函数性质总复习

合集下载

第三章:函数的概念与性质重点题型复习-【题型分类归纳】(解析版)

第三章:函数的概念与性质重点题型复习-【题型分类归纳】(解析版)

第三章:函数的概念与性质重点题型复习题型一函数的概念辨析【例1】下列关于函数与区间的说法正确的是()A.函数定义域必不是空集,但值域可以是空集B.函数定义域和值域确定后,其对应法则也就确定了C.数集都能用区间表示D.函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A,函数的定义域和值域均为非空数集,A错误;对于B,若函数的定义域和值域均为R,对应法则可以是y x=,也可以是2=,B错误;y x对于C,自然数集无法用区间表示,C错误;对于D,由函数定义可知,一个函数值可以有多个自变量值与之对应,D正确.【变式1-1】下列对应关系或关系式中是从A 到B 的函数的是( ) A .A ⊆R ,B ⊆R ,221x y +=B .{}1,0,1A =-,{}1,2B =,:1f x y x →=+C .A =R ,B =R ,1:2→=-f x y x D .A =Z ,B =Z ,:21→=-f x y x 【答案】B【解析】对于A ,221x y +=可化为21y x =±-显然对任意x A ∈(1x =±除外),y 值不唯一,故不符合函数的定义; 对于B ,符合函数的定义;对于C ,当2x =时,对应关系无意义,故不符合函数的定义; 对于D ,当x 为非正整数时,对应关系无意义,故不符合函数的定义. 故选:B【变式1-2】已知集合{0,1,2}A =,{1,1,3}B =-,下列对应关系中,从A 到B 的函数为( )A .f :x y x →=B .f :2x y x →=C .f :2x y x →=D .f :21x y x →=-【答案】D【解析】对A :当0,1,2x =时,对应的y x =为0,1,2,所以选项A 不能构成函数;对B :当0,1,2x =时,对应的2y x 为0,1,4,所以选项B 不能构成函数;对C :当0,1,2x =时,对应的2y x =为0,2,4,所以选项C 不能构成函数; 对D :当0,1,2x =时,对应的21y x =-为1-,1,3,所以选项D 能构成函数;故选:D.【变式1-3】如图所示,下列对应法则,其中是函数的个数为( )A .3B .4C .5D .6 【答案】A【解析】①②③这三个图所示的对应法则都符合函数的定义,即A 中每一个元素在对应法则下,在B 中都有唯一的元素与之对应, 对于④⑤,A 的每一个元素在B 中有2个元素与之对应,∴不是A 到B 的函数,对于⑥,A 中的元素3a 、4a 在B 中没有元素与之对应,∴不是A 到B 的函数,综上可知, 是函数的个数为3.故选:A.【变式1-4】下列关系中是函数关系的是( )A .等边三角形的边长和周长关系B .电脑的销售额和利润的关系C .玉米的产量和施肥量的关系D .日光灯的产量和单位生产成本关系 【答案】A【解析】根据函数关系的定义可得,选项A 中,当等边三角形的边长取一定的值时,周长有唯一且确定的值与其对应,所以等边三角形的边长和周长符合函数关系;其他选项中,两个量之间没有明确的对应关系,所以不是函数关系故选:A【变式1-5】若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是( )A .B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.题型二 判断是否为同一个函数【例2】下列各组函数中,表示同一函数的是( )A .()()21,11x f x g x x x -==+- B .()()22,f x x g x x ==C .()()2,f x x g x x =D .()()211,1f x x x g x x +--【答案】C【解析】A. 函数()211x f x x -=-的定义域为{}|1x x ≠,()1g x x =+的定义域为R ,故不是同一函数;B. ()2f x x R ,()2g x x =的定义域为[0,)+∞,故不是同一函数;C. ()()2,f x x g x x x=的定义域都是R ,且解析式相同,故是同一函数;D. ()11f x x x +-{}|1x x ≥,()21g x x =-{|1x x ≥或1}x ≤-,故不是同一函数,故选:C【变式2-1】下列各组函数中,表示同一函数的是( )A .()0f x x =,()xg x x = B .()211x f x x -=-,()1g x x =+C .()11f x x x -+()21g x x =-D .()f x x =,()2g x x =【答案】A【解析】A 中,()0f x x =,()xg x x= 定义域都为{|0}x x ≠ ,对应关系以及值域相同,故为同一函数;B 中,()211x f x x -=-,定义域为{|1}x x ≠,()1g x x =+定义域为R ,故不是同一函数;C 中,()11f x x x =-+定义域为{|1}x x ≥,()21g x x -{|1x x ≥或1}x ≤- ,故不是同一函数;D 中,()f x x =,定义域为R ,()2g x x =定义域为{|0}x x ≥,故不是同一函数;故选:A【变式2-2】下列各组函数是同一函数的是( )A .2()f x x =与2()(1)g x x =+B .3()f x x -与()g x x =-C .()xf x x =与01()g x x=D .()33f x x x =+-2()9g x x =-【答案】C【解析】对于A ,()2f x x =,()()21g x x =+,对应关系不同,即不是同一函数,故A 不正确;对于B ,3()f x x x x -=--(,0]-∞,()g x x =-(,0]-∞, 定义域相同,对应关系不同,函数不是同一函数,故B 不正确; 对于C ,()1xf x x==,定义域为()(),00,∞-+∞,01()1g x x ==,定义域为()(),00,∞-+∞,定义域、对应关系相同,故为同一函数,故C 正确;对于D ,()33f x x x =+-[)3,+∞,2()9g x x =-(][),33,∞∞--⋃+,定义域不同,函数不是同一函数,故D 不正确;故选:C【变式2-3】下列各组函数是同一函数的是( )A .321x x y x +=+与y x = B .2x y x =与y x =C .||x y x=与1y = D .()21y x =-1y x =-【答案】A【解析】对于A ,321x xy x x +==+的定义域为R ,y x =的定义域为R ,则两个函数的定义域和对应关系都相同,是同一函数;对于B ,2x y x x==的定义域为{}0x x ≠,y x =的定义域为R ,则两个函数的定义域不同,不是同一函数; 对于C ,||x y x=的定义域为{}0x x ≠,1y =的定义域为R ,则两个函数的定义域不同,不是同一函数;对于D ,()211y x x =-=-和1y x =-的对应关系不同,故不是同一函数.故选:A.题型三 求函数的定义域【例3】函数()1321f x x x =--的定义域为( ) A .2{|3x x >且1}x ≠ B .2{|3x x <或1}x >C .2{|1}3x x ≤≤ D .2{|3x x ≥且1}x ≠ 【答案】D 【解析】由题得3202,103x x x -≥⎧∴≥⎨-≠⎩且1x ≠.所以函数的定义域为2{|3x x ≥且1}x ≠故选:D【变式3-1】函数()20213y x x=--的定义域为( )A .1,2∞⎛⎫- ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭ C .11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭D .11,,322⎛⎫⎛⎤-∞⋃ ⎪ ⎥⎝⎭⎝⎦【答案】C【解析】要使函数()20213y x x=--有意义, 则有30210x x ->⎧⎨-≠⎩,解得3x <且12x ≠,所以其定义域为11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式3-2】已知函数(+1)f x 的定义域为[1,2],则(23)f x -+的定义域为( ) A .[1,2] B .1[0,]2 C .[1,1]- D .1[,1]2【答案】B【解析】因为函数(+1)f x 的定义域为[1,2],所以12x ≤≤,则2+13x ≤≤, 所以22+33x ≤-≤,解得102x ≤≤, 所以(23)f x -+的定义域为1[0,]2,故选:B【变式3-3】已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为( )A .3[,1]2- B .3[,1)(1,1]2--⋃- C .[3,7]- D .[3,1)(1,7]--⋃- 【答案】B【解析】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .【变式3-4】函数f (x )221mx x --+R ,则实数m 的取值范围是( ) A .(0,1) B .(﹣∞,﹣1] C .[1,+∞) D .(﹣∞,﹣1) 【答案】B【解析】f (x )的定义域是R ,则2210mx x --+≥恒成立,即2+210mx x -≤恒成立,则0Δ0m ⎧⎨≤⎩<,解得1m ≤-,所以实数m 的取值范围为(],1-∞-.故选:B.【变式3-5】若函数2()1f x ax ax =++R ,则实数a 的取值范围是__________. 【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立, 0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<, 综上,04a ≤<. 故答案为:[0,4).题型四 求函数的解析式【例4】已知函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,则()2f =( ) A .1 B .3 C .7 D .9 【答案】D【解析】因为函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,令()4f x x t -=,则()4f x x t =+, 所以()45f t t t =+=,解得1t =,所以()41f x x =+,(2)2419f =⨯+=,故选:D【变式4-1】已知二次函数()f x 满足()221465f x x x +=-+,求()f x 的解析式; 【答案】()259f x x x =-+【解析】设二次函数()()20f x ax bx c a =++≠,则()()()2212121f x a x b x c+=++++()()22442465ax a b x a b c x x =+++++=-+,故44,426,5a a b a b c =+=-++=,解得1,5,9a b c ==-=,故()259f x x x =-+.【变式4-2】若函数()63f g x x ⎡⎤=+⎣⎦,且()21g x x =+,则()f x 等于( ) A .129x + B .61x + C .3 D .3x 【答案】D【解析】令()21g x x t =+=,则12t x -=()63132f t t t -∴=⨯+=,即()3f x x =故选:D.【变式4-3】设函数1121f x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为( )A .()111x x x +-≠B .()111x x x +-≠C .()111xxx +≠-- D .()211xx x ≠-+ 【答案】B【解析】令()111t t x=+≠,则可得11xt 1t所以()()211111t f t t t t +=+=-≠-,所以()()111x f x x x +-≠=,故选:B【变式4-4】若对任意实数x ,均有()2()92f x f x x --=+,求()f x . 【答案】32x -.【解析】利用方程组法求解即可;∵()2()92f x f x x --=+(1) ∴()()()292f x f x x --=-+(2) 由(1)2(2)+⨯得3()96f x x -=-+, ∴()32()f x x x R =-∈. 故答案为:32x - .【变式4-5】设函数()f x 是R →R 的函数,满足对一切x ∈R ,都有()()22f x x f x +-=,则()f x 的解析式为()f x =______.【答案】2,111,1x x x ⎧≠⎪-⎨⎪=⎩ 【解析】由()()22f x x f x +-=,得()()()222f x x f x -+-=,将()f x 和()2f x -看成两个未知数,可解得()()211f x x x=≠-, 当1x =时,()()()212112f f -+-=,解得()11f =,综上,()2,1,11, 1.x f x x x ⎧≠⎪=-⎨⎪=⎩ 故答案为:2,111,1x xx ⎧≠⎪-⎨⎪=⎩.题型五 定义法证明函数的单调性【例5】已知函数()218x f x x -=+,判断并证明()f x 在区间[]22-,上的单调性. 【答案】单调递增,证明见解析【解析】()f x 在区间[]22-,上单调递增,理由如下: 任取1x ,[]22,2x ∈-,且12x x <,()()()()()()()()()()()()22122112121212122222221212121818811888888x x x x x x x x x x x x f x f x x x x x x x -+--+-++----=-==++++++.因为1222x x -≤<≤,所以120x x -<,1244x x -<+<,1244x x -<<, 所以12128x x x x +->- 所以121280x x x x ++->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间[]22-,上单调递增.【变式5-1】已知函数()1f x x =-()f x 在区间[)1,+∞上的单调性,并证明你的结论.【答案】增函数,证明见解析【解析】()f x 在区间[)1,+∞上是增函数.证明如下:设[)12,1,x x ∀∈+∞,且12x x <, 则()()121212121111f x f x x x x x -=---+-, 因为[)12,1,x x ∈+∞,所以110x -≥210x -≥,又12x x <,所以120x x -<11x -21x -0, 12110x x -->,故()()120f x f x -<, 故()f x 在区间[)1,+∞上是增函数.【变式5-2】证明:函数31()2f x x x=-在区间(0,)+∞上是增函数.【答案】证明见解析.【解析】设12,(0,)x x ∈+∞,且12x x <,而3312121211()()22f x f x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()3312211122x x x x ⎛⎫=-+- ⎪⎝⎭()()2212121122122x x x x x x x x x x -=-+++()()221211221212x x x x x x x x ⎡⎤=-+++⎢⎥⎣⎦因为221211221210,0,0x x x x x x x x -<++>>,则()()2212112212120x x x x x x x x ⎡⎤-+++<⎢⎥⎣⎦, 所以12())0(f x f x -<,即12()()f x f x <,所以函数31()2f x x x=-在区间(0,)+∞上是增函数.【变式5-3】已知函数()f x 对任意的a ,∈b R ,都有()()()1f a b f a f b +=+-,且当0>x 时,()1f x >,判断并证明()f x 的单调性; 【答案】函数()f x 在R 上为增函数;(2)4(1,)3m ∈-.【解析】设12,x x 是R 上任意两个不等的实数,且12x x <,则210x x x ∆=->,()()()()()()()()212111211111y f x f x f x x x f x f x x f x f x f x ⎡⎤∆=-=-+-=-+--=∆-⎣⎦,由已知条件当0x >时,()1f x >, 所以()1f x ∆>,即0y ∆>, 所以函数()f x 在R 上为增函数;题型六 利用函数的单调性求参数【例6】若函数()1f x ax =+[]1,1-内单调递减,则实数a 的取值范围是______. 【答案】[)1,0-【解析】由题意知,第一步函数单调递减,由复合函数同增异减可知0a <,第二步考虑函数定义域,10ax +≥ 在[]1,1-恒成立,(1)0a f <⎧⎨≥⎩得到10a -≤< 故答案为:10a -≤<.【变式6-1】若1()1ax f x x +=-在区间(1,)+∞上是增函数,则实数a 的取值范围是______.【答案】1a <- 【解析】函数()111+1()=111a x a ax a f x a x x x -+++==+---, 由复合函数的增减性可知,若1()1a g x x +=-在(1,)+∞为增函数,10a ∴+<,1a <-,【变式6-2】(多选)函数2()(21)3f x x a x =+-+在(2,2)-上为单调函数,则实数a的取值范围可以是( )A .3,2⎛⎤-∞- ⎥⎝⎦B .35,42⎛⎫- ⎪⎝⎭C .35,42⎡⎤-⎢⎥⎣⎦ D .5,2⎡⎫+∞⎪⎢⎣⎭【答案】AD【解析】二次函数2()(21)3f x x a x =+-+图象对称轴为:212a x -=-, 因函数()f x 在(2,2)-上为单调函数,于是有: 当函数()f x 在(2,2)-上递减时,2122a --≥,解得32a ≤-, 当函数()f x 在(2,2)-上递增时,2122a --≤-,解得52a ≥, 所以实数a 的取值范围是:32a ≤-或52a ≥.故选:AD【变式6-3】已知函数21,22(),12x mx x f x m x x ⎧-≥⎪⎪=⎨⎪-≤<⎪⎩对于12,[1,)x x ∀∈+∞且12x x ≠,都有1212()[()()]0x x f x f x -->,则m 的取值范围为 ______.【答案】40,3⎛⎤⎥⎝⎦【解析】由题意可知,()f x 在[1,)+∞上为单调增函数,要使my x =-在[1,2)上单调递增,则0m -<,即0m >, 要使21()2f x x mx =-在[2,)+∞上单调递增,则2m ≤, 同时2112222m m ⨯-≥-,解得:43m ≤,综上可知:403m <≤.题型七 求函数的最值或值域【例7】求函数4y x x =+,142x ⎛⎫≤≤ ⎪⎝⎭的最大值与最小值.【答案】最大值172,最小值4 【解析】函数4y x x=+,根据对勾函数的性质可得:4y x x =+在122⎡⎤⎢⎥⎣⎦,上单调递减,[]2,4上单调递增. 当2x =时取到最小值4. 又当12x =时,117822y =+=,当4x =时,415y =+= 所以当12x =时取到最大值172, 所以函数4y x x=+的最大值172,最小值4【变式7-1】312y x x =+- )A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为312y x x =+-所以1120,2x x -≥∴≤,又312y x x =+-12x ≤时单调递增, 所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:A.【变式7-2】函数23()31x f x x -=+的值域( ) A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】依题意,2112112(31)2321113333()3131313331x x x f x x x x x +-+--====-⋅++++,其中111331y x =-⋅+的值域为()(),00,∞-+∞,故函数()f x 的值域为22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故选D .【变式7-3】若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( ) A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦, 【答案】B【解析】令()f x t =,1y t t =+,则132t ⎡⎤∈⎢⎥⎣⎦,. 当112t ⎡⎫∈⎪⎢⎣⎭,时,1y t t=+单调递减, 当[]13t ∈,时,1y t t=+单调递增,又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =,所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .【变式7-4】已知{},min ,,,a a ba b b a b≤⎧=⎨>⎩设()f x {}2min 2,42x x x =--+-,则函数()f x 的最大值是( )A .2-B .1C .2D .3 【答案】B【解析】当2242x x x -≤-+-,即[]0,3x ∈时,()2f x x =-在[]0,3x ∈上单调递增,所以()max ()3321f x f ==-=, 当2242x x x ->-+-,即()(),03,x ∈-∞+∞时,()()224222f x x x x =-+-=--+在(),0x ∈-∞上单调递增,在()3,+∞上单调递减,因为()02f =-,()31f =,所以()()31f x f <=; 综上:函数()f x 的最大值为1,故选:B题型八 函数奇偶性的判断【例8】判断下列函数的奇偶性.(1)()31f x x x=-; (2)()(111x f x x x+=--(3)()2233f x x x -- (4)()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩.【答案】(1)奇函数;(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数;(4)偶函数【解析】(1)()f x 的定义域是()(),00,∞-+∞,关于原点对称,又()()()3311f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,所以()f x 是奇函数.(2)因为()f x 的定义域为[)1,1-,不关于原点对称,所以()f x 既不是奇函数也不是偶函数. (3)因为()f x 的定义域为{}3,3-,所以()0f x =,则()f x 既是奇函数又是偶函数.(4)方法一(定义法)因为函数()f x 的定义域为R ,所以函数()f x 的定义域关于原点对称.①当x >1时,1x -<-,所以()()()()22f x x x f x -=-⨯-==; ②当11x -≤≤时,()2f x =;③当1x <-时,1x ->,所以()()()22f x x x f x -=⨯-=-=. 综上,可知函数()f x 为偶函数.方法二(图象法) 作出函数()f x 的图象,如图所示,易知函数()f x 为偶函数.【变式8-1】函数()2433x f x x -=+-的图象关于_________对称.【答案】原点【解析】要使函数有意义,则240330x x ⎧-≥⎪⎨+-≠⎪⎩,得2206x x x -≤≤⎧⎨≠≠-⎩且,解得20x -≤<或02x <≤,则定义域关于原点对称.此时33x x +=+,则函数()22244433x x x f x x ---===+-, ()()24x f x f x --==-,∴函数()f x 是奇函数,图象关于原点对称故答案为:原点【变式8-2】判断()||||()f x x a x a a R =+--∈的奇偶性.【答案】当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数 【解析】因为x ∈R ,所以定义域关于原点对称,当0a =时,则()||||0f x x x =-=,所以()f x 既是奇函数,又是偶函数; 当0a ≠时,因为()||||||||()f x x a x a x a x a f x -=-+---=--+=-, 所以()f x 是奇函数.综上所述,当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数.【变式8-3】设函数2()1f x x =+,则下列函数中为奇函数的是( ) A .()1f x + B .(1)f x + C .()1f x - D .(1)f x - 【答案】D 【解析】因为()21f x x =+ . 选项A :()2111f x x +=++,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故A 错.选项B :()221112f x x x +==+++,定义域为()()22-∞--+∞,,,定义域不对称,故B 错.选项C :()2111f x x -=-+,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故C 错.选项D :()22111f x x x-==-+,定义域为()()00-∞∞,,+,定义域对称,为奇函数.故D 正确.故选:D.【变式8-4】设()f x 是R 上的任意函数,则下列叙述正确的是( )A .()()f x f x -是奇函数B .()()f x f x -是奇函数 C .()()f x f x --是奇函数 D .()()f x f x +-是奇函数 【答案】C【解析】A 选项:设()()()F x f x f x =-,()()()()F x f x f x F x -=-=,则()()f x f x -为偶函数,A 错误;B 选项:设()()()G x f x f x =-,则()()()G x f x f x -=-,()G x 与()G x -关系不定,即不确定()()f x f x -的奇偶性,B 错误;C 选项:设()()()M x f x f x =--,则()()()()M x f x f x M x -=--=-, 则()()f x f x --为奇函数,C 正确;D 选项:设()()()N x f x f x =+-,则()()()()N x f x f x N x -=-+=, 则()()f x f x +-为偶函数,D 错误.故选:C.题型九 利用函数的奇偶性求值或求参【例9】若函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,则a b +=___________.