§5-4 差分方程的z变换解法
Z变换和差分方程
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
利用z变换解差分方程(精选)共15页文档
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
利用z变换解为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
§5-4_差分方程的z变换解法
Q X( z ) =
z
1 z− 4 1 2 z 2 ∴ Y ( z) = 1 1 ( z + )( z − ) 2 4
1 2 X ( z) ∴ Y ( z) = 1 −1 1+ z 2 1 z Y ( z) 2 = 1 1 z ( z + )( z − ) 2 4
= 1 3 z+ 1 2 + 1 6 z− 1 4
求反z变换 求反 变换
2 5 1 1 n n n ∴ y(n) = [− (0.2) + (0.5) + (0.2) + (0.5) n ]u (n) 3 3 5 2
零状态响应 零输入响应
= [−
7 13 (0.2) n + (0.5) n ]u (n) 15 6
自由响应
与拉氏变换解微分方程类似, 变换解差分方程可以一次求 与拉氏变换解微分方程类似,用z变换解差分方程可以一次求 出系统的全解。同样因为带有起始条件,使运算繁杂。 出系统的全解。同样因为带有起始条件,使运算繁杂。
N
设差分方程为: 设差分方程为: 两边同求z变换: 两边同求 变换: 变换
∑a
k =0
N k =0
k
y (n − k ) = ∑ br x(n − r )
r =0
−1 −k
M
∑a z
k
[Y ( z ) +
n= − k
∑ y ( n) z
−n
] = ∑ br z − r X ( z )
r =0
M
《Signals & Systems》 》
1 y (n) + y (n − 1) = 0 2
系统方程求z变换 系统方程求 变换
matlab用z变换求解差分方程
matlab用z变换求解差分方程Z变换是一种非常重要的信号分析工具,在MATLAB中,可以使用Symbolic Math Toolbox进行Z变换的计算和求解差分方程。
Z变换是一种将离散时间信号从时间域转换到复平面域的方法。
它与拉普拉斯变换的关系类似,但适用于离散时间信号的分析。
在MATLAB 中,使用syms函数创建符号变量来表示Z变换的变量,然后使用ztrans函数进行Z变换的计算和求解差分方程。
下面将通过一个简单的例子来说明如何使用MATLAB进行Z变换求解差分方程。
假设有一个差分方程:y[n]-0.5y[n-1]+0.25y[n-2]=x[n]首先,使用syms函数创建符号变量:syms z定义输入信号和初始条件:x=z^2;%输入信号y0=1;%初始条件y[-1]y1=0;%初始条件y[-2]然后,使用ztrans函数进行Z变换计算:Y = ztrans(y[n], n, z);X = ztrans(x, n, z);差分方程中的Y和X分别表示Y(z)和X(z),因此可以写出差分方程的Z变换方程:Y-0.5*z^(-1)*Y+0.25*z^(-2)*Y=X然后,将方程转化为Y(z)的表达式:Y = solve(Y - 0.5*z^(-1)*Y + 0.25*z^(-2)*Y == X, Y);至此,Z变换方程求解完成,可以使用ilaplace函数从Z域转换回时间域,以获得Y[n]的表达式:y = ilaplace(Y, z, n);最后,可以将结果绘制出来:n=-10:10;%时间范围y_n = subs(y, n, n); % 计算y[n]的值stem(n, y_n); % 绘制离散时间信号综上所述,我们可以使用MATLAB的Symbolic Math Toolbox进行差分方程的Z变换求解,这对于信号分析和系统设计非常有用。
差分方程的解法-推荐下载
法计算。常用的方法有:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
对差分方程两边进行Z变换
二.典型序列的收敛域 1.有限长序列:
x( z )
0 n1 n n2 x(n) 其它 0
n
n
x(n) z
n n1
n x ( n ) z (1)
n2
①
n1 0 n2 0
0 n n n1
( 1 )式 x(n) z
