等差数列前n项和
等差数列的前n项和
等差数列的前n 项和【基础回顾】1.等差数列的前n 项和公式1()2n n n a a S +=1(1)2n n n S na d -=+ (注意第一个公式的灵活运用) 等差数列前n 项和公式形式:2n S An Bn =+ 2.等差数列前n 项和公式的函数性质. 3.等差数列前n 项和公式的推导原理. 【典型例题】例1 已知数列{}n a 为等差数列,其前n 项和为n S .(1)12a =,1d =,则20S = ;(2)12a =,2010S =,则20a = . (3)12a =,2010S =,则n a = ;(4)848S =,12168S =,则1a = ,d = . (5)610a =,55S =,则8a = ,8S = ;(6)31540a a +=,则17S = . 例2 已知等差数列{}n a 的前n 项和n S ,若107a =,20120S =.试求:(1)数列{}n a 的通项n a ;(2)前n 项和n S 的最大值.变式1:设等差数列{}n a 的前n 项和221n S n n =-+,试求使n S 最大的n 的值为 . 变式2:将例2的条件“20120S =”改为“917S S =”,则前n 项和最大时,n = . 例3 等差数列{}n a 的前n 项和n S ,若(,p q S S p q =∈N +且)p q ≠,则p q S += . 例4 设等差数列{}n a 的前n 项和n S ,已知312a =,且120S >,130S <. (1)求公差d 的范围;(2)该数列前n 项和最大?请说明理由.例5 已知正数数列{}n a 满足1n a =+,求数列{}n a 的前n 项和n S .练习:已知正项数列{}n a 的首项12a =,前前n 项和n S ,若2212n n S S +-=,求数列{}n a 的通项公式.【夯实基础】1.已知数列{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( )A.1B.53C.2D.3 2.已知数列{}n a 是等差数列,135105a a a ++=,24699a a a ++=,数列{}n a 的前n 项和为n S ,则使得n S 取得最大值时,n 的值为( ) A.18 B.19 C.20 D.213.已知等差数列{}n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为( ) A.28 B.42 C.56 D.144.设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于( ) A.10 B.12 C.14 D.155.若n S 是等差数列{}n a 的前n 项和,且8310S S -=,则11S 的值为( ) A.12 B.18 C.22 D.446.若数列{}n a 满足:119a =,13n n a a +=-(n ∈N +),则数列{}n a 的前n 项和数值最大时,n 的值为( )A.6B.7C.8D.97.已知每项均大于零的数列{}n a 中,首项11a =且前n 项和n S 满足1n n S S S =n ∈N +且n ≥2),则81a =( ) A.641 B.640 C.639 D.6388.在数列{}n a 中,12a =,1221n n a a +=+,则101a = . 9.在等差数列{}n a 中,若1320a =,2013a =,则2013a = .10.已知等差数列{}n a ,公差0d >,前n 项和为n S ,且满足2345a a =,1414a a +=. (1)求数列{}n a 的通项公式及前n 项和n S ; (2)设n n S b n c=+,若{}n b 也是等差数列,试确定非零常数c ,并求数列11{}n n b b +⋅的前n 项和n T .11.在等差数列{}n a 中,237a a +=,45618a a a ++=. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,求363111nS S S +++ .。
等差数列前n项和
高斯(1777---1855), 德 国数学家、物理学家和天文学家。 他和牛顿、阿基米德,被誉为有 史以来的三大数学家。有“数学 王子”之称。
求 S=1+2+3+······+100=? 你知道高斯是
高斯算法:
怎么计算的吗?
首项与末项的和:
1+100=101,
第2项与倒数第2项的和: 2+99 =101,
(2)当d<0时,Sn有最大值 若a1<0,则S1最大; 若a1>0,则所有正数项的和最大。
另法:前n项和Sn的公式是关于n的二次函数,故 可利用二次函数来求最值(注意:n为正整数)。
例5 已知一个等差数列中满足3a4 7a7,且a1 0 Sn是数列{an}的前n项和,求n为何值时Sn取最大值.
则: b1,b2,b3, ,成等差数列,公差为:kd
(等差数列等分若干段后,各段和依序成等差数列)
数列a
n
是公差为d的等差数列,则S n
An2
Bn
Sn n
An B
Sn n
是等差数列,公差为A.
2.已知an是公差为d的等差数列,Sn为数列an的前n项和,则
Sn n
是等差数列,公差为
d 2
解:方法一
3a4
7a7
d
4 33 a1
0
an
a1
(n
1)
•
(
4 33
)a1
0
n
37 4
当n 9时,an 0; 当n 9时,an 0
故当n=9时,Sn取最大值.
方法二
3a4
7a7
d
4 33
a1
0
Sn
na1
等差数列的前n项和
等差数列的前n项和1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点)2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点)[基础·初探]教材整理等差数列的前n项和1.等差数列的前n项和公式已知量首项、末项与项数首项、公差与项数求和公式S n=n a1+a n2S n=na1+n n-12d2.等差数列前n项和公式的函数特点S n=na1+n n-12d=d2n2+⎝⎛⎭⎪⎫a1-d2n.d≠0时,S n是关于n的二次函数,且无常数项.判断(正确的打“√”,错误的打“×”)(1)公差为零的数列不能应用等差数列的前n项和公式.()(2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.()(3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.()【解析】(1)任何等差数列都能应用等差数列的前n项和公式.(2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式.(3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√[小组合作型]与S n 有关的基本量的计算(1)已知等差数列{a n }中,a 1=32,d =-12,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4;(3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10.【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换.【尝试解答】 (1)S n =n ·32+n n -12·⎝ ⎛⎭⎪⎫-12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×⎝ ⎛⎭⎪⎫-12=-4.(2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+5×5-12d =24, 即5a 1+10d =24,所以a 1+2d =245, 所以a 2+a 4=2(a 1+2d )=2×245=485. (3)因为a n =a 1+(n -1)d ,S n =na 1+n n -12d ,又a 1=1,a n =-512,S n =-1 022, 所以⎩⎪⎨⎪⎧1+n -1d =-512, ①n +12n n -1d =-1 022, ② 把(n -1)d =-513代入②得n +12n ·(-513)=-1 022,解得n =4, 所以d =-171.(4)由已知可得⎩⎪⎨⎪⎧a 1+d +a 1+4d=19,5a 1+5×42d =40,解得a 1=2,d =3,所以a 10=a 1+9d =2+9×3=29.等差数列中基本计算的两个技巧:(1)利用基本量求值.等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[再练一题] 1.等差数列中:(1)a 1=105,a n =994,d =7,求S n ; (2)a n =8n +2,d =5,求S 20; (3)d =13,n =37,S n =629,求a 1及a n .【解】 (1)由a n =a 1+(n -1)d 且a 1=105,d =7, 得994=105+(n -1)×7,解得n =128, ∴S n =n a 1+a n2=128×105+9942=70 336. (2)∵a n =8n +2,∴a 1=10,又d =5, ∴S 20=20a 1+20×20-12×5=20×10+10×19×5=1 150. (3)将d =13,n =37,S n =629代入a n =a 1+(n -1)d ,S n =n a 1+a n2,得⎩⎨⎧a n =a 1+12,37·a 1+a n2=629,解得⎩⎨⎧a 1=11,a n =23.等差数列前n 项和公式在实际中的应用为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2011年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少【精彩点拨】 将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】 根据题意,从2011年~2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n },其中,a 1=500,d =50. 那么,到2020年(n =10),投入的资金总额为 S 10=10×500+10×10-12×50=7 250(万元), 即从2011年~2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1)问题中所涉及的数列{a n }有何特征; (2)是求数列{a n }的通项还是求前n 项和; (3)列出等式(或方程)求解. [再练一题]2.