【答案】12-【解析】因为函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,所以320a a ++=,得12a =-,又()()f x f x -=-,即323211()()()22x b x x x bx x -----=-++,即220bx =恒成立,所以0b =,所以12a b +=-. 故答案为:12-.【变式9-1】若函数()()()325x x a f xx +-=为奇函数,则=a ( )A .12 B .23 C .34D .1 【答案】B【解析】根据题意得()()()()()323255x x a x x a f x xx-+---++==--,因为函数()()()325x x a f xx +-=为奇函数,所以()()f x f x -=-,即()()()()323255x x a x x a x x-+++-=-,整理得:()640a x -=,所以640a -=,解得23a =.故选:B【变式9-2】已知函数()()32121f x a x x =-+-是偶函数,则a =______.【答案】1【解析】函数()()32121f x a x x =-+-是偶函数,则()()11f f -=,即()121121a a -+-=-+--,解之得1a = 经检验符合题意. 故答案为:1【变式9-3】已知函数()f x 是定义在R 上的奇函数,当0x >时,()(1)f x x x =+,那么()1f -等于( )A .﹣2B .﹣1C .0D .2 【答案】A【解析】因为0x >时,()(1)f x x x =+,可得()1122f =⨯=,又因为函数()f x 是定义在R 上的奇函数,可得()()112f f -=-=-.故选:A.【变式9-4】设()f x 是定义域为()2,2-的奇函数,当02x ≤<时,()122f x x m x =++-(m 为常数),则()1f -=( )A .53- B .53 C .32- D .32【答案】C【解析】因为()f x 是定义域为()2,2-的奇函数,所以()00f =,因为当02x ≤<时,()122f x x m x =++-, 所以()1002f m =-+=,解得12m =, 所以当02x ≤<时,()11222f x x x =++-,所以()()13111222f f ⎛⎫-=-=--++=- ⎪⎝⎭.故选:C.【变式9-5】设函数()()23211x x f x x ++=+在区间[]22-,上的最大值为M ,最小值为N ,则()20221M N +-的值为______.【答案】1【解析】由题意知,()32211x xf x x +=++([]2,2x ∈-), 设()3221x xg x x ++=,则()()1f x g x =+,因为()()3221x xg x g x x ---==-+,所以()g x 为奇函数, ()g x 在区间[]22-,上的最大值与最小值的和为0, 故2M N +=,所以()()202220221211M N +-=-=.题型十 利用函数的奇偶性求解析式【例10】设()f x 为奇函数,且当0x ≥时,2()f x x x =+,则当0x <时,()f x =( )A .2x x +B .2x x -+C .2x x -D .2x x -- 【答案】B【解析】设0x <,则0x ->,所以()2f x x x -=-,又()f x 为奇函数,所以()()()22f x f x x x x x =--=--=-+, 所以当0x <时,()2f x x x =-+.故选:B.【变式10-1】函数()f x 为偶函数,当()0,x ∈+∞时,()227f x x x =-,则当(),0x ∈-∞时,()f x =( )A .()227f x x x =-+B .()227f x x x =--C .()227f x x x =-D .()227f x x x =+ 【答案】D【解析】设(),0x ∈-∞,则()0,x -∈+∞,则()()()222727f x x x x x -=---=+,因为函数()f x 为偶函数,则当(),0x ∈-∞时,()()227f x f x x x =-=+.故选:D.【变式10-2】已知()f x 是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则当0x <时,()f x =( )A .2x x -B .2x x +C .2x x -+D .2x x -- 【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()00f =,即()010f a =+=,解得1a =-,当0x ≥时,()2f x x x =-,当0x <时,0x ->,则()()22f x x x x x -=-+=+,因为()f x 是奇函数,所以()()2f x f x x x =--=--.故选:D .【变式10-3】若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=(e为无理数, 2.71828e =⋅⋅⋅),则()g x =( )A .e e x x --B .()1e e 2x x -+ C .()1e e 2x x -- D .()1e e 2x x -- 【答案】D【解析】由()()e xf xg x +=可得()()e x f x g x --+-=,根据()f x 与()g x 的奇偶性可得()()()()e xf xg x f x g x --+-=-=,故()()()()e e x xf xg x f x g x ---+=-⎡⎤⎣⎦.整理得()2e e x xg x --=-,即()()1e e 2x xg x -=-.故选:D.题型十一 利用单调性奇偶性解不等式【例11】定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是( )A .12m <- B .12m > C .112m -≤< D .122m <≤ 【答案】C【解析】∵()f x 是偶函数,()()()f x f x f x ∴=-=,故(1)()f m f m -<可变形为(1)()f m f m -<,∵()f x 在区间[]0,2上单调递减,故212131222212112m m m m m m m m ⎧⎧⎪⎪-≤-≤-≤≤⎪⎪-≤≤⇒-≤≤⇒-≤<⎨⎨⎪⎪->⎪⎪<⎩⎩.故选:C.【变式11-1】若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是__________.【答案】[]1,2【解析】因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增,又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥,则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤,所以原不等式的解集为[]1,2. 故答案为:[]1,2【变式11-2】函数()f x 是定义在()1,1-上的奇函数且单调递减,若2(2)(4)0,f a f a -+-<则a 的取值范围是( )A .)5,3 B .(3)(2,)-∞⋃+∞ C .()3,2 D .()3,2-【答案】C【解析】函数()f x 是定义在()1,1-上的奇函数且单调递减,2(2)(4)0f a f a -+-<可化为2(2)(4)f a f a -<-则2212114124a a a a -<-<⎧⎪-<-<⎨⎪->-⎩32a <故选:C【变式11-3】奇函数()2f x +是定义在()3,1--上的减函数,若()()1320f m f m -+-<,则实数m 的取值范围为______. 【答案】()1,2【解析】由题意知,函数()2f x +的定义域为()3,1--,所以函数()f x 的定义域为()1,1-,所以1111321m m -<-<⎧⎨-<-<⎩,解得12m <<.又奇函数()2f x +是()3,1--上的减函数,所以()f x 是()1,1-上的奇函数,且在()1,1-上单调递减. 由()()1320f m f m -+-<,得()()132f m f m -<--, 所以()()123f m f m -<-,所以123m m ->-,解得2m <.综上,12m <<. 故答案为:()1,2.【变式11-4】已知函数()f x 是定义在R 上的偶函数,若1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()21210mf m m f m --->的解集为( )A .(),1-∞-B .(),1-∞C .()1,+∞D .()1,-+∞ 【答案】C【解析】令()()g x xf x =,因为函数()f x 是定义在R 上的偶函数,所以()()()()g x xf x xf x g x -=--=-=-,即()g x 是定义在R 上奇函数.又1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()()()11221212120x f x x f x g x g x x x x x --=<--成立,所以()g x 在[)0,∞+上单调递减,又()g x 是定义在R 上奇函数,所以()g x 在R 上单调递减,所以()()()()()2121210mf m m f m g m g m ---=-->,即()()21g m g m >-, 所以21m m <-,解得1m.故A ,B ,D 错误.故选:C .题型十二 利用单调性奇偶性比较大小【例12】定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则下列判断正确的是( )A .311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113422f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .311242f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131224f f f ⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A【解析】因为()f x 为偶函数,所以11()()22f f -=,33()()22f f -=,又113422<<,且()f x 在(0,)+∞上是减函数, 所以311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A【变式12-1】已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①()(),x f x f x ∀∈-=R ;②()12,0,x x ∀∈+∞,当12x x ≠时,()()2112120x f x x f x x x ->-.记()1a f =,()33f b -=,()55f c =,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a << 【答案】B【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,()()2112120x f x x f x x x ->-,即()()1212120f x f x x x x x ->-,所以函数()f x x 在(0,)+∞上单调递增. 又x ∀∈R ,()()f x f x -=,所以函数()f x 是R 上的偶函数, 所以()()3333f f -=,则有()()()135135f f f <<,所以a b c <<,故选:B .【变式12-2】已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 【答案】B【解析】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >, ∴函数()f x 在(1,)+∞上为单调增函数, ∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B .【变式12-3】已知()f x 对于任意R x ∈都有(2)()f x f x +=,且()f x 在区间[)0,2上是单调递增的,则( 6.5),(1),(0)f f f --的大小关系是( ) A .(1)(0)( 6.5)f f f -<<- B .( 6.5)(0)(1)f f f -<<- C .(1)( 6.5)(0)f f f -<-< D .(0)(1)( 6.5)f f f <-<- 【答案】D 【解析】()f x 对于任意R x ∈都有(2)()f x f x +=,∴()f x 周期为2,偶函数()f x 在区间[)0,2上是单调递增,( 6.5)(1.5)f f ∴-=,(1)(1)f f -=,(0)(1)(1.5)f f f ∴<<,即(0)(1)( 6.5)f f f <-<-故选:D题型十三 利用函数的周期性求值【例13】已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255- 【答案】B【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B【变式13-1】已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022 【答案】A【解析】(2)()(2)()x f x f f f x x -=∴+=-,又()()f x f x -=-,(2)()()f x f x f x ∴+=-=-,∴函数的周期4T =.又函数()f x 是定义域为R 的奇函数,(0)0f ∴=,(2)(0)0f f ∴==,(3)(1)(1)2f f f =-=-=-,(4)(0)0f f ==(1)(2)(3)(4)20200f f f f +++=+-+=∴,又202250542=⨯+(1)(2)(3)(2022)5050(1)(2)2f f f f f f ∴++++=⨯++=.故选:A.【变式13-2】已知函数()1y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=当(]0,2x ∈时,()2f x x =+.则()2022f =( )A .1-B .1C .2D .2- 【答案】D【解析】函数()1y f x =+的图象关于直线3x =-对称,∴函数()y f x =的图象关于直线2x =-对称,()()22f x f x ∴-+=--,取2x x =+可得()()2222f x f x -++=--+⎡⎤⎣⎦, ∴()()4f x f x =--又对x ∀∈R 有()()2f x f x +-=, 取4x x =--可得()()442f x f x --++=,所以()()()42f x f x f x =--=--.,()()424f x f x --=-+,()()4f x f x ∴+=-,()()()444f x f x f x ⎡⎤∴++=--=⎣⎦,即()()8f x f x +=,()f x ∴的周期8T =()()()()()()()2022252866242222222f f f f f f ∴=⨯+==+=-=-=-+=-.故选:D.【变式13-3】设函数()f x 的定义域为R ,()12f x +-为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()011f f -+=,则20232⎛⎫= ⎪⎝⎭f ________. 【答案】34【解析】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,函数()f x 关于点()1,2对称,又定义域为R ,则有()12f =;又()2f x +为偶函数,可得()()22f x f x +=-+,函数()f x 关于直线2x =对称,()()()4242f x f x f x =--=-+,又()()24f x f x +=--,则()()f x f x =-,则()()()222f x f x f x +=-+=-,函数()f x 周期为4,则202311131012422222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-==- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 由上可得()()()()1,041424f f a b f f a b ==+=-=---,则2441a b a b a b +=⎧⎨++--=⎩,解得11a b =⎧⎨=⎩,则39131244f ⎛⎫=+= ⎪⎝⎭,则2023334224f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:34.题型十四 抽象函数综合问题【例4】函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立. (1)证明函数f (x )的奇偶性;(2)若f (1)= -2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->-- 【答案】(1)证明见解析;(2)4;(3){|2x x <-或1}x >-【解析】(1)令x =y =0得f (0)=0,再令y =—x 即得f (-x )=-f (x ), ∴()f x 是奇函数.(2)设任意12,R x x ∈,且12x x <,则210x x ->,由已知得21()0f x x -<①,又212121()()()()()f x x f x f x f x f x -=+-=-②, 由①②可知12()()f x f x >,由函数的单调性定义知f (x )在(-∞,+∞)上是减函数,∴x ∈[-2,2]时,[]max ()(2)(2)(11)2(1)4f x f f f f =-=-=-+=-=, ∴f (x )当x ∈[-2,2]时的最大值为4.(3)由已知得:[]2(2)(4)2()(2)f x f x f x f -->--,由(1)知f (x )是奇函数, ∴上式又可化为:[]2(24)2(2)(2)(2)(24)f x x f x f x f x f x -->+=+++=+,由(2)知f (x )是R 上的减函数, ∴上式即:22424x x x --<+, 化简得(2)(1)0x x ++>,∴ 原不等式的解集为{|2x x <-或1}x >-.【变式14-1】已知函数()f x 的定义域是()0,∞+,对定义域内的任意12x x , 都有()()()1212f x x f x f x =+,且当01x <<时,()0f x >.(1)证明:当1x >时,()0f x <; (2)判断()f x 的单调性并加以证明;(3)如果对任意的()12,0,x x ∈+∞ ,()()()221212f x x f a f x x +≤+恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)函数()f x 单调递减,证明见解析;(3)(]0,2a ∈ 【解析】(1)(1)(1)(1)(1)0f f f f =+⇒=;1(1)()()0f f x f x=+=;当()0,1x ∈时,()11,x ∈+∞;()10()0f x f x>⇒<; ∴当1x >时,()0f x <.(2)单调递减.证明:()1212,0,x x x x ∀∈+∞<,且()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭12x x <,211x x ∴>,210x f x ⎛⎫∴< ⎪⎝⎭,即()()12f x f x > ∴()f x 单调递减(3)函数()f x 的定义域是()0,∞+0a ∴>;()()()()()222212121212f x x f a f x x f x x f ax x +≤+⇒+≤恒成立;由(2),()f x 单调递减,221212x x ax x +≥恒成立,221212x x a x x +≤恒成立,因为22121212212x x x x x x x x +=+≥,当且仅当12x x =时等号成立,所以2a ≤; 又()f a 有意义,所以0a > 综上:(]0,2a ∈.【变式14-2】已知函数()f x 对任意,R x y ∈,都有()()()1f x y f x f y +=+-,且当0x >时,()1f x >.(1)求证:()f x 在R 上是增函数;(2)若关于a 的方程2(75)2f a a +-=的一个实根是1,求(6)f 的值;(3)在(2)的条件下,已知R m ∈,解关于x 的不等式()(2)3f mx f x ->+. 【答案】(1)证明见解析;(2)3;(3)详见解析【解析】(1)依题意()()()1f x y f x f y +=+-,且0x >时,()1f x >,令0x y ==,则()()()()0001,01f f f f =+-=,()()()()()1,2f x x f x f x f x f x -+=-+--+=,任取12x x <,()()()()121211f x f x f x f x x x -=--+()()()()12112111f x f x x f x f x x =--+-=--+⎡⎤⎣⎦,由于210x x ->,所以()211f x x ->,所以()()()()12120,f x f x f x f x -<<,所以()f x 在R 上递增. (2)由(1)知,()f x 在R 上递增,()()217532f f +-==,()()()()6333313f f f f =+=+-=.(3)依题意()()()1f x y f x f y +=+-,()f x 在R 上递增,()(2)3f mx f x ->+.()(2)12f mx f x -->+,()()()22,23f mx x f mx x f +->+->,()23,15mx x m x +->+>,当1m =-时,不等式的解集为空集. 当1m <-时,不等式的解集为5|1x x m ⎧⎫<⎨⎬+⎩⎭. 当1m >-时,不等式的解集为5|1x x m ⎧⎫>⎨⎬+⎩⎭.【变式14-3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且1()12f =-当0x >时,()0.f x < (1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明; (3)如果()(2)2f x f x >-,求x 的取值范围;【答案】(1)0;(2)函数()f x 是定义在R 上的减函数,详见解析;(3)1x >-. 【解析】(1)令0x y ==,则()()()0000f f f -=-,∴()00f =;(2)函数()f x 是定义在R 上的减函数,设12,R x x ∀∈,且12x x >,则120x x ->, ∴()()()1212f x x f x f x -=-, ∵当0x >时,()0.f x <∴()120f x x -<,即()()120f x f x -< ∴()()12f x f x <,∴函数()f x 是定义在R 上的减函数;(3)∵()()()f x y f x f y -=-∴()()()00f x f f x -=-,又()00f =, ∴()()f x f x =--, ∴函数()f x 是奇函数,∵()()()f x y f x f y -=-,1()12f =-∴111112222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫--=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴()()(2)2(2)1(21)f x f x f x f f x >-=--=+, 又函数()f x 是定义在R 上的减函数, ∴21xx ,即1x >-,∴x 的取值范围为1x >-.题型十五 幂函数的图象性质【例15】现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( ) A .1 B .2 C .3 D .4 【答案】B【解析】幂函数满足ay x =形式,故3y x =,y x =满足条件,共2个故选:B【变式15-1】(多选)已知幂函数232()(21)m m f x a x -+=-,其中,a m R ∈,则下列说法正确的是( )A .1a =B .()f x 恒过定点(1,1)C .若3m =时,()y f x =关于y 轴对称D .若112m <<时,(2)(1)f f < 【答案】ABC【解析】因为232()(21)m m f x a x -+=-为幂函数,所以211a -=,解得1a =,故A 正确;则232()m m f x x -+=,故恒过定点(1,1),故B 正确;当3m =时,2()f x x =,22()()()f x x x f x -=-==,所以()y f x =为偶函数,则()y f x =关于y 轴对称,故C 正确; 当112m <<时,2320m m -+>,则()f x 在(0,)+∞上为增函数, 所以(2)(1)f f >,故D 错误.故选:ABC【变式15-2】图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是( )A .12,3,1-B .1-,3,12C .12,1-,3 D .1-,12,3【答案】D【解析】由题图知:10α<,201α<<,31α>,所以1α,2α,3α依次可以是1-,12,3.故选:D【变式15-3】当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数,则m =_________. 【答案】2【解析】函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减, 可得2230m m --<,可得2m =, 故答案为:2【变式15-4】已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.【答案】4【解析】由题意可得23310m m m ⎧--=⎨>⎩,解得4m =故答案为:4.【变式15-5】已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围.【答案】(1)()3f x x =;(2)2,3⎛⎫-∞ ⎪⎝⎭【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.题型十六 简单函数模型的应用【例16】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;。