1 a n2 1 1. an 1 a n 0 n2 1
n2
a 1 a 1
a n1 a n2 1 a 1 n 2. a 1 a n n1 n2 n1 1 a 1
n2
1 n 3. a a 1 1 a n 0
n
a z
n 0
结论:(1)通常收敛域以极点为边界,且收敛域内无极点 1 z z z (2)根据x(n)是左边、右边、还是双边序列,直接 a z z a z b 1 1 写出收敛域形式 z b
a 1 z
n
a z b z
冲激,抽样 n 0
对上式取拉氏变换
xs (t ) x s (t )e st dt
0
[ x(nT ) (t nT )]e st dt
0 n 0
x( z ) x(n) z n x(0) x(1) z 1 x(2) z 2 x(n) z n
z 1
z 0.5
0.5 z 1
求三种可能收敛域的逆变换 解:1. 三种可能收敛域 2. 收敛域|z|>1时 (1)先求围线内所包含的极点个数x(z)zn-1
x( z ) z
n 1
z2 z n1 n 1 z ( z 1)(z 0.5) ( z 1)(z 0.5)
信号与系统5-2差分方程的Z变换解课件
电信学院
1
前向差分方程
查公式
考虑二阶系统:
y(k 2) a1y(k 1) a0 y(k) b2 f (k 2) b1 f (k 1) b0 f (k)
初始值:yzi (0), yzi (1)
两边取Z变换有:
(z2 a1z a0 )Y (z) yzi (0)z2 yzi (1)z a1yzi (0)z (b2z2 b1z b0 )F(z)
1
(z
1)( z
2)
z
1
3
z
1
z
1
3
z
2
全响应
yzs (k )
[2 3
(1)k
1 3
(2)k
] (k)
y(k)
yzi
(k)
yzs (k )
[
2 3
6(1)k
2 3
(2)k
]
(k)
电信学院 返回
8
例 5.12 解 法 二
y(k 2) 3y(k 1) 2y(k) f (k 1) 3 f (k) yzi(1)=1, yzi(2)=3
F(z)
Y (z) Yzi (z) Yzs (z) 零输入响应
零状态响应
电信学院
3
系统函数
定义
H
(z)
零状态响应的z变换 激励信号的z变换
Yzs (z) F(z)
二阶系统零状态响应
Yzs (z)
b2z2 b1z b0 z2 a1z a0
F(z)
H (z)F (z)
对n阶LTI系统的系统函数
(b2z2 b1z b0 )F(z) b2 f (0)z2 b2 f (1)z b1 f (0)z
令:M (z) [ y(0) b2 f (0)]z2 [ y(1) a1y(0) b2 f (1) b1 f (0)]z
差分方程及其Z变换法求解
例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)
y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2
高等数学课件-复变函数与积分变换 第九章 Z变换
¢ (n k) (n k)zn zk
n0
( z 0)
2020/7/2
23
例 2.4
求单位阶跃序列u(n)
1 0
[解] ¢ u(n) u(n)zn
z
n0
z 1
n 0的 Z 变换。 n0 ( z 1)
例 2.5 求指数序列 f (n) an的 Z 变换。
[解] F (z) ¢ [an ] anzn
f (n) f (n 1) f (n)
(1.1)
2020/7/2
5
称 f (n) f (n 1)为序列 f (n)的一阶向后差分,记为
▽ f (n),即
▽ f (n) f (n) f (n 1)
(1.2)
若定义左移算子l 和右移算子r ,即
lf (n) f (n 1),L ,lk f (n) f (n k),,
f (n 1) f (n) 2n 1
(3.5)
设¢ f (n) F (z),对(3.5)式两边求 Z 变换,得
¢ f (n 1) f (n) zF (z) f (0) F(z) (z 1)F (z)
ⅱ2n 1 2 r(n) ? u(n)
z
12
z
z 1
z(z 1) (z 1)2
z
(z a)
n0
za
2020/7/2
24
例 2.6 分别求正弦序列 f1(n) sin0n和余弦序 列 f2(n) cos0n的 Z 变换。
[解] F1(z) ⅱsin0n
ei0n ei0n
2i
z2
z sin0 2z cos0