如图1-2-2,一个堆放铅笔的V 型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔图1-2-2【解】由题意可知这个V型架自下而上各层的铅笔数组成等差数列,记为数列{a n},其中a1=1,a120=120.根据等差数列前n项和公式得S120=120×1+1202=7 260.即V型架上共放着7 260支铅笔.[探究共研型]等差数列前n项和的性质探究1设{a n}是等差数列,公差为d,S n是其前n项和,那么S m,S2m-S m,S3m-S2m也成等差数列吗如果是,它们的公差是多少【提示】由S m=a1+a2+…+a m,S2m-S m=a m+1+a m+2+…+a2m=a1+md +a2+md+…+a m+md=S m+m2d,同理S3m-S2m=a2m+1+a2m+2+…+a3m=S2m-S m+m2d,所以S m,S2m-S m,S3m-S2m也成等差数列,公差为m2d.探究2设S n、T n分别为两个等差数列{a n}和{b n}的前n项和,那么a nb n与S2n-1T2n-1有怎样的关系请证明之.【提示】a nb n=S2n-1T2n-1.【证明】a nb n=2a n2b n=a1+a2n-1b1+b2n-1=2n-1a1+a2n-122n-1b1+b2n-12=S2n-1T2n-1.(1)等差数列{a n}的前m项和为30,前2m项和为100,求数列{a n}的前3m 项的和S 3m ;(2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b5的值.【精彩点拨】 (1)利用S m ,S 2m -S m ,S 3m -S 2m 成等差数列求解.(2)利用前n 项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】 (1)在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列,∴2×70=30+(S 3m -100),∴S 3m =210. (2)a 5b 5=2a 52b 5=9a 1+a 99b 1+b 9=S 9T 9=6512.巧妙应用等差数列前n 项和的性质 (1)“片段和”性质.若{a n }为等差数列,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…构成公差为n 2d 的等差数列.(2)项数(下标)的“等和”性质. S n =n a 1+a n 2=n a m +a n -m +12.(3)项的个数的“奇偶”性质. {a n }为等差数列,公差为d .①若共有2n 项,则S 2n =n (a n +a n +1); S 偶-S 奇=nd ;S 偶S 奇=a n +1a n.②若共有2n +1项,则S 2n +1=(2n +1)a n +1;S 偶-S 奇=-a n +1;S 偶S 奇=nn +1.(4)等差数列{a n }中,若S n =m ,S m =n (m ≠n ),则S m +n =-(m +n ). (5)等差数列{a n }中,若S n =S m (m ≠n ),则S m +n =0. [再练一题]3.已知两个等差数列{a n }与{b n }的前n (n >1)项和分别是S n 和T n ,且S n ∶T n=(2n +1)∶(3n -2),求a 9b 9的值.【解】 a 9b 9=2a 92b 9=a 1+a 17b 1+b 17=a 1+a 172×17b 1+b 172×17=S 17T 17=2×17+13×17-2=3549=57.等差数列前n 项和的最值 探究1 将等差数列前n 项和S n =na 1+n n -12d 变形为S n 关于n 的函数后,该函数是怎样的函数为什么【提示】 由于S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,所以当d ≠0时,S n 为关于n 的二次函数,且常数项为0.探究2 类比二次函数的最值情况,等差数列的S n 何时有最大值最小值 【提示】 由二次函数的性质可以得出,当d >0时,S n 有最小值;当d <0时,有最大值,且n 取值最接近对称轴的正整数时,S n 取得最值.在等差数列{a n }中,a 10=18,前5项的和S 5=-15. (1)求数列{a n }的通项公式.(2)求数列{a n }的前n 项和的最小值,并指出何时取最小值.【精彩点拨】 (1)直接根据等差数列的通项公式和前n 项和公式列关于首项a 1和公差d 的方程,求得a 1和d ,进而得解;(2)可先求出前n 项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.【尝试解答】 (1)由题意得⎩⎪⎨⎪⎧a 1+9d =18,5a 1+5×42×d =-15,得a 1=-9,d =3, ∴a n =3n -12. (2)S n =n a 1+a n2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478,∴当n =3或4时,前n 项的和取得最小值S 3=S 4=-18.等差数列前n 项和的最值问题的三种解法:(1)利用a n :当a 1>0,d <0时,前n 项和有最大值,可由a n ≥0且a n +1≤0,求得n 的值;当a 1<0,d >0,前n 项和有最小值,可由a n ≤0且a n +1≥0,求得n 的值.(2)利用S n :由S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n (d ≠0),利用二次函数配方法求得最值时n的值.(3)利用二次函数的图象的对称性. [再练一题]4.在等差数列{a n }中,a 1=25,S 17=S 9,求S n 的最大值. 【解】 利用前n 项和公式和二次函数性质,由S 17=S 9得 25×17+172(17-1)d =25×9+92(9-1)d ,解得d =-2, ∴S n =25n +n2(n -1)(-2)=-(n -13)2+169, ∴由二次函数性质,当n =13时,S n 有最大值169.1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2 【解析】 S 8=8a 1+a 82=4(a 3+a 6),又S 8=4a 3,所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6. 【答案】 A2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A .2 B .3 C .6 D .7【解析】 由题意得⎩⎨⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.【答案】 B3.在等差数列{a n }中,a 1=2,前三项和为15,则前6项和为( ) A .57 B .-40 C .-57 D .40 【解析】 由题意知a 1+a 2+a 3=15,∴3a 2=15,a 2=5, ∴d =a 2-a 1=3,∴a n =3n -1, ∴S 6=62+172=57. 【答案】 A4.在等差数列{a n }中,已知a 1=2,d =2,则S 20=________. 【解析】 S 20=20·a 1+20×192×d =20×2+20×192×2=420.【答案】 4205.等差数列{a n }中,a 10=30,a 20=50. (1)求通项公式a n ; (2)若S n =242,求n .【解】 (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50, 得方程组⎩⎨⎧a 1+9d =30,a 1+19d =50,解得⎩⎨⎧a 1=12,d =2,所以a n =2n +10. (2)由S n =na 1+n n -12d ,S n =242,得12n +n n -12×2=242,解得n =11或n =-22(舍去),所以n =11.学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=() A.5B.7 C.9 D.11【解析】法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=5a1+a52=5a3=5,故选A.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d=1,∴S5=5a1+5×42d=5(a1+2d)=5,故选A.【答案】A2.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()C.10 D.12【解析】∵公差为1,∴S8=8a1+8×8-12×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=1 2,∴a10=a1+9d=12+9=192.故选B.【答案】B3.在等差数列{a n}中,若S9=18,S n=240,a n-4=30,则n的值为() A.14 B.15 C.16 D.17【解析】S9=9a1+a92=9a5=18,所以a5=2,S n=n a1+a n2=n a5+a n-42=240,∴n(2+30)=480,∴n=15.【答案】B4.设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于()【解析】由题意S3,S6-S3,S9-S6,S12-S9成等差数列.∵S3S6=13.不妨设S3=1,S6=3,则S6-S3=2,所以S9-S6=3,故S9=6,∴S12-S9=4,故S12=10,∴S6S12=310.【答案】A5.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取得最小值时,n等于()A.6 B.7 C.8 D.9【解析】设公差为d,由a4+a6=2a5=-6,得a5=-3=a1+4d,解得d=2,∴S n=-11n+n n-12×2=n2-12n,∴当n=6时,S n取得最小值.【答案】A二、填空题6.已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.【解析】∵a3+a5=2a4,∴a4=0.∵a1=6,a4=a1+3d,∴d=-2.∴S6=6a1+6×6-12d=6.【答案】67.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是________.【解析】 法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20. 【答案】 208.等差数列{a n }的前9项的和等于前4项的和,若a 1=1,a k +a 4=0,则k =________.