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元测试卷第三章函数的概念和性质知识梳理1. 知识系统整合2. 规律方法收藏1.同一函数的判定方法(1)定义域相同;(2)对应关系相同(两点必须同时具备).2.函数解析式的求法(1)定义法;(2)换元法;(3)待定系数法;(4)解方程(组)法;(5)赋值法.3.函数的定义域的求法(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.(3)复合函数问题①若函数f(x)的定义域为[a,b],函数f[g(x)]的定义域应由a≤g(x)≤b 解出;②若函数f[g(x)]的定义域为[a,b],则函数f(x)的定义域为函数g(x)在[a,b]上的值域.注意:①函数f(x)中的x与函数f[g(x)]中的g(x)地位相同.②定义域所指永远是x的范围.4.函数值域的求法(1)配方法(二次或四次);(2)判别式法;(3)换元法;(4)函数的单调性法.5.判断函数单调性的步骤(1)设x1,x2是所研究区间内任意两个自变量的值,且x1<x2;(2)判定f(x1)与f(x2)的大小:作差比较或作商比较;(3)根据单调性定义下结论.6.函数奇偶性的判定方法首先考查函数的定义域是否关于原点对称,再看函数f(-x)与f(x)之间的关系:①若函数f(-x)=f(x),则f(x)为偶函数;若函数f(-x)=-f(x),则f(x)为奇函数;②若f(-x)-f(x)=0,则f(x)为偶函数;若f(x)+f(-x)=0,则f(x)为奇函数;③若f(x)f(-x)=1(f(-x)≠0),则f(x)为偶函数;若f(x)f(-x)=-1(f(-x)≠0),则f(x)为奇函数.7.幂函数的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,图象最多只能同时出现在两个象限内,至于是否在第二、三象限内出现,则要看幂函数的奇偶性.(2)幂函数的图象在第一象限内的变化规律为:在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大,直线x =1的左侧,图象从下到上,相应的指数由大到小.8.函数的应用解决函数应用题关键在于理解题意,提高阅读能力.一方面要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面,要不断拓宽知识面,增加间接的生活阅历,诸如了解一些物价、行程、产值、利润、环保等实际问题,及有关角度、面积、体积、造价的问题,培养实际问题数学化的意识和能力.3 学科思想培优一、函数的定义域函数的定义域是指函数y =f (x )中自变量x 的取值范围.确定函数的定义域是进一步研究函数其他性质的前提,而研究函数的性质,利用函数的性质解决数学问题是中学数学的重要组成部分.所以熟悉函数定义域的求法,对于函数综合问题的解决起着至关重要的作用.[典例1] (1)函数f (x )=x x -132+(3x -1)0的定义域是( )A.)31,(-∞B.)131(,C.)3131(,-D.)31,(-∞∪)131(,(2)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A.]25,0[ B .[-1,4]C.[-5,5] D .[-3,7] 【答案】(1)D (2)A【解析】(1)由题意,得⎩⎨⎧≠->-01301x x ,解得x <1且x ≠31.(2)设u =x +1,由-2≤x ≤3,得-1≤x +1≤4,所以y =f (u )的定义域为[-1,4].再由-1≤2x -1≤4,解得0≤x ≤25,即函数y =f (2x -1)的定义域是]25,0[ 二、分段函数问题所谓分段函数是指在定义域的不同子区间上的对应关系不同的函数.分段函数是一个函数而非几个函数,其定义域是各子区间的并集,值域是各段上值域的并集.分段函数求值等问题是高考常考的问题.[典例2] 已知实数a ≠0,函数f (x )=⎩⎨⎧≥--<+1,21,2x a x x a x 若f (1-a )=f (1+a ),则a 的值_____.【答案】-43【解析】①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-23(舍去); ②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得-(1-a )-2a =2(1+a )+a ,解得a =-43,符合题意.综上所述,a =-43. 三、函数的单调性与奇偶性单调性是函数的一个重要性质,某些数学问题,通过函数的单调性可将函数值间的关系转化为自变量之间的关系进行研究,从而达到化繁为简的目的,特别是在比较大小、证明不等式、求值或求最值、解方程(组)等方面应用十分广泛.奇偶性是函数的又一重要性质,利用奇偶函数图象的对称性可以缩小问题研究的范围,常能使求解的问题避免复杂的讨论.[典例3]设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y +=+,112f ⎛⎫= ⎪⎝⎭,当0x >时,()0f x >. (1)求(0)f 的值; (2)判断函数的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.【解析】(1)令0x y ==,则(0)(0)(0)f f f =+,∴(0)0f =.(2)令y x =-,得(0)()()0f f x f x =+-=, ∴()()f x f x -=-,故函数()f x 是R 上的奇函数. (3)任取12,R x x ∈且12x x <,则210x x ->. ∵()()21f x f x -()()2111f x x x f x =-+- ()()()2111f x x f x f x =-+- ()210f x x =->,∴()()12f x f x <.故()f x 是R 上的增函数.∵112f ⎛⎫= ⎪⎝⎭,∴()1111122222f f f f ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()(2)2f x f x ++<∴[]()(2)((2)(22)(1)f x f x f x x f x f ++=++=+<.又由()y f x =是定义在R 上的增函数,得221x +<,解得21x <-四、函数图象及应用函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于函数图象正确地画出.函数图象广泛应用于解题过程中,利用数形结合解题具有直观、明了、易懂的优点.[典例4] 设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:函数f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )的单调性; (4)求函数的值域.【解析】(1)证明:∵函数f (x )的定义域关于原点对称, 且f (-x )=(-x )2-2|-x |-1 =x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数. (2)当0≤x ≤3时,f (x )=x 2-2x -1=(x -1)2-2.当-3≤x <0时,f (x )=x 2+2x -1=(x +1)2-2.即f (x )=⎪⎩⎪⎨⎧<≤--+≤≤--)03(2)1()30(,2)1(22x x x x 根据二次函数的作图方法,可得函数图象如下图.(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1)和[0,1)上单调递减, 在[-1,0)和[1,3]上单调递增.(4)当0≤x ≤3时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2;当-3≤x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2.故函数f (x )的值域为[-2,2].五、幂函数的图象问题对于给定的幂函数图象,能从函数图象的分布、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性等性质.注意图象与函数解析式中指数的关系,能够根据图象比较指数的大小.[典例5] 如图是幂函数y =x a ,y =x b ,y =x c ,y =x d 在第一象限内的图象,则a ,b ,c ,d 的大小关系为( )A.a <b <c <dB.a <b <d <cC.b <a <c <dD.b <a <d <c 【答案】A【解析】由幂函数的图象特征可知,在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大.故选A.六、函数模型及其应用建立恰当的函数模型解决实际问题的步骤:(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示;(2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域; (3)求解函数模型,并还原为实际问题的解.[典例6] 已知A ,B 两城市相距100 km ,在两地之间距离A 城市x km 的D 处修建一垃圾处理厂来解决A ,B 两城市的生活垃圾和工业垃圾.为保证不影响两城市的环境,垃圾处理厂与市区距离不得少于10 km.已知垃圾处理费用和距离的平方与垃圾量之积的和成正比,比例系数为0.25.若A 城市每天产生的垃圾量为20 t ,B 城市每天产生的垃圾量为10 t .(1)求x 的取值范围;(2)把每天的垃圾处理费用y 表示成x 的函数;(3)垃圾处理厂建在距离A 城市多远处,才能使每天的垃圾处理费用最少? 【解析】(1)由题意可得x ≥10,100-x ≥10. 所以10≤x ≤90.所以x 的取值范围为[10,90].(2)由题意,得y =0.25[20x 2+10(100-x )2],即y =215x 2-500x +25000(10≤x ≤90). (3)由y =215x 2-500x +25000=350000)3100(2152+-x (10≤x ≤90),则当x =3100时,y 最小.即当垃圾处理厂建在距离A 城市3100km 时,才能使每天的垃圾处理费用最少.《第三章 函数的概念和性质》单元测试卷(一)基础测评卷(时间:120分钟,满分:150分)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=-3x +2,则f (2x +1)等于( B ) A .-3x +2 B .-6x -1 C .2x +1 D .-6x +5【答案】B【解析】在f (x )=-3x +2中,用2x +1替换x ,可得f (2x +1)=-3(2x +1)+2=-6x -3+2=-6x -1.2.函数1()f x x=的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞D .[1,0)(0,)-+∞【答案】D【解析】由题意可得:10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选:D3.已知21,[1,0),()1,[0,1],x x f x x x +∈-⎧=⎨+∈⎩则函数()y f x =-的图象是( ) A .B .C . D .【答案】A【解析】当0x =时,依函数表达式知2(0)(0)011f f -==+=,可排除B ;当1x =时,(1)(1)10f -=-+=,可排除C 、D .故选A4.已知函数y =21,02,0x x x x ⎧+≤⎨->⎩,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52- 【答案】C【解析】当0x ≤时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-,故选C.5.某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为 ()A .y 10x ⎡⎤=⎢⎥⎣⎦B .3y 10x +⎡⎤=⎢⎥⎣⎦C .4y 10x +⎡⎤=⎢⎥⎣⎦D .5y 10x +⎡⎤=⎢⎥⎣⎦【答案】B【解析】根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为310x y +⎡⎤=⎢⎥⎣⎦,也可以用特殊取值法,若56,5x y ==,排除C ,D ,若57,6x y ==,排除A ,故选B .6.设函数f (x )(x ∈R)为奇函数,f (1)=21,f (x +2)=f (x )+f (2),则f (5)等于( C )A .0B .1C .25D .5【答案】C【解析】令x =-1,得f (1)=f (-1)+f (2).∵f (x )为奇函数,∴f (-1)=-f (1),∴f (1)=-f (1)+f (2),∴21=-21+f (2),∴f (2)=1.令x =1,得f (3)=f (1)+f (2)=21+1=23.令x =3,得f (5)=f (2)+f (3)=257.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C【解析】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<.故选:C 8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( C )A .-6B .6C .-8D .8【答案】C【解析】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),故f (x )关于x =-2对称,f (x )=m 的根关于x =-2对称,∴x 1+x 2+x 3+x 4=4×(-2)=-8.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列各组函数表示的是同一个函数的是( BD )A .f (x )=32x -与g (x )=x ·x 2-B .f (x )=|x |与g (x )=x 2C .f (x )=x +1与g (x )=x +x 0D .f (x )=x x与g (x )=x 0【答案】BD【解析】对于A ,f (x )=32x -与g (x )=x ·x 2-的对应关系不同,故f (x )与g (x )表示的不是同一个函数;对于B ,f (x )=|x |与g (x )=x 2的定义域和对应关系均相同,故f (x )与g (x )表示的是同一个函数;对于C ,f (x )的定义域为R ,g (x )的定义域为{x |x ≠0},故f (x )与g (x )表示的不是同一个函数;对于D ,f (x )=x x与g (x )=x 0的对应关系和定义域均相同,故f (x )与g (x )表示的是同一个函数.10.下列函数既是定义域上的减函数又是奇函数的是( BD )A .f (x )=x 1B .f (x )=-x 3C .f (x )=x |x |D .f (x )=-3x【答案】BD【解析】A .f (x )=x 1在定义域(-∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足题意;对于B ,f (x )=-x 3在定义域R 上是奇函数,且是减函数,∴满足题意,对于C ,f (x )=x |x |=⎪⎩⎪⎨⎧<-≥0,0,22x x x x ,在定义域R 上是奇函数,且是增函数,∴不满足题意;对于D ,f (x )=-3x 在定义域R 上是奇函数,且是减函数,∴满足题意.故选BD .11.已知函数f (x )=31++-x x ,则( ABD ) A .f (x )的定义域为[-3,1] B .f (x )为非奇非偶函数 C .f (x )的最大值为8 D .f (x )的最小值为2【答案】ABD【解析】由题设可得函数的定义域为[-3,1],f 2(x )=4+2×322+--x x=4+2×2)1(4+-x ,而0≤2)1(4+-x ≤2,即4≤f 2(x )≤8,∵f (x )>0,∴2≤f (x )≤22,∴f (x )的最大值为22,最小值为2,故选ABD .12.下列说法正确的是( )A .若方程x 2+(a -3)x +a =0有一个正实根,一个负实根,则a <0B .函数f (x )=2211x x -+-是偶函数,但不是奇函数C .若函数f (x )的值域是[-2,2],则函数f (x +1)的值域为[-3,1]D .曲线y =|3-x 2|和直线y =a (a ∈R)的公共点个数是m ,则m 的值不可能是1【答案】AD【解析】设方程x 2+(a -3)x +a =0的两根分别为x 1,x 2,则x 1·x 2=a <0,故A 正确;函数f (x )=2211x x -+-的定义域为⎪⎩⎪⎨⎧≥-≥-010122x x ,则x =±1,∴f (x )=0,所以函数f (x )既是奇函数又是偶函数,故B 不正确;函数f (x +1)的值域与函数f (x )的值域相同,故C 不正确;曲线y =|3-x 2|的图像如图,由图知曲线y =|3-x 2|和直线y =a 的公共点个数可能是2,3或4,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.若函数()(31)4,1,1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围【答案】11,83⎡⎫⎪⎢⎣⎭【解析】因为函数()f x 是定义在R 上的减函数,所以3100314a a a a a -<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<. 14.函数f (x )=x x+-11的定义域为___,单调递减区间为___.【答案】(-∞,-1)∪(-1,+∞),(-∞,-1)【解析】函数f (x )的定义域为(-∞,-1)∪(-1,+∞).任取x 1,x 2∈(-1,+∞)且x 1<x 2,则f (x 1)-f (x 2)=)1)(1()22121x x x x ++-(>0,即f (x 1)>f (x 2),故f (x )在(-1,+∞)上为减函数;同理,可得f (x )在(-∞,-1)上也为减函数.15.函数y =f (x )是R 上的增函数,且y =f (x )的图像经过点A (-2,-3)和B (1,3),则不等式|f (2x -1)|<3的解集为____.【答案】1(,1)2-【解析】因为y =f (x )的图像经过点A (-2,-3)和B (1,3),所以f (-2)=-3,f (1)=3.