加速度至少为2.5 m/s 2. (2)乘客在斜面上受力情况如图所示. F f =μF N ③ F N =mg cos θ④ 根据牛顿第二定律: mg sin θ-F f =ma ⑤由几何关系可知sin θ=0.6,cos θ=0.8 由②~⑤式得:μ=g sin θ-a g cos θ=716=0.437 5 故乘客和气囊间的动摩擦因数不得超过0.437 5. ☆答案☆:(1)2.5 m/s 2 (2)0.437 5[课时作业]一、单项选择题1.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车闸到车完全停止需要的时间为5 s ,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( ) A .450 N B .400 N C .350 ND .300 N解析:选C.汽车的速度v 0=90 km/h =25 m/s ,设汽车匀减速的加速度大小为a ,则a =v 0t =5m/s 2,对乘客应用牛顿第二定律可得:F =ma =70×5 N =350 N ,所以C 正确.2.(2019·沈阳高一检测)A 、B 两物体以相同的初速度在一水平面上滑动,两个物体与水平面间的动摩擦因数相同,且m A =3m B ,则它们能滑动的最大距离x A 和x B 的关系为( ) A .x A =x B B .x A =3x B C .x A =13x BD .x A =9x B解析:选A.对物体受力分析,由牛顿第二定律μmg =ma 得a =μg .则a A =a B ,x A =v 202a A ,x B =v 202a B ,故x A =x B .3.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2ght +mgB.m 2gh t -mgC.m gh t+mgD.m gh t-mg解析:选A.设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma 又v =at解得F =m 2ght+mg .选项A 正确.4.(2019·黑龙江绥化高一期中)一条足够长的浅色水平传送带自左向右匀速运行,现将一块木炭无初速度地放在传送带的最左端,木炭在传送带上将会留下一段黑色的痕迹,下列说法正确的是( )A .黑色的痕迹将出现在木炭的左侧B .木炭的质量越大,痕迹的长度越短C .传送带运动的速度越大,痕迹的长度越短D .木炭与传送带间动摩擦因数越大,痕迹的长度越短解析:选D.刚放上木炭时,木炭的速度慢,传送带的速度快,木炭向后滑动,所以黑色的径迹将出现在木炭的右侧,所以A 错误;木炭在传送带上运动靠的是与传送带之间的摩擦力,摩擦力作为它的合力产生加速度,所以由牛顿第二定律知,μmg =ma ,所以a =μg ;当达到共同速度时,不再有相对滑动,由v 2=2ax得,木炭位移x 木=v 22μg,设相对滑动的时间为t ,由v =at ,得t =v μg ,此时传送带的位移为x 传=v t =v 2μg ,所以滑动的位移是Δx =x 传-x 木=v 22μg ,由此可以知道,黑色的径迹与木炭的质量无关,所以B 错误;由B 知,传送带运动的速度越大,径迹的长度越长,所以C 错误;木炭与传送带间动摩擦因数越大,径迹的长度越短,所以D 正确.5.(2019·成都高一检测)某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍解析:选B.由自由落体v 2=2gH ,缓冲减速v 2=2ah ,由牛顿第二定律F -mg =ma ,解得F =mg ⎝⎛⎭⎫1+Hh =5mg ,故B 正确. 6.为了使雨滴能尽快地淌离房顶,要设计好房顶的高度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么如图所示的四种情况中符合要求的是( )解析:选C.设屋檐的底角为θ,底边长为2L (不变).雨滴做初速度为零的匀加速直线运动,根据牛顿第二定律得加速度a =mg sin θm =g sin θ,位移大小x =12at 2,而x =L cos θ,2sin θcosθ=sin 2θ,联立以上各式得t =4Lg sin 2θ.当θ=45°时,sin 2θ=1为最大值,时间t 最短,故选项C 正确.7.(2019·太原高一测试)质量为m =3 kg 的木块放在倾角为θ=30°的足够长斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F 作用于木块上,使其由静止开始沿斜面向上加速运动,经过t =2 s 时间物体沿斜面上升4 m 的距离,则推力F 为(g 取10 m/s 2)( ) A .42 N B .6 N C .21 ND .36 N解析:选D.因木块能沿斜面匀速下滑,由平衡条件知:mg sin θ=μmg cos θ,所以μ=tan θ;当在推力作用下加速上滑时,由运动学公式x =12at 2得a =2 m/s 2,由牛顿第二定律得:F -mg sinθ-μmg cos θ=ma ,得F =36 N ,故选D.8.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10 m/s 2,则汽车刹车前的速度为( )A.7 m/s B.14 m/sC.10 m/s D.20 m/s解析:选B.设汽车刹车后滑动的加速度大小为a,由牛顿第二定律得:μmg=ma,解得:a=μg.由匀变速直线运动的速度位移关系式v20=2ax,可得汽车刹车前的速度为v0=2ax=2μgx=2×0.7×10×14 m/s=14 m/s,因此B正确.二、多项选择题9.(2019·江苏镇江高一月考)如图所示,在一无限长的水平小车上,在质量分别为m1和m2的两个滑块(m1>m2)随车一起向右匀速运动,设两滑块与小车间的动摩擦因数均为μ,其他阻力不计,当车突然停止时,以下说法中正确的是()A.若μ=0,两滑块一定相碰B.若μ=0,两滑块一定不相碰C.若μ≠0,两滑块一定相碰D.若μ≠0,两滑块一定不相碰解析:选BD.若μ=0,当车突然停止时,两物块所受的合力为零,将以相同的速度做匀速直线运动,一定不会相撞,故A错误,B正确;若μ≠0,当车突然停止时,两物块做匀减速运动,加速度a=μg,因为初速度相同,所以两滑块一定不相撞,故C错误,D正确.10.