1
( z 1)
F 2(z) ⅱcos0n
差分方程Z变换
第3章线性离散时间系统的描述及分析差分方程及其时域分析3.1.1 差分方程3.1.2 差分方程的解A递推解B古典解C Z变换求解Z变换3.2.1 Z变换的定义3.2.2 Z变换的性质3.2.3 Z反变换A长除法B留数法C部分分式法离散时间系统的Z域分析3.3.1 零输入响应3.3.2 零状态响应3.3.3 完全响应Z传递函数及其求法3.4.1 Z传递函数的定义3.4.2 离散系统的运算3.4.3 由G(s)求G(z)——连续时间系统的离散化A对G(s)的讨论B对离散化方法的评价C 留数法D直接代换法E系统等效法Ⅰ——冲击响应不变法;F系统等效法Ⅱ——阶跃响应不变法G部分分式法3.4.4 离散化方法小结线性离散时间系统的稳定性分析3.5.1 闭环极点与输出特性之间的关系3.5.2 稳定判据线性离散时间系统的频率特性分析法3.6.1 线性离散时间系统的频率特性3.6.2 线性离散时间系统的频率特性分析法第3章 线性离散系统的描述及分析 3.1 差分方程及其时域分析 3.1.1差分方程 在线性离散时间动态系统中,输入激励序列u (k )与输出响应序列y (k )之间的动态关系在时域中用差分方程来描述,差分方程一般写成升序方式1101101-1()(1)(1)()()(1)(1)()0(0),(1),...,(-1)n n m m n y k n a y k n a y k a y k b u k m b u k m b u k b u k k y y y y y n y m n--+++-++++==+++-++++≥===≤有始性:初始条件:时间因果律:或写成∑∑==-+--+=+m i nj j i j n k y a i m k u b n k y 01)()()(上式表明某一离散时间点上输出值可能与当前时间点上的输入值(当00,b m n ≠=)以及此前若干个输入和输出值有关。
推论开来,当前的输出值是“此前”全部激励和内部状态共同作用的“积累”效应。
利用z变换解差分方程 ppt课件
利用z变换解差分方程
6
于是 令 则
M
br z r
Y(z)
r=0 N
X (z)
ak zk
k=0
M
br z r
H (z)
r=0 N
ak zk
k=0
Y(z)X(z)H (z)
此时对应的序列为 F y(n) 1[X(z)H (z)]
利用z变换解差分方程
7
例: 已知系统的差分方达程式表为
y(n)0.9y(n1) 0.05u(n) 若边界条y件(1) 1,求系统的完全响应。
5
若系统的起始状态y(l)=0(-N≤l≤-1),即系统处于 零起始状态,此时式(2)变成
N
M
1
a kz k[Y (z)b rz r[X (z) x (m )z m ]
k = 0
r= 0
m r
如果激励x(n)为因X(z)
k= 0
r= 0
利用z变换解差分方程
3
线性常系数差分一方般程形的式为
N
M
ak y(nk) brx(nr)
k0
r0
(1)
将 等 式 两 边 取 换单 ,边 利z用变z 变性换得位 移 特
N
1
M
1
akzk[Y(z) y(l)zl] brzr[X(z) x(m)zm] (2)
k=0
lk
r=0
mr
利用z变换解差分方程
§7.7 利用z变换解差分方程
• 主要内容
•z变换解差分方程的一般步骤 •举例说明
• 重点:利用z变换解差分方程的一般步骤
利用z变换解差分方程
1
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法
差分方程基础知识
yt yt y
* t
C APt , 1 P A Ct ,
其中, A为任意常数,且当
P 1 时,
当
P 1 时,
C A y0 A1 , 1 P
A y0 A 1 .
例5 求差分方程
解 由于
yt 1 3 yt 2 的通解.
,故原方程的通解为
[(t 1) (t n 1)]t (t 1) (t n 2) nt
差分满足以下性质: (1) (2) (3)
(Cyt ) Cyt (C为常数)
(yt zt ) yt zt
(yt zt ) zt yt yt 1zt
y3 Py2 P y0
t
, yt Pyt 1 P y0 .
t y P y0 为方程的解.容易验证,对任意常数 A 则 t
yt APt
都是方程的解,故方程的通解为
yt APt
例4 求差分方程
yt 1 3 yt 0 的通解.