又|f (2x -1)|<3,所以-3<f (2x -1)<3,即f (-2)<f (2x -1)<f (1).因为函数y =f (x )是R 上的增函数,所以-2<2x -1<1,即⎩⎨⎧<-->-112212x x ,即⎪⎩⎪⎨⎧<->121x x ,所以-21<x <1.16.对于任意定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.现给定一个实数a ∈(4,5),则函数f (x )=x 2+ax +1的不动点共有___个.【答案】2【解析】由定义,令x 2+ax +1=x ,则x 2+(a -1)x +1=0,当a ∈(4,5)时,Δ=(a -1)2-4>0,所以方程有两根,相应地,函数f (x )=x 2+ax +1(a ∈(4,5))有2个不动点.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知幂函数39*()m y x m N -=∈的图象关于y 轴对称且在()0,∞+上单调递减,求满足()()33132mm a a +<---的a 的取值范围.【解析】因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<, 解得3m <.又因为*m N ∈,所以1m =,2; 因为函数的图象关于y 轴对称, 所以39m -为偶数,故1m =. 则原不等式可化为()()1133132a a +<---,因为13y x-=在(),0-∞,()0,∞+上单调递减,所以1320a a +>->或3210a a -<+<或1032a a +<<-, 解得2332a <<或1a <-. 故a 的取值范围是1a <-或2332a <<. 18.(10分)已知函数21()1x f x x -=+(1)试判断函数在(-1,+∞)上的单调性,并给予证明;(2)试判断函数在[3,5]x ∈的最大值和最小值 【解析】(1)∵()213211x y f x x x -===-++, ∴函数()f x 在()1,-+∞上是增函数, 证明:任取1x ,()21x ∈-+∞,,且12x x <, 则()()1212213333221111f x f x x x x x ⎛⎫⎛⎫-=---=- ⎪ ⎪++++⎝⎭⎝⎭()()()1212311x x x x -=++, ∵121x x -<<,∴120x x -<,()()12110x x ++>, ∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()1,-+∞上是增函数. (2)∵()f x 在()1,-+∞上是增函数, ∴()f x 在[3]5,上单调递增, 它的最大值是()25135512f ⨯-==+,最小值是()23153314f ⨯-==+. 19.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求函数f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.【解析】(1)∵f (x )的两个零点是-3和2,∴-3和2是方程ax 2+(b -8)x -a -ab =0的两根,∴有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③将③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0.∵a ≠0,∴a =-3,∴b =a +8=5,∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3(x +21)2+43+18.图像的对称轴是直线x =-21.∵0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18,∴此时函数f (x )的值域是[12,18].20.(12分)已知函数())1f x a =≠. (1)若0a >,求()f x 的定义域;(2)若()f x 在区间(]0,1上是减函数,求实数a 的取值范围. 【解析】(1)当0a >且1a ≠时,由30ax -≥得3x a≤,即函数()f x 的定义域是3,a ⎛⎤-∞ ⎥⎝⎦.(2)当10a ->即1a >时,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1上为减函数,即0a -<,并且且310a -⨯≥,解得13a ;当10a -<即1a <时 ,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1为增函数,即0a -> 并且310a -⨯≥,解得0a <综上可知,所求实数a 的取值范围是()(],01,3-∞.21.(12分)已知函数f (x )=x mx+,且此函数图象过点(1,2). (1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)讨论函数f (x )在(0,1)上的单调性,并证明你的结论. 【解析】(1)∵函数f (x )=x mx+,且此函数图象过点(1,2), ∴2=1+m , ∴m =1;(2)f (x )=x 1x +,定义域为:()()00-∞⋃+∞,,, 又f (﹣x )=﹣x 1x+=--f (x ), ∴函数f (x )是奇函数;(3)函数f (x )在(0,1)上单调递减, 设0<x 1<x 2<1, 则()()()()211212121212121212111x x x x f x f x x x x x x x x x x x x x ---=+--=-+=-⋅⋅⋅, ∵0<x 1<x 2<1,∴x 1﹣x 2<0,0<x 1x 2<1,x 1x 2﹣1<0, ∴()()()1212121210x x f x f x x x x x --=-⋅>, 即f (x 1)>f (x 2),∴f (x )在(0,1)上的单调递减.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好为51元? (2)当销售商一次订购x 个零件时,该厂获得的利润为P 元,写出P =f (x )的表达式.【解析】(1)设每个零件的实际出厂价格恰好为51元时,一次订购量为x 0个,则60-0.02(x 0-100)=51,解得x 0=550,所以当一次订购量为550个时,每个零件的实际出厂价恰好为51元.(2)设一次订量为x 个时,零件的实际出厂单价为W ,工厂获得利润为P ,由题意P =(W -40)·x ,当0<x ≤100时,W =60;当100<x <550时,W =60-0.02(x -100)=62-50x;当x ≥550时,W =51.当0<x ≤100时, f (x )=(60-40)x =20x ;∴当100<x <550时, f (x )=(22-50x )x =22x -501x 2;当x ≥550时, f (x )=(51-40)x =11x .故f (x )=⎪⎪⎩⎪⎪⎨⎧∈≥∈<<-∈≤<+++),550(,11),550100(5022),1000(202N x x x N x x x x N x x x《第三章 函数的概念和性质》单元测试卷(二)能力测评卷(时间:120分钟,满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,既是奇函数又是在其定义域上是增函数的是( )A .y =x +1B .y =-x 3C .y =x 1D .y =x |x |【答案】D【解析】选项A 中,函数为非奇非偶函数,不符合题意;选项B 中,函数为奇函数,但在定义域为减函数,不符合题意;选项C 中,函数为奇函数,但在定2.已知幂函数y =f (x )的图象过点2,则下列结论正确的是( )A .y =f (x )的定义域为[0,+∞)B .y =f (x )在其定义域上为减函数C .y =f (x )是偶函数D .y =f (x )是奇函数3.函数f (x )=x x 2的定义域为( )A .(0,1)B .[0,1]C .(-∞,0]∪[1,+∞)D .(-∞,0)∪(1,+∞)【答案】D【解析】:由题意知:x 2-x >0,解得x <0或x >1,∴函数f (x )的定义域为(-∞,0)∪(1,+∞).4.已知函数f (3x +1)=x 2+3x +1,则f (10)=( ) A .30 B .19 C .6 D .20 【答案】B【解析】令x =3得f (10)=32+3×3+1=19.5.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A.(-∞,1] B.(-∞,-1) C.[1,+∞) D.(-∞,1)【答案】A【解析】由于f(x)=|x+a|的零点是x=-a,且在直线x=-a两侧左减右增,要使函数f(x)=|x+a|在(-∞,-1)上是单调函数,则-a≥-1,解得a≤1.故选A.6.为了节约用电,某城市对居民生活用电实行“阶梯电价”,计费方法如下:( ) A.475度 B.575度 C.595.25度 D.603.75度【答案】D【解析】不超过230度的部分费用为:230×0.5=115;超过230度但不超过400度的部分费用为:(400-230)×0.6=102,115+102<380;设超过400度的部分为x,则0.8x+115+102=380,∴x=203.75,故用电603.75度.7.已知函数y=x2-4x+5在闭区间[0,m]上有最大值5,最小值1,则m 的取值范围是( )A.[0,1] B.[1,2] C.[0,2] D.[2,4]【答案】D【解析】∵函数f(x)=x2-4x+5=(x-2)2+1的对称轴为x=2,此时,函数取得最小值为1,当x=0或x=4时,函数值等于5.又f(x)=x2-4x+5在区间[0,m]上的最大值为5,最小值为1,∴实数m的取值范围是[2,4],故选D.8.已知定义域为R的函数y=f(x)在(0,4)上是减函数,又y=f(x+4)是偶函数,则( )A.f(2)<f(5)<f(7) B.f(5)<f(2)<f(7)C.f(7)<f(2)<f(5) D.f(7)<f(5)<f(2)【答案】B【解析】因为y=f(x+4)是偶函数,所以f(x+4)=f(-x+4),因此f(5)=f(3),f(7)=f(1),因为y=f(x)在(0,4)上是减函数,所以f(3)<f(2)<f(1),f(5)<f(2)<f(7),选B.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数y=xα的定义域为R且为奇函数,则α可能的值为( )A.-1 B.1 C.2 D.3【答案】BD【解析】当α=-1时,幂函数y=x-1的定义域为(-∞,0)∪(0,+∞),A不符合;当α=1时,幂函数y=x,符合题意;当α=2时,幂函数y=x2的定义域为R且为偶函数,C不符合题意;当α=3时,幂函数y=x3的定义域为R且为奇函数,D符合题意.故选BD.10.某工厂八年来某种产品总产量y(即前x年年产量之和)与时间x(年)的函数关系如图,下列五种说法中正确的是( )A.前三年中,总产量的增长速度越来越慢B.前三年中,年产量的增长速度越来越慢C.第三年后,这种产品停止生产D.第三年后,年产量保持不变【答案】AC【解析】由题中函数图象可知,在区间[0,3]上,图象是凸起上升的,表明总产量的增长速度越来越慢,A正确;由总产量增长越来越慢知,年产量逐年减小,因此B错误;在[3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,因此C正确,D错误,故选AC.11.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列命题中正确的是( )A .f (-3.9)=f (4.1)B .函数f (x )的最大值为1C .函数f (x )的最小值为0D .方程f (x )-21=0有无数个根值可能是( )A .2B .3C .4D .5 【答案】ABC【解析】函数y =x 2-4x -4的部分图象如图,f (0)=f (4)=-4,f (2)=-8.因为函数y =x 2-4x -4的定义域为[0,m ],值域为[-8,-4],所以m 的取值范围是[2,4],故选ABC.三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若函数f (x )=12+++bx x a x 在[-1,1]上是奇函数,则f (x )的解析式为________.14.已知幂函数()221()33mm f x m m x--=-+在(0,)+∞上单调递增,则m 值为_____.【答案】2【解析】由题意可知2233110m m m m ⎧-+=⎪⎨-->⎪⎩,解得2m =,故答案为:215.若定义在R 上的奇函数()f x 满足()()4f x f x +=,()11f =,则()()()678f f f ++的值为_______.【答案】1-【解析】由于定义在R 上的奇函数()y f x =满足()()4f x f x +=,则该函数是周期为4的周期函数,且()11f =,则()()800f f ==,()()()7111f f f =-=-=-,()()()622f f f =-=,又()()22f f -=-,()20f ∴=,则()60f =,因此,()()()6781f f f ++=-. 16.已知函数()(),f x g x 分别是定义在R 上的偶函数和奇函数,()()23x f x g x +=⋅.则函数()f x =__________;关于x 不等式()()2240g x x g x ++->的解集__________.【答案】33x x -+ ()(),41,-∞-+∞【解析】函数()f x 、()g x 分别是定义在R 上的偶函数和奇函数, ∴()()f x f x -=,()()g x g x -=-,又()()23xf xg x +=⋅,…①∴()()23xf xg x --+-=⋅, 即()()23xf xg x --=⋅,…②由①②求得函数()33x x f x -=+,()33x xg x -=-. 易知()33x xg x -=-是定义域R 上的单调增函数,所以不等式()()2240g x x g x ++->可化为()()()2244g x x g x g x +>--=-,即224x x x +>-,整理得2340x x +->, 解得4x <-或1x >, 所以不等式的解集为()(),41,-∞-+∞, 故答案为33x x -+,()(),41,-∞-+∞四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=61x -,(1)求函数f(x)的定义域; (2)求f(-1), f(12)的值.【解析】(1)根据题意知x -1≠0且x +4≥0,∴x≥-4且x≠1, 即函数f(x)的定义域为[-4,1)∪(1,+∞).(2) ()6132f -==---f(12)=66412111-=--=3811-. 18.(12分)已知幂函数f (x )=(m 2-5m +7)·x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 【解析】(1)由题意得m 2-5m +7=1, 即m 2-5m +6=0,解得m =2或m =3. 又f (x )为偶函数,所以m =3,此时f (x )=x 2.(2)由(1)知,g (x )=x 2-ax -3,因为g (x )=x 2-ax -3在[1,3]上不是单调19.(12分)已知函数()2f x x =+, (1)若该函数在区间()-2∞,+上是减函数,求a 的取值范围. (2)若1a =-,求该函数在区间[1,4]上的最大值与最小值. 【解析】(1)因为函数()212112()222a x a ax af x a x x x ++-+-===++++在区间(2,)-+∞上是减函数,所以120a ->,解得12a <, 所以a 的取值范围1,2⎛⎫-∞ ⎪⎝⎭.(2)当1a =-时,13()122x f x x x -+==-+++,则()f x 在(),2-∞-和()2,-+∞上单调递减,因为[](),,421⊆-+∞,所以()f x 在[]1,4的最大值是()111012f -+==+,最小值是()4114422f -+==-+, 所以该函数在区间[]1,4上的最大值为0,最小值为12-.20.已知函数f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2+2x .(1)现已画出函数f (x )在y 轴左侧的图象,如图所示,请补全函数f (x )的图象;(2)求出函数f (x )(x >0)的解析式;(3)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 【解析】函数f(x)的图象如下:(2)因为f(x)为奇函数,则f(-x)=- f(x)∴当x 0>时,x 0-<∴f(-x)=- f(x)=()()2222x x x x ⎡⎤-+-=-⎣⎦故f(x)()220x x x =-+>(3)由(1)中图象可知:y=f(x)与y=a 的图象恰好有三个不同的交点1a ∴-<<121.已知函数2()4f x x =+. (1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[2,)+∞上单调递增;(2)当0a >时,解关于x 的不等式2()(1)2(1)f x a x a x >-++.【解析】(1)由题意得,124(),,[2,)g x x x x x=+∀∈+∞,且12x x <,则()()()()()121212121212121244444x x x x g x g x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由212x x >≥,得12120,40x x x x -<->.于是()()120g x g x -<,即()()12g x g x <所以函数()g x 在区间[2,)+∞上单调递增(2)原不等式可化为22(1)40ax a x -++>.因为0a >,故2(2)0x x a ⎛⎫--> ⎪⎝⎭. (i )当22a <,即1a >时,得2x a <或2x >. (ii )当22a=,即1a =时,得到2(2)0x ->,所以2x ≠;(iii )当22a >,即01a <<时,得2x <或2x a >.综上所述,当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭22. 2018年10月24日,世界上最长的跨海大桥—港珠澳大桥正式通车。