(2019·天津高一检测)如图所示,光滑斜面CA、DA、EA都以AB为底边.三个斜面的倾角分别为75°、45°、30°.物体分别沿三个斜面由顶端从静止滑到底端,下面说法中正确的是()A.物体沿DA滑到底端时具有最大速率B.物体沿EA滑到底端所需时间最短C.物体沿CA下滑,加速度最大D.物体沿DA滑到底端所需时间最短解析:选CD.设AB=l,当斜面的倾角为θ时,斜面的长度x=lcos θ;由牛顿第二定律得,物体沿光滑斜面下滑时加速度a=g sin θ,当θ=75°时加速度最大,选项C正确;由v2=2ax可得,物体沿斜面滑到底端时的速度v=2ax=2g sin θlcos θ=2gl tan θ,当θ=75°时速度最大,选项A错误;由x=12at2可得t=2xa=2lcos θg sin θ=2lg sin θcos θ=4lg sin 2θ,当θ=45°时t最小,故选项B错误,选项D正确.11.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F推第1块木块使它们共同加速运动时,下列说法中正确的是()A.由右向左,两块木块之间的相互作用力依次变小B.由右向左,两块木块之间的相互作用力依次变大C.第2块木块与第3块木块之间的弹力大小为0.6FD.第3块木块与第4块木块之间的弹力大小为0.6F解析:选BC.取整体为研究对象,由牛顿第二定律得F-5μmg=5ma.再选取1、2两块木块为研究对象,由牛顿第二定律得F-2μmg-F N=2ma,两式联立解得F N=0.6F,进一步分析可得,从右向左,木块间的相互作用力是依次变大的.选项B、C正确.12.(2019·江西吉安高一诊断)绷紧的传送带长L=32 m,铁块与带间动摩擦因数μ=0.1,g=10 m/s2,下列正确的是()A.若皮带静止,A处小铁块以v0=10 m/s向B运动,则铁块到达B处的速度为6 m/s B.若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,铁块到达B 处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B处的速度为8 m/s解析:选ABD.若传送带不动,物体做匀减速直线运动,根据牛顿第二定律得,匀减速直线运动的加速度大小a=μg=1 m/s2,根据v2B-v20=-2aL,解得:v B=6 m/s,故A正确;若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,物块滑上传送带做匀减速直线运动,到达B点的速度大小一定等于6 m/s,故B正确;若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块先向右做匀加速运动,加速到4 m/s经历的位移x=v22a=422×1m=8 m<32 m,之后随皮带一起做匀速运动,C错误;若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,若铁块一直向右做匀加速运动,铁块到达B 处的速度:v B=2aL=2×1×32 m/s=8 m/s<10 m/s,则铁块到达B处的速度为8 m/s,故D正确.三、非选择题13.公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s.当汽车在晴天干燥沥青路面上以108 km/h的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.解析:设路面干燥时,汽车与地面间的动摩擦因数为μ0,刹车时汽车的加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得μ0mg =ma 0①s =v 0t 0+v 202a 0②式中,m 和v 0分别为汽车的质量和刹车前的速度.设在雨天行驶时,汽车与地面间的动摩擦因数为μ,依题意有μ=25μ0③设在雨天行驶时汽车刹车的加速度大小为a ,安全行驶的最大速度为v ,由牛顿第二定律和运动学公式得μmg =ma ④s =v t 0+v 22a⑤联立①②③④⑤式并代入题给数据得 v =20 m/s(72 km/h). ☆答案☆:20 m/s14.(2019·宁波高一检测)风洞实验室中可产生方向、大小都可以调节控制的各种风力.如图所示为某风洞里模拟做实验的示意图.一质量为1 kg 的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°.现小球在F =20 N 的竖直向上的风力作用下,从A 点静止出发沿直杆向上运动,已知杆与球间的动摩擦因数μ=36.试求: (1)小球运动的加速度a 1;(2)若风力F 作用1.2 s 后撤去,求小球上滑过程中距A 点的最大距离x m ;(3)在上一问的基础上若从撤去风力F 开始计时,小球经多长时间将经过距A 点上方为2.25 m 的B 点.解析:(1)在力F 作用时有:(F -mg )sin 30°-μ(F -mg )cos 30°=ma 1, 解得a 1=2.5 m/s 2.(2)刚撤去F 时,小球的速度v 1=a 1t 1=3 m/s 小球的位移x 1=v 12t 1=1.8 m.撤去力F 后,小球上滑时有:mg sin 30°+μmg cos 30°=ma 2,a 2=7.5 m/s 2. 因此小球上滑时间t 2=v 1a 2=0.4 s.上滑位移x 2=v 12t 2=0.6 m.则小球上滑的最大距离为x m =x 1+x 2=2.4 m. (3)在上滑阶段通过B 点: x AB -x 1=v 1t 3-12a 2t 23.经过B 点时的时间为t 3=0.2 s ,另t 3=0.6 s(舍去) 小球返回时有:mg sin 30°-μmg cos 30°=ma 3,a 3=2.5 m/s 2. 因此小球由顶端返回B 点时有: x m -x AB =12a 3t 24,t 4=35 s. 经过B 点时的时间为t 2+t 4=2+35s ≈0.75 s. ☆答案☆:(1)2.5 m/s 2 (2)2.4 m (3)0.2 s 和0.75 s。