【解析】 设{a n }的公差为d ,由S 9=S 4及a 1=1得9×1+9×82×d =4×1+4×32×d ,所以d =-16,又a k +a 4=0,所以⎣⎢⎡⎦⎥⎤1+k -1×⎝ ⎛⎭⎪⎫-16+⎣⎢⎡⎦⎥⎤1+4-1×⎝ ⎛⎭⎪⎫-16=0,即k =10.【答案】 10 三、解答题9.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.【解】 设等差数列{a n }的公差为d ,前n 项和为S n ,则 S n =na 1+n n -12d .由已知得⎩⎪⎨⎪⎧10a 1+10×92d =100,①100a 1+100×992d =10, ②①×10-②,整理得d =-1150, 代入①,得a 1=1 099100,所以S 110=110a 1+110×1092d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150 =110⎝ ⎛⎭⎪⎫1 099-109×11100=-110. 故此数列的前110项之和为-110.10.已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值 【解】 (1)由a 1=9,a 4+a 7=0, 得a 1+3d +a 1+6d =0,解得d =-2, ∴a n =a 1+(n -1)d =11-2n . (2)a 1=9,d =-2, S n =9n +n n -12·(-2)=-n 2+10n=-(n -5)2+25,∴当n =5时,S n 取得最大值.[能力提升]1.在项数为2n +1项的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n =( )A .9B .10C .11D .12【解析】 ∵等差数列有2n +1项, ∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n , ∴S 奇S 偶=n +1n =165150, ∴n =10. 【答案】 B2.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5【解析】 a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7n +1+12n +1=7+12n +1,∴n=1,2,3,5,11.【答案】 D3.在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于________. 【解析】 因为S n =na 1+n n -12d ,所以35=na 1+n n -12×2=na 1+n (n -1)①,又a n =a 1+(n -1)·d =a 1+2(n -1),∴a 1+2(n -1)=11②,由①②可得a 21-2a 1-3=0, 解得a 1=3或-1. 【答案】 3或-14.从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.(1)记该款服装4月份日销售与销售天数n 的关系为a n ,求a n ; (2)求4月份的总销售量;(3)按规律,当该商场销售此服装超过1 200件时,社会上就流行,而且销售量连续下降,且日销售低于100件时,则流行消失,问:该款服装在社会上流行是否超过10天【解】 (1)从4月1日起每天销售量依次组成数列{a n },(n ∈{1,2,…,30}) 依题意,数列a 1,a 2,…,a 12是首项为10,公差为15的等差数列, ∴a n =15n -5(1≤n ≤12).a 13,a 14,a 15,…,a 30是首项为a 13=a 12-10=165,公差为-10的等差数列, ∴a n =165+(n -13)(-10)=-10n +295(13≤n ≤30),∴a n =⎩⎨⎧15n -5 1≤n ≤12,n ∈N +,-10n +295 13≤n ≤30,n ∈N +.(2)4月份的总销售量为 1210+1752+18×165+18×17×-102=2 550(件), (3)4月1日至4月12日销售总数为 12a 1+a 122=1210+1752=1 110<1 200, ∴4月12日前还没有流行.由-10n +295<100得n >392, ∴第20天流行结束,故该服装在社会上流行没有超过10天.等差数列的前n 项和1.理解并掌握等差数列的前n 项和公式及其推导过程,体会等差数列的前n 项和公式与二次函数的关系.(重点)2.熟练掌握等差数列的五个基本量a 1,d ,n ,a n ,S n 之间的联系,能够由其中的任意三个求出其余的两个.(重点)[基础·初探]教材整理 等差数列的前n 项和 1.等差数列的前n 项和公式已知量 首项、末项与项数 首项、公差与项数 求和公式S n =n a 1+a n 2S n =na 1+n n -12d2.等差数列前n 项和公式的函数特点 S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n . d ≠0时,S n 是关于n 的二次函数,且无常数项.判断(正确的打“√”,错误的打“×”)(1)公差为零的数列不能应用等差数列的前n 项和公式.( ) (2)数列{n 2}可以用等差数列的前n 项和公式求其前n 项和S n .( ) (3)若数列{a n }的前n 项和为S n =an 2+bn ,则{a n }是等差数列.( ) 【解析】 (1)任何等差数列都能应用等差数列的前n 项和公式. (2)数列{n 2}不是等差数列,故不能用等差数列的前n 项和公式.(3)当公差不为0时,等差数列的前n 项和是关于n 的二次函数(常数项为0).[小组合作型]与S n 有关的基本量的计算(1)已知等差数列{a n }中,a 1=32,d =-12,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4;(3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10.【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换.【尝试解答】 (1)S n =n ·32+n n -12·⎝ ⎛⎭⎪⎫-12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×⎝ ⎛⎭⎪⎫-12=-4.(2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+5×5-12d =24, 即5a 1+10d =24,所以a 1+2d =245, 所以a 2+a 4=2(a 1+2d )=2×245=485.(3)因为a n =a 1+(n -1)d ,S n =na 1+n n -12d ,又a 1=1,a n =-512,S n =-1 022, 所以⎩⎪⎨⎪⎧1+n -1d =-512, ①n +12n n -1d =-1 022, ② 把(n -1)d =-513代入②得n +12n ·(-513)=-1 022,解得n =4, 所以d =-171.(4)由已知可得⎩⎪⎨⎪⎧a 1+d +a 1+4d=19,5a 1+5×42d =40,解得a 1=2,d =3,所以a 10=a 1+9d =2+9×3=29.等差数列中基本计算的两个技巧:(1)利用基本量求值.等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[再练一题] 1.等差数列中:(1)a 1=105,a n =994,d =7,求S n ; (2)a n =8n +2,d =5,求S 20; (3)d =13,n =37,S n =629,求a 1及a n .等差数列前n 项和公式在实际中的应用为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2011年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少【精彩点拨】 将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】 根据题意,从2011年~2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n },其中,a 1=500,d =50. 那么,到2020年(n =10),投入的资金总额为 S 10=10×500+10×10-12×50=7 250(万元), 即从2011年~2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1)问题中所涉及的数列{a n }有何特征; (2)是求数列{a n }的通项还是求前n 项和;(3)列出等式(或方程)求解.[再练一题]2.如图1-2-2,一个堆放铅笔的V型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔图1-2-2[探究共研型]等差数列前n项和的性质探究1n n S m,S2m-S m,S3m-S2m也成等差数列吗如果是,它们的公差是多少【提示】由S m=a1+a2+…+a m,S2m-S m=a m+1+a m+2+…+a2m=a1+md +a2+md+…+a m+md=S m+m2d,同理S3m-S2m=a2m+1+a2m+2+…+a3m=S2m-S m+m2d,所以S m,S2m-S m,S3m-S2m也成等差数列,公差为m2d.探究2设S n、T n分别为两个等差数列{a n}和{b n}的前n项和,那么a nb n与S2n-1T2n-1有怎样的关系请证明之.【提示】a nb n=S2n-1T2n-1.【证明】a nb n=2a n2b n=a1+a2n-1b1+b2n-1=2n-1a1+a2n-122n-1b1+b2n-12=S2n-1T2n-1.(1)等差数列{a n}的前m项和为30,前2m项和为100,求数列{a n}的前3m项的和S3m;(2)两个等差数列{a n},{b n}的前n项和分别为S n和T n,已知S nT n=7n+2n+3,求a5b5的值.【精彩点拨】(1)利用S m,S2m-S m,S3m-S2m成等差数列求解.(2)利用前n项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】(1)在等差数列中,S m,S2m-S m,S3m-S2m成等差数列,∴30,70,S3m-100成等差数列,∴2×70=30+(S3m-100),∴S3m=210.(2)a5b5=2a52b5=9a1+a99b1+b9=S9T9=6512.巧妙应用等差数列前n项和的性质(1)“片段和”性质.