2018届高考数学二轮复习大题专攻练8立体几何B组理新人教A版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考大题专攻练 8.立体几何(B组)
大题集训练,练就慧眼和规范,占领高考制胜点!
1.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(1)证明:CE∥平面PAB.
(2)求直线CE与平面PBC所成角的正弦值.
【解题导引】(1)取PA的中点F,连接EF,BF,证明四边形BCEF为平行四边形,证明CE∥BF,从而证明CE∥平面PAB.
(2)取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ,证明MQ∥CE,MQ与平面PBC所成的角,就等于CE与平面PBC所成的角.过Q作QH⊥PB,连接MH,证明MH就是MQ在平面PBC内的射影,这样只要证明平面PBN⊥平面PBC即可.
【解析】(1)如图,设PA中点为F,连接EF,FB.
因为E,F分别为PD,PA中点,
所以EF∥AD且EF=AD,
又因为BC∥AD,BC=AD,所以EF∥BC且EF=BC,
即四边形BCEF为平行四边形,所以CE∥BF,
因此CE∥平面PAB.
(2)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ.
因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,
在平行四边形BCEF中,MQ∥CE.
由△PAD为等腰直角三角形得PN⊥AD.
由DC⊥AD,N是AD的中点得BN⊥AD.
所以AD⊥平面PBN,
由BC∥AD得BC⊥平面PBN,
那么,平面PBC⊥平面PBN.
过点Q作PB的垂线,垂足为H,连接MH.
MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.
设CD=1.
在△PCD中,由PC=2,CD=1,PD=得CE=,
在△PBN中,由PN=BN=1,PB=得QH=,
在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以直线CE与平面PBC所成角的正
弦值是.
2.如图几何体是圆柱体的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G为的中点.
(1)设P是上一点,AP⊥BE,求∠CBP的大小.
(2)当AD=2,AB=3,求二面角E-AG-C的大小.
【解题导引】(1)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°.
(2)方法一:取的中点H,连接EH,GH,CH,可得四边形BEHC为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E-AG-C的大小.
方法二:以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面AC G的一个法向量,由两法向量所成角的余弦值可得二面角E-AG-C的大小.
【解析】(1)因为AP⊥BE,AB⊥BE,
AB,AP⊂平面ABP,AB∩AP=A,
所以BE⊥平面ABP,
又BP⊂平面ABP,
所以BE⊥BP,又∠EBC=120°.
因此∠CBP=30°.
(2)方法一:
取的中点H,连接EH,GH,CH.
因为∠EBC=120°,
所以四边形BEHC为菱形,
所以AE=GE=AC=GC==,
取AG中点M,连接EM,C M,EC,
则EM⊥AG,CM⊥AG,
所以∠EMC为所求二面角的平面角.
又AM=1,所以EM=CM==2.
在△BEC中,由于∠EBC=120°,
由余弦定理得EC2=22+22-2×2×2×cos120°=12,
所以EC=2,因此△EMC为等边三角形,
故所求的角为60°.
方法二:
以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角
坐标系.则∠EBP=90°,
由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),
故=(2,0,-3),=(1,,0),=(2,0,3),
设m=(x1,y1,z1)是平面AEG的一个法向量.
由可得
取z1=2,可得平面AEG的一个法向量m=(3,-,2).
设n=(x2,y2,z2)是平面ACG的一个法向量.
由可得
取z2=-2,可得平面AC G的一个法向量n=(3,-,-2).
所以cos<m,n>==.
因此所求的角为60°.。