解 利用公式得,题设方程的通解为 yt A3 t.
yt zt yt yt zt ( ) ( zt 0) (4) zt zt 1 zt
例3 求 yt t 2 3t 的差分.
解 由差分的运算性质,有
yt (t 3 ) 3 t (t 1) (3 )
2 t t 2 2 t
3 (2t 1) (t 1) 2 3 3 (2t 6t 3)
差分方程基本知识
差分方程: 差分方程反映的是关于离散变量 的取值与变化规律。通过建立一个或几个离散 变量取值所满足的平衡关系,从而建立差分方 程。 差分方程就是针对要解决的目标,引入系统或 过程中的离散变量,根据实际背景的规律、性 质、平衡关系,建立离散变量所满足的平衡关 系等式,从而建立差分方程。通过求出和分析 方程的解,或者分析得到方程解的 特别性质 (平衡性、稳定性、渐近性、振动性、周期性 等),从而把握这个离散变量的变化过程的规 律,进一步再结合其他分析,得到原问题的解。
Z变换和差分方程
04
离散系统稳定性分析与判断
离散系统稳定性概念及意义
稳定性定义
离散系统的稳定性是指系统在受到外部 扰动后,能够恢复到原平衡状态的能力 。
VS
稳定性意义
稳定性是离散系统正常工作的前提,不稳 定的系统可能导致输出失控、性能恶化甚 至损坏。
基于差分方程稳定性分析方法
差分方程
描述离散系统动态行为的数学模型, 通过求解差分方程可得到系统输出。
若$x[n]$的Z变换为$X(z)$ ,则$x[n]e^{jomega n}$ 的Z变换为 $X(ze^{ jomega})$。证明 过程基于复指数函数的性质 和Z变换的定义。
若$x_1[n]$和$x_2[n]$的Z 变换分别为$X_1(z)$和 $X_2(z)$,则它们的卷积 $x_1[n]*x_2[n]$的Z变换为 $X_1(z)X_2(z)$。证明过程 利用卷积的定义和Z变换的 性质进行推导。
系统函数与稳定性分析
系统函数是描述系统频率响应特性的 重要工具,可通过Z变换求得。同时 ,利用系统函数可进行系统稳定性分 析,如判断系统是否稳定等。
Z变换和差分方程在其他领域应用前景探讨
数字信号处理
Z变换和差分方程在数字信号处理领域具有广泛应用,如滤波器设计 、信号压缩与重构等。
控制系统分析
在控制系统中,Z变换和差分方程可用于分析系统稳定性、设计控制 器等。
收敛域
Z变换的收敛域是指使得级数 $sum_{n=-infty}^{infty} |x[n]z^{n}|$收敛的所有$z$的集合。收敛域对 于Z变换的分析和性质至关重要。
常见函数Z变换表
单位样值信号
$delta[n]$的Z变换为$1$,收敛 域为整个复平面。
单位阶跃信号
z变换求解差分方程例题
z变换求解差分方程例题
当我们求解差分方程时,可以使用Z 变换。
下面以一个简单的例子来说明如何使用Z 变
换求解差分方程。
假设我们有一个差分方程:y[n] - y[n-1] = x[n]
其中,y[n] 表示输出序列,x[n] 表示输入序列,n 表示时间索引。
现在,我们将以上方程进行Z 变换:Y(z) - z^(-1)Y(z) = X(z)
其中,Y(z) 和X(z) 分别表示Z 变换后的输出和输入序列。
将Y(z) 和X(z) 汇总,得到:Y(z) = X(z) / (1 - z^(-1))
现在,我们可以通过对Y(z) 进行逆Z 变换来求解差分方程。
首先,我们将Y(z) 展开为分式形式:Y(z) = X(z) / (1 - z^(-1)) = X(z) / (1 - 1/z) 然后,我们可以使用部分分式分解来简化表达式:Y(z) = X(z) / (1 - 1/z) = X(z) * z / (z - 1)
接下来,我们需要将Y(z) 逆变换为时间域的序列。
这可以通过查找Z 变换表格或使用Z 变换的逆变换公式来完成。
在这个例子中,逆变换公式告诉我们:y[n] = (z^n * X(z) * z / (z - 1))的逆变换
最后,我们需要将逆变换公式转化为时间域的表达式。
这可以通过查找逆变换表格或使用逆变换的公式来完成。
总结起来,如果要使用Z 变换求解差分方程,可以按照以下步骤进行操作:
.将差分方程进行Z 变换。
.将Z 变换后的表达式简化。
.使用逆变换公式将Z 变换的表达式转化为时间域的表达式。
.最后,得到差分方程的解析解。
差分方程的解法