高中数学总复习 函数性质的综合应用

高中数学总复习 函数性质的综合应用
√C.(-∞,-2)∪(1,+∞)
D.-∞,-31∪(1,+∞)
对于函数f(x)=lg(|x|-1)+2x+2-x, 令|x|-1>0,解得x>1或x<-1, 所以函数的定义域为(-∞,-1)∪(1,+∞), 又f(-x)=lg(|-x|-1)+2-x+2x=lg(|x|-1)+2x+2-x=f(x), 所以f(x)为偶函数, 当x>1时,f(x)=lg(x-1)+2x+2-x, 则y=lg(x-1)在(1,+∞)上单调递增,
思维升华
由函数的奇偶性与对称性可求函数的周期,常用于化简求值、比较大 小等.
跟踪训练3 若定义在R上的奇函数f(x)满足f(2-x)=f(x),在区间(0,1)上,
有(x1-x2)[f(x1)-f(x2)]>0,则下列说法正确的是 A.函数f(x)的图象关于点(1,0)中心对称
B.函数f(x)的图象关于直线x=2轴对称
思维升华
周期性与奇偶性结合的问题多考查求函数值、比较大小等,常利用奇偶 性和周期性将所求函数值的自变量转化到已知解析式的函数定义域内, 或已知单调性的区间内求解.
跟踪训练 2 已知定义在 R 上的函数 f(x)满足条件:①f(x)的周期为 2,②f(x
-2)为奇函数,③当 x∈[0,1)时,fxx11- -fx2x2>0(x1≠x2)恒成立.则 f -125,
1 2 3 4 5 6 7 8 9 10
2.定义在R上的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上单 调递减,则函数f(x) A.在区间[0,1]上单调递增,在区间[-2,-1]上单调递减
√B.在区间[0,1]上单调递增,在区间[-2,-1]上单调递增
C.在区间[0,1]上单调递减,在区间[-2,-1]上单调递减 D.在区间[0,1]上单调递减,在区间[-2,-1]上单调递增

2020高考二轮复习函数性质总结(奇偶性、周期性、对称性)

2020高考二轮复习函数性质总结(奇偶性、周期性、对称性)

函数的奇偶性、周期性、对称性【知识梳理】一、函数的奇偶性1.函数奇偶性的定义:函数f (x) 的定义域必须关于原点对称,对定义域内的任意一个x 都满足① f ( x) f (x) 函数f (x) 为偶函数;② f( x) f(x) f( x) f(x) 0 函数f(x)为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数.3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即f(x) 0,x D ,其中定义域D是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数f(x) 在区间[a,b](0 a b)上单调递增(减) ,则f(x)在区间[ b, a]上也是单调递增(减) ;③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数f(x) 在区间[a,b](0 a b)上单调递增(减) ,则f(x)在区间[ b, a]上也是单调递减(增) ;注意:1)若函数f ( x), g( x)都为奇函数或都为偶函数,则函数F(x) f (x)g(x)为偶函数;2)若函数f (x), g( x)其中一个为奇函数,另一个为偶函数,则函数F(x) f(x)g(x) 为奇函数;3)若函数f (x), g( x)都为奇函数,则函数F(x) f (x) g( x)为奇函数;4)若函数f (x), g(x)都为偶函数,则函数F(x) f(x) g( x)为偶函数.二、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:1)f a x f a x f x 关于x a 轴对称(当a0时,就是偶函数)2)f a x f b x f x 关于x ab轴对称23)f x a是偶函数,则 f x a f x a ,可得到:fx关于x a 轴对称。

函数的性质(高考总复习)

函数的性质(高考总复习)

---------------------------------------------------------------最新资料推荐------------------------------------------------------函数的性质(高考总复习)函数的性质一、函数的奇偶性 1.奇、偶函数的概念一般地,如果对于函数 f(x) 的定义域内任意一个 x,都有 f(-x) =f(x) ,那么函数 f(x)就叫做偶函数.一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x) =-f(x) ,那么函数f(x)就叫做奇函数. 2.奇、偶函数的性质⑴奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.⑵奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反⑶若奇函数 f(x)在 x=0 处有定义,则 f(0)=0. 3. 设f(x) , g(x) 的定义域分别是 D1, D2,那么在它们的公共定义域上:奇+奇=奇,偶+偶=偶,偶+非零常数=偶,奇+非零常数=非奇非偶,奇奇=偶,偶偶=偶,奇偶=奇,练习 1.若函数 f(x) =x2-| x+a| 为偶函数,则实数 a=_______.2.若函数 f(x) =(x+a) (bx+2a) (常数 a、 bR) 是偶函数,且它的值域为(-,4],则该函数的解析式f(x) =_____ ___. 3.对于定义域为 R 的奇函数 f(x) ,下列结论成立的是( ) A. f(x) -f(-x) 0 C. f(x) f(-x) 0 4.如下图,给出了奇函数 y=f(x) 的局部图象,则 f(-2) 的值为( ) B. f(x) -f(-x) 0 D. f(x) f(-x) 0 A.32 B.-32 C.12 D.-12 5.已知函数( )f x 是定义在 R 上的奇函数,若1 / 7当时,,则当时,( )f x 的表达式为()A....6.已知函数的图像关于坐标原点对称,则实数a=( ) A、 1 B、 -1 C、 0 D、.如果奇函数在区间[3, 7]上是增函数且最小值为 5,那么在区间上是 ( ) A.增函数且最小值为.增函数且最大值为.减函数且最小值为.减函数且最大值为.若偶函数)(xf在上是增函数,则下列关系式中成立的是() A..) 2 (f)23()..2 (.设奇函数)(xf的定义域为,若当时, )(xf的图象如右图, 则不等式的解是 10.如果定义在区间[2-a, 4]上的函数 y=f(x) 为偶函数,那么 a=___ _____. 11.已知函数 f(x)=ax2+bx+3a+b 为偶函数,其定义域为[a-1, 2a],则 a的值为________. 12.若 f(x) =(m-1) x2+6mx+2 是偶函数,则f(0) 、f(1) 、f(-2) 从小到大的顺序是____ __. 13.已知奇函数 ( )f x 的定义域为上单调递减,且满足条件求a的取值范围。