高考物理牛顿运动定律(一)解题方法和技巧及练习题及解析

高考物理牛顿运动定律(一)解题方法和技巧及练习题及解析

高考物理牛顿运动定律(一)解题方法和技巧及练习题及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F与小环速度v随时间变化规律如图所示,取重力加速度g=10m/s2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.6.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.7.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.8.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。

4.6用牛顿运动定律解决问题(一)

4.6用牛顿运动定律解决问题(一)

刘玉兵课件集 ☆导学一:从受力情况确定运动情况
拓展:静止在粗糙水平地面上的物体,质量是2 kg,在 10 N的斜向上与水平方向成37°角拉力作用下,沿水平 地面向右运动,物体与地面间的动摩擦因数是0.2。求 物体在4s末的速度和4s内的位移。(已知sin37°=0.6, cos37°=0.8, g=10m/s2) a 解:F1 F sin 370 10 0.6 N 6 N F1 F N F2 F cos370 10 0.8 N 8 N 37 0 f
a 公 式 动情况
一、从受力确定运动情况
1、受力分析,求合外力F合
刘玉兵课件集
F合 2、根据牛顿第二定律求加速度:a m
3、再利用物体初速度、末速度、位移、时间中 的两个,求另两个.
v =v0 +at 1 2 x =v0 t+ at 2 2 2 v v0 2ax
刘玉兵课件集
F sin
N f F a
2x 2 8 a 2 2 m / s 2 1m / s 2 t 4
∴F合 ma 2 1N 2 N ∴f F F合 (6 2) N 4 N
由f mg得:
f 4 0.2 mg 2 10
G
答:物体与地面间的动摩擦因数为0.2
f mg 0.2 2 10 N 4 N
N
f F
F合 F f 10 4)N 6 N (
F合 6 2 2 a m / s 3m / s m 2
a
G
v at 3 2m / s 6m / s
1 2 1 x at 3 22 m 6m 2 2
揭示了力和运动的 定性关系