差分方程常用解法1、 常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ (1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。
又称方程0...110=+++-++n k k n k n x a x a x a (2)为方程(1)对应的齐次方程。
如果(2)有形如n n x λ=的解,代入方程中可得:0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。
显然,如果能求出方程(3)的根,则可以得到方程(2)的解。
基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:n k k n n n c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项:n m m n c n c c λ)...(121----+++(3)若(3)有一对单复根 βαλi ±=,令:ϕρλi e ±=,αβϕβαρarctan ,22=+=,则(2)的通解中有构成项:n c n c n n ϕρϕρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构成项:n n c n c c n n c n c c n m m m m n m m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。
通解可记为:-n x如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +*n x (4)方程(4) 的特解可通过待定系数法来确定。
例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1)中确定出系数即可。
差分方程_z_变换___概述说明以及解释
差分方程z 变换概述说明以及解释1. 引言1.1 概述差分方程是描述离散时间系统行为的重要数学工具。
在现实生活中,许多系统的变化是按照离散时间步骤进行的,例如数字信号处理、数字滤波、通信系统等。
而差分方程则可以描述这些系统在每个时间步骤上的状态和演变。
与此同时,z变换是一种重要的数学工具,用于分析离散信号和离散系统。
它将差分方程从时域(自变量是时间)转换到z域(自变量是复平面上的复数z),并且能够提供更加简洁和便于分析的表达形式。
本文将概述差分方程z变换的基本概念以及其在离散系统分析和设计中的应用。
我们将解释差分方程z变换过程,并讨论其优势和局限性。
最后,我们将总结主要观点和结论,并对未来发展提出展望和建议。
1.2 文章结构本文共分为五个部分:引言、差分方程z变换概述、解释差分方程z变换过程、差分方程z变换的优势与局限性以及结论和总结。
1.3 目的本文的目的是介绍差分方程z变换的基本概念和原理,并探讨其在离散系统分析和设计中的应用。
通过阐述z变换与时域之间的关系,传递函数和频率响应描述以及求解差分方程的步骤与方法,读者将能够理解并运用这一重要数学工具。
同时,我们还将提供对差分方程z变换优势与局限性的考察,以及对未来发展的展望和建议。
2. 差分方程z 变换概述:2.1 差分方程基础知识:差分方程是离散时间系统建模和分析中的重要工具,它可以描述离散时间的动态过程。
差分方程以递推关系式的形式表示系统的行为,其中当前时刻输出值与过去一段时间内输入值和输出值之间存在着数学上的关系。
2.2 z 变换介绍:z 变换是一种用于将差分方程从时域转换到复平面上的方法。
在信号处理领域中,z 变换常被用于对离散系统进行频域分析和设计数字滤波器。
z 变换将离散时间信号表示成复变量z 的函数,使得我们可以通过对复平面上的频率响应进行分析来理解系统的特性。
2.3 z 变换的应用领域:z 变换在许多领域都有广泛的应用。
在控制系统工程领域,z 变换可用于建立数字控制器模型、设计数字滤波器以及实现各种控制算法。
z变换 零极点 与差分方程
z变换零极点与差分方程零极点与差分方程一、引言在信号处理与控制系统中,零极点是一种重要的概念。
它们描述了系统的动态特性,并且在分析和设计系统时起着关键作用。