初中数学函数三大专题复习

初中数学函数三大专题复习

初中数学函数三大专题复习
一、函数的定义与性质
1. 函数的定义:函数是一个将一个集合的每一个元素映射到另
一个集合的规则。

2. 函数的性质:
- 定义域:函数定义中的所有可能输入的集合称为定义域。

- 值域:函数所有可能的输出值的集合称为值域。

- 单调性:函数是递增的或递减的,称为函数的单调性。

- 奇偶性:函数在定义域内的奇偶性可以根据函数的对称性来
确定。

二、函数的图像与性质
1. 函数的图像:函数的图像是表示函数值和自变量之间对应关
系的图形。

2. 基本函数的图像:
- 幂函数、指数函数、对数函数、三角函数等函数的图像特点。

- 图像的对称性特点,如奇函数关于原点对称,偶函数关于y
轴对称。

3. 函数的性质与图像:
- 函数的最大值和最小值可以通过图像上的关键点来确定。

- 函数的奇偶性可以通过图像的对称性来判断。

三、函数的运算与应用
1. 函数之间的运算:
- 函数的加法、减法、乘法和除法的定义与性质。

- 复合函数的概念和计算方法。

2. 函数的应用:
- 实际问题中常用的函数模型,如线性函数、二次函数、指数函数等。

- 函数的图像在实际问题中的应用,如求函数的最小值、最大值等。

总结:
初中数学函数的三大专题复习包括函数的定义与性质、函数的图像与性质以及函数的运算与应用。

掌握这些知识可以帮助我们理解函数的基本概念和特点,提高数学问题的解题能力。

三角函数图像与性质总复习教案

三角函数图像与性质总复习教案

三角函数图像与性质总复习教案一、教学目标1. 回顾和巩固三角函数的图像与性质,包括正弦函数、余弦函数、正切函数等。

2. 提高学生对三角函数图像与性质的理解和应用能力。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 复习正弦函数的图像与性质。

2. 复习余弦函数的图像与性质。

3. 复习正切函数的图像与性质。

4. 复习三角函数的周期性。

5. 复习三角函数的奇偶性。

三、教学方法1. 采用讲解法,通过教师的讲解,引导学生回忆和巩固三角函数的图像与性质。

2. 采用案例分析法,通过具体的例子,让学生理解和掌握三角函数的图像与性质。

3. 采用互动教学法,引导学生积极参与讨论和提问,提高学生的思维能力和解决问题的能力。

四、教学步骤1. 复习正弦函数的图像与性质。

a. 引导学生回忆正弦函数的定义和图像。

b. 讲解正弦函数的周期性和奇偶性。

c. 通过例子,让学生应用正弦函数的性质解决实际问题。

2. 复习余弦函数的图像与性质。

a. 引导学生回忆余弦函数的定义和图像。

b. 讲解余弦函数的周期性和奇偶性。

c. 通过例子,让学生应用余弦函数的性质解决实际问题。

3. 复习正切函数的图像与性质。

a. 引导学生回忆正切函数的定义和图像。

b. 讲解正切函数的周期性和奇偶性。

c. 通过例子,让学生应用正切函数的性质解决实际问题。

4. 复习三角函数的周期性。

a. 引导学生回忆三角函数的周期性定义。

b. 讲解三角函数的周期性性质。

c. 通过例子,让学生应用三角函数的周期性解决实际问题。

5. 复习三角函数的奇偶性。

a. 引导学生回忆三角函数的奇偶性定义。

b. 讲解三角函数的奇偶性性质。

c. 通过例子,让学生应用三角函数的奇偶性解决实际问题。

五、教学评价1. 课堂练习:布置相关的练习题,检查学生对三角函数图像与性质的理解和应用能力。

2. 课后作业:布置相关的作业题,巩固学生对三角函数图像与性质的记忆和理解。

3. 小组讨论:组织学生进行小组讨论,鼓励学生积极参与,提高学生的思维能力和解决问题的能力。

2020高考二轮复习函数性质总结(奇偶性、周期性、对称性)

2020高考二轮复习函数性质总结(奇偶性、周期性、对称性)

函数的奇偶性、周期性、对称性【知识梳理】一、函数的奇偶性1.函数奇偶性的定义:函数()f x 的定义域必须关于原点对称,对定义域内的任意一个x 都满足 ①()()f x f x -=⇔函数()f x 为偶函数;②()()()()0f x f x f x f x -=-⇔-+=⇔函数()f x 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数. 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递增(减); ③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递减(增); 注意:1)若函数(),()f x g x 都为奇函数或都为偶函数,则函数()()()F x f x g x =为偶函数; 2)若函数(),()f x g x 其中一个为奇函数,另一个为偶函数,则函数()()()F x f x g x =为奇函数; 3)若函数(),()f x g x 都为奇函数,则函数()()()F x f x g x =+为奇函数; 4)若函数(),()f x g x 都为偶函数,则函数()()()F x f x g x =+为偶函数.二、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,就是偶函数) (2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,可得到:()f x 关于x a =轴对称。

高一函数总结复习知识点与题型

高一函数总结复习知识点与题型

高一函数巩固复习 第一节函数性质专题 一.补充概念解析1.抽象函数: 。

2.复合函数:如果函数)(t f y =的定义域为A ,函数)(x g t =的定义域为D ,值域为C ,则A C ⊆时,函数)]([x g f y =为f 与g 在D 上的复合函数,其中t 叫做中间变量,)(x g t =叫做内函数,)(t f y =叫做外函数。

3.分离常数法:将形如)0(≠++=a bax dcx y 的函数分离常数,变形过程为 。

4.函数图像变换规则:(1)平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到.(2)对称变换:(1)函数()y f x =-的图像与函数()y f x =的图像关于y 轴对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于x 轴对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于原点对称;(3)翻折变换:⑴函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分; ⑵函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到.二.题型总结 1. 已知函数)0(1<+=a ax y 在区间]1,∞-(上有意义,求实数a 的取值范围 。

2.(1)已知函数)(x f 的定义域为【0,1】,求函数)1(2+x f 的定义域;(2)已知函数)1-2(x f 的定义域为【0,1】,求函数)31(x f -的定义域;(3)已知函数)3(+x f 的定义域为【-5,--2】,求函数)1()1()(-++=x f x f x F 的定义域。

人教版必修一函数的性质和初等函数复习

人教版必修一函数的性质和初等函数复习

函数题型分类解析例1.【函数的概念】 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( )A. y=f (x )图像与直线x=a 必有一个交点B. y=f (x )图像与直线x=a 没有交点C. y=f (x )图像与直线x=a 最少有一个交点D. y=f (x )图像与直线x=a 最多有一个交点例2.【同一函数的判定】 下列哪个函数与y=x 相同( )A. y=xB. y =C. 2y =D.y=t 变式. 下列各组函数表示相等函数的是( ) A. 293x y x -=- 与 3y x =+B. 1y =- 与 1y x =-C. 0y x =(x ≠0) 与 1y =(x ≠0)D. 21y x =+,x ∈Z 与21y x =-,x ∈Z例3.【求函数的定义域】 函数y = )A.{}1,1-B. ( -1 , 1 )C.[ -1 , 1 ]D.(-∞ ,-1 )∪( 1 ,+∞ )变式. 求函数y =例4.【抽象函数的定义域】 已知函数f (21x -)定义域为[]1,3-, 求f (x )的定义域变式. 已经函数f (x )定义域为[ 0 , 4], 求f ()2x 的定义域例5.【函数的值域】求下列函数的值域【观察法】①31y x =+ , x ∈{1,2 ,3,4,5 }【配方法】②246y x x =-+ ,x ∈[)1,5【换元法】③2y x =【分离常数法】④1x y x =+ 【判别式法】⑤221y x x =+变式 求下列函数的值域① 2243y x x =-+ ②y x =③ y =213x x +- ④ 2224723x x y x x +-=++ 例6 【整体代入法】 已知f (x )= 22x x -,求f (1x -)的解析式【换元法】 已知f (x+1)= 223x x ++,求f (x )的解析式【待定系数法】若f [ f (x )] = 4x+3,求一次函数f (x )的解析式 变式. 已知f (x )是二次函数,且()()211244f x f x x x ++-=-+,求f (x ).例8、【方程组法+相反型】已知f (x )-2 f (-x )= x 求函数f (x )的解析式【方程组法+倒数型】已知2 f (x )-f 1x ⎛⎫ ⎪⎝⎭= 3x ,求函数f (x )的解析式例9. 【赋值法】设对任意数x ,y 均有()()222233f x y f y x xy y x y +=++-++,求f (x )的解析式.变式 已知对一切x ,y ∈R ,()()()21f x y f x x y y -=--+都成立,且f (0)=1, 求f (x )的解析式.例10.【函数求值】 已经函数f (x )= 32xx +,求f (2)和f (a )+f (-a)的值 变式、 已知f (2x )= 21x x+,求f (2)的值 例11.【分段函数求值】已知函数()510320x x x x f x ⎧+ ≥⎪⎨-+ <⎪⎩=求f (1)+f (1-)的值 变式1. 已知函数()()2122111f x x x x x x f x ⎧+ , ≤-⎪⎪+ , -<<⎨⎪2-4 , ≥ ⎪⎩= 求f [f (4-)]的值变式2. 已知函数()1(2)2n f n n f n *⎧1 , (= 1)⎪=⎨1+- , (∈N ) ⎪⎩ 求f (5)的值例12 .【分段函数据值求X 】 设函数()812l ,1]og (1,)(,x f x x x x -⎧⎪=⎨⎪⎩∈-∞ ∈+∞ ,求满足f (x )=12的x 值单调性与奇偶性强化训练1、【奇函数定义】奇函数))((R x x f y ∈=的图像必定经过点( )A ))(,(a f a -B ))(,(a f a -C ))(,(a f a --D ))1(,(af a 2、【偶函数+对称性+单调性】在R上定义的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间[1,2]上是减函数,则函数)(x f ( )A 在区间]1,2[--上是增函数,在区间]4,3[上是增函数B 在区间]1,2[--上是增函数,在区间]4,3[上是减函数C 在区间]1,2[--上是减函数,在区间]4,3[上是增函数D 在区间]1,2[--上是减函数,在区间]4,3[上是减函数3、【奇函数定义】已知)(x f y =是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2-=,则)(x f 在R 上的表达式是 ( )A)2(-=x x y B)1(-=x x y C)2(-=x x y D)2(-=x x y4、【定区间动轴/恒成立】若函数)4,(2)1(2)(2-∞+-+=在区间x a x x f 上是减函数,那么实数a 的取值范围是( )A3≥a B3-≤a C3-≥a D5≤a5、【单调性】已知)(x f y =在R 上是增函数且)()(2m f m f ->,则实数m 的取值范围是( )A ]1,[--∞B ),0(+∞C )0.1(-D ),0()1,(+∞⋃--∞6、【偶函数+单调性】 已知)(x f 是定义在R上的偶函数,它在),0[+∞上递减,那么一定有( ) A )1()43(2+->-a a f f B )1()43(2+-≥-a a f f C )1()43(2+-<-a a f f D )1()43(2+-≤-a a f f7、【单调性+不等式性质】已知)(x f 在R上是增函数,a b R ∈,且0a b +≤,则有( )A ()()()()f a f b f a f b +≤--B ()()()()f a f b f a f b +≥--C ()()()()f a f b f a f b +≤-+-D ()()()()f a f b f a f b +≥-+-8.【分段函数+数形结合】函数(1)y x x =-在区间A上是增函数,那么A 是( ) A 1[0,]2 B [0,)+∞ C (,0)-∞ D 1(,)2+∞ 9、【单调性+数形结合】下列函数中,在(,0)-∞上为增函数的是 ( ) A21y x =- B11y x =+ C22y x x =+ D1x y x =- 10、【整体代换】已知8)(35-++=bx ax x x f 且10)2(=-f ,则=)2(f ( )A. –26B. –18C. –10D. 1011、【奇函数+数形结合】若函数()f x 在(,0)(0,)-∞⋃+∞上为奇函数,且在(0,)+∞上是单调增函数, (2)0f -=,则不等式()0xf x <的解集为______12、【单调性】设函数)(x f 满足:对任意的R x x ∈21,都有0)]()()[(2121>--x f x f x x 则)3(-f 与)(π-f 的大小关系是______13、【奇函数+赋值法/原型解法】设函数))((R x x f ∈为奇函数,)2()()2(,21)1(f x f x f f +=+= 则)5(f =_____ 14、【赋值法】 已知)(x f 是定义在R上的恒不为零的函数,且对于任意的R b a ∈,都满足)()()(a bf b af b a f +=⋅则)1(f =____、)(x f 是______(奇或偶)函数 15【偶函数定义】若b a bx ax x f +++=3)(2是偶函数、且定义域为]2,1[a a -则=a _____ =b _____16【赋值法+单调性定义法+奇偶性/原型解法】已知定义在R 上的函数)(x f 对任意实数y x ,都满足)()()(y f x f y x f +=+,且当0>x 时,0)(>x f求:(1)求)0(f(2)判断函数)(x f 的奇偶性,并证明(3)解不等式0)12()4(<++-a f a f17、【分类讨论+奇偶性+恒成立】已知函数2()(0,)a f x x x a R x=+≠∈ (1)判断函数)(x f 的奇偶性;(2)若)(x f 在区间[2,)+∞是增函数,求实数a 的取值范围二次函数最值强化训练例1.【定轴定区间】 已知函数2()2tan 1,[f x x x x θ=+-∈-,当6πθ=-时,求函数f(x)的最大值与最小值。

函数函数的定义域、值域、单调性、奇偶性、对称性、周期性、函数的综合应用复习

函数函数的定义域、值域、单调性、奇偶性、对称性、周期性、函数的综合应用复习

函数复习内容:函数的定义域、值域、单调性、奇偶性、对称性、周期性、函数的综合应用 一.常见函数(基本初等函数): 1.)(为常数C C y = 2.)0(≠+=k b kx y 3.)0(2≠++=a c bx axy 4.xy 1=5.幂函数:)(Q a x y a∈=(包括前四个函数) 6.指数函数:)10(≠>=a a a y x且 7.对数函数:)10(log≠>=a a x y a 且8.三角函数:x y sin =,x y cos =,x y tan =,x y cot =,x y sec =,x y csc =由以上函数进行四则运算、复合运算得到的函数都是初等函数。