若{a n}为等差数列,前n项和为S n,则S n,S2n-S n,S3n-S2n,…构成公差为n2d的等差数列.(2)项数(下标)的“等和”性质.S n=n a1+a n2=n a m+a n-m+12.(3)项的个数的“奇偶”性质.{a n}为等差数列,公差为d.①若共有2n项,则S2n=n(a n+a n+1);S偶-S奇=nd;S偶S奇=a n+1a n.②若共有2n+1项,则S2n+1=(2n+1)a n+1;S偶-S奇=-a n+1;S偶S奇=nn+1.(4)等差数列{a n}中,若S n=m,S m=n(m≠n),则S m+n=-(m+n).(5)等差数列{a n}中,若S n=S m(m≠n),则S m+n=0.[再练一题]3.已知两个等差数列{a n}与{b n}的前n(n>1)项和分别是S n和T n,且S n∶T n=(2n+1)∶(3n-2),求a9b9的值.等差数列前n项和的最值探究1将等差数列前n项和S n=na1+n n-12d变形为S n关于n的函数后,该函数是怎样的函数为什么【提示】由于S n=na1+n n-12d=d2n2+⎝⎛⎭⎪⎫a1-d2n,所以当d≠0时,S n为关于n的二次函数,且常数项为0.探究2类比二次函数的最值情况,等差数列的S n何时有最大值最小值【提示】由二次函数的性质可以得出,当d>0时,S n有最小值;当d<0时,有最大值,且n取值最接近对称轴的正整数时,S n取得最值.在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式.(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.【精彩点拨】(1)直接根据等差数列的通项公式和前n项和公式列关于首项a1和公差d的方程,求得a1和d,进而得解;(2)可先求出前n项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.【尝试解答】 (1)由题意得⎩⎪⎨⎪⎧a 1+9d =18,5a 1+5×42×d =-15, 得a 1=-9,d =3, ∴a n =3n -12. (2)S n =n a 1+a n2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478,∴当n =3或4时,前n 项的和取得最小值S 3=S 4=-18.等差数列前n 项和的最值问题的三种解法:(1)利用a n :当a 1>0,d <0时,前n 项和有最大值,可由a n ≥0且a n +1≤0,求得n 的值;当a 1<0,d >0,前n 项和有最小值,可由a n ≤0且a n +1≥0,求得n 的值.(2)利用S n :由S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n (d ≠0),利用二次函数配方法求得最值时n的值.(3)利用二次函数的图象的对称性. [再练一题]4.在等差数列{a n }中,a 1=25,S 17=S 9,求S n 的最大值.1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .22.记等差数列前n项和为S n,若S2=4,S4=20,则该数列的公差d等于() A.2 B.3 C.6 D.73.在等差数列{a n}中,a1=2,前三项和为15,则前6项和为()A.57 B.-40 C.-57 D.404.在等差数列{a n}中,已知a1=2,d=2,则S20=________.5.等差数列{a n}中,a10=30,a20=50.(1)求通项公式a n;(2)若S n=242,求n.学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7 C.9 D.112.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()C.10 D.123.在等差数列{a n}中,若S9=18,S n=240,a n-4=30,则n的值为()A.14 B.15 C.16 D.174.设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于()5.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取得最小值时,n等于()A.6 B.7 C.8 D.9二、填空题6.已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.7.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是________.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k =________.三、解答题9.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.10.已知等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值[能力提升]1.在项数为2n +1项的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n =( )A .9B .10C .11D .122.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .53.在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于________. 4.从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.(1)记该款服装4月份日销售与销售天数n 的关系为a n ,求a n ; (2)求4月份的总销售量;(3)按规律,当该商场销售此服装超过1 200件时,社会上就流行,而且销售量连续下降,且日销售低于100件时,则流行消失,问:该款服装在社会上流行是否超过10天。
等差数列前n项和的性质及应用
密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。
4.2.2等差数列的前n项和公式
= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2
= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,
等差数列前n项和的性质
则
S偶-
S奇=
nd 2
.
特别地, 若 m+n=2p, 则 am+an=2ap .
2.等差中项
b=
a+c 2
3.若数列 {an}是等差数列,则 d k 2d
Sk , S2k Sk , S3k S2k , S4k S3k , 也是等差数列
4.若等差数列 {an} 的前 2n-1 项和为 S2n-1, 等差数列 {bn} 的
前 2n-1 项和为 T2n-1,
则
S2n-1 T2n-1
=
an bn
.
三、判断、证明方法
1.定义法; 2.通项公式法; 3.等差中项法.
{an}为等差数列 an kn b
Sn An2 Bn
注: 三个数成等差数列, பைடு நூலகம்设为 a-d, a, a+d(或 a, a+d, a+2d) 四个数成等差数列, 可设为a-3d, a-d, a+d, a+3d.
一、概念与公式
1.定义 若数列 {an} 满足: an+1-an=d(常数), 则称 {an} 为等差数列.
2.通项公式 an=a1+(n-1)d=am+(n-m)d.
3.前n项和公式
Sn=na1+
n(n-1)d 2
=
n(a1+an) 2
.
二、等差数列的性质
1.若 m+n=p+q(m、n、p、qN*), 则 am+an=ap+aq .
四、Sn的最值问题
1.若 a1>0, d<0 时,
满足
an≥0, an+1≤0.
等差数列的前n项和之间的关系
等差数列的前n项和之间的关系
等比数列前n项和公式:当q≠1时,Sn=a1(1-q^n)/(1-
q)=(a1-anq)/(1-q);当q=1时,Sn=na1(其中,a1为首项,an为第n项,d为公差,q为等比)。
除此之外,Sn为前n项和。
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
注:q=1时,an为常数列(n为下标)。
等比数列通式若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x 上的一群孤立的点。
如果等比通项公式为an=a1*qn-1,当q=1时,求和公式为
Sn=n*a1;当q≠1时,求和公式为Sn=a1(1-qn)/(1-q)。
由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
等差数列的各种公式:
等差数列的通项公式为:an=a1+(n-1)d(1)。
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)。
以上n均属于正整数。
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
等差数列及其前n项和全面总结
等差数列及其前n项和全面总结
一、等差数列
等差数列(Arithmetic Sequence)是一种数学连续结构,表示一列数按固定间隔呈减量或递增量。
它是连续减量或是连续递增量,也就是说,等差数列中每一项减去它前面一项所得的结果都是一样的。
此外,等差数列中每一项可以由连续的的符号
a,a+d,a+2d,...,an,an+1,... 对应,其中a是等差数列的起点,d是等差数列的公差,我们也用an来表示等差数列的终点。
假设等差数列a,a+d,a+2d,...,an是有n个项的等差数列,那么它前n项的和可以表示为:Sn = (2a + (n- 1)d)n/2
Sn 表示等差数列的前n项的和,其中,a是等差数列的起点,d是等差数列的公差,n是终点前一项的系数。
三、等差数列的相关求解方法
1、求等差数列的终结点和公差。
以上方法可以求出等差数列某一项的值。
总之,等差数列是一种特殊的数列连续结构,其关键性性质是可以由起点和公差来确定的。
我们可以用上述方法来求出等差数列的终结点和公差,其前n项和以及它的某一项的值等。
等差数列的前n项和的性质
A.22 B.26 C.30 D.34
C 由等差数列的前n项和性质知S673,S1346-S673,S2019-S1346 成等差数列,所以由等差中项的性质知 2(S1346-S673)=S673+S2019-S1346,又S673=2,S1346=12, 所以S2019=3(S1346-S673)=30,故选C.