差分方程是描述离散时间系统行为的重要工具。
本文将探讨零极点与差分方程的基本概念、性质和应用。
二、零极点的概念1. 零点在z变换中,零点是使得系统的传递函数为零的根。
零点可以是实数或复数,反映了系统对输入信号的特定频率成分的响应情况。
零点的位置和数量决定了系统的频率特性。
2. 极点与零点类似,极点是使得系统的传递函数无穷大的根。
极点可以是实数或复数,反映了系统的稳定性和频率响应。
极点的位置和数量决定了系统的动态特性。
三、差分方程的定义与性质1. 差分方程的定义差分方程是描述离散时间系统行为的数学表达式。
它以递推方式表示系统的输入和输出之间的关系。
差分方程可以通过将连续时间系统的微分方程进行离散化得到。
2. 差分方程的性质差分方程具有线性性、时不变性、因果性和稳定性等基本性质。
线性性表明系统对输入信号具有叠加性质;时不变性表示系统的行为与时间无关;因果性要求系统的输出仅依赖于当前和过去的输入;稳定性要求系统的输出有界。
四、零极点与差分方程的关系1. 零极点与系统的传递函数系统的传递函数是描述系统输入和输出之间关系的函数。
它可以通过系统的零极点来表示。
零点对应传递函数的分子部分,极点对应传递函数的分母部分。
传递函数的零极点决定了系统的频率响应和稳定性。
2. 差分方程与系统的传递函数差分方程可以转化为z变换形式,从而得到系统的传递函数。
通过z变换,可以将差分方程中的差分算子转化为复变量z的函数。
这样,差分方程与零极点的关系就能够建立起来。
五、零极点与差分方程的应用1. 系统分析与设计通过分析系统的零极点分布,可以得到系统的频率响应和稳定性。
这对于系统的分析与设计非常重要。
例如,在控制系统设计中,可以通过调整零极点的位置来改变系统的动态特性和稳定性。
2. 信号处理与滤波在信号处理中,滤波是一种常见的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连海事大学信息科学技术学院
§5-4
LTI系统Z变换分析法
利用Z变换求解线性常系数差分方程方法如下: ⒈对差分方程两边求单边z变换。注意:方程左边应用非因果的移 位性,方程右边应用因果序列的移位性。 ⒉解代数方程,求输出序列的z变换Y(z)。 ⒊求反z变换,得到输出的时间序列y(n)。 设差分方程为: 两边同求z变换:
1 1 z z Y ( z) 3 6 1 1 z z 2 4
《Signals & Systems》
1 1 1 1 y(n) [ ( ) n ( ) n ]u (n) 3 2 6 4
《信号与系统》
大连海事大学信息科学技术学院
练习1:因果系统方程为:y(n) 2 y(n 1) x(n)
1 n y(n) ( ) u (n) 2
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
⑵ 求零状态响应,对方程两边求z变换,但不考虑起始条件。
1 1 y(n 1) x(n) 2 2 1 1 Y ( z )(1 z 1 ) X ( z ) 2 2 y ( n)
y(1) 2
x(n) (n 2)u(n)
试求系统的响应。
4 练习2:因果系统方程为: y (n) 2 y (n 1) y(n 2) x(n) 3 4 x(n) (3) n u (n) y(1) 0 , y (0) 3
试求系统的响应,并指出零输入和零状态响应。
系统的全响应,并指出零输入响应、零状态响应和自由响应 与受迫响应。
y(n) 0.7 y(n 1) 0.1y(n 2) x(n) x(n 1) x(n) u(n) , y(1) 2, y(2) 7
解:对方程两边同求z变换
Y ( z ) 0.7 z 1[Y ( z ) y(1) z ] 0.1z 2 [Y ( z ) y(2) z 2 y(1) z ] X ( z )(1 z 1 )
求反z变换
2 5 1 1 y(n) [ (0.2) n (0.5) n (0.2) n (0.5) n ]u (n) 3 3 5 2
零状态响应 零输入响应
7 13 n [ (0.2) (0.5) n ]u (n) 15 6
自由响应
与拉氏变换解微分方程类似,用z变换解差分方程可以一次求 出系统的全解。同样因为带有起始条件,使运算繁杂。
y ( n) 1 y (n 1) 0 2 Y ( z) 1 1 z [Y ( z ) y(1) z ] 0 2