如:d cx bxax y +++=23,xx y 2log1sin +=,xxy 513+=,试着分析以上函数的构成。

二.定义域: 1.“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、换元时易忽略定义域。

2.求定义域:例1求下列函数定义域:(1)2()lg (31)f x x =+ (2))25(logsin )(221x x x f -+=例2设2()lg 2x f x x+=-,则2()()2x f f x+的定义域为__________变式练习:24)2(xx f -=-,求)(x f 的定义域。

三.值域:1.①432+=xx y ②11y 22+-=xx2. ①1+=x x y ②11+-=x x y③]5,1(,14522∈-+-=x xx xy ④1sin 10sin 7sin2+++=x x x y3. ①2123y x x =++; ②22422--=x xx y4. ①12-+-=x x y ; ②y x =-5. ①)3)(cos 3(sin ++=x x y②已知直角三角形的三边之和为2,求此三角形面积S 的最大值。

③1cos 2cos --=x x y ④2sin 1cos --=x x y6.函数23x x21)x (f 2+-=的定义域和值域都是]b ,1[(b>1),求b 的值。

函数及正比例函数复习(1)

函数及正比例函数复习(1)

1、在问题研究进程中,可以取不同数值的量叫 _____,保持数值不变的量叫_______;
写出下列各问题中的关系式,并指出其中的常量与变量 (1)圆的周长C 与半径 r 的关系式;
C = 2πr 2π是常量; C 与 r是变量
(2)火车以60千米/时的速度行驶,它 驶过的路程
s (千米) 和所用时间 t (时)的关系式;
第二、四 k 0 范围是________,图像经过_______象限。 (3).如果正比例函数y=(k-1)x的图象经过第二 、四象限,那么k的取值范围是 k 1 .
(4)若正比例函数y=(1-2m)x的图象经过点
A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2, 则m的取值范围是(
y 6 6 4 4 2 -6 -4 -2 -2
∵图象过点(1,2)
∴k =2
∴y与x的函数解析式 为 y = 2x
2 4 6 6
o
-2
-4 -6
x
y kx 3
②正比例函数 的图像 过点(6,2),那么函数 1 y x 解析式是____. 3
已知y是x的正比例函数,并且当x=3时,y=6,如 果点A(a,a+3)是它的图象上的点,(1)求a的值
生活问题:
几何问题:


x0 y0
题目要求 整数
x0 y0
题目要求(三角形的内角小于 度) 180
x 0 等腰三角形: y0 2腰和底边
(二)填空题
1. 函数y 2 x 2 3x 1的定义域为 X为一切实数 3x 1 x2 2. 函数y 的定义域为 2 x 1 x 3. 函数y 2 x 1的定义域为 2 2x 6 4. 函数y 的定义域为 7x 1 5. 函数y 的定义域为 1 1 x2

2024年中考数学总复习第一部分考点精讲第三单元函数第3课时函数的图象与性质

2024年中考数学总复习第一部分考点精讲第三单元函数第3课时函数的图象与性质

2022 23(2) 解答题(三) 8 已知面积最大
最值 2021 9 选择题 3 已知三角形面积公式
2021 10 选择题 3 已知二次函数解析式
设问 求与x轴的交点坐 标及顶点坐标
求二次函数解析式
求抛物线解析式 求△CPQ面积的最 大值,点P的坐标 求三角形面积最值 求点C到y轴距离的 最大值
第3课时 函数的图象与性质
第3课时 函数的图象与性质
返回目录
类型 年份 题号
题型
分值
考情分析 已知条件
与坐标轴 2019 25(1) 解答题(三) 3 已知抛物线的解析式
交点及顶
①已知顶点C(0,-3),
2018 23(2) 解答题(三) 3
点坐标
②直线y=x+m得到与x轴的交点坐标
2017 23(1) 解答题(三) 3 与x轴的交点A(1,0),B(3,0)
2020
题号 9
24(3)
题型 选择题 解答题(三)
分值 3 4
已知条件 ①k>0,②在同一象限内的四个点 横坐标 关于x轴上一点对称
设问 比较y的大小 证平行四边形
对称性 2017 7
选择题
3 关于原点对称
求对称点的坐标
2016 23(2) 解答题(三) 3 关于直线y=x成轴对称 【考情总结】
求对称点的坐标
关系
选择题
①对称轴x=1, 3
②函数图象
多结论判断
与坐标轴 2022 23(1) 解答题(三) 4 ①与x轴的一个交点A(1,0),
求抛物线解析式
交点及顶
②由AB=4得到另一个交点B(-3,0)
BO=3AO=3得与x轴的交点A(-1,0)
点坐标 2020 25(1) 解答题(三) 3

高考数学总复习:函数的概念与性质

高考数学总复习:函数的概念与性质

高考数学总复习:函数的概念与性质知识网络目标认知考试大纲要求:1. 了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域和值域;2. 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3. 了解简单的分段函数,并能简单应用.4. 理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.5. 会运用函数图象理解和研究函数的性质.重点:会求一些简单函数的定义域和值域,理解分段函数及其简单应用,会运用函数图象理解和研究函数的性质。

难点:分段函数及其简单应用;运用函数图象理解和研究函数的性质.知识要点梳理知识点一:函数的概念1.映射设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A、B及集合A到集合B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

理解:(1)映射是从集合A到集合B的“一对一”或“多对一”两种特殊的对应.(2)映射中的两个集合可以是数集,点集或其它集合.(3)集合A到集合B的映射f:A→B是一个整体,具有方向性;f:A→B 与f:B→A 一般情况下是不同的映射.(4)给定一个集合A到集合B的映射f:A→B,且a∈A,b∈B,如果在此映射之下元素a和元素b对应,则将元素b叫做元素a的象,元素a叫做元素b的原象.即如果在给定映射下有f:a→b,则b叫做a的象,a叫做b的原象.(5)映射允许集合B中的元素在集合A中没有原象.2.函数的定义(1)传统定义:设在某一变化过程中有两个变量x和y,如果对于某一X围内x 的每一个值,y都有唯一的值和它对应,那么就说y是x的函数,x叫做自变量,y叫做因变量(函数).(2)现代定义:设A、B是两个非空数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x ,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值X围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合C={f(x)|x∈A}叫做函数的值域.理解:①集合A、B是两个非空数集;②f表示对应法则;③f:A→B为从集合A到集合B的一个映射;④值域C B。

函数复习(函数定义,性质)

函数复习(函数定义,性质)

函数复习1(定义,性质)1函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A到集合B的一个映射.4分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.例1设g(x)=2x+3,g(x+2)=f(x),则f(x)等于( )A.-2x+1 B.2x-1 C.2x-3 D.2x+7练习1已知f=x2+5x,则f(x)=____________.例2设函数f(x)=则f(f(3))=( )A. B.3 C. D.练习1设函数f(x)=若f(x)>4,则x的取值范围是______.练习2已知函数f(x)=若f(f(0))=4a,则实数a=________.例3若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=________.例4有以下判断:(1)f(x)=与g(x)=表示同一函数;(2)函数y=f(x)的图象与直线x=1的交点最多有1个;(3)f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;其中正确判断的序号是________.练习1试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=·,y=;(3)y=x,y=;(4)y=|x|,y=()2.例5若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=( ) A.x-1 B.x+1 C.2x+1 D.3x+3例6设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的是________.1单调函数的定义增函数减函数自左向右看图象逐渐下降2单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.3函数的单调性是局部性质从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.4函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.例1函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则( ) A.k> B.k<C.k>-D.k<-练习1下列函数中,在区间(0,+∞)上为增函数的是( )A. y=ln(x+2) B.y=-C.y=x D.y=x+练习2若函数f(x)=4x2-mx+5在[-2,+∞)上递增,在(-∞,-2]上递减,则f(1)=( )A.-7 B.1 C.17 D.25练习3若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( )A.增函数B.减函数 C.先增后减 D.先减后增例2 f(x)=x2-2x(x∈[-2,4])的单调增区间为________;f(x)max=________.例3证明函数f(x)=2x-在(-∞,0)上是增函数.例4函数f(x)=|x-2|x的单调减区间是( )A.[1,2] B.[-1,0] C.[0,2] D.[2,+∞)例5(1)若f(x)为R上的增函数,则满足f(2-m)<f(m2)的实数m的取值范围是________.(2)(2012·安徽高考)若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=________.例6函数y=-(x-3)|x|的递增区间是________.练习1若函数y=|2x-1|,在(-∞,m]上单调递减,则m的取值范围是________.例7求函数f(x)=的单调区间.函数复习1(定义,性质)1函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A到集合B的一个映射.4分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.例1设g(x)=2x+3,g(x+2)=f(x),则f(x)等于( )A.-2x+1 B.2x-1 C.2x-3 D.2x+7练习1已知f=x2+5x,则f(x)=____________.解析:令t=,则x=.所以f(t)=+. 故f(x)=(x≠0).答案:(x≠0)例2设函数f(x)=则f(f(3))=( )A. B.3 C. D.练习1设函数f(x)=若f(x)>4,则x的取值范围是______.[自主解答] 当x<1时,由f(x)>4,得2-x>4,即x<-2;当x≥1时,由f(x)>4得x2>4,所以x>2或x<-2,由于x≥1,所以x>2.综上可得x<-2或x>2.[答案] (-∞,-2)∪(2,+∞)练习2已知函数f(x)=若f(f(0))=4a,则实数a=________.解析:∵f(0)=3×0+2=2,f(f(0))=f(2)=4+2a=4a,∴a=2.答案:2例3若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=________.解析:由已知得得即f(x)=x2-4x+3.所以f(-1)=(-1)2-4×(-1)+3=8.答案:8例4有以下判断:(1)f(x)=与g(x)=表示同一函数;(2)函数y=f(x)的图象与直线x=1的交点最多有1个;(3)f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;其中正确判断的序号是________.[答案] (2)(3)练习1试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=·,y=;(3)y=x,y=;(4)y=|x|,y=()2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y =·的定义域为{x |x ≥2}.y =的定义域为{x |x ≥2,或x ≤-2},故它们不是同一函数.(3)y =x ,y ==t ,它们的定义域和对应关系都相同,故它们是同一函数.(4)y =|x |的定义域为R ,y =()2的定义域为{x |x ≥0},故它们不是同一函数.例5若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3例6设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②1单调函数的定义自左向右看图象逐渐下降2单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.3函数的单调性是局部性质从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.4函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.例1函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则( ) A.k> B.k<C.k>-D.k<-练习1下列函数中,在区间(0,+∞)上为增函数的是( )B. y=ln(x+2) B.y=-C.y=x D.y=x+练习2若函数f(x)=4x2-mx+5在[-2,+∞)上递增,在(-∞,-2]上递减,则f(1)=( )A.-7 B.1 C.17 D.25练习3若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( )A.增函数B.减函数 C.先增后减 D.先减后增例2 f(x)=x2-2x(x∈[-2,4])的单调增区间为________;f(x)max=________.解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8.答案:[1,4] 8例3证明函数f(x)=2x-在(-∞,0)上是增函数.[自主解答] 设x1,x2是区间(-∞,0)上的任意两个自变量的值,且x1<x2.则f(x1)=2x1-,f(x2)=2x2-,f(x1)-f(x2)=-=2(x1-x2)+=(x1-x2)由于x1<x2<0,所以x1-x2<0,2+>0,因此f(x1)-f(x2)<0,即f(x1)<f(x2),故f(x)在(-∞,0)上是增函数.例4函数f(x)=|x-2|x的单调减区间是( )A.[1,2] B.[-1,0] C.[0,2] D.[2,+∞)解析:选A 由于f(x)=|x-2|x=结合图象可知函数的单调减区间是[1,2].例5(1)若f(x)为R上的增函数,则满足f(2-m)<f(m2)的实数m的取值范围是________.(2)(2012·安徽高考)若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=________.[自主解答] (1)∵f(x)在R上为增函数,∴2-m<m2.∴m2+m-2>0.∴m>1或m<-2.(2)由f(x)=可得函数f(x)的单调递增区间为,故3=-,解得a=-6.[答案] (1)(-∞,-2)∪(1,+∞) (2)-6例6函数y=-(x-3)|x|的递增区间是________.解析:y=-(x-3)|x|=作出该函数的图象,观察图象知递增区间为.答案:练习1若函数y=|2x-1|,在(-∞,m]上单调递减,则m的取值范围是________.解析:画出图象易知y=|2x-1|的递减区间是(-∞,0],依题意应有m≤0.答案:(-∞,0]练习2求函数y=-x2+2|x|+1的单调递增区间;解:(1)由于y=即y=画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).例7求函数f(x)=的单调区间.解:设u=x2+x-6,y=.由x2+x-6≥0,得x≤-3或x≥2.结合二次函数的图象可知,函数u=x2+x-6在(-∞,-3]上是递减的,在[2,+∞)上是递增的.又∵函数y=是递增的,∴函数f(x)=在(-∞,-3]上是递减的,在[2,+∞)上是递增的.。

高三函数专题复习

高三函数专题复习

函数、函数与方程及函数的应用考 点 整 合1.函数的性质(1)单调性(ⅰ)用来比较大小,求函数最值,解不等式和证明方程根的唯一性.(ⅱ)常见判定方法:①定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;②图象法;③复合函数的单调性遵循“同增异减”的原则;④导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等.4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.5.应用函数模型解决实际问题的一般程序 读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.热点一 函数性质的应用【例1】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________(从小到大排序).(2)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则()∑=+mi i i y x 1=________.探究提高 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).【训练1】 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.热点二 函数图象的应用【例2】 (1)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是________.(2)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是________.探究提高 (1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x<0的解集为________.热点三 函数与方程问题[微题型1] 函数零点个数的求解【例3-1】 函数f (x )=4cos 2x 2·cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.探究提高 解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.[微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧x -1e x ,x ≥a ,-x -1,x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.(2)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是________.探究提高 利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】设函数f(x)=x2+3x+3-a·e x(a为非零实数),若f(x)有且仅有一个零点,则a的取值范围为________.1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f(x)=1x ln x的定义域时,只考虑x>0,忽视ln x≠0的限制.2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)=0.3.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、填空题1.函数f(x)=ln x+1-x的定义域为________.2.函数f(x)=log5(2x+1)的单调增区间是________.3.函数f (x )=⎩⎨⎧2x ,x ≤0,-x 2+1,x >0的值域为________.4.定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.5.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.6.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.7.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.8.设函数f (x )=⎩⎨⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a=1,则f(x)的最小值为________;(2)若f(x)恰有2个零点,则实数a的取值范围是________.二、解答题9.已知函数f(x)=x2-2ln x,h(x)=x2-x+a.(1)求函数f(x)的极值;(2)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围.。