Sn在转折项有最大值
an 0 an1 0
a1 0, d 0 , , ,(0),+, , , Sn在转折项有最小值
an 0
an1
0
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法1 由S3=S11得 1.根据Sn二次模型,寻找对称轴
法一 : 基本量思想 转为a1和d 法二 : 整体做差
3. an 是等差数列, Sn是前n项的和,求证: S6, S12 S6, S18 S12也成等差 推广: 若 an 是等差数列, Sn , S2n Sn , S3n S2n也成等差
等差数列an, Sn 100, S2n 500,求S3n
练习题
1.等差数列 an ,a10 30,a20 50,求a40
法一 : 基本量思想 转为a1和d 法二 : a10,a20 , a30, 还成等差
结论 : 若an是等差数列, 则 a10n还是等差 2.等差数列 an ,a1 a2 a3 35,a2 a3 a4 63,求a3 a4 a5
Sn 2n 3 ,求 a9 .
37
Tn 3n 1 b9
50
an S2n1 bn T2n1
an S2n1
bn
T2n1
二、等差数列的前n项的最值问题 Sn最值问题
等差数列的概念及前n项和
等差数列的概念及前n 项和考点解析及例题讲解1. 等差数列的前n 项和公式等差数列各项的和等于首末两项的和乘项数除以2. 一般地,数列{a n }的前n 项和记作S n ,即S n = a 1+a 2+a 3+…+a n .可以得到等差数列的前n 项和公式S n = n (a 1+ a n ) 2. 因为a n = a 1+(n -1)d ,所以上面公式又可写成S n = n a 1 + n ( n - 1 ) 2d . 在这两个公式中,都包含四个变量,只要知道其中任意三个,就可求出第四个.例1 在小于100的正整数集合中,有多少个数是7的倍数?并求它们的和.解 在小于100的正整数集合中,以下各数是7的倍数7,7×2,7×3,…,7×14.即7,14,28, (98)显然,这是一个等差数列.其中a 1=7,d =7,项数为不大于1007的最大整数值,即n =14,a 14= 98.因此S 14 = 14× ( 7 + 98 )2= 735. 即在小于100的正整数的集合中,有14个数是7的倍数,它们的和等于735.例2 在等差数列-5,-1,3,7,…中.前多少项的和是345? 解 这里a 1=-5,d =-1-(-5)=4,S n =345. 根据等差数列的前n 项和公式得345 = -5n + n ( n - 1 ) 2×4, 整理得2n 2 -7n -345 = 0,解得n 1=15,n 2= - 232 (不合题意,舍去).所以n = 15 .即这个数列的前15项的和是345基础知识训练6.设等差数列{}n a 的前n 项和为958224S a a a S n ,则,若-=+等于( )(A )72 (B )60 (C )48 (D )361. 在等差数列中:(1)已知n a d a ,则,421===_________;(2)已知n d a a n ,则,,22111====_________.2. 已知等差数列{}n a 满足==+=+653426104S a a a a 项和,则它的前,________.3. 已知等差数列{}n a 有7212201918321=++-=++a a a a a a ,,则其前20项的和等于____.4. 在数列{}n a 中,==+∈+=++1074110)(2a a a N n a a n n ,则,且______.5. 在等差数列{}n a 中,若.512115481a a a a a ,,求,==+6. 在等差数列{}n a 中,.2191的最大值项和,试求其前,n S n d a -== 综合知识训练1. 若等差数列{}n a 的前三项和等于,则且21316a a S ==( )(A )1 (B )2 (C )3 (D )42. 等差数列{}n a 的前n 项何为的值为,则,,若43253S a a S n ==( )(A )12 (B )14 (C )16 (D )183. 设{}n a 是公差为正数的等差数列,若此数列前3项的和为9,前3项的积为24,则2013a =( )(A )2011 (B )2012 (C )2013 (D )2014 4. n S 是等差数列的前n 项和,1821a a a ++为一个确定的常数,则以下也为确定常数的是( )(A )11S (B )13S (C )15S (D )以上都不正确5. 若数列为等差数列,=++++==2064212121a a a a d a ,则,( ) (A )50 (B )55 (C )25 (D )21506. 若数列为等差数列,且==+57320a a a ,则( )(A )5 (B )10 (C )15 (D )207. 设数列的首项=∈+==++1211)(32a N n a a a n n ,则,且满足_____.8. 已知数列的通项=-+-=111212a a n a n ,则_______.9. 一个四边形的内角度数成等差数列,且最小角是 30,则最大角是{}n a {}n a {}n a {}n a。
等差数列的前n项和性质+练习
1、等差数列{a n }前n 项和公式: n S = n a n 2a 1+=d n n n a 2)1(1-+=d n n na n 2)1(--。
等差数列的前n 项之和公式可变形为,若令A =,B =a 1-,则=An 2+Bn.在解决等差数列问题时,如已知,a 1,a n ,d ,,n 中任意三个,可求其余两个。
2、等差数列{a n }前n 项和的性质性质1:S n ,S 2n -S n ,S 3n -S 2n , …也在等差数列,公差为n 2d性质2:(1)若项数为偶数2n,则 S 2n =n(a 1+a 2n )=n(a n +a n+1) (a n ,a n+1为中间两项),此时有:S 偶-S 奇= nd , 性质3:(2)若项数为奇数2n -1,则 S 2n-1=(2n - 1)a n (a n 为中间项), 此时有:S 奇-S 偶= a n ,1-n n s =偶奇s 性质4:数列{nn s }为等差数列 性质5:若数列{a n }与{b n }都是等差数列,且前n 项的和分别为S n 和T n ,则2121n n n n a S b T --= 典型例题:热点考向1:等差数列的基本量(a 1,a n ,d ,,n 中任意三个,可求其余两个)例1、在等差数列{n a }中,已知81248,168S S ==,求1,a 和d 已知6510,5a S ==,求8a 和8S训练: 1、在等差数列{}n a 中,已知102030,50a a ==.(1)求通项公式{}n a ;(2)若242n S =,求n .2.在等差数列{}n a 中,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 3、已知等差数列的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。
4. 已知是等差数列,且满足,则等于________。
(完整版)等差数列的前n项和与项数之间的关系总结
(完整版)等差数列的前n项和与项数之间的关系总结1. 什么是等差数列?等差数列是指数列中的每一项与前一项之差都相等的数列,这个相等的差值称为公差,用d表示。
等差数列的通项公式表示为:aₙ = a₁ + (n-1)d,其中aₙ表示数列中的第n项,a₁表示数列的第一项,d表示公差。
2. 等差数列的前n项和公式等差数列的前n项和公式可以通过求和的方法推导而来。
设等差数列的前n项和为Sₙ,根据等差数列定义的通项公式,可以得到:Sₙ = a₁ + a₂ + a₃ + ... + aₙ,由于每一项与前一项之差相等,即aₙ - aₙ₋₁ = d,我们可以将公式中的每一项分解:Sₙ = (a₁ + (a₁ + d) + (a₁ + 2d) + ... + (a₁ + (n-1)d),根据算术求和公式,可以将上式化简为:Sₙ = n(a₁ + aₙ)/2。
这就是等差数列的前n项和公式。
3. 相关性质和应用等差数列的前n项和与项数之间存在以下关系:- 当项数n增加时,前n项和Sₙ也会增加,且增加的速度逐渐减缓。