用牛顿运动定律解决问题(一)(精品课件)

用牛顿运动定律解决问题(一)(精品课件)

1 at 2 2 1 x vt at 2 2 v0 v x t 2 2 v 2 v0 x 2a x v0 t
一、从受力确定运动情况
例1.一个静止在水平面上的物体,质量是2kg,在6N的水平拉力作 用下沿水平面向右运动,物体与水平地面间的滑动摩擦力为4N。 求物体4s末的速度和4s内发生的位移。 解:物体受力如图,由图知: F合=F-f=ma
FN F1 G
f
F2
知识拓展提升例1 (阅读教材77页科学漫步材料,完成下面的问题) 在水平地面上有两个彼此接触的物体A和B,他们的质量分别为m1 和m2,与地面间的动摩擦因数均为 ,若用水平推力F作用于物体 A,使A、B一起向前运动,如图所示,求两物体间的相互作用力为 多大? F A B
FN Ff F 分析:①把A、B作为一个整体, 做受力分析可求得他们 的加速度a (m1+m2)g 对整体运用牛顿第二定律,可得: F F (m1 m2 ) g (m1 m2 )a 解得:a g m1 m2 ②单独对B受力分析,可求B FN’ 的合力,即能得到所求F1 F2f 对运B用牛顿第二律,可得:
F1
F1 F2 f m2 a
F1 则A、B间的作用力为:
m2 F m1 m2
m2 g
知识拓展提升例2
在海滨游乐场有一种滑沙的娱乐活动.如图所示,人坐在滑板上从斜坡的高处A 点由静止开始下滑,滑到斜坡底部B点后沿水平滑道再滑行一段距离到C点停下 来,斜坡滑道与水平滑道间是平滑连接的,滑板与两滑道间的动摩擦因数均为μ = 0.5 ,不计空气阻力,重力加速度 g= 10m/s2 ,斜坡倾角 θ=37°.(sin37°= 0.6,cos37°=0.8) (1)若人和滑块的总质量为m=60kg,求人在斜坡上下滑时的加速度大小. (2)若由于受到场地的限制,A点到C点的水平距离为 S=50m,为确保人身安全, 假如你是设计师,你认为在设计斜坡滑道时,对高度h应有怎样的要求?

人教版物理必修1第四章6:用牛顿运动定律解决问题(一)有答案

人教版物理必修1第四章6:用牛顿运动定律解决问题(一)有答案

人教版物理必修1第四章6:用牛顿运动定律解决问题(一)一、多选题。

1. 在水平地面上,A、B两物体叠放如图所示,在水平力F的作用下一起匀速运动,若将水平力F作用在A上,两物体可能发生的情况是()A.A、B一起匀速运动B.A加速运动,B匀速运动C.A加速运动,B静止D.A与B一起加速运动2. 如图所示,表示某小球所受的合力与时间关系,各段的合力大小相同,作用时间相同,设小球从静止开始运动,由此可以判定()A.小球向前运动,再返回停止B.小球向前运动,再返回不会停止C.小球始终向前运动D.小球在4秒末速度为0二、选择题。