系统方程求z变换
1 1 1 Y ( z )(1 z ) y (1) 2 2 1 y (1) 1 2 Y ( z) 1 1 1 1 (1 z ) (1 z ) 2 2
M
X ( z)
k
Yzi ( z )
ak z [ y ( n) z n ]
k k 0 n k
N
1
ak z k
k 0
N
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
例如:已知因果系统的差分方程、输入序列与起始条件如下,试求:
r k r 0 k 0 n k
M
N
1
Y ( z)
X ( z ) br z
r 0
M
r
ak z [ y ( n ) z n ]
k
N
1
ak z k
k 0 r
k 0 N
n k
其中:
Yzs ( z )
br z ak z
k 0 r 0 N
N
Y ( z ) ak z
k 0 N
k
ak z [ y (n) z ] br z r X ( z )
k n k 0 n k r 0
N
1
M
Y ( z ) ak z
k 0
k
X ( z ) br z ak z [ y (n) z n ]
X( z )
z
1 z 4 1 2 z 2 Y ( z) 1 1 ( z )( z ) 2 4
1 2 Y ( z) X ( z) 1 1 1 z 2 1 z Y ( z) 2 1 1 z ( z )( z ) 2 4 1 3 1 z 2 1 6 z 1 4
a
k 0 N k 0
N
k
y (n k ) br x(n r )
r 0 1 k
M
a z
[Y ( z )
n k
y ( n) z
n
] br z r X ( z )
r 0
M
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
求输出y(n)的z变换
Y ( z )(1 0.7 z 1 0.1z 2 ) 0.7 y(1) 0.1[ y(2) y(1) z 1 ] X ( z )(1 z 1 ) Y ( z )(1 0.7 z 1 0.1z 2 ) X ( z )(1 z 1 ) 0.7 y(1) 0.1[ y(2) y(1) z 1 ]
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
2 5 1 1 Y ( z) 3 3 5 2 z z 0.2 z 0.5 z 0.2 z 0.5 2 5 1 1 z z z z Y ( z) 3 3 5 2 z 0.2 z 0.5 z 0.2 z 0.5
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
例如:有一因果系统方程为:y(n)
⑴ 若y(-1)=2,求系统的零输入响应; ⑵ 若x(n)=(1/4)nu(n),求系统的零状态响应;
1 1 y(n 1) x(n) 2 2
解:⑴ 求零输入响应,系统方程为齐次方程。
1 y (n) [(3n 2) 50(2) n ]u (n) 答案:练习1: 9 1 y zs (n) [9(3) n (4n 7)( 1) n ]u (n) 练习2: 12
y zi (n) 0
《Signals & Systems》
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
X ( z )(1 z 1 ) 0.7 y (1) 0.1[ y (2) y (1) z 1 ] Y ( z) (1 0.7 z 1 0.1z 2 )
1 z 1 (0.7 0.1z 1 ) y (1) 0.1y (2) X ( z) 1 2 1 0.7 z 0.1z 1 0.7 z 1 0.1z 2
代入x(n)的z变换1/(1-z-1)与起始条件
Y ( z) 1 1 0.7 z 1 0.1z 2 2(0.7 0.1z 1 ) 0.7 1 0.7 z 1 0.1z 2
z2 z (0.7 z 0.2) 2 2 z 0.7 z 0.1 z 0.7 z 0.1 z 0.7 z 0.2 Y ( z) z 0.7 z 0.2 2 2 z z 0.7 z 0.1 z 0.7 z 0.1 ( z 0.2)( z 0.5) ( z 0.2)( z 0.5)