- 当项数n相同,公差d增加时,前n项和Sₙ也会增加。
- 当项数n相同,公差d相同,首项a₁增加时,前n项和Sₙ也会增加。
等差数列的前n项和公式在数学和工程等领域具有广泛的应用。
例如,在金融领域中,可以用来计算投资收益;在物理学中,可以用来计算位移、速度等连续变化的量。
4. 总结等差数列的前n项和与项数之间存在简单的线性关系,可以通过等差数列的前n项和公式进行计算。
了解等差数列的性质和应用,能够帮助我们更好地理解和应用等差数列的概念。
证明等差数列前n项和的方法
证明等差数列前n项和的方法
我们要证明等差数列的前n项和的公式。
首先,我们需要理解等差数列的定义和性质。
等差数列是一个序列,其中任何两个连续的项之间的差都是常数。
假设等差数列的首项是 a_1,公差是 d,项数是 n。
等差数列的通项公式是:a_n = a_1 + (n-1) × d
等差数列的前n项和公式是:S_n = n/2 × (2a_1 + (n-1) × d)
我们将使用数学归纳法来证明这个公式。
证明步骤如下:
1. 基础步骤:当 n = 1 时,S_1 = a_1,与公式一致。
2. 归纳假设:假设当 n = k 时,公式成立,即S_k = k/2 × (2a_1 + (k-1) × d)。
3. 归纳步骤:我们需要证明当 n = k + 1 时,公式也成立。
S_{k+1} = S_k + a_{k+1}
= k/2 × (2a_1 + (k-1) × d) + a_1 + k × d
= (k+1)/2 × (2a_1 + k × d)
所以,当 n = k + 1 时,公式也成立。
由1和3,我们可以得出结论:等差数列的前n项和公式对任何正整数n都成立。
等差数列及其前n项和
等差数列及其前n项和1.等差数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n+1-a n=d(n∈N*,d为常数).(2)等差中项:由三个数a,A,b组成的等差数列可以看成是最简单的等差数列,这时A叫做a与b的等差中项,根据等差数列的定义可以知道,2A=a+b.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)d2=n(a1+a n)2.3.等差数列的性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md 的等差数列.(4)若S n为等差数列{a n}的前n项和,则数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)若S n为等差数列{a n}的前n.1.已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列,且公差为p.2.在等差数列{a n}中,a1>0,d<0,则S n存在最大值;若a1<0,d>0,则S n存在最小值.3.等差数列{a n}的单调性:当d>0时,{a n}是递增数列;当d<0时,{a n}是递减数列;当d=0时,{a n}是常数列.4.数列{a n}是等差数列⇔S n=An2+Bn(A,B为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(2)等差数列{a n}的单调性是由公差d决定的.()(3)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()(4)等差数列的前n项和公式是常数项为0且关于n的二次函数.()答案(1)√(2)√(3)×(4)×解析(3)若公差d=0,则通项公式不是n的一次函数.(4)若公差d=0,则前n项和不是n的二次函数.2.(2022·福州质检)在等差数列{a n}中,若a1+a2=5,a3+a4=15,则a5+a6=()A.10B.20C.25D.30答案C解析等差数列{a n}中,每相邻2项的和仍然构成等差数列,设其公差为d,若a1+a2=5,a3+a4=15,则d=15-5=10,因此a5+a6=(a3+a4)+d=15+10=25.3.(2022·青岛一模)记S n为等差数列{a n}的前n项和,若a1=1,S3=92则数列{a n}的通项公式a n=()A.nB.n+12C.2n-1D.3n-12答案B解析设等差数列{a n}的公差为d,则S3=3a1+3×22d=3+3d=92,解得d=12,∴a n=1+(n-1)×12=n+12.4.(2021·杭州二模)已知{a n}是等差数列,满足3(a1+a5)+2(a3+a6+a9)=18,则该数列的前8项和为()A.36B.24C.16D.12答案D解析由等差数列性质可得a1+a5=2a3,a3+a6+a9=3a6,所以3×2a3+2×3a6=18,即a3+a6=3,所以S8=8(a1+a8)2=8(a3+a6)2=12.5.(多选)设{a n}是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案ABD解析S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0,则a9<0,又a6+a8=a5+a9=2a7=0,∴S5>S9,由a7=0,a6>0知S6,S7是S n中的最大值.从而ABD均正确.6.一物体从1960m的高空降落,如果第1秒降落4.90m,以后每秒比前一秒多降落9.80m,那么经过________秒落到地面.答案20解析设物体经过t秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t+12t(t-1)×9.80=1960,即4.90t2=1960,解得t=20.考点一等差数列的基本运算1.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.-12B.-10C.10D.12答案B解析设等差数列{a n}的公差为d,则3(3a1+3d)=2a1+d+4a1+6d,即d=-3 2 a1.又a1=2得∴d=-3,∴a5=a1+4d=2+4×(-3)=-10.2.(2021·武汉调研)已知等差数列{a n}的前n项和为S n,若S8=a8=8,则公差d=()A.1 4B.12C.1D.2答案D解析∵S8=a8=8,∴a1+a2+…+a8=a8,∴S7=7a4=0,则a4=0.∴d=a8-a48-4=2.3.(2020·全国Ⅱ卷)记S n为等差数列{a n}的前n项和.若a1=-2,a2+a6=2,则S10=________.答案25解析设等差数列{a n}的公差为d,则a2+a6=2a1+6d=2×(-2)+6d=2.解得d=1.所以S10=10×(-2)+10×92×1=25.4.(2020·新高考全国Ⅰ卷)将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为__________.答案3n2-2n解析法一(观察归纳法)数列{2n-1}的各项为1,3,5,7,9,11,13,…;数列{3n-2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列,则a n=1+6(n-1)=6n-5.故前n项和为S n=n(a1+a n)2=n(1+6n-5)2=3n2-2n.法二(引入参变量法)令b n=2n-1,c m=3m-2,b n=c m,则2n-1=3m-2,即3m=2n+1,m必为奇数.令m=2t-1,则n=3t-2(t=1,2,3,…).a t=b3t-2=c2t-1=6t-5,即a n=6n-5.以下同法一.感悟提升 1.等差数列的通项公式及前n项和公式共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二等差数列的判定与证明例1(2021·全国甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n-1)2d=n2a1.因为数列{a n}的各项均为正数,所以S n=n a1,所以S n+1-S n=(n+1)a1-n a1=a1(常数),所以数列{S n}是等差数列.①②⇒③.已知{a n}是等差数列,{S n}是等差数列.设数列{a n}的公差为d,则S n=na1+n(n-1)2d=12n2d+a1-d2.