如图甲所示,一质量为M的木板静止在光滑水平地面上,现有一质量为m的小滑块以一定的初速度v0从木板的左端开始向木板的右端滑行,滑块和木板的水平速度大小随时间变化的情况如图乙所示,根据图像作出如下判断,不正确的是()A.滑块始终与木板存在相对运动B.滑块未能滑出木板C.滑块的质量m大于木板的质量MD.在t1时刻滑块从木板上滑出一小球从空中由静止下落,已知下落过程中小球所受阻力与速度的平方成正比,设小球离地足够高,则()A.小球先加速后匀速B.小球一直在做加速运动C.小球在做减速运动D.小球先加速后减速在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10m/s2,不计空气阻力.则汽车刹车前的速度为()A.7m/sB.14m/sC.10m/sD.20m/s在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带.假定乘客质量为70kg,汽车车速为90km/ℎ,从踩下刹车到车完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)()A.450NB.400NC.350ND.300N三、解答题。

高中物理课件《用牛顿运动定律解决问题(一)》

高中物理课件《用牛顿运动定律解决问题(一)》
物理 ·必修1
第四章 牛顿运动定律 第六节 用牛顿运动定律解决问题(一)
1
01课前自主学习
02课堂探究评价
03课后课时作业
物理 ·必修1
1.知道应用牛顿运动定律解决动力学的两类问题。 2.掌握应用牛顿运动定律解决问题的基本思路和方法。 3.会用牛顿运动定律和运动学公式解决简单的力学问 题。
2
01课前自主学习
18
01课前自主学习
02课堂探究评价
03课后课时作业
物理 ·必修1
(2)人和滑板在水平滑道上受力如图乙所示。 由牛顿第二定律得 FN′-mg=0,Ff′=ma2, 其中 Ff′=μFN′,
19
01课前自主学习
02课堂探究评价
03课后课时作业
物理 ·必修1
联立解得人和滑板在水平滑道上运动的加速度大小为 a2=μg=0.5×10 m/s2=5.0 m/s2, 设人从斜坡上滑下的最大距离为 LAB,由匀变速直线运 动公式得 v2B=2a1LAB 0-v2B=-2a2L 联立解得 LAB=50.0 m。 [完美答案] (1)2.0 m/s2 (2)50.0 m
20
01课前自主学习
02课堂探究评价
03课后课时作业
物理 ·必修1
1当研究对象所受的几个外力不在一条直线上时:如 果物体只受两个力,可以用平行四边形定则求其合力;如果 物体受力较多,一般把它们正交分解到两个方向上去分别求 合力;如果物体做直线运动,一般把各个力分解到沿运动方 向和垂直运动的方向上。
02 课堂探究评价
8
01课前自主学习
02课堂探究评价
03课后课时作业
物理 ·必修1
课堂任务 从受力确定运动情况 如图所示,运动员推冰壶在红线前松手,冰壶继续前行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章
牛顿运动定律
§4.4 用牛顿运动定律
解决问题( 解决问题(一)
用牛顿运动定律解决问题(一)
动力学的两类基本问题
1,已知物体的受力情况,确定物体的运动情况 ,已知物体的受力情况, 2,已知物体的运动情况,求解物体的受力情况 ,已知物体的运动情况, 受力情况
桥梁
牛顿运动定律