高考数学复习专题知识梳理—函数的概念与性质

高考数学复习专题知识梳理—函数的概念与性质

高考数学复习专题知识梳理—函数的概念与性质1.函数的概念定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数三要素对应关系y =f (x ),x ∈A 定义域自变量x 的取值范围值域与x 的值相对应的y 的函数值的集合{f (x )|x ∈A }思考1:(1)有人认为“y =f (x )”表示的是“y 等于f 与x 的乘积”,这种看法对吗?(2)f (x )与f (a )有何区别与联系?提示:(1)这种看法不对.符号y =f (x )是“y 是x 的函数”的数学表示,应理解为x 是自变量,它是关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示定义R{x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.3.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x ),x ∈Q ,,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.4.分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数?提示:分段函数是一个函数,而不是几个函数.5.增函数与减函数的定义条件一般地,设函数f (x )的定义域为I ,区间D ⊆I :如果∀x 1,x 2∈D ,当x 1<x 2时都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)结论那么就说函数f (x )在区间D 上是增函数那么就说函数f (x )在区间D 上是减函数图示思考1:增(减)函数定义中的x 1,x 2有什么特征?提示:定义中的x 1,x 2有以下3个特征:(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.思考2:函数y =1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.6.函数最大值与最小值最大值最小值条件设函数y=f(x)的定义域为I,如果存在实数M满足:∀x∈I,都有f(x)≤M f(x)≥M∃x0∈I,使得f(x0)=M结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值几何意义f(x)图象上最高点的纵坐标f(x)图象上最低点的纵坐标思考:若函数f(x)≤M,则M一定是函数的最大值吗?提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.7.函数的奇偶性奇偶性偶函数奇函数条件设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I结论f(-x)=f(x)f(-x)=-f(x)图象特点关于y轴对称关于原点对称思考:具有奇偶性的函数,其定义域有何特点?提示:8.幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.9.幂函数的图象在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=x 12,y=x-1的图象如图所示:10.幂函数的性质11.常见的几类函数模型<解题方法与技巧>1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.典例1:(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B 中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]3.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.典例2:设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=1 12 .(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.4.求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.典例3:1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y=f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].5.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x0))的形式时,应从内到外依次求值.6..已知函数值求字母取值的步骤:(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.典例4:求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解](1)当且仅当x-2≠0,即x≠2时,函数f(x)=2+3x-2有意义,所以这个函数的定义域为{x|x≠2}.(2),,,解得x>-1且x≠1,所以这个函数的定义域为{x|x>-1且x≠1}.(3)-x≥0,-1≥0,解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(4)要使函数有意义,自变量x+1≠0,-x≥0,解得x≤1且x≠-1,即函数定义域为{x|x≤1且x≠-1}.已知函数f(x)+1,x≤-2,2+2x,-2<x<2,x-1,x≥2.(1)求f (-5),f (-3),f (2)若f (a )=3,求实数a 的值.[解](1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3)=3-2 3.∵=-52+1=-32,而-2<-32<2,∴+=94-3=-34.(2)当a ≤-2时,a +1=3,即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0.∴(a -1)(a +3)=0,解得a =1或a =-3.∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意.当a ≥2时,2a -1=3,即a =2符合题意.综上可得,当f (a )=3时,a =1或a =2.7.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.典例5:证明函数f (x )=x +1x在(0,1)上是减函数.[思路点拨]设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2)――→变形判号:f (x 1)>f (x 2)――→结论减函数[证明]设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)12(x 1-x 2)(x 1-x 2)+x 2-x 1x 1x 2(x 1-x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0,∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x在(0,1)上是减函数.8.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.典例6:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨](1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→求x 的范围(1)(-∞,-4](2)(-∞,1)[(1)∵f (x )=-x 2-2(a +1)x +3的开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]9.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.典例7:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.[解](1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2),所以f (x )在(-1,+∞)上为增函数.(2)由(1)知f (x )在[2,4]上单调递增,所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.10.解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.典例8:一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x x N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入-年总投资)(1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?[解](1)当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y x 2+32x -100,0<x ≤20,-x ,x >20(x ∈N *).(2)当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润,最大年利润为156万元.即当该工厂年产量为16件时,取得最大年利润为156万元.11.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.典例9:已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.[解](1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).12.比较大小的求解策略,看自变量是否在同一单调区间上.(1)在同一单调区间上,直接利用函数的单调性比较大小;(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.典例10:函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<B.f(1)<C.f(1)D.f(1)<[思路点拨]y=f(x+2)是偶函数―→[0,2]上f(x)的图象关于x=2对称――→比较大小递增B[∵函数f(x+2)是偶函数,∴函数f(x)的图象关于直线x=2对称,∴又f(x)在[0,2]上单调递∴f(1)<f(1)<13.判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.典例11:(1)在函数y=1x2,y=2x2,y=x2+x,y=1中,幂函数的个数为() A.0B.1C.2D.3(2)若函数f(x)是幂函数,且满足f(4)=3f(2),则f________.(1)B(2)13[(1)∵y=1x2=x-2,∴是幂函数;y=2x2由于出现系数2,因此不是幂函数;y=x2+x是两项和的形式,不是幂函数;y=1=x0(x≠0),可以看出,常函数y=1的图象比幂函数y=x0的图象多了一个点(0,1),所以常函数y=1不是幂函数.(2)设f(x)=xα,∵f(4)=3f(2),∴4α=3×2α,解得α=log23,∴23=13.]14.解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x 12或y=x3)来判断.典例12:点(2,2)2f(x),g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).[解]设f(x)=xα,g(x)=xβ.∵(2)α=2,(-2)β=-1 2,∴α=2,β=-1,∴f(x)=x2,g(x)=x-1.分别作出它们的图象,如图所示.由图象知,(1)当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);(2)当x=1时,f(x)=g(x);(3)当x∈(0,1)时,f(x)<g(x).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当a=0时,f(x)=bx2,∵f(x)值域为(-∞,4],
而y=bx2值域不可能为(-∞,4],∴a≠0.
当b=-2时,f(x)=-2x2+2a2,值域为(-∞,2a2]. ∴2a2=4,∴a2=2.∴f(x)=-2x2+4. 答案 -2x2+4
变式训练2
(2008·北京)已知函数 f(x)=x3
又∵f(a)≥f(0),∴0≤a≤6.
【例2】(1)(2009·山东)已知定义在R上的奇函数
f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函
数,则 A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25) C.f(11)<f(80)<f(-25) ( )
2
1 (B) 1,
2 (D) - , 2

2,

返回
一、填空题 1.若函数f(2x)的定义域是[-1,1],则f(x-1)的 定义域是 解析
1 2 x 2, 因x∈[-1,1],则 2
3 . ,3 2
1 知f(x)定义域为 ,2, 2
t 2
1 1 5 又t 时, y1 2 , 2 2 2 1 10 5 t 3时, y2 3 , 3 3 2
1 1 10 t [ ,3]时, y t [2, ] . 2 t 3 1 1 10 函数F ( x) f ( x) 在f ( x) [ ,3]时值域为[2, ] . f ( x) 2 3
课前热身
1 f x 1 f x 的是( C ) 1.下列各解析式中,满足 2 1 2 (B) x (A) x (C)2-x (D)log1/2 x 2 2.已知函数f(x)=log2x.F(x,y)=x+y2.则 F f (1 / 4),1等于( A )
(A)-1 (B)5 (C)-8 (D) 3 3.若f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式为( B )
【探究拓展周期性】
①f(x+a)=-f(x),则函数f(x)是以2a为周期的函数;
② f ( x a)
1 , 则函数f(x)是以2a为周期的函数; f ( x)
③ f ( x a) 1 f ( x) , 则函数f(x)是以4a为周期的函数.
1 f ( x)
4.(2009·北京)为了得到函数 y lg
+ax2+3bx+c (b≠0),且g(x)=f(x)-2是奇函数,求 a,c的值. 解 因为函数g(x)=f(x)-2为奇函数,
所以,对任意的x∈R,g(-x)=-g(x),
即f(-x)-2=-f(x)+2.
又f(x)=x3+ax2+3bx+c, 所以-x3+ax2-3bx+c-2=-x3-ax2-3bx-c+2.
知识体系
1.函数定义 2.函数定义域,值域
3.求函数解析式
4.函数图象 5.函数的单调性 6.函数的奇偶性 7.一次函数与二次函数 8.函数零点
一:函数的定义
1.函数:设A、B是非空的数集,如果按照某种确定的对 应关系f,使对于集合A中的任意一个数x,在集合B中 都有唯一确定的数f(x)和它对应,那么就称 f: A→B为从集合A到集合B的一个函数记作 y=f(x),x∈A。
4.函数 y log a x 1 0 a 1 的定义域为( D ) (A)[2,+∞] (B)(-∞,1) (C)(1,2) (D)(1,2】 5.若函数 y 2 log 1 x 的值域是[-1,1],则函数f-1(x)的值
2
域是(
A
)
2 , (A) 2 (C) 1 , 2 2
5.(2009·江苏押题)二次函数f(x)满足f(3+x)=
f(a)≥ f(3-x),又f(x)是[0,3]上的增函数,且
f(0),那么实数a的取值范围是 0≤a≤6
解析
.
∵f(3+x)=f(3-x),∴y=f(x)关于x=3对称,
又∵f(x)是[0,3]上的增函数.
∴f(x)是[3,6]上的减函数,
二:函数的定义域和值域
1.能使函数式有意义的实数x的集合称为函数的定义域.求 函数的定义域的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1.
2.求函数值域的常用方法有:直接法、反函数法、换 元法、配方法、均值不等式法、判别式法、单调性法 等.
3.函数的三要素 函数是由定义域、值域以及从定义域到值域的对应法则三 部分组成的特殊映射. 4.函数的表示法:解析式法、列表法、图象法.
5. 两个函数相等:定义域和对应关系完全一致
返回
1.设函数
15 ____. 16
1 x 2 f ( x) 2 x x 2
( x 1) 1 , 则f ( ) f ( 2) ( x 1)
D.f(-25)<f(80)<f(11)
(2)已知函数 f ( x 1) 1 f ( x) , 若f(0)=2 010,则
1 3 故f(x-1)中 x 1 2 x 3. 2 2
2.已知函数f(x)的定义域为R,值域为[1,2],则
函数f(x+2)的值域是 [1,2] .
解析
函数f(x)图象向左平移2个单位可得函数
f(x+2)图象,可知图象只有左右平移则不会改变

域,故函数f(x+2)的值域仍是[1,2].
本题解答时易由“y∈[1,2]”而得“f(x+2)∈
[3,4]”的错误,主要是对定义域与值域的概
念理解不清而造成的.
3.已知函数y=√mx2-6mx+m+8的定义域为R 求实数m的取值范围;
【解题回顾】对于x∈R时ax2+bx+c≥0恒成立.一定要分a=0 与a>0两种情况来讨论.这样才能避免错误.
a a , 所以 c 2 c 2.
解得a=0,c=2.
四:图象变换和性质
(1)平移变换:由y=f(x)的图象变换获得y=f(x+a)+b的图象, y=f(x) 沿x轴向左(a>0)或 y=f(x+a) 其步骤是: 向右(a<0)平移|a|个单位 沿y轴向上(b>0)或 y=f(x+a)+b 向下(b<0)平移|b|个单位
题型一
求函数的定义域和值域
x 2 3x 4 【例1】(1)(2009·江西)函数 y 的定义 x
域为
A.[-4,1] C.(0,1] 的值域是 B.[-4,0)
Hale Waihona Puke (D.[-4,0)∪(0,1] (
)
1 [ ,3] , 则函数F(x)=f(x)+ (2)若函数y=f(x)的值域是 2 1
(A)2x+1 (B)2x-1 (C)2x-3 (D)2x+7
1 1 x2 4.已知函数 f x ,那么 f f 3 f f 4 2 2 3 1 x 1 5/2 f ___________ 4
5.若一次函数y=f(x)在区间[-1,2]上的最小值为1,最大值 2 5 2 7 x 或 x 为3,则f(x)的解析式为__________________ 3 3 3 3
返回
三:函数的解析式
求函数的解析式的主要方法有:待定系数法、换元法、消 参法等, (1)如果已知函数解析式的构造(例如一次函数儿戏函 数反比例函数)时,可用待定系数法; (2)已知复合函数f[g(x)]的表达式时,可用换元法,这时 要注意元的取值范围; (3)当已知表达式较简单时,也可用凑配法; (4)若已知抽象函数表达式,则常用解方程组消参的方 法求出f(x) 返回
的值为
1 x 2 ( x 1) 解析 因为 f ( x) , 2 x x 2 ( x 1) 1 1 2+2-2=4,则 , 所以f(2)=2 f ( 2) 4
所以f (
1 1 1 15 ) f ( ) 1 ( )2 . f (2) 4 4 16
2
调递减.
能力·思维·方法
1.设f(x)=ax3+bx2+cx+d的图象如下图,则b属于( A ) (A)(-∞,0) (B)(0,1) (C)(1,2) (D)(2,+∞)
【解题回顾】虽然我们没有研究过函 数f(x)=ax3+bx2+cx+d(a≠0)的图象和性质,但通过图象提供 的信息,运用函数与方程的思想方法还是能够正确地解答 该题.
把函数y=lg x的图象上所有的点
x3 的图象,只需 10 (C )
A.向左平移3个单位长度,再向上平移1个单位长度 B.向右平移3个单位长度,再向上平移1个单位长度 C.向左平移3个单位长度,再向下平移1个单位长度
D.向右平移3个单位长度,再向下平移1个单位长度 x3 解析 ∵ y lg lg( x 3) 1, 10 ∴将y=lg x的图象上的点向左平移3个单位长度得到
f ( x)

1 A.[ ,3] 2 C. [ 5 ,10 ]
2 3
3 D.[3, 10 ] 3
B. [2,10 ]
x 0 解析 (1)由题意知 x 2 3x 4 0
解得-4≤x<0或0<x≤1.
1 (2)t=f(x),则y=F(x)= , t t 因此 y t 1 在[ 1 ,1)上是减函数, 在(1,3]上是增函数.
y=lg(x+3)的图象,再将y=lg(x+3)的图象上的点向下 平移1个单位长度得到y=lg(x+3)-1的图象.
相关文档
最新文档