因为数列{S n}是等差数列,所以数列{S n}的通项公式是关于n的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n≥2时,S n=b nb n-1,代入2S n+1b n=2可得,2b n-1b n+1b n=2,整理可得2b n-1+1=2b n,即b n-b n-1=12(n≥2).又2S1+1b1=3b1=2,所以b1=32,故{b n}是以32为首项,12为公差的等差数列.(2)解由(1)可知,b n=32+12(n-1)=n+22,则2S n+2n+2=2,所以S n=n+2n+1,当n=1时,a1=S1=3 2,当n≥2时,a n=S n-S n-1=n+2n+1-n+1n=-1n(n+1).故a n 32,n=1,-1n(n+1),n≥2.考点三等差数列的性质及应用角度1等差数列项的性质例2(1)设S n为等差数列{a n}的前n项和,且4+a5=a6+a4,则S9等于() A.72 B.36 C.18 D.9答案B解析∵a6+a4=2a5,∴a5=4,∴S9=9(a1+a9)2=9a5=36.(2)在等差数列{a n}中,若a5+a6=4,则log2(2a1·2a2·…·2a10)=()A.10B.20C.40D.2+log25答案B解析由等差数列的性质知a1+a10=a2+a9=a3+a8=a4+a7=a5+a6=4,则2a1·2a2·…·2a10=2a1+a2+…+a10=25(a5+a6)=25×4,所以log2(2a1·2a2·…·2a10)=log225×4=20.角度2等差数列前n项和的性质例3(1)已知等差数列{a n}的前n项和为S n.若S5=7,S10=21,则S15等于() A.35 B.42 C.49 D.63答案B解析在等差数列{a n}中,S5,S10-S5,S15-S10成等差数列,即7,14,S15-21成等差数列,所以7+(S15-21)=2×14,解得S15=42.(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块答案C解析设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3402(块).角度3等差数列前n 项和的最值例4等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解法一设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 21=-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称.由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三设公差为d .由解法一可知d =-213a 1.要使S n n ≥0,n +1≤0,1+(n -1-213a 0,1+-213a 0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四设公差为d.由S3=S11,可得2a1+13d=0,即(a1+6d)+(a1+7d)=0,故a7+a8=0,又由a1>0,S3=S11可知d<0,所以a7>0,a8<0,所以当n=7时,S n最大.感悟提升 1.项的性质:在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q.2.和的性质:在等差数列{a n}中,S n为其前n项和,则(1)S2n=n(a1+a2n)=…=n(a n+a n+1);(2)S2n-1=(2n-1)a n.(3)依次k项和成等差数列,即S k,S2k-S k,S3k-S2k,…成等差数列.3.求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n项和S n=An2+Bn(A,B为常数,A≠0)为二次函数,通过二次函数的性质求最值.训练2(1)(多选)(2022·淄博调研)已知等差数列{a n}的公差为d,前n项和为S n,当首项a1和d变化时,a2+a8+a11是一个定值,则下列各数也为定值的是() A.a7 B.a8 C.S13 D.S15答案AC解析由题知a2+a8+a11=a1+d+a1+7d+a1+10d=3a1+18d=3(a1+6d)=3a7,∴a7是定值,∴S13=13(a1+a13)2=13a7是定值,故选AC.(2)(2022·重庆诊断)已知S n是等差数列{a n}的前n项和,若a1=-2020,S20202020-S20142014=6,则S2023等于()A.2023B.-2023C.4046D.-4046答案C解析d′,则S20202020-S20142014=6d′=6,∴d′=1,首项为S11=-2020,∴S20232023=-2020+(2023-1)×1=2,∴S2023=2023×2=4046,故选C.(3)设等差数列{a n}满足a1=1,a n>0(n∈N*),其前n项和为S n,若数列{S n}也为等差数列,则S n+10a2n的最大值是________.答案121解析设数列{a n}的公差为d,依题意得2S2=S1+S3,∴22a1+d=a1+3a1+3d,把a1=1代入求得d=2,∴a n=1+(n-1)×2=2n-1,S n=n+n(n-1)2×2=n2,∴S n+10a2n=(n+10)2(2n-1)2==12(2n-1)+2122n-12≤121.∴S n+10a2n的最大值是121.。
等差数列的前n项和
(3)2 4 6 2n; n(n 1) (4)1 2 3 4 5 6 (2n 1) 2n.
(4)解:原式 [1 3 5 (2n 1)] (2 4 6 2n).
又解:原式 (1 2) (3 4) (5 6) [(2n 1) 2n].
求 S=1+2+3+· · · · · · +100=?
100 101 5050. 2
问题2:
求和:1+2+3+4+…+n=?
记:Sn= 1 + 2 + 3 +…+(n-2)+(n-1)+n 2 +1 Sn = n+(n-1)+(n-2)+…+ 3 +
2Sn n(n 1)
n(n 1) Sn 2
n(n 1) Sn na1 d 2 an a 1 ( n 1)d
结论:知 三 求 二
例1:根据下列条件,求相应的等差数列
an
的
(1)a1 5, an 95, n 10;
S10
(2)a1 100 , d 2, n 50;
S50
10 (5 95) 500 . 2
n=9
98 S9 (10) 9 4 54 2
公式应用
知三求二
例3 在等差数列an 中,已知d 20, n 37, sn 629,
求a1及an .
本例是使用等差数列的求和公式和通项公式求未知 元。 事实上,在求和公式、通项公式中共有首项、公差、 项数、末项、前n项和五个元素,如果已知其中三个, 联列方程组,就可求其余二个。
等差数列的前n项和的性质
由二次函数性质得,当n=13时,Sn有最大值169. „„12分
方法二:先求出公差 d=-2(同方法一),„„„6分 ∵a1=25>0,故{an}为递减数列,由
1 n 13 2 n 1) 0 25 ( 2 解得 , 25 2n 0 n 12 1 2 1 1 即12 n 13 . 又n∈N*
或利用二次函数Sn=an2+bn(a,b为常数)
求Sn的最值。
举例应用:
【例1】(12分)有两个等差数列{an},{bn},其前n项和
a5 S 7n 2 n 分别为Sn和Tn,若 . ,求 b5 Tn n 3
【解答】方法一:
a 5 2a 5 b5 2b5
S9 T9 93
65 . 12
d<-3 a 3 +4d<0 a7 <0 24 24 - <d<-3 7 a6 +a7 >0 2a 3 +7d>0 d> 7
例3.
a6 a7 0 S12 0 2)分析: 注意: S13 0 a7 0
解:
练习:在等差数列{an}中,a1=25,S17=S9, 求Sn的最大值. 【审题指导】题目给出首项和S17=S9等条件,欲求Sn 的最大值可转化为二次函数求最值,或利用通项公 式an求n使得an≥0,an+1<0或利用性质求出大于或等 于零的项.
已知n, a1 , d , an中的三个.