a
运动学公式
运动情况
用牛顿运动定律解决问题(一)
2,已知物体的运动情况,求解物体的受力情况 ,已知物体的运动情况,
所求力 受力分析 合力 F合= m a
a
运动学公式
运动情况 (v ,s,t) ,)
用牛顿运动定律解决问题(一)
牛顿运动定律解题的基本思路: 牛顿运动定律解题的基本思路:
首先要对确定的研究对象进行受力, 首先要对确定的研究对象进行受力, 运动情况分析, 运动情况分析,把题中所给的物理 情景弄清楚,然后由牛顿第二定律, 情景弄清楚,然后由牛顿第二定律, 通过加速度这个联系力和运动的 桥梁" "桥梁",结合运动学公式进行求 解.
例题1,一个静止在水平地面的物体,质量是 例题 ,一个静止在水平地面的物体,质量是2kg,在6.4N的 , 的 水平拉力作用下沿水平地面向右运动, 水平拉力作用下沿水平地面向右运动,物体与水平地面间的滑动 摩擦力是4.2N,求物体 4s 末的速度和 4s 内发生的位移. 内发生的位移. 摩擦力是 ,
负号表示加速度的方 向与物体的运动方向 相反. 相反.
用牛顿运动定律解决问题(一)
解题的基本思路和方法: 解题的基本思路和方法:
1,确定研究对象 2,对研究对象进行正确的受力分析和运动情况的 分析, 分析,并画出受力图和运动过程示意图 选取正方向, 3,选取正方向,建立坐标系 4,根据牛顿运动定律列方程,求加速度 根据牛顿运动定律列方程, 5,再根据给定的初始条件,选择适当的运动学 再根据给定的初始条件, 公式, 公式,求出所要求的运动学量
用牛顿运动定律解决问题(一)
例题2,一个滑雪的人, 例题 ,一个滑雪的人,质量 m = 75 kg,以v0 = 2m/s的初速度沿 , 的初速度沿 山坡匀加速地滑下,山坡的倾角θ= 30,在t = 5s的时间内滑下的路 山坡匀加速地滑下,山坡的倾角 , 的时间内滑下的路 程 s=60m, 求滑雪的人受到的阻力 ( 包括滑动摩擦力和空气的阻 , 求滑雪的人受到的阻力( 力).取 g =10m/s2 . 解: 滑雪的人受三个力如右图所示 由s = v0t + at2 /2 得 a = 2 (s – v0t ) / t2 = 4m/s2 再由牛顿运动定律, 再由牛顿运动定律,得 mgsinθ – f = ma
∴ 有 f = mgsinθ – ma = 75N
y
N f
a
x
mg
强调:先进行公式变形, 强调:先进行公式变形,再代 入数值计算. 入数值计算.
用牛顿运动定律解决问题(一)
变式,斜面倾角为 ,质量为1kg的小木块在沿斜面向上的恒定 变式,斜面倾角为30,质量为 的小木块在沿斜面向上的恒定 外力F 作用下, 点静止开始做匀加速直线运动, 外力 作用下,从 A 点静止开始做匀加速直线运动,前进 s = 0.45m 点时的速度为v / ,求恒力F. 抵达 B 点时的速度为 B = 1.5 m/s,求恒力 .设木块与斜面间的动 摩擦因数为= 3/6,g =10m/s2 . 摩擦因数为 , y 解:小木块受四个力如右图所示 x B F N F 由vt2 – v02 = 2as 得 a = (vt2 – v02) / 2s = 2.5m/s2 再由牛顿运动定律, 再由牛顿运动定律,得 F – mgsinθ – f = ma N – mgcosθ = 0 f = N F = mgsinθ+ f + ma = mgsinθ+ mgcosθ + ma =10 N
用牛顿运动定律解决问题(一)