引入:
d 2 d Sn =na1 + d= n + a1 - n 2 2 2 可见d≠0时,Sn是关于n的缺常数项的二次 函数,其二次项系数是公差的一半。
等差数列的前n项和-概念解析
数学教育
等差数列的前n项和公式是数学 教育中的重要内容,是中学数学
课程中的必修知识点。
在物理领域的应用
物理学中的周期性现象
等差数列的前n项和公式可以用于描述物理学中的周期性现象,例如声音的振 动、波动等。
物理学中的序列问题
等差数列的前n项和公式可以用于解决物理学中的序列问题,例如在研究粒子运 动、流体动力学等领域中,可以通过等差数列的前n项和公式来描述一系列物理 量的变化规律。
解答
由于该等差数列是偶数项,所以它的前10项和等于中间两 项之和(第5项和第6项)乘以10除以2,即$(3 - 3) times 10 / 2 = 0$。
习题三:等差数列前n项和的实际应用问题
01 总结词
02 详细描述
03 应用1
04 应用2
05 应用3
掌握等差数列前n项和在实 际问题中的应用
等差数列前n项和在实际问 题中有着广泛的应用,如 计算存款、贷款、工资等 问题。
总结词
详细描述
公式
示例
解答
理解等差数列前n项和的 概念
等差数列的前n项和是指 从第一项到第n项的所有 项的和,可以通过公式 或递推关系式来求解。
$S_n = frac{n}{2} times (2a_1 + (n-1)d)$,其中 $a_1$是首项,$d$是公 差,$n$是项数。
求等差数列$1, 3, 5, 7, ldots$的前5项和。
等差数列前n项和的公式推导
等差数列前n项和的公式可以通过数学归 纳法进行推导。
化简得:$S_{k+1} = frac{(k+1)}{2}(2a_1 + kd)$,所以当n=k+1时,公式也成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 26
小结
1. 2. 等差前n项和Sn公式的推导; 等差前n项和Sn公式的记忆与应用;
n(a1 an ) Sn 2
n(n 1) Sn na1 d 2
3.
等差前n项和Sn公式的理解.
说明:两个求和公式的使用-------知三求二.
作业布置
• 课本P46,习题2、3 A组 2
S199
设Sn是等差数列{an}的前n项的和, 即 Sn a1 a2 an1 an
(1 199) 199 =19900 2
猜想
n(a1 an ) sn 2
问题:设等差数列an 首项为a1 ,公差为d sn a1 a2 a3 an
2、3 等差数列 的前n项和(一)
一、复习:
(1)什么叫等差数列?
如果一个数列从第2项起,每一项与它前一项的差等于 同一个常数,那么这个数列就叫做等差数列.其表示为:
an an1 d (d为常数,n 2,n N )
(2) 等差数列的通项公式是什么?
an=a1+(n-1)d(an am (n m)d或an pn q( p、q是常数))
高斯的算法: 首项与末项的和:1+100=101, 第2项与倒数第2项的和:2+99=101, 第3项与倒数第3项的和:3+98=101, …… 第50项与倒数第50项的和:50+51=101. 上述求解过程带给我们什么启示?
100 于是所求的和为:(1 100 ) 2 5050
(1)任意的第k项与倒数第k项的和相等且都等于 首项与末项的和; (2)所求的和可以用首项、末项及项数来表示.
n 1
a1 11 an 23
an a1 (n 1)d
例4 已知一个直角三角形的三条边的长成等 差数列,求证它们的比是3:4:5.
证明: 将成等差数列的三条边的长从小到大排列, 它们可以表示为
a-d, a, a+d (这里ad>0,d>0) 由勾股定理,得到
(a d ) a (a d )
练习 1.根据下列条件,求相应的等差数列
(1)a1 5, an 95, n 10; 求S10与d
S10 500 d 10
an 的有关未知数
n(a1 an ) Sn 2
an a1 (n 1)d
(2)a1 100 ,d
S50 2550
n(n 1) na d 2, n 50, 求S50S 与 a n 501; 2 an a1 (n 1)d a 2
n(a1 an ) Sn 于是有: .这就是倒序相加法求和. 2
等差数列的前n项和公式
n(a1 an ) Sn 2
(( n 1) d
na1 a1 ( n 1) d n 2 n( n 1) d na1 2
∴等差数列-10,-6,-2,2…前9项的和是54
例3在等差数列{an }中,已知n 16, an 63, sn 528,求a1及d
16(a1 63) 解:s16 528 a1 2
n(a1 an ) Sn 2
n(n 1) S n na1 d 2
3
16 15 则s16 16 3 d =48+120d =528 2
(已知a1 , d,n求和sn )
例1. 求等差数列5,7,9 … , 2n+7的各项之和. n( a1 an ) 已知a1 , an,d , 求sn S n 2 n( n 1) d na1 2
解: 此题中的等差数列共有n+2项 所以各项之和为:
(5 2n 7) (n 2) Sn 2 (n 6)(n 2)
d 4
所以a1 3, d 4
方法二:a16 a1 15d 3 15d 63 d 4
总结:由an a1 (n 1)d
n(a1 an ) n( n 1) d Sn 或S n na1 2 2
可知在 a1 , d , n, an , sn 五个量中,只要知道其中三个量, 就可以求出余下的两个量,常称之为“知三求二”.
n 8n 12
2
例2. 等差数列-10,-6,-2,2,…前多少项的和是54?
n( n 1) d 已知a1, d,sn ,求n sn na1 2
解:设题中的等差数列为{an } ,前n项和为 Sn 则
a1 10, d (6) (10) 4, Sn 54 n(n 1) 由公式可得 sn 10 n 4 54 2 解之得: n1 9, n2 3 (舍去)
定义: Sn
a1 a2 a3 an1 an 叫做数列 an 的前n项和。
计算: 1+2+3+ … +199=?
解:设
=19900
s199= 1+2+3+......+197+198+199
s199=199+198+197+......+3+2 +1 2s199=(1+199)+(2+198)+(3+197)+ … +(197+3)+(198+2)+(199+1)
(3)等差中项 如果a, A, b 成等差数列,那么A叫做a与b的等差中项. a b A 2 (4)等差数列的性质
若m n p q, 则am an ap aq (m、n、p、q N ) 推广:a1 an a2 an1 ai 1 ani
有题意可知: (a 3d ) (a d ) (a d ) (a 3d ) 52
4a 52 即 2 2 a d 144
a 13 a 13 解之得 或 d 5 d 5
故所求四个数为-2,8,18,28或28,18,8,-2
50
(3)a1 38, an 10, Sn 360 , 求n与d ;
1 n(n 1) ( 4) d , n 37, S n 629 , 求a1与an . S na d n 1 3 2
n 15 d 2
n(a1 an ) Sn 2 1)d a a (n
为回避数列项数奇偶的问题,做一个改写
Sn a1 a2 a3 an2 an1 an
Sn an an1 an2 a3 a2 a1
,
,
两式左右分别相加,得
2S n (a1 an ) (a 2 an1 ) (a3 an2 ) (an2 a3 ) (a n1 a 2 ) (an a1 ) 2S n n(a1 an )
2 2
2
解得
a 4d
3d, 4d, 5d,
从而这三边的长是
因此,这三条边的长的比是3:4:5
例5 成等差数列的四个数之和为52,第二个数 与第三个数之积为144,求这四个数.
证明: 设成等差数列的四个数分别为:
a 3d , a d , a d , a 3d ,
(a d )(a d ) 144
“小故事”:
高斯是伟大的数学家,天文学家,
高斯十岁时,有一次老师出了一道题
目,老师说: “现在给大家出道题目:
1+2+…100=?”
过了两分钟,正当大家在: 1+2=3 ; 3+3=6 ; 4+6=10 … 算得不亦乐乎时,高斯站起来回答说:
“1+2+3+…+100= 5050 老师问:“你是如何算出答案的?
例6、已知等差数列an 的前四项和为25,最后 四项和为63,前n项和为286,求项数n。
解: a1 a2 a3 a4 25 (1)
2 1得
an an1 an2 an3 63 (2)
4(a1 an ) 88 n(a1 an ) a1 an 22 sn 286 2