由(2)式,N = mg - F sin37 ) a = [F cos37 - (mg - F sin37 )]/m = 1.3 m / s2 物体在5s内通过的位移为 物体在 内通过的位移为 s = at 2/ 2 = 16.25m
用牛顿运动定律解决问题(一)
x
o
G
Fx
(2)拉力撤除后,物体受三个力如右图所示 拉力撤除后, 由牛顿运动定律,得 由牛顿运动定律, – f ' = ma ' N'–G=0 f'= N' (4) ) (5) ) (6) ) s2 f' y N'
用牛顿运动定律解决问题(一)
由受力求解运动情况的基本步骤: 由受力求解运动情况的基本步骤: 确定研究对象, 1,确定研究对象,进行受力和运动 分析; 分析; 根据力的合成和分解的方法, 2,根据力的合成和分解的方法,求 合力(大小方向); 合力(大小方向); 由牛顿第二定律列方程, 3,由牛顿第二定律列方程,求加速 度; 结合给定的运动的初始条件, 4,结合给定的运动的初始条件,选 择运动学公式, 择运动学公式,求出所需的运动参 量
用牛顿运动定律解决问题(一)
牛顿第二定律的应用 ——二力合成法解题 —பைடு நூலகம்二力合成法解题
由牛顿第二定律F合 = ma可知合力 ma可知合力 由牛顿第二定律F 与加速度的方向是一致的,解题时只要 与加速度的方向是一致的, 判知加速度的方向, 判知加速度的方向,就可知道合力的方 反之亦然. 向,反之亦然. 若物体只受两个力作用作加速运动, 若物体只受两个力作用作加速运动, 求合力时可直接利用平行四边形法则. 求合力时可直接利用平行四边形法则.
用牛顿运动定律解决问题(一)
变式2, 的物体静止在动摩擦因数为0.25的水平地面上. 现 的水平地面上. 变式 ,m=2kg的物体静止 在动摩擦因数为 的物体静止在动摩擦因数为 的水平地面上 对物体施加一个大小为F=8N,与水平方向夹 角的斜向上的拉力, 对物体施加一个大小为 , 与水平方向夹θ=37角的斜向上的拉力, 角的斜向上的拉力 sin37=0.6,g = 10m/s2 .求:(1)物体在拉力作用下 5s 内通过的位移; 内通过的位移; , ) 后撤去,物体又经多长时间停下来. (2)若拉力 作用 5s 后撤去,物体又经多长时间停下来. )若拉力F 解:(1) 物体受四个力如右图所示 :( ) 由牛顿运动定律, 由牛顿运动定律,得 Fx – f = ma N + Fy – G = 0 其中 f = N (1) ) (2) ) (3) ) f y F N y a F
用牛顿运动定律解决问题(一)
作业: 作业:
作业本P137作业本P137-138 P137
用牛顿运动定律解决问题(一)
用牛顿运动定律解决问题(一)
动力学的两类基本问题
1,已知物体的受力情况,确定物体的运动情况 ,已知物体的受力情况,
研究对象 力的概念 受力分析 F合= m a
a
运动学公式
运动情况 (v ,s,t) ,)
拉力F 拉力 撤去后
a' x
得 a' = – g = – 2.5 m /
o
而物体在拉力撤去时的速度为 v t= at = 1.3×5 m / s = 6.5 m / s 拉力撤去后物体作匀减速运动, 拉力撤去后物体作匀减速运动, 由vt ' = v0' + a ' t ' 又v0'= v t,经过 后停下. t' =( vt' –v0' )/a' = 2.6s后停下. 后停下 G
解: 物体受四个力如右图所示 由牛顿运动定律, 由牛顿运动定律,得 F – f = ma
∴有 ∴
y f
N F
a x
a= (F – f ) / m = 1.1m/s2 vt= at = 4.4m/s s= at 2/2 = 8.8m
o
G
变式1,题中,若水平拉力增大为原来的两倍, 变式 ,题中,若水平拉力增大为原来的两倍,则物体的加速度的 大小a( 大小 ( C ) A,等于 m/s2 B,小于 m/s2 C,大于 m/s2 ,等于2.2 / ,小于2.2 / ,大于2.2 / 注意:物体所受的摩擦力不变. 注意:物体所受的摩擦力不变.
用牛顿运动定律解决问题(一)
牛顿第二定律的应用— 牛顿第二定律的应用—正交分解法解题 牛顿第二定律的正交分解法解题: 牛顿第二定律的正交分解法解题:物体 受三个或三个以上的不同方向力的作用时, 受三个或三个以上的不同方向力的作用时, 一般都要用到正交分解法. 一般都要用到正交分解法. 坐标系的建立原则: 坐标系的建立原则: ①尽量多的力在坐标轴上 ②未知量放在坐标轴上 ③加速度尽量放在坐标轴上 总之,怎样方便就怎样建坐标系. 总之,怎样方便就怎样建坐标系. 牛顿第二定律的正交表示:F 牛顿第二定律的正交表示:Fx合= max , Fy合= may
用牛顿运动定律解决问题(一)
f
mgsin θ A
mgcosθ
mg
解题的基本思路和方法: 解题的基本思路和方法:
1,确定研究对象 2,对研究对象进行正确的受力分析和运动情况的 分析, 分析,并画出受力图和运动过程示意图 选取正方向, 3,选取正方向,建立坐标系 根据给定的条件,选择适当的运动学公式, 4,根据给定的条件,选择适当的运动学公式, 求加速度 5,再根据牛顿运动定律列方程,求出所要求的力 再根据牛顿运动定律列方程,
相